
The Design of
Approximation Algorithms

David P. Williamson
David B. Shmoys

Copyright c⃝ 2010 by David P. Williamson and David B. Shmoys. All rights reserved. To be
published by Cambridge University Press.

2

This electronic-only manuscript is published on www.designofapproxalgs.com with the permis-
sion of Cambridge University Press. One copy per user may be taken for personal use only
and any other use you wish to make of the work is subject to the permission of Cambridge
University Press (rights@cambridge.org). You may not post this file on any other website.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Preface

This book is designed to be a textbook for graduate-level courses in approximation algorithms.
After some experience teaching minicourses in the area in the mid-1990s, we sat down and wrote
out an outline of the book. Then one of us (DPW), who was at the time an IBM Research
Staff Member, taught several iterations of the course following the outline we had devised, in
Columbia University’s Department of Industrial Engineering and Operations Research in Spring
1998, in Cornell University’s School of Operations Research and Industrial Engineering in Fall
1998, and at the Massachusetts Institute of Technology’s Laboratory for Computer Science in
Spring 2000. The lecture notes from these courses were made available, and we got enough
positive feedback on them from students and from professors teaching such courses elsewhere
that we felt we were on the right track. Since then, there have been many exciting developments
in the area, and we have added many of them to the book; we taught additional iterations of
the course at Cornell in Fall 2006 and Fall 2009 in order to field test some of the writing of the
newer results.

The courses were developed for students who have already had a class, undergraduate or
graduate, in algorithms, and who were comfortable with the idea of mathematical proofs about
the correctness of algorithms. The book assumes this level of preparation. The book also
assumes some basic knowledge of probability theory (for instance, how to compute the expected
value of a discrete random variable). Finally, we assume that the reader knows something about
NP-completeness, at least enough to know that there might be good reason for wanting fast,
approximate solutions to NP-hard discrete optimization problems. At one or two points in the
book, we do an NP-completeness reduction to show that it can be hard to find approximate
solutions to such problems; we include a short appendix on the problem class NP and the notion
of NP-completeness for those unfamiliar with the concepts. However, the reader unfamiliar with
such reductions can also safely skip over such proofs.

In addition to serving as a graduate textbook, this book is a way for students to get the
background to read current research in the area of approximation algorithms. In particular, we
wanted a book that we could hand our own Ph.D. students just starting in the field and say,
“Here, read this.”

We further hope that the book will serve as a reference to the area of approximation al-
gorithms for researchers who are generally interested in the heuristic solution of discrete opti-
mization problems; such problems appear in areas as diverse as traditional operations research
planning problems (such as facility location and network design) to computer science prob-

3

4 Preface

lems in database and programming language design to advertising issues in viral marketing.
We hope that the book helps researchers understand the techniques available in the area of
approximation algorithms for approaching such problems.

We have taken several particular perspectives in writing the book. The first is that we
wanted to organize the material around certain principles of designing approximation algo-
rithms, around algorithmic ideas that have been used in different ways and applied to different
optimization problems. The title The Design of Approximation Algorithms was carefully cho-
sen. The book is structured around these design techniques. The introduction applies several
of them to a single problem, the set cover problem. The book then splits into two parts. In the
first part, each chapter is devoted to a single algorithmic idea (e.g., “greedy and local search
algorithms,”“rounding data and dynamic programming”), and the idea is then applied to sev-
eral different problems. The second part revisits all of the same algorithmic ideas, but gives
more sophisticated treatments of them; the results covered here are usually much more recent.
The layout allows us to look at several central optimization problems repeatedly throughout
the book, returning to them as a new algorithmic idea leads to a better result than the previous
one. In particular, we revisit such problems as the uncapacitated facility location problem, the
prize-collecting Steiner tree problem, the bin-packing problem, and the maximum cut problem
several times throughout the course of the book.

The second perspective is that we treat linear and integer programming as a central aspect
in the design of approximation algorithms. This perspective is from our background in the
operations research and mathematical programming communities. It is a little unusual in the
computer science community, and students coming from a computer science background may
not be familiar with the basic terminology of linear programming. We introduce the terms we
need in the first chapter, and we include a brief introduction to the area in an appendix.

The third perspective we took in writing the book is that we have limited ourselves to results
that are simple enough for classroom presentation while remaining central to the topic at hand.
Most of the results in the book are ones that we have taught ourselves in class at one point or
another. We bent this rule somewhat in order to cover the recent, exciting work by Arora, Rao,
and Vazirani [22] applying semidefinite programming to the uniform sparsest cut problem. The
proof of this result is the most lengthy and complicated of the book.

We are grateful to a number of people who have given us feedback about the book at various
stages in its writing. We are particularly grateful to James Davis, Lisa Fleischer, Isaac Fung,
Rajiv Gandhi, Igor Gorodezky, Nick Harvey, Anna Karlin, Vijay Kothari, Katherine Lai, Gwen
Spencer, and Anke van Zuylen for very detailed comments on a number of sections of the
book. Additionally, the following people spotted typos, gave us feedback, helped us understand
particular papers, and made useful suggestions: Bruno Abrahao, Hyung-Chan An, Matthew
Andrews, Eliot Anshelevich, Sanjeev Arora, Ashwinkumar B.V., Moses Charikar, Chandra
Chekuri, Joseph Cheriyan, Chao Ding, Dmitriy Drusvyatskiy, Michel Goemans, Sudipto Guha,
Anupam Gupta, Sanjeev Khanna, Lap Chi Lau, Renato Paes Leme, Jan Karel Lenstra, Roman
Rischke, Gennady Samorodnitsky, Daniel Schmand, Jiawei Qian, Yogeshwer Sharma, Viktor
Simjanoski, Mohit Singh, Éva Tardos, Mike Todd, Di Wang, and Ann Williamson. We also
thank a number of anonymous reviewers who made useful comments. Eliot Anshelevich, Joseph
Cheriyan, Lisa Fleischer, Michel Goemans, Nicole Immorlica, and Anna Karlin used various
drafts of the book in their courses on approximation algorithms and gave us useful feedback
about the experience of using the book. We received quite a number of useful comments from the
students in Anna’s class: Benjamin Birnbaum, Punyashloka Biswal, Elisa Celis, Jessica Chang,
Mathias Hallman, Alyssa Joy Harding, Trinh Huynh, Alex Jaffe, Karthik Mohan, Katherine
Moore, Cam Thach Nguyen, Richard Pang, Adrian Sampson, William Austin Webb, and Kevin

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Preface 5

Zatloukal. Frans Schalekamp generated the image on the cover; it is an illustration of the tree
metric algorithm of Fakcharoenphol, Rao, and Talwar [106] discussed in Section 8.5. Our editor
at Cambridge, Lauren Cowles, impressed us with her patience in waiting for this book to be
completed and gave us a good deal of useful advice.

We would like to thank the institutions that supported us during the writing of this book,
including our home institution, Cornell University, and the IBM T.J. Watson and Almaden
Research Centers (DPW), as well as TU Berlin (DPW) and the Sloan School of Management
at MIT and the Microsoft New England Research Center (DBS), where we were on sabbatical
leave when the final editing of the book occurred. We are grateful to the National Science
Foundation for supporting our research in approximation algorithms.

Additional materials related to the book (such as contact information and errata) can be
found at the website www.designofapproxalgs.com.

We are also grateful to our wives and children — to Ann, Abigail, Daniel, and Ruth, and
to Éva, Rebecca, and Amy — for their patience and support during the writing of this volume.

Finally, we hope the book conveys some of our enthusiasm and enjoyment of the area of
approximation algorithms. We hope that you, dear reader, will enjoy it too.

David P. Williamson
David B. Shmoys
January 2011

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6 Preface

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Table of Contents

Preface 3

I An introduction to the techniques 11

1 An introduction to approximation algorithms 13

1.1 The whats and whys of approximation algorithms 13

1.2 An introduction to the techniques and to linear programming: the set cover
problem . 16

1.3 A deterministic rounding algorithm . 19

1.4 Rounding a dual solution . 20

1.5 Constructing a dual solution: the primal-dual method 23

1.6 A greedy algorithm . 24

1.7 A randomized rounding algorithm . 28

2 Greedy algorithms and local search 35

2.1 Scheduling jobs with deadlines on a single machine 36

2.2 The k-center problem . 37

2.3 Scheduling jobs on identical parallel machines . 39

2.4 The traveling salesman problem . 43

2.5 Maximizing float in bank accounts . 47

2.6 Finding minimum-degree spanning trees . 49

2.7 Edge coloring . 54

3 Rounding data and dynamic programming 65

3.1 The knapsack problem . 65

3.2 Scheduling jobs on identical parallel machines . 68

3.3 The bin-packing problem . 73

4 Deterministic rounding of linear programs 81

4.1 Minimizing the sum of completion times on a single machine 82

4.2 Minimizing the weighted sum of completion times on a single machine 84

7

8 Table of Contents

4.3 Solving large linear programs in polynomial time via the ellipsoid method 86

4.4 The prize-collecting Steiner tree problem . 88

4.5 The uncapacitated facility location problem . 91

4.6 The bin-packing problem . 95

5 Random sampling and randomized rounding of linear programs 105

5.1 Simple algorithms for MAX SAT and MAX CUT 106

5.2 Derandomization . 108

5.3 Flipping biased coins . 110

5.4 Randomized rounding . 111

5.5 Choosing the better of two solutions . 114

5.6 Non-linear randomized rounding . 116

5.7 The prize-collecting Steiner tree problem . 118

5.8 The uncapacitated facility location problem . 120

5.9 Scheduling a single machine with release dates 124

5.10 Chernoff bounds . 128

5.11 Integer multicommodity flows . 132

5.12 Random sampling and coloring dense 3-colorable graphs 133

6 Randomized rounding of semidefinite programs 141

6.1 A brief introduction to semidefinite programming 141

6.2 Finding large cuts . 143

6.3 Approximating quadratic programs . 147

6.4 Finding a correlation clustering . 150

6.5 Coloring 3-colorable graphs . 153

7 The primal-dual method 161

7.1 The set cover problem: a review . 161

7.2 Choosing variables to increase: the feedback vertex set problem in undirected
graphs . 164

7.3 Cleaning up the primal solution: the shortest s-t path problem 168

7.4 Increasing multiple variables at once: the generalized Steiner tree problem 170

7.5 Strengthening inequalities: the minimum knapsack problem 178

7.6 The uncapacitated facility location problem . 180

7.7 Lagrangean relaxation and the k-median problem 184

8 Cuts and metrics 195

8.1 The multiway cut problem and a minimum-cut-based algorithm 196

8.2 The multiway cut problem and an LP rounding algorithm 197

8.3 The multicut problem . 203

8.4 Balanced cuts . 208

8.5 Probabilistic approximation of metrics by tree metrics 211

8.6 An application of tree metrics: Buy-at-bulk network design 216

8.7 Spreading metrics, tree metrics, and linear arrangement 220

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Table of Contents 9

II Further uses of the techniques 231

9 Further uses of greedy and local search algorithms 233

9.1 A local search algorithm for the uncapacitated facility location problem 234

9.2 A local search algorithm for the k-median problem 239

9.3 Minimum-degree spanning trees . 243

9.4 A greedy algorithm for the uncapacitated facility location problem 247

10 Further uses of rounding data and dynamic programming 257

10.1 The Euclidean traveling salesman problem . 257

10.2 The maximum independent set problem in planar graphs 269

11 Further uses of deterministic rounding of linear programs 281

11.1 The generalized assignment problem . 282

11.2 Minimum-cost bounded-degree spanning trees . 286

11.3 Survivable network design and iterated rounding 297

12 Further uses of random sampling and randomized rounding of linear pro-
grams 309

12.1 The uncapacitated facility location problem . 310

12.2 The single-source rent-or-buy problem . 313

12.3 The Steiner tree problem . 316

12.4 Everything at once: finding a large cut in a dense graph 322

13 Further uses of randomized rounding of semidefinite programs 333

13.1 Approximating quadratic programs . 334

13.2 Coloring 3-colorable graphs . 340

13.3 Unique games . 344

14 Further uses of the primal-dual method 355

14.1 The prize-collecting Steiner tree problem . 355

14.2 The feedback vertex set problem in undirected graphs 360

15 Further uses of cuts and metrics 369

15.1 Low distortion embeddings and the sparsest cut problem 369

15.2 Oblivious routing and cut-tree packings . 376

15.3 Cut-tree packings and the minimum bisection problem 382

15.4 The uniform sparsest cut problem . 385

16 Techniques in proving the hardness of approximation 407

16.1 Reductions from NP-complete problems . 407

16.2 Reductions that preserve approximation . 412

16.3 Reductions from probabilistically checkable proofs 420

16.4 Reductions from label cover . 425

16.5 Reductions from unique games . 437

17 Open Problems 447

A Linear programming 453

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10 Table of Contents

B NP-completeness 457

Bibliography 461

Author index 481

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Part I

An introduction to the techniques

11

C h a p t e r 1

An introduction to approximation

algorithms

1.1 The whats and whys of approximation algorithms

Decisions, decisions. The difficulty of sifting through large amounts of data in order to make
an informed choice is ubiquitous in today’s society. One of the promises of the information
technology era is that many decisions can now be made rapidly by computers, from deciding
inventory levels, to routing vehicles, to organizing data for efficient retrieval. The study of how
to make decisions of these sorts in order to achieve some best possible goal, or objective, has
created the field of discrete optimization.

Unfortunately, most interesting discrete optimization problems are NP-hard. Thus, unless
P = NP, there are no efficient algorithms to find optimal solutions to such problems, where
we follow the convention that an efficient algorithm is one that runs in time bounded by a
polynomial in its input size. This book concerns itself with the answer to the question “What
should we do in this case?”

An old engineering slogan says, “Fast. Cheap. Reliable. Choose two.” Similarly, if P ̸= NP,
we can’t simultaneously have algorithms that (1) find optimal solutions (2) in polynomial time
(3) for any instance. At least one of these requirements must be relaxed in any approach to
dealing with an NP-hard optimization problem.

One approach relaxes the “for any instance” requirement, and finds polynomial-time algo-
rithms for special cases of the problem at hand. This is useful if the instances one desires to
solve fall into one of these special cases, but this is not frequently the case.

A more common approach is to relax the requirement of polynomial-time solvability. The
goal is then to find optimal solutions to problems by clever exploration of the full set of possible
solutions to a problem. This is often a successful approach if one is willing to take minutes,
or even hours, to find the best possible solution; perhaps even more importantly, one is never
certain that for the next input encountered, the algorithm will terminate in any reasonable
amount of time. This is the approach taken by those in the field of operations research and
mathematical programming who solve integer programming formulations of discrete optimiza-
tion problems, or those in the area of artificial intelligence who consider techniques such as A∗

search or constraint programming.

13

14 An introduction to approximation algorithms

By far the most common approach, however, is to relax the requirement of finding an
optimal solution, and instead settle for a solution that is “good enough,” especially if it can be
found in seconds or less. There has been an enormous study of various types of heuristics and
metaheuristics such as simulated annealing, genetic algorithms, and tabu search, to name but
a few. These techniques often yield good results in practice.

The approach of this book falls into this third class. We relax the requirement of finding an
optimal solution, but our goal is to relax this as little as we possibly can. Throughout this book,
we will consider approximation algorithms for discrete optimization problems. We try to find a
solution that closely approximates the optimal solution in terms of its value. We assume that
there is some objective function mapping each possible solution of an optimization problem to
some nonnegative value, and an optimal solution to the optimization problem is one that either
minimizes or maximizes the value of this objective function. Then we define an approximation
algorithm as follows.

Definition 1.1: An α-approximation algorithm for an optimization problem is a polynomial-
time algorithm that for all instances of the problem produces a solution whose value is within a
factor of α of the value of an optimal solution.

For an α-approximation algorithm, we will call α the performance guarantee of the algorithm.
In the literature, it is also often called the approximation ratio or approximation factor of the
algorithm. In this book we will follow the convention that α > 1 for minimization problems,
while α < 1 for maximization problems. Thus, a 1

2 -approximation algorithm for a maximization
problem is a polynomial-time algorithm that always returns a solution whose value is at least
half the optimal value.

Why study approximation algorithms? We list several reasons.

• Because we need algorithms to get solutions to discrete optimization problems. As we
mentioned above, with our current information technology there are an increasing number
of optimization problems that need to be solved, and most of these are NP-hard. In some
cases, an approximation algorithm is a useful heuristic for finding near-optimal solutions
when the optimal solution is not required.

• Because algorithm design often focuses first on idealized models rather than the “real-
world” application. In practice, many discrete optimization problems are quite messy,
and have many complicating side constraints that make it hard to find an approximation
algorithm with a good performance guarantee. But often approximation algorithms for
simpler versions of the problem give us some idea of how to devise a heuristic that will
perform well in practice for the actual problem. Furthermore, the push to prove a theorem
often results in a deeper mathematical understanding of the problem’s structure, which
then leads to a new algorithmic approach.

• Because it provides a mathematically rigorous basis on which to study heuristics. Typi-
cally, heuristics and metaheuristics are studied empirically; they might work well, but we
might not understand why. The field of approximation algorithms brings mathematical
rigor to the study of heuristics, allowing us to prove how well the heuristic performs on
all instances, or giving us some idea of the types of instances on which the heuristic will
not perform well. Furthermore, the mathematical analyses of many of the approximation
algorithms in this book have the property that not only is there an a priori guarantee for
any input, but there is also an a fortiori guarantee that is provided on an input-by-input

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.1 The whats and whys of approximation algorithms 15

basis, which allows us to conclude that specific solutions are in fact much more nearly
optimal than promised by the performance guarantee.

• Because it gives a metric for stating how hard various discrete optimization problems
are. Over the course of the twentieth century, the study of the power of computation
has steadily evolved. In the early part of the century, researchers were concerned with
what kinds of problems could be solved at all by computers in finite time, with the
halting problem as the canonical example of a problem that could not be solved. The
latter part of the century concerned itself with the efficiency of solution, distinguishing
between problems that could be solved in polynomial time, and those that are NP-hard
and (perhaps) cannot be solved efficiently. The field of approximation algorithms gives
us a means of distinguishing between various optimization problems in terms of how well
they can be approximated.

• Because it’s fun. The area has developed some very deep and beautiful mathematical
results over the years, and it is inherently interesting to study these.

It is sometimes objected that requiring an algorithm to have a near-optimal solution for all
instances of the problem — having an analysis for what happens to the algorithm in the worst
possible instance — leads to results that are too loose to be practically interesting. After all,
in practice, we would greatly prefer solutions within a few percent of optimal rather than, say,
twice optimal. From a mathematical perspective, it is not clear that there are good alternatives
to this worst-case analysis. It turns out to be quite difficult to define a “typical” instance of any
given problem, and often instances drawn randomly from given probability distributions have
very special properties not present in real-world data. Since our aim is mathematical rigor in
the analysis of our algorithms, we must content ourselves with this notion of worst-case analysis.
We note that the worst-case bounds are often due to pathological cases that do not arise in
practice, so that approximation algorithms often give rise to heuristics that return solutions
much closer to optimal than indicated by their performance guarantees.

Given that approximation algorithms are worth studying, the next natural question is
whether there exist good approximation algorithms for problems of interest. In the case of
some problems, we are able to obtain extremely good approximation algorithms; in fact, these
problems have polynomial-time approximation schemes.

Definition 1.2: A polynomial-time approximation scheme (PTAS) is a family of algorithms
{Aϵ}, where there is an algorithm for each ϵ > 0, such that Aϵ is a (1 + ϵ)-approximation
algorithm (for minimization problems) or a (1− ϵ)-approximation algorithm (for maximization
problems).

Many problems have polynomial-time approximation schemes. In later chapters we will
encounter the knapsack problem and the Euclidean traveling salesman problem, each of which
has a PTAS.

However, there exists a class of problems that is not so easy. This class is called MAX SNP;
although we will not define it, it contains many interesting optimization problems, such as the
maximum satisfiability problem and the maximum cut problem, which we will discuss later in
the book. The following has been shown.

Theorem 1.3: For any MAX SNP-hard problem, there does not exist a polynomial-time ap-
proximation scheme, unless P = NP.

Finally, some problems are very hard. In the maximum clique problem, we are given as
input an undirected graph G = (V,E). The goal is to find a maximum-size clique; that is,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16 An introduction to approximation algorithms

we wish to find S ⊆ V that maximizes |S| so that for each pair i, j ∈ S, it must be the case
that (i, j) ∈ E. The following theorem demonstrates that almost any nontrivial approximation
guarantee is most likely unattainable.

Theorem 1.4: Let n denote the number of vertices in an input graph, and consider any constant
ϵ > 0. Then there does not exist an O(nϵ−1)-approximation algorithm for the maximum clique
problem, unless P = NP.

To see how strong this theorem is, observe that it is very easy to get an n−1-approximation
algorithm for the problem: just output a single vertex. This gives a clique of size 1, whereas the
size of the largest clique can be at most n, the number of vertices in the input. The theorem
states that finding something only slightly better than this completely trivial approximation
algorithm implies that P = NP!

1.2 An introduction to the techniques and to linear program-
ming: the set cover problem

One of the theses of this book is that there are several fundamental techniques used in the
design and analysis of approximation algorithms. The goal of this book is to help the reader
understand and master these techniques by applying each technique to many different problems
of interest. We will visit some problems several times; when we introduce a new technique, we
may see how it applies to a problem we have seen before, and show how we can obtain a better
result via this technique. The rest of this chapter will be an illustration of several of the central
techniques of the book applied to a single problem, the set cover problem, which we define below.
We will see how each of these techniques can be used to obtain an approximation algorithm,
and how some techniques lead to improved approximation algorithms for the set cover problem.

In the set cover problem, we are given a ground set of elements E = {e1, . . . , en}, some
subsets of those elements S1, S2, . . . , Sm where each Sj ⊆ E, and a nonnegative weight wj ≥ 0
for each subset Sj . The goal is to find a minimum-weight collection of subsets that covers all of
E; that is, we wish to find an I ⊆ {1, . . . ,m} that minimizes

∑
j∈I wj subject to

∪
j∈I Sj = E.

If wj = 1 for each subset j, the problem is called the unweighted set cover problem.

The set cover problem is an abstraction of several types of problems; we give two examples
here. The set cover problem was used in the development of an antivirus product, which
detects computer viruses. In this case it was desired to find salient features that occur in
viruses designed for the boot sector of a computer, such that the features do not occur in
typical computer applications. These features were then incorporated into another heuristic for
detecting these boot sector viruses, a neural network. The elements of the set cover problem
were the known boot sector viruses (about 150 at the time). Each set corresponded to some
three-byte sequence occurring in these viruses but not in typical computer programs; there
were about 21,000 such sequences. Each set contained all the boot sector viruses that had the
corresponding three-byte sequence somewhere in it. The goal was to find a small number of
such sequences (much smaller than 150) that would be useful for the neural network. By using
an approximation algorithm to solve the problem, a small set of sequences was found, and the
neural network was able to detect many previously unanalyzed boot sector viruses. The set
cover problem also generalizes the vertex cover problem. In the vertex cover problem, we
are given an undirected graph G = (V,E) and a nonnegative weight wi ≥ 0 for each vertex
i ∈ V . The goal is to find a minimum-weight subset of vertices C ⊆ V such that for each edge
(i, j) ∈ E, either i ∈ C or j ∈ C. As in the set cover problem, if wi = 1 for each vertex i,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.2 An introduction to the techniques and to linear programming: the set cover problem 17

the problem is an unweighted vertex cover problem. To see that the vertex cover problem is a
special case of the set cover problem, for any instance of the vertex cover problem, create an
instance of the set cover problem in which the ground set is the set of edges, and a subset Si of
weight wi is created for each vertex i ∈ V containing the edges incident to i. It is not difficult
to see that for any vertex cover C, there is a set cover I = C of the same weight, and vice versa.

A second thesis of this book is that linear programming plays a central role in the design
and analysis of approximation algorithms. Many of the techniques introduced will use the
theory of integer and linear programming in one way or another. Here we will give a very brief
introduction to the area in the context of the set cover problem; we give a slightly less brief
introduction in Appendix A, and the notes at the end of this chapter provide suggestions of
other, more in-depth, introductions to the topic.

Each linear program or integer program is formulated in terms of some number of decision
variables that represent some sort of decision that needs to be made. The variables are con-
strained by a number of linear inequalities and equalities called constraints. Any assignment
of real numbers to the variables such that all of the constraints are satisfied is called a feasible
solution. In the case of the set cover problem, we need to decide which subsets Sj to use in the
solution. We create a decision variable xj to represent this choice. In this case we would like xj
to be 1 if the set Sj is included in the solution, and 0 otherwise. Thus, we introduce constraints
xj ≤ 1 for all subsets Sj , and xj ≥ 0 for all subsets Sj . This is not sufficient to guarantee
that xj ∈ {0, 1}, so we will formulate the problem as an integer program to exclude fractional
solutions (that is, nonintegral solutions); in this case, we are also allowed to constrain the deci-
sion variables to be integers. Requiring xj to be integer along with the constraints xj ≥ 0 and
xj ≤ 1 is sufficient to guarantee that xj ∈ {0, 1}.

We also want to make sure that any feasible solution corresponds to a set cover, so we
introduce additional constraints. In order to ensure that every element ei is covered, it must
be the case that at least one of the subsets Sj containing ei is selected. This will be the case if

∑
j:ei∈Sj

xj ≥ 1,

for each ei, i = 1, . . . , n.

In addition to the constraints, linear and integer programs are defined by a linear function of
the decision variables called the objective function. The linear or integer program seeks to find
a feasible solution that either maximizes or minimizes this objective function. Such a solution is
called an optimal solution. The value of the objective function for a particular feasible solution
is called the value of that solution. The value of the objective function for an optimal solution
is called the value of the linear (or integer) program. We say we solve the linear program if we
find an optimal solution. In the case of the set cover problem, we want to find a set cover of
minimum weight. Given the decision variables xj and constraints described above, the weight
of a set cover given the xj variables is

∑m
j=1wjxj . Thus, the objective function of the integer

program is
∑m

j=1wjxj , and we wish to minimize this function.

Integer and linear programs are usually written in a compact form stating first the objec-
tive function and then the constraints. Given the discussion above, the problem of finding a

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

18 An introduction to approximation algorithms

minimum-weight set cover is equivalent to the following integer program:

minimize

m∑
j=1

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, . . . , n, (1.1)

xj ∈ {0, 1} , j = 1, . . . ,m.

Let Z∗
IP denote the optimum value of this integer program for a given instance of the set cover

problem. Since the integer program exactly models the problem, we have that Z∗
IP = OPT,

where OPT is the value of an optimum solution to the set cover problem.
In general, integer programs cannot be solved in polynomial time. This is clear because

the set cover problem is NP-hard, so solving the integer program above for any set cover input
in polynomial time would imply that P = NP. However, linear programs are polynomial-time
solvable. In linear programs we are not allowed to require that decision variables are integers.
Nevertheless, linear programs are still extremely useful: even in cases such as the set cover
problem, we are still able to derive useful information from linear programs. For instance, if we
replace the constraints xj ∈ {0, 1} with the constraints xj ≥ 0, we obtain the following linear
program, which can be solved in polynomial time:

minimize

m∑
j=1

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, . . . , n, (1.2)

xj ≥ 0, j = 1, . . . ,m.

We could also add the constraints xj ≤ 1, for each j = 1, . . . ,m, but they would be redundant:
in any optimal solution to the problem, we can reduce any xj > 1 to xj = 1 without affecting
the feasibility of the solution and without increasing its cost.

The linear program (1.2) is a relaxation of the original integer program. By this we mean
two things: first, every feasible solution for the original integer program (1.1) is feasible for this
linear program; and second, the value of any feasible solution for the integer program has the
same value in the linear program. To see that the linear program is a relaxation, note that any
solution for the integer program such that xj ∈ {0, 1} for each j = 1, . . . ,m and

∑
j:ei∈Sj

xj ≥ 1
for each i = 1, . . . ,m will certainly satisfy all the constraints of the linear program. Furthermore,
the objective functions of both the integer and linear programs are the same, so that any feasible
solution for the integer program has the same value for the linear program. Let Z∗

LP denote the
optimum value of this linear program. Any optimal solution to the integer program is feasible
for the linear program and has value Z∗

IP . Thus, any optimal solution to the linear program will
have value Z∗

LP ≤ Z∗
IP = OPT, since this minimization linear program finds a feasible solution

of lowest possible value. Using a polynomial-time solvable relaxation of a problem in order to
obtain a lower bound (in the case of minimization problems) or an upper bound (in the case
of maximization problems) on the optimum value of the problem is a concept that will appear
frequently in this book.

In the following sections, we will give some examples of how the linear programming re-
laxation can be used to derive approximation algorithms for the set cover problem. In the
next section, we will show that a fractional solution to the linear program can be rounded to

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.3 A deterministic rounding algorithm 19

a solution to the integer program of objective function value that is within a certain factor
f of the value of the linear program Z∗

LP . Thus, the integer solution will cost no more than
f · OPT. In the following section, we will show how one can similarly round the solution to
something called the dual of the linear programming relaxation. In Section 1.5, we will see
that in fact one does not need to solve the dual of the linear programming relaxation, but in
fact can quickly construct a dual feasible solution with the properties needed to allow a good
rounding. In Section 1.6, a type of algorithm called a greedy algorithm will be given; in this
case, linear programming need not be used at all, but one can use the dual to improve the
analysis of the algorithm. Finally, in Section 1.7, we will see how randomized rounding of the
solution to the linear programming relaxation can lead to an approximation algorithm for the
set cover problem.

Because we will frequently be referring to linear programs and linear programming, we will
often abbreviate these terms by the acronym LP. Similarly, IP stands for either integer program
or integer programming.

1.3 A deterministic rounding algorithm

Suppose that we solve the linear programming relaxation of the set cover problem. Let x∗

denote an optimal solution to the LP. How then can we recover a solution to the set cover
problem? Here is a very easy way to obtain a solution: given the LP solution x∗, we include
subset Sj in our solution if and only if x∗j ≥ 1/f , where f is the maximum number of sets in
which any element appears. More formally, let fi = | {j : ei ∈ Sj} | be the number of sets in
which element ei appears, i = 1, . . . , n; then f = maxi=1,...,n fi. Let I denote the indices j of
the subsets in this solution. In effect, we round the fractional solution x∗ to an integer solution
x̂ by setting x̂j = 1 if x∗j ≥ 1/f , and x̂j = 0 otherwise. We shall see that it is straightforward
to prove that x̂ is a feasible solution to the integer program, and I indeed indexes a set cover.

Lemma 1.5: The collection of subsets Sj, j ∈ I, is a set cover.

Proof. Consider the solution specified by the lemma, and call an element ei covered if this
solution contains some subset containing ei. We show that each element ei is covered. Because
the optimal solution x∗ is a feasible solution to the linear program, we know that

∑
j:ei∈Sj

x∗j ≥ 1
for element ei. By the definition of fi and of f , there are fi ≤ f terms in the sum, so at least
one term must be at least 1/f . Thus, for some j such that ei ∈ Sj , x

∗
j ≥ 1/f . Therefore, j ∈ I,

and element ei is covered.

We can also show that this rounding procedure yields an approximation algorithm.

Theorem 1.6: The rounding algorithm is an f-approximation algorithm for the set cover prob-
lem.

Proof. It is clear that the algorithm runs in polynomial time. By our construction, 1 ≤ f · x∗j
for each j ∈ I. From this, and the fact that each term fwjx

∗
j is nonnegative for j = 1, . . . ,m,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

20 An introduction to approximation algorithms

we see that ∑
j∈I

wj ≤
m∑
j=1

wj · (f · x∗j)

= f

m∑
j=1

wjx
∗
j

= f · Z∗
LP

≤ f ·OPT,

where the final inequality follows from the argument above that Z∗
LP ≤ OPT.

In the special case of the vertex cover problem, fi = 2 for each vertex i ∈ V , since each
edge is incident to exactly two vertices. Thus, the rounding algorithm gives a 2-approximation
algorithm for the vertex cover problem.

This particular algorithm allows us to have an a fortiori guarantee for each input. While
we know that for any input, the solution produced has cost at most a factor of f more than
the cost of an optimal solution, we can for any input compare the value of the solution we
find with the value of the linear programming relaxation. If the algorithm finds a set cover I,
let α =

∑
j∈I wj/Z

∗
LP . From the proof above, we know that α ≤ f . However, for any given

input, it could be the case that α is significantly smaller than f ; in this case we know that∑
j∈I wj = αZ∗

LP ≤ αOPT, and the solution is within a factor of α of optimal. The algorithm
can easily compute α, given that it computes I and solves the LP relaxation.

1.4 Rounding a dual solution

Often it will be useful to consider the dual of the linear programming relaxation of a given
problem. Again, we will give a very brief introduction to the concept of the dual of a linear
program in the context of the set cover problem, and more in-depth introductions to the topic
will be cited in the notes at the end of this chapter.

To begin, we suppose that each element ei is charged some nonnegative price yi ≥ 0 for its
coverage by a set cover. Intuitively, it might be the case that some elements can be covered
with low-weight subsets, while other elements might require high-weight subsets to cover them;
we would like to be able to capture this distinction by charging low prices to the former and
high prices to the latter. In order for the prices to be reasonable, it cannot be the case that the
sum of the prices of elements in a subset Sj is more than the weight of the set, since we are
able to cover all of those elements by paying weight wj . Thus, for each subset Sj we have the
following limit on the prices: ∑

i:ei∈Sj

yi ≤ wj .

We can find the highest total price that the elements can be charged by the following linear
program:

maximize

n∑
i=1

yi

subject to
∑

i:ei∈Sj

yi ≤ wj , j = 1, . . . ,m, (1.3)

yi ≥ 0, i = 1, . . . , n.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.4 Rounding a dual solution 21

This linear program is the dual linear program of the set cover linear programming relaxation
(1.2). We can in general derive a dual linear program for any given linear program, but we
will not go into the details of how to do so; see Appendix A or the references in the notes at
the end of the chapter. If we derive a dual for a given linear program, the given program is
sometimes called the primal linear program. For instance, the original linear programming
relaxation (1.2) of the set cover problem is the primal linear program of the dual (1.3). Notice
that this dual has a variable yi for each constraint of the primal linear program (that is, for
the constraint

∑
j:ei∈Sj

xj ≥ 1), and has a constraint for each variable xj of the primal. This is
true of dual linear programs in general.

Dual linear programs have a number of very interesting and useful properties. For example,
let x be any feasible solution to the set cover linear programming relaxation, and let y be any
feasible set of prices (that is, any feasible solution to the dual linear program). Then consider
the value of the dual solution y:

n∑
i=1

yi ≤
n∑

i=1

yi
∑

j:ei∈Sj

xj ,

since for any ei,
∑

j:ei∈Sj
xj ≥ 1 by the feasibility of x. Then rewriting the right-hand side of

this inequality, we have
n∑

i=1

yi
∑

j:ei∈Sj

xj =
m∑
j=1

xj
∑

i:ei∈Sj

yi.

Finally, noticing that since y is a feasible solution to the dual linear program, we know that∑
i:ei∈Sj

yi ≤ wj for any j, so that

m∑
j=1

xj
∑

i:ei∈Sj

yi ≤
m∑
j=1

xjwj .

So we have shown that
n∑

i=1

yi ≤
m∑
j=1

wjxj ;

that is, any feasible solution to the dual linear program has a value no greater than any feasible
solution to the primal linear program. In particular, any feasible solution to the dual linear
program has a value no greater than the optimal solution to the primal linear program, so for
any feasible y,

∑n
i=1 yi ≤ Z∗

LP . This is called the weak duality property of linear programs.
Since we previously argued that Z∗

LP ≤ OPT, we have that for any feasible y,
∑n

i=1 yi ≤ OPT .
This is a very useful property that will help us in designing approximation algorithms.

Additionally, there is a quite amazing strong duality property of linear programs. Strong
duality states that as long as there exist feasible solutions to both the primal and dual linear
programs, their optimal values are equal. Thus, if x∗ is an optimal solution to the set cover
linear programming relaxation, and y∗ is an optimal solution to the dual linear program, then

m∑
j=1

wjx
∗
j =

n∑
i=1

y∗i .

Information from a dual linear program solution can sometimes be used to derive good
approximation algorithms. Let y∗ be an optimal solution to the dual LP (1.3), and consider

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

22 An introduction to approximation algorithms

the solution in which we choose all subsets for which the corresponding dual inequality is
tight; that is, the inequality is met with equality for subset Sj , and

∑
i:ei∈Sj

y∗i = wj . Let I ′

denote the indices of the subsets in this solution. We will prove that this algorithm also is an
f -approximation algorithm for the set cover problem.

Lemma 1.7: The collection of subsets Sj, j ∈ I ′, is a set cover.

Proof. Suppose that there exists some uncovered element ek. Then for each subset Sj containing
ek, it must be the case that ∑

i:ei∈Sj

y∗i < wj . (1.4)

Let ϵ be the smallest difference between the right-hand side and left-hand side of all constraints

involving ek; that is, ϵ = minj:ek∈Sj

(
wj −

∑
i:ei∈Sj

y∗i

)
. By inequality (1.4), we know that

ϵ > 0. Consider now a new dual solution y′ in which y′k = y∗k + ϵ and every other component of
y′ is the same as in y∗. Then y′ is a dual feasible solution since for each j such that ek ∈ Sj ,∑

i:ei∈Sj

y′i =
∑

i:ei∈Sj

y∗i + ϵ ≤ wj ,

by the definition of ϵ. For each j such that ek /∈ Sj ,∑
i:ei∈Sj

y′i =
∑

i:ei∈Sj

y∗i ≤ wj ,

as before. Furthermore,
∑n

i=1 y
′
i >

∑n
i=1 y

∗
i , which contradicts the optimality of y∗. Thus, it

must be the case that all elements are covered and I ′ is a set cover.

Theorem 1.8: The dual rounding algorithm described above is an f -approximation algorithm
for the set cover problem.

Proof. The central idea is the following “charging” argument: when we choose a set Sj to be in
the cover, we “pay” for it by charging y∗i to each of its elements ei; each element is charged at
most once for each set that contains it (and hence at most f times), and so the total cost is at
most f

∑m
i=1 y

∗
i , or f times the dual objective function.

More formally, since j ∈ I ′ only if wj =
∑

i:ei∈Sj
y∗i , we have that the cost of the set cover

I ′ is ∑
j∈I′

wj =
∑
j∈I′

∑
i:ei∈Sj

y∗i

=

n∑
i=1

|
{
j ∈ I ′ : ei ∈ Sj

}
| · y∗i

≤
n∑

i=1

fiy
∗
i

≤ f
n∑

i=1

y∗i

≤ f ·OPT .

The second equality follows from the fact that when we interchange the order of summation,
the coefficient of y∗i is, of course, equal to the number of times that this term occurs overall.
The final inequality follows from the weak duality property discussed previously.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.5 Constructing a dual solution: the primal-dual method 23

In fact, it is possible to show that this algorithm can do no better than the algorithm of
the previous section; to be precise, we can show that if I indexes the solution returned by the
primal rounding algorithm of the previous section, then I ⊆ I ′. This follows from a property of
optimal linear programming solutions called complementary slackness. We showed earlier the
following string of inequalities for any feasible solution x to the set cover linear programming
relaxation, and any feasible solution y to the dual linear program:

n∑
i=1

yi ≤
n∑

i=1

yi
∑

j:ei∈Sj

xj =
m∑
j=1

xj
∑

i:ei∈Sj

yi ≤
m∑
j=1

xjwj .

Furthermore, we claimed that strong duality implies that for optimal solutions x∗ and y∗,∑n
i=1 y

∗
i =

∑m
j=1wjx

∗
j . Thus, for any optimal solutions x∗ and y∗ the two inequalities in the

chain of inequalities above must in fact be equalities. The only way this can happen is that
whenever y∗i > 0 then

∑
j:ei∈Sj

x∗j = 1, and whenever x∗j > 0, then
∑

i:ei∈Sj
y∗i = wj . That

is, whenever a linear programming variable (primal or dual) is nonzero, the corresponding
constraint in the dual or primal is tight. These conditions are known as the complementary
slackness conditions. Thus, if x∗ and y∗ are optimal solutions, the complementary slackness
conditions must hold. The converse is also true: if x∗ and y∗ are feasible primal and dual
solutions, respectively, then if the complementary slackness conditions hold, the values of the
two objective functions are equal and therefore the solutions must be optimal.

In the case of the set cover program, if x∗j > 0 for any primal optimal solution x∗, then the
corresponding dual inequality for Sj must be tight for any dual optimal solution y∗. Recall that
in the algorithm of the previous section, we put j ∈ I when x∗j ≥ 1/f . Thus, j ∈ I implies that
j ∈ I ′, so that I ′ ⊇ I.

1.5 Constructing a dual solution: the primal-dual method

One of the disadvantages of the algorithms of the previous two sections is that they require
solving a linear program. While linear programs are efficiently solvable, and algorithms for
them are quick in practice, special purpose algorithms are often much faster. Although in this
book we will not usually be concerned with the precise running times of the algorithms, we will
try to indicate their relative practicality.

The basic idea of the algorithm in this section is that the dual rounding algorithm of the
previous section uses relatively few properties of an optimal dual solution. Instead of actually
solving the dual LP, we can construct a feasible dual solution with the same properties. In this
case, constructing the dual solution is much faster than solving the dual LP, and hence leads
to a much faster algorithm.

The algorithm of the previous section used the following properties. First, we used the fact
that

∑n
i=1 yi ≤ OPT, which is true for any feasible dual solution y. Second, we include j ∈ I ′

precisely when
∑

i:ei∈Sj
yi = wj , and I ′ is a set cover. These two facts together gave the proof

that the cost of I ′ is no more than f times optimal.

Importantly, it is the proof of Lemma 1.7 (that we have constructed a feasible cover) that
shows how to obtain an algorithm that constructs a dual solution. Consider any feasible dual
solution y, and let T be the set of the indices of all tight dual constraints; that is, T = {j :∑

i:ei∈Sj
yi = wj}. If T is a set cover, then we are done. If T is not a set cover, then some

item ei is uncovered, and as shown in the proof of Lemma 1.7 it is possible to improve the
dual objective function by increasing yi by some ϵ > 0. More specifically, we can increase yi

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

24 An introduction to approximation algorithms

y ← 0
I ← ∅
while there exists ei /∈

∪
j∈I Sj do

Increase the dual variable yi until there is some ℓ with ei ∈ Sℓ such that∑
j:ej∈Sℓ

yj = wℓ

I ← I ∪ {ℓ}

Algorithm 1.1: Primal-dual algorithm for the set cover problem.

by minj:ei∈Sj

(
wj −

∑
k:ek∈Sj

yk

)
, so that the constraint becomes tight for the subset Sj that

attains the minimum. Additionally, the modified dual solution remains feasible. Thus, we can
add j to T , and element ei is now covered by the sets in T . We repeat this process until T is a
set cover. Since an additional element ei is covered each time, the process is repeated at most
n times. To complete the description of the algorithm, we need to give only an initial dual
feasible solution. We can use the solution yi = 0 for each i = 1, . . . , n; this is feasible since each
wj , j = 1, . . . ,m, is nonnegative. A formal description is given in Algorithm 1.1.

This yields the following theorem.

Theorem 1.9: Algorithm 1.1 is an f-approximation algorithm for the set cover problem.

This type of algorithm is called a primal-dual algorithm by analogy with the primal-dual
method used in other combinatorial algorithms. Linear programming problems, network flow
problems, and shortest path problems (among others) all have primal-dual optimization algo-
rithms; we will see an example of a primal-dual algorithm for the shortest s-t path problem in
Section 7.3. Primal-dual algorithms start with a dual feasible solution, and use dual information
to infer a primal, possibly infeasible, solution. If the primal solution is indeed infeasible, the
dual solution is modified to increase the value of the dual objective function. The primal-dual
method has been very useful in designing approximation algorithms, and we will discuss it
extensively in Chapter 7.

We observe again that this particular algorithm allows us to have an a fortiori guarantee
for each input, since we can compare the value of the solution obtained with the value of the
dual solution generated by the algorithm. This ratio is guaranteed to be at most f by the proof
above, but it might be significantly better.

1.6 A greedy algorithm

At this point, the reader might be forgiven for feeling a slight sense of futility: we have exam-
ined several techniques for designing approximation algorithms for the set cover problem, and
they have all led to the same result, an approximation algorithm with performance guarantee
f . But, as in life, perseverance and some amount of cleverness often pay dividends in designing
approximation algorithms. We show in this section that a type of algorithm called a greedy
algorithm gives an approximation algorithm with a performance guarantee that is often signifi-
cantly better than f . Greedy algorithms work by making a sequence of decisions; each decision
is made to optimize that particular decision, even though this sequence of locally optimal (or
“greedy”) decisions might not lead to a globally optimal solution. The advantage of greedy
algorithms is that they are typically very easy to implement, and hence greedy algorithms are
a commonly used heuristic, even when they have no performance guarantee.

We now present a very natural greedy algorithm for the set cover problem. Sets are chosen

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.6 A greedy algorithm 25

I ← ∅
Ŝj ← Sj ∀j
while I is not a set cover do

ℓ← argminj:Ŝj ̸=∅
wj

|Ŝj |
I ← I ∪ {ℓ}
Ŝj ← Ŝj − Sℓ ∀j

Algorithm 1.2: A greedy algorithm for the set cover problem.

in a sequence of rounds. In each round, we choose the set that gives us the most bang for the
buck; that is, the set that minimizes the ratio of its weight to the number of currently uncovered
elements it contains. In the event of a tie, we pick an arbitrary set that achieves the minimum
ratio. We continue choosing sets until all elements are covered. Obviously, this will yield a
polynomial-time algorithm, since there can be no more than m rounds, and in each we compute
O(m) ratios, each in constant time. A formal description is given in Algorithm 1.2.

Before we state the theorem, we need some notation and a useful mathematical fact. Let
Hk denote the kth harmonic number: that is, Hk = 1 + 1

2 + 1
3 + · · ·+ 1

k . Note that Hk ≈ ln k.
The following fact is one that we will use many times in the course of this book. It can be
proven with simple algebraic manipulations.

Fact 1.10: Given positive numbers a1, . . . , ak and b1, . . . , bk, then

min
i=1,...,k

ai
bi
≤
∑k

i=1 ai∑k
i=1 bi

≤ max
i=1,...,k

ai
bi
.

Theorem 1.11: Algorithm 1.2 is an Hn-approximation algorithm for the set cover problem.

Proof. The basic intuition for the analysis of the algorithm is as follows. Let OPT denote the
value of an optimal solution to the set cover problem. We know that an optimal solution covers
all n elements with a solution of weight OPT; therefore, there must be some subset that covers
its elements with an average weight of at most OPT /n. Similarly, after k elements have been
covered, the optimal solution can cover the remaining n− k elements with a solution of weight
OPT, which implies that there is some subset that covers its remaining uncovered elements
with an average weight of at most OPT /(n − k). So in general the greedy algorithm pays
about OPT /(n − k + 1) to cover the kth uncovered element, giving a performance guarantee
of
∑n

k=1
1

n−k+1 = Hn.

We now formalize this intuition. Let nk denote the number of elements that remain un-
covered at the start of the kth iteration. If the algorithm takes ℓ iterations, then n1 = n, and
we set nℓ+1 = 0. Pick an arbitrary iteration k. Let Ik denote the indices of the sets chosen
in iterations 1 through k − 1, and for each j = 1, . . . ,m, let Ŝj denote the set of uncovered
elements in Sj at the start of this iteration; that is, Ŝj = Sj −

∪
p∈Ik Sp. Then we claim that

for the set j chosen in the kth iteration,

wj ≤
nk − nk+1

nk
OPT . (1.5)

Given the claimed inequality (1.5), we can prove the theorem. Let I contain the indices of the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

26 An introduction to approximation algorithms

sets in our final solution. Then

∑
j∈I

wj ≤
ℓ∑

k=1

nk − nk+1

nk
OPT

≤ OPT ·
ℓ∑

k=1

(
1

nk
+

1

nk − 1
+ · · ·+ 1

nk+1 + 1

)
(1.6)

= OPT ·
n∑

i=1

1

i

= Hn ·OPT,

where the inequality (1.6) follows from the fact that 1
nk
≤ 1

nk−i for each 0 ≤ i < nk.
To prove the claimed inequality (1.5), we shall first argue that in the kth iteration,

min
j:Ŝj ̸=∅

wj

|Ŝj |
≤ OPT

nk
. (1.7)

If we let O contain the indices of the sets in an optimal solution, then inequality (1.7) follows
from Fact 1.10, by observing that

min
j:Ŝj ̸=∅

wj

|Ŝj |
≤
∑

j∈O wj∑
j∈O |Ŝj |

=
OPT∑
j∈O |Ŝj |

≤ OPT

nk
,

where the last inequality follows from the fact that since O is a set cover, the set
∪

j∈O Ŝj must
include all remaining nk uncovered elements. Let j index a subset that minimizes this ratio, so
that

wj

|Ŝj |
≤ OPT

nk
. If we add the subset Sj to our solution, then there will be |Ŝj | fewer uncovered

elements, so that nk+1 = nk − |Ŝj |. Thus,

wj ≤
|Ŝj |OPT

nk
=

nk − nk+1

nk
OPT .

We can improve the performance guarantee of the algorithm slightly by using the dual of
the linear programming relaxation in the analysis. Let g be the maximum size of any subset
Sj ; that is, g = maxj |Sj |. Recall that Z∗

LP is the optimum value of the linear programming
relaxation for the set cover problem. The following theorem immediately implies that the greedy
algorithm is an Hg-approximation algorithm, since Z∗

LP ≤ OPT .

Theorem 1.12: Algorithm 1.2 returns a solution indexed by I such that
∑

j∈I wj ≤ Hg · Z∗
LP .

Proof. To prove the theorem, we will construct an infeasible dual solution y such that
∑

j∈I wj =∑n
i=1 yi. We will then show that y′ = 1

Hg
y is a feasible dual solution. By the weak duality

theorem,
∑n

i=1 y
′
i ≤ Z∗

LP , so that
∑

j∈I wj =
∑n

i=1 yi = Hg
∑n

i=1 y
′
i ≤ Hg ·OPT. We will see at

the end of the proof the reason we choose to divide the infeasible dual solution y by Hg.
The name dual fitting has been given to this technique of constructing an infeasible dual

solution whose value is equal to the value of the primal solution constructed, and such that
scaling the dual solution by a single value makes it feasible. We will return to this technique in
Section 9.4.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.6 A greedy algorithm 27

To construct the infeasible dual solution y, suppose we choose to add subset Sj to our
solution in iteration k. Then for each ei ∈ Ŝj , we set yi = wj/|Ŝj |. Since each ei ∈ Ŝj is
uncovered in iteration k, and is then covered for the remaining iterations of the algorithm
(because we added subset Sj to the solution), the dual variable yi is set to a value exactly
once; in particular, it is set in the iteration in which element ei is covered. Furthermore,
wj =

∑
i:ei∈Ŝj

yi; that is, the weight of the subset Sj chosen in the kth iteration is equal to

the sum of the duals yi of the uncovered elements that are covered in the kth iteration. This
immediately implies that

∑
j∈I wj =

∑n
i=1 yi.

It remains to prove that the dual solution y′ = 1
Hg

y is feasible. We must show that for each

subset Sj ,
∑

i:ei∈Sj
y′i ≤ wj . Pick an arbitrary subset Sj . Let ak be the number of elements

in this subset that are still uncovered at the beginning of the kth iteration, so that a1 = |Sj |,
and aℓ+1 = 0. Let Ak be the uncovered elements of Sj covered in the kth iteration, so that
|Ak| = ak − ak+1. If subset Sp is chosen in the kth iteration, then for each element ei ∈ Ak

covered in the kth iteration,

y′i =
wp

Hg|Ŝp|
≤ wj

Hgak
,

where Ŝp is the set of uncovered elements of Sp at the beginning of the kth iteration. The
inequality follows because if Sp is chosen in the kth iteration, it must minimize the ratio of its
weight to the number of uncovered elements it contains. Thus,

∑
i:ei∈Sj

y′i =
ℓ∑

k=1

∑
i:ei∈Ak

y′i

≤
ℓ∑

k=1

(ak − ak+1)
wj

Hgak

≤ wj

Hg

ℓ∑
k=1

ak − ak+1

ak

≤ wj

Hg

ℓ∑
k=1

(
1

ak
+

1

ak − 1
+ · · ·+ 1

ak+1 + 1

)

≤ wj

Hg

|Sj |∑
i=1

1

i

=
wj

Hg
H|Sj |

≤ wj ,

where the final inequality follows because |Sj | ≤ g. Here we see the reason for scaling the dual
solution by Hg, since we know that H|Sj | ≤ Hg for all sets j.

It turns out that no approximation algorithm for the set cover problem with performance
guarantee better than Hn is possible, under an assumption slightly stronger than P ̸= NP.

Theorem 1.13: If there exists a c lnn-approximation algorithm for the unweighted set cover
problem for some constant c < 1, then there is an O(nO(log log n))-time deterministic algorithm
for each NP-complete problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

28 An introduction to approximation algorithms

Theorem 1.14: There exists some constant c > 0 such that if there exists a c lnn-approximation
algorithm for the unweighted set cover problem, then P = NP.

We will discuss results of this sort at more length in Chapter 16; in Theorem 16.32 we show
how a slightly weaker version of these results can be derived. Results of this type are sometimes
called hardness theorems, as they show that it is NP-hard to provide near-optimal solutions for
a certain problem with certain performance guarantees.

The f -approximation algorithms for the set cover problem imply a 2-approximation algo-
rithm for the special case of the vertex cover problem. No algorithm with a better constant
performance guarantee is known at this point in time. Additionally, two hardness theorems,
Theorems 1.15 and 1.16 below, have been shown.

Theorem 1.15: If there exists an α-approximation algorithm for the vertex cover problem with
α < 10

√
5− 21 ≈ 1.36, then P = NP.

The following theorem mentions a conjecture called the unique games conjecture that we
will discuss more in Section 13.3 and Section 16.5. The conjecture is roughly that a particular
problem (called unique games) is NP-hard.

Theorem 1.16: Assuming the unique games conjecture, if there exists an α-approximation
algorithm for the vertex cover problem with constant α < 2, then P = NP.

Thus, assuming P ̸= NP and the NP-completeness of the unique games problem, we have
found essentially the best possible approximation algorithm for the vertex cover problem.

1.7 A randomized rounding algorithm

In this section, we consider one final technique for devising an approximation algorithm for
the set cover problem. Although the algorithm is slower and has no better guarantee than the
greedy algorithm of the previous section, we include it here because it introduces the notion of
using randomization in approximation algorithms, an idea we will cover in depth in Chapter 5.

As with the algorithm in Section 1.3, the algorithm will solve a linear programming relax-
ation for the set cover problem, and then round the fractional solution to an integral solution.
Rather than doing so deterministically, however, the algorithm will do so randomly using a
technique called randomized rounding. Let x∗ be an optimal solution to the LP relaxation. We
would like to round fractional values of x∗ to either 0 or 1 in such a way that we obtain a solution
x̂ to the integer programming formulation of the set cover problem without increasing the cost
too much. The central idea of randomized rounding is that we interpret the fractional value x∗j
as the probability that x̂j should be set to 1. Thus, each subset Sj is included in our solution
with probability x∗j , where these m events (that Sj is included in our solution) are independent
random events. We assume some basic knowledge of probability theory throughout this text;
for those who need some additional background, see the notes at the end of the chapter for
suggested references.

LetXj be a random variable that is 1 if subset Sj is included in the solution, and 0 otherwise.
Then the expected value of the solution is

E

 m∑
j=1

wjXj

 =
m∑
j=1

wj Pr[Xj = 1] =
m∑
j=1

wjx
∗
j = Z∗

LP ,

or just the value of the linear programming relaxation, which is no more than OPT! As we will
see, however, it is quite likely that the solution is not a set cover. Nevertheless, this illustrates

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.7 A randomized rounding algorithm 29

why randomized rounding can provide such good approximation algorithms in some cases, and
we will see further examples of this in Chapter 5.

Let us now calculate the probability that a given element ei is not covered by this procedure.
This is the probability that none of the subsets containing ei are included in the solution, or∏

j:ei∈Sj

(1− x∗j).

We can bound this probability by using the fact that 1−x ≤ e−x for any x, where e is the base
of the natural logarithm. Then

Pr[ei not covered] =
∏

j:ei∈Sj

(1− x∗j)

≤
∏

j:ei∈Sj

e−x∗
j

= e
−

∑
j:ei∈Sj

x∗
j

≤ e−1,

where the final inequality follows from the LP constraint that
∑

j:ei∈Sj
x∗j ≥ 1. Although e−1 is

an upper bound on the probability that a given element is not covered, it is possible to approach
this bound arbitrarily closely, so in the worst case it is quite likely that this randomized rounding
procedure does not produce a set cover.

How small would this probability have to be in order for it to be very likely that a set cover
is produced? And perhaps even more fundamentally, what is the “right” notion of “very likely”?
The latter question has a number of possible answers; one natural way to think of the situation
is to impose a guarantee in keeping with our focus on polynomial-time algorithms. Suppose
that, for any constant c, we could devise a polynomial-time algorithm whose chance of failure
is at most an inverse polynomial n−c; then we say that we have an algorithm that works with
high probability. To be more precise, we would have a family of algorithms, since it might be
necessary to give progressively slower algorithms, or ones with worse performance guarantees,
to achieve analogously more fail-safe results. If we could devise a randomized procedure such
that Pr[ei not covered] ≤ 1

nc for some constant c ≥ 2, then

Pr[there exists an uncovered element] ≤
n∑

i=1

Pr[ei not covered] ≤
1

nc−1
,

and we would have a set cover with high probability. In fact, we can achieve such a bound in
the following way: for each subset Sj , we imagine a coin that comes up heads with probability
x∗j , and we flip the coin c lnn times. If it comes up heads in any of the c lnn trials, we include

Sj in our solution, otherwise not. Thus, the probability that Sj is not included is (1− x∗j)
c lnn.

Furthermore,

Pr[ei not covered] =
∏

j:ei∈Sj

(1− x∗j)
c lnn

≤
∏

j:ei∈Sj

e−x∗
j (c lnn)

= e
−(c lnn)

∑
j:ei∈Sj

x∗
j

≤ 1

nc
,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

30 An introduction to approximation algorithms

as desired.
We now need to prove only that the algorithm has a good expected value given that it

produces a set cover.

Theorem 1.17: The algorithm is a randomized O(lnn)-approximation algorithm that produces
a set cover with high probability.

Proof. Let pj(x
∗
j) be the probability that a given subset Sj is included in the solution as a

function of x∗j . By construction of the algorithm, we know that pj(x
∗
j) = 1 − (1 − x∗j)

c lnn.
Observe that if x∗j ∈ [0, 1] and c lnn ≥ 1, then we can bound the derivative p′j at x∗j by

p′j(x
∗
j) = (c lnn)(1− x∗j)

(c lnn)−1 ≤ (c lnn).

Then since pj(0) = 0, and the slope of the function pj is bounded above by c lnn on the interval
[0,1], pj(x

∗
j) ≤ (c lnn)x∗j on the interval [0,1]. If Xj is a random variable that is 1 if the subset

Sj is included in the solution, and 0 otherwise, then the expected value of the random procedure
is

E

 m∑
j=1

wjXj

 =

m∑
j=1

wj Pr[Xj = 1]

≤
m∑
j=1

wj(c lnn)x
∗
j

= (c lnn)
m∑
j=1

wjx
∗
j = (c lnn)Z∗

LP .

However, we would like to bound the expected value of the solution given that a set cover
is produced. Let F be the event that the solution obtained by the procedure is a feasible set
cover, and let F̄ be the complement of this event. We know from the previous discussion that
Pr[F] ≥ 1− 1

nc−1 , and we also know that

E

 m∑
j=1

wjXj

 = E

 m∑
j=1

wjXj

∣∣∣∣∣∣F
Pr[F] + E

 m∑
j=1

wjXj

∣∣∣∣∣∣ F̄
Pr[F̄].

Since wj ≥ 0 for all j,

E

 m∑
j=1

wjXj

∣∣∣∣∣∣ F̄
 ≥ 0.

Thus,

E

 m∑
j=1

wjXj

∣∣∣∣∣∣F
 =

1

Pr[F]

E

 m∑
j=1

wjXj

− E

 m∑
j=1

wjXj

∣∣∣∣∣∣ F̄
Pr[F̄]


≤ 1

Pr[F]
· E

 m∑
j=1

wjXj


≤

(c lnn)Z∗
LP

1− 1
nc−1

≤ 2c(lnn)Z∗
LP

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.7 A randomized rounding algorithm 31

for n ≥ 2 and c ≥ 2.

While in this case there is a simpler and faster approximation algorithm that achieves a bet-
ter performance guarantee, we will see in Chapter 5 that sometimes randomized algorithms are
simpler to describe and analyze than deterministic algorithms. In fact, most of the randomized
algorithms we present in this book can be derandomized: that is, a deterministic variant of them
can be created that achieves the expected performance guarantee of the randomized algorithm.
However, these deterministic algorithms are sometimes more complicated to describe. In addi-
tion, there are some cases in which the deterministic variant is easy to state, but the only way
in which we know how to analyze the algorithm is by analyzing a corresponding randomized
algorithm.

This brings us to the end of our introduction to approximation algorithms. In subsequent
chapters, we will look at the techniques introduced here — as well as a few others — in greater
depth, and see their application to many other problems.

Exercises

1.1 In the set cover problem, the goal is to find a collection of subsets indexed by I that
minimizes

∑
j∈I wj such that ∣∣∣∣∣∣

∪
j∈I

Sj

∣∣∣∣∣∣ = |E|.
Consider the partial cover problem, in which one finds a collection of subsets indexed by
I that minimizes

∑
j∈I wj such that ∣∣∣∣∣∣

∪
j∈I

Sj

∣∣∣∣∣∣ ≥ p|E|,

where 0 < p < 1 is some constant.

(a) Give a polynomial-time algorithm to find a solution to the partial cover problem in
which the value is no more than c(p) · OPT, where c(p) is a constant that depends
on p, and OPT is the value of the optimal solution to the set cover problem.

(b) Give an f(p)-approximation algorithm for the partial cover problem, such that f is
non-decreasing in p and f(1) ≤ H|E|.

1.2 In the directed Steiner tree problem, we are given as input a directed graph G = (V,A),
nonnegative costs cij ≥ 0 for arcs (i, j) ∈ A, a root vertex r ∈ V , and a set of terminals
T ⊆ V . The goal is to find a minimum-cost tree such that for each i ∈ T there exists a
directed path from r to i.

Prove that for some constant c there can be no c log |T |-approximation algorithm for the
directed Steiner tree problem, unless P = NP.

1.3 In the metric asymmetric traveling salesman problem, we are given as input a complete
directed graph G = (V,A) with costs cij ≥ 0 for all arcs (i, j) ∈ A, such that the arc costs
obey the triangle inequality: for all i, j, k ∈ V , we have that cij + cjk ≥ cik. The goal is
to find a tour of minimum cost, that is, a directed cycle that contains each vertex exactly
once, such that the sum of the cost of the arcs in the cycle is minimized.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

32 An introduction to approximation algorithms

One approach to finding an approximation algorithm for this problem is to first find a
minimum-cost strongly connected Eulerian subgraph of the input graph. A directed graph
is strongly connected if for any pair of vertices i, j ∈ V there is a path from i to j and
a path from j to i. A directed graph is Eulerian if the indegree of each vertex equals its
outdegree. Given a strongly connected Eulerian subgraph of the input to the problem, it
is possible to use a technique called “shortcutting” (discussed in Section 2.4) to turn this
into a tour of no greater cost by using the triangle inequality.

One way to find a strongly connected Eulerian subgraph is as follows: We first find a
minimum mean-cost cycle in the graph. A minimum mean-cost cycle is a directed cycle
that minimizes the ratio of the cost of the arcs in the cycle to the number of arcs in the
cycle. Such a cycle can be found in polynomial time. We then choose one vertex of the
cycle arbitrarily, remove all other vertices of the cycle from the graph, and repeat. We do
this until only one vertex of the graph is left. Consider the subgraph consisting of all the
arcs from all the cycles found.

(a) Prove that the subgraph found by the algorithm is a strongly connected Eulerian
subgraph of the input graph.

(b) Prove that the cost of this subgraph is at most 2Hn ·OPT, where n = |V | and OPT
is the cost of the optimal tour. Conclude that this algorithm is a 2Hn-approximation
algorithm for the metric asymmetric traveling salesman problem.

1.4 In the uncapacitated facility location problem, we have a set of clients D and a set of
facilities F . For each client j ∈ D and facility i ∈ F , there is a cost cij of assigning client
j to facility i. Furthermore, there is a cost fi associated with each facility i ∈ F . The goal
of the problem is to choose a subset of facilities F ′ ⊆ F so as to minimize the total cost
of the facilities in F ′ and the cost of assigning each client j ∈ D to the nearest facility in
F ′. In other words, we wish to find F ′ so as to minimize

∑
i∈F ′ fi +

∑
j∈D mini∈F ′ cij .

(a) Show that there exists some c such that there is no (c ln |D|)-approximation algorithm
for the uncapacitated facility location problem unless P = NP.

(b) Give an O(ln |D|)-approximation algorithm for the uncapacitated facility location
problem.

1.5 Consider the vertex cover problem.

(a) Prove that any extreme point of the linear program

minimize
∑
i∈V

wixi

subject to xi + xj ≥ 1, ∀(i, j) ∈ E,

xi ≥ 0, i ∈ V,

has the property that xi ∈ {0, 12 , 1} for all i ∈ V . (Recall that an extreme point x is
a feasible solution that cannot be expressed as λx1 + (1 − λ)x2 for 0 < λ < 1 and
feasible solutions x1 and x2 distinct from x.)

(b) Give a 3
2 -approximation algorithm for the vertex cover problem when the input graph

is planar. You may use the facts that polynomial-time LP solvers return extreme
points, and that there is a polynomial-time algorithm to 4-color any planar graph
(i.e., the algorithm assigns each vertex one of four colors such that for any edge
(i, j) ∈ E, vertices i and j have been assigned different colors).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

1.7 A randomized rounding algorithm 33

1.6 In the node-weighted Steiner tree problem, we are given as input an undirected graph
G = (V,E), node weights wi ≥ 0 for all i ∈ V , edge costs ce ≥ 0 for all e ∈ E, and a set of
terminals T ⊆ V . The cost of a tree is the sum of the weights of the nodes plus the sum
of the costs of the edges in the tree. The goal of the problem is to find a minimum-weight
tree that spans all the terminals in T .

(a) Show that there exists some c such that there is no (c ln |T |)-approximation algorithm
for the node-weighted Steiner tree problem unless P = NP.

(b) Give a greedy O(ln |T |)-approximation algorithm for the node-weighted Steiner tree
problem.

Chapter Notes

The term “approximation algorithm” was coined by David S. Johnson [179] in an influential
and prescient 1974 paper. However, earlier papers had proved the performance guarantees of
heuristics, including a 1967 paper of Erdős [99] on the maximum cut problem (to be discussed
in Section 6.2), a 1966 paper of Graham [142] on a scheduling problem (to be discussed in
Section 2.3), and a 1964 paper of Vizing [284] on the edge coloring problem (to be discussed in
Section 2.7). Johnson’s paper gave an O(log n)-approximation algorithm for the unweighted set
cover problem, as well as approximation algorithms for the maximum satisfiability problem (to
be discussed in Section 5.1), vertex coloring (Sections 5.12, 6.5, and 13.2), and the maximum
clique problem. At the end of the paper, Johnson [179] speculates about the approximability
of these various problems:

The results described in this paper indicate a possible classification of optimization
problems as to the behavior of their approximation algorithms. Such a classification
must remain tentative, at least until the existence of polynomial-time algorithms
for finding optimal solutions has been proved or disproved. In the meantime, many
questions can be asked. Are there indeed O(log n) coloring algorithms? Are there
any clique finding algorithms better than O(nϵ) for all ϵ > 0? Where do other opti-
mization problems fit into the scheme of things? What is it that makes algorithms
for different problems behave in the same way? Is there some stronger kind of re-
ducibility than the simple polynomial reducibility that will explain these results,
or are they due to some structural similarity between the problems as we define
them? And what other types of behavior and ways of analyzing and measuring it
are possible? (p. 278)

There has been substantial work done in attempting to answer these questions in the decades
since Johnson’s paper appeared, with significant progress; for instance, Theorem 1.4 shows that
no clique algorithm of the kind Johnson mentions is possible unless P = NP.

Other books on approximation algorithms are available, including the textbooks of Ausiello,
Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, and Protasi [27] and of Vazirani [283], and
the collection of surveys edited by Hochbaum [162]. Many books on algorithms and combina-
torial optimization now contain sections on approximation algorithms, including the textbooks
of Bertsimas and Tsitsiklis [47], Cook, Cunningham, Pulleyblank, and Schrijver [81], Cormen,
Leiserson, Rivest, and Stein [82], Kleinberg and Tardos [198], and Korte and Vygen [203].

For solid introductions to linear programming, we suggest the books of Bertsimas and Tsit-
siklis [47], Chvátal [79] and Ferris, Mangasarian, and Wright [112]. Bertsekas and Tsitsiklis
[45], Durrett [93, 94], and Ross [256] provide basic introductions to probability theory; the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

34 An introduction to approximation algorithms

first few chapters of the book of Mitzenmacher and Upfal [226] provide a brief introduction to
probability theory in the context of computer algorithms.

The antivirus application of the set cover problem mentioned is due to Kephart, Sorkin,
Arnold, Chess, Tesauro, and White [188].

Theorem 1.3 on the non-existence of approximation schemes for problems in MAX SNP is
due to Arora, Lund, Motwani, Sudan, and Szegedy [19], building on earlier work of Feige, Gold-
wasser, Lovász, Safra, and Szegedy [108] and Arora and Safra [23]. Theorem 1.4 on the hardness
of approximating the maximum clique problem is due to H̊astad [158], with a strengthening
due to Zuckerman [296].

The LP rounding algorithm of Section 1.3 and the dual rounding algorithm of Section 1.4
are due to Hochbaum [160]. The primal-dual algorithm of Section 1.5 is due to Bar-Yehuda and
Even [35]. The greedy algorithm and the LP-based analysis of Section 1.6 are due to Chvátal
[78]. The randomized rounding algorithm of Section 1.7 is apparently folklore. Johnson [179]
and Lovász [218] give earlier greedy O(log n)-approximation algorithms for the unweighted set
cover problem.

Theorem 1.13 on the hardness of approximating the set cover problem is due to Lund and
Yannakakis [220], with a strengthening due to Bellare, Goldwasser, Lund, and Russell [43].
Theorem 1.14 on the hardness of the set cover problem is due to Feige [107]. Theorem 1.15 on
the hardness of the vertex cover problem is due to Dinur and Safra [91], while Theorem 1.16,
which uses the unique games conjecture, is due to Khot and Regev [194].

Exercise 1.3 is an unpublished result of Kleinberg andWilliamson. The algorithm in Exercise
1.4 is due to Hochbaum [161]. Nemhauser and Trotter [231] show that all extreme points of
the linear programming relaxation of vertex cover have value {0, 12 , 1} (used in Exercise 1.5).
Exercise 1.6 is due to Klein and Ravi [196].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 2

Greedy algorithms and local search

In this chapter, we will consider two standard and related techniques for designing algorithms
and heuristics, namely, greedy algorithms and local search algorithms. Both algorithms work
by making a sequence of decisions that optimize some local choice, though these local choices
might not lead to the best overall solution.

In a greedy algorithm, a solution is constructed step by step, and at each step of the
algorithm the next part of the solution is constructed by making some decision that is locally
the best possible. In Section 1.6, we gave an example of a greedy algorithm for the set cover
problem that constructs a set cover by repeatedly choosing the set that minimizes the ratio of
its weight to the number of currently uncovered elements it contains.

A local search algorithm starts with an arbitrary feasible solution to the problem, and then
checks if some small, local change to the solution results in an improved objective function.
If so, the change is made. When no further change can be made, we have a locally optimal
solution, and it is sometimes possible to prove that such locally optimal solutions have value
close to that of the optimal solution. Unlike other approximation algorithm design techniques,
the most straightforward implementation of a local search algorithm typically does not run in
polynomial time. The algorithm usually requires some restriction to the local changes allowed
in order to ensure that enough progress is made during each improving step so that a locally
optimal solution is found in polynomial time.

Thus, while both types of algorithm optimize local choices, greedy algorithms are typically
primal infeasible algorithms: they construct a solution to the problem during the course of
the algorithm. Local search algorithms are primal feasible algorithms: they always maintain a
feasible solution to the problem and modify it during the course of the algorithm.

Both greedy algorithms and local search algorithms are extremely popular choices for heuris-
tics for NP-hard problems. They are typically easy to implement and have good running times
in practice. In this chapter, we will consider greedy and local search algorithms for scheduling
problems, clustering problems, and others, including the most famous problem in combinatorial
optimization, the traveling salesman problem. Because greedy and local search algorithms are
natural choices for heuristics, some of these algorithms were among the very first approxima-
tion algorithms devised; in particular, the greedy algorithm for the parallel machine scheduling
problem in Section 2.3 and the greedy algorithm for edge coloring in Section 2.7 were both
given and analyzed in the 1960s, before the concept of NP-completeness was invented.

35

36 Greedy algorithms and local search

Time0 2

Job 1 Job 2 Job 3

3 7

Figure 2.1: An instance of a schedule for the one-machine scheduling problem in which
p1 = 2, r1 = 0, p2 = 1, r2 = 2, p3 = 4, r3 = 1. In this schedule, C1 = 2, C2 = 3, and
C3 = 7. If the deadlines for the jobs are such that d1 = −1, d2 = 1, and d3 = 10, then
L1 = 2− (−1) = 3, L2 = 3− 1 = 2, and L3 = 7− 10 = −3, so that Lmax = L1 = 3.

2.1 Scheduling jobs with deadlines on a single machine

One of the most common types of problems in combinatorial optimization is that of creating
a schedule. We are given some type of work that must be done, and some resources to do
the work, and from this we must create a schedule to complete the work that optimizes some
objective; perhaps we want to finish all the work as soon as possible, or perhaps we want to
make sure that the average time at which we complete the various pieces of work is as small
as possible. We will often consider the problem of scheduling jobs (the work) on machines (the
resources). We start this chapter by considering one of the simplest possible versions of this
problem.

Suppose that there are n jobs to be scheduled on a single machine, where the machine can
process at most one job at a time, and must process a job until its completion once it has begun
processing; suppose that each job j must be processed for a specified pj units of time, where
the processing of job j may begin no earlier than a specified release date rj , j = 1, . . . , n. We
assume that the schedule starts at time 0, and each release date is nonnegative. Furthermore,
assume that each job j has a specified due date dj , and if we complete its processing at time
Cj , then its lateness Lj is equal to Cj − dj ; we are interested in scheduling the jobs so as to
minimize the maximum lateness, Lmax = maxj=1,...,n Lj . A sample instance of this problem is
shown in Figure 2.1.

Unfortunately, this problem is NP-hard, and in fact, even deciding if there is a schedule
for which Lmax ≤ 0 (i.e., deciding if all jobs can be completed by their due date) is strongly
NP-hard (the reader unfamiliar with strong NP-hardness can consult Appendix B). Of course,
this is a problem that we often encounter in everyday life, and many of us schedule our lives
with the following simple greedy heuristic: focus on the task with the earliest due date. We will
show that in certain circumstances this is a provably good thing to do. However, we first argue
that as stated, this optimization problem is not particularly amenable to obtaining near-optimal
solutions. If there were a ρ-approximation algorithm, then for any input with optimal value
0, the algorithm must still find a schedule of objective function value at most ρ · 0 = 0, and
hence (given the NP-hardness result stated above) this would imply that P = NP. (There is the
further complication of what to do if the objective function of the optimal solution is negative!)
One easy workaround to this is to assume that all due dates are negative, which implies that
the optimal value is always positive. We shall give a 2-approximation algorithm for this special
case.

We first provide a good lower bound on the optimal value for this scheduling problem. Let
S denote a subset of jobs, and let r(S) = minj∈S rj , p(S) =

∑
j∈S pj , and d(S) = maxj∈S dj .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.2 The k-center problem 37

Let L∗
max denote the optimal value.

Lemma 2.1: For each subset S of jobs,

L∗
max ≥ r(S) + p(S)− d(S).

Proof. Consider the optimal schedule, and view this simply as a schedule for the jobs in the
subset S. Let job j be the last job in S to be processed. Since none of the jobs in S can
be processed before r(S), and in total they require p(S) time units of processing, it follows
that job j cannot complete any earlier than time r(S) + p(S). The due date of job j is d(S)
or earlier, and so the lateness of job j in this schedule is at least r(S) + p(S) − d(S); hence,
L∗
max ≥ r(S) + p(S)− d(S).

A job j is available at time t if its release date rj ≤ t. We consider the following natural
algorithm: at each moment that the machine is idle, start processing next an available job with
the earliest due date. This is known as the earliest due date (EDD) rule.

Theorem 2.2: The EDD rule is a 2-approximation algorithm for the problem of minimizing
the maximum lateness on a single machine subject to release dates with negative due dates.

Proof. Consider the schedule produced by the EDD rule, and let job j be a job of maximum
lateness in this schedule; that is, Lmax = Cj − dj . Focus on the time Cj in this schedule; find
the earliest point in time t ≤ Cj such that the machine was processing without any idle time
for the entire period [t, Cj). Several jobs may be processed in this time interval; we require only
that the machine not be idle for some interval of positive length within it. Let S be the set of
jobs that are processed in the interval [t, Cj). By our choice of t, we know that just prior to
t, none of these jobs were available (and clearly at least one job in S is available at time t);
hence, r(S) = t. Furthermore, since only jobs in S are processed throughout this time interval,
p(S) = Cj − t = Cj − r(S). Thus, Cj ≤ r(S) + p(S); since d(S) < 0, we can apply Lemma 2.1
to get that

L∗
max ≥ r(S) + p(S)− d(S) ≥ r(S) + p(S) ≥ Cj . (2.1)

On the other hand, by applying Lemma 2.1 with S = {j},

L∗
max ≥ rj + pj − dj ≥ −dj . (2.2)

Adding inequalities (2.1) and (2.2), we see that the maximum lateness of the schedule computed
is

Lmax = Cj − dj ≤ 2L∗
max,

which completes the proof of the theorem.

2.2 The k-center problem

The problem of finding similarities and dissimilarities in large amounts of data is ubiquitous:
companies wish to group customers with similar purchasing behavior, political consultants group
precincts by their voting behavior, and search engines group webpages by their similarity of
topic. Usually we speak of clustering data, and there has been extensive study of the problem
of finding good clusterings.

Here we consider a particular variant of clustering, the k-center problem. In this problem,
we are given as input an undirected, complete graph G = (V,E), with a distance dij ≥ 0

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

38 Greedy algorithms and local search

Pick arbitrary i ∈ V
S ← {i}
while |S| < k do

j ← argmaxj∈V d(j, S)
S ← S ∪ {j}

Algorithm 2.1: A greedy 2-approximation algorithm for the k-center problem.

1

2

3

1
∗

2
∗

3
∗

Figure 2.2: An instance of the k-center problem where k = 3 and the distances are
given by the Euclidean distances between points. The execution of the greedy algorithm
is shown; the nodes 1, 2, 3 are the nodes selected by the greedy algorithm, whereas the
nodes 1∗, 2∗, 3∗ are the three nodes in an optimal solution.

between each pair of vertices i, j ∈ V . We assume dii = 0, dij = dji for each i, j ∈ V , and
that the distances obey the triangle inequality: for each triple i, j, l ∈ V , it is the case that
dij + djl ≥ dil. In this problem, distances model similarity: vertices that are closer to each
other are more similar, whereas those farther apart are less similar. We are also given a positive
integer k as input. The goal is to find k clusters, grouping together the vertices that are most
similar into clusters together. In this problem, we will choose a set S ⊆ V , |S| = k, of k
cluster centers. Each vertex will assign itself to its closest cluster center, grouping the vertices
into k different clusters. For the k-center problem, the objective is to minimize the maximum
distance of a vertex to its cluster center. Geometrically speaking, the goal is to find the centers
of k different balls of the same radius that cover all points so that the radius is as small as
possible. More formally, we define the distance of a vertex i from a set S ⊆ V of vertices to be
d(i, S) = minj∈S dij . Then the corresponding radius for S is equal to maxi∈V d(i, S), and the
goal of the k-center problem is to find a set of size k of minimum radius.

In later chapters we will consider other objective functions, such as minimizing the sum of
distances of vertices to their cluster centers, that is, minimizing

∑
i∈V d(i, S). This is called

the k-median problem, and we will consider it in Sections 7.7 and 9.2. We shall also consider
another variant on clustering called correlation clustering in Section 6.4.

We give a greedy 2-approximation algorithm for the k-center problem that is simple and
intuitive. Our algorithm first picks a vertex i ∈ V arbitrarily, and puts it in our set S of cluster
centers. Then it makes sense for the next cluster center to be as far away as possible from
all the other cluster centers. Hence, while |S| < k, we repeatedly find a vertex j ∈ V that
determines the current radius (or in other words, for which the distance d(j, S) is maximized)
and add it to S. Once |S| = k, we stop and return S. Our algorithm is given in Algorithm 2.1.

An execution of the algorithm is shown in Figure 2.2. We will now prove that the algorithm

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.3 Scheduling jobs on identical parallel machines 39

is a good approximation algorithm.

Theorem 2.3: Algorithm 2.1 is a 2-approximation algorithm for the k-center problem.

Proof. Let S∗ = {j1, . . . , jk} denote the optimal solution, and let r∗ denote its radius. This
solution partitions the nodes V into clusters V1, . . . , Vk, where each point j ∈ V is placed in Vi

if it is closest to ji among all of the points in S∗ (and ties are broken arbitrarily). Each pair
of points j and j′ in the same cluster Vi are at most 2r∗ apart: by the triangle inequality, the
distance djj′ between them is at most the sum of djji , the distance from j to the center ji, plus
djij′ , the distance from the center ji to j′ (that is, djj′ ≤ djji + djij′); since djji and dj′ji are
each at most r∗, we see that djj′ is at most 2r∗.

Now consider the set S ⊆ V of points selected by the greedy algorithm. If one center in S
is selected from each cluster of the optimal solution S∗, then every point in V is clearly within
2r∗ of some selected point in S. However, suppose that the algorithm selects two points within
the same cluster. That is, in some iteration, the algorithm selects a point j ∈ Vi, even though
the algorithm had already selected a point j′ ∈ Vi in an earlier iteration. Again, the distance
between these two points is at most 2r∗. The algorithm selects j in this iteration because it is
currently the furthest from the points already in S. Hence, all points are within a distance of
at most 2r∗ of some center already selected for S. Clearly, this remains true as the algorithm
adds more centers in subsequent iterations, and we have proved the theorem. The instance in
Figure 2.2 shows that this analysis is tight.

We shall argue next that this result is the best possible; if there exists a ρ-approximation
algorithm with ρ < 2, then P = NP. To see this, we consider the dominating set problem,
which is NP-complete. In the dominating set problem, we are given a graph G = (V,E) and an
integer k, and we must decide if there exists a set S ⊆ V of size k such that each vertex is either
in S, or adjacent to a vertex in S. Given an instance of the dominating set problem, we can
define an instance of the k-center problem by setting the distance between adjacent vertices to
1, and nonadjacent vertices to 2: there is a dominating set of size k if and only if the optimal
radius for this k-center instance is 1. Furthermore, any ρ-approximation algorithm with ρ < 2
must always produce a solution of radius 1 if such a solution exists, since any solution of radius
ρ < 2 must actually be of radius 1. This implies the following theorem.

Theorem 2.4: There is no α-approximation algorithm for the k-center problem for α < 2
unless P = NP.

2.3 Scheduling jobs on identical parallel machines

In Section 2.1, we considered the problem of scheduling jobs on a single machine to minimize
lateness. Here we consider a variation on that problem, in which we now have multiple machines
and no release dates, but our goal is to minimize the time at which all jobs are finished. Suppose
that there are n jobs to be processed, and there are m identical machines (running in parallel)
to which each job may be assigned. Each job j = 1, . . . , n, must be processed on one of these
machines for pj time units without interruption, and each job is available for processing at time
0. Each machine can process at most one job at a time. The aim is to complete all jobs as soon
as possible; that is, if job j completes at a time Cj (presuming that the schedule starts at time
0), then we wish to minimize Cmax = maxj=1,...,nCj , which is often called the makespan or
length of the schedule. An equivalent view of the same problem is as a load-balancing problem:
there are n items, each of a given weight pj , and they are to be distributed among m machines;

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

40 Greedy algorithms and local search

Time

Machines

Time

Machines

1

2

3

4

5

1

2

3

4

5

Figure 2.3: An example of a local move in the local search algorithm for scheduling
jobs on parallel machines. The gray job on machine 2 finishes last in the schedule on
the top, but the schedule can be improved by moving the gray job to machine 4. No
further local moves are possible after this one since again the gray job finishes last.

the aim is to assign each item to one machine so to minimize the maximum total weight assigned
to one machine.

This scheduling problem has the property that even the simplest algorithms compute rea-
sonably good solutions. In particular, we will show that both a local search algorithm and
a very simple greedy algorithm find solutions that have makespan within a factor of 2 of the
optimum. In fact, the analyses of these two algorithms are essentially identical.

Local search algorithms are defined by a set of local changes or local moves that change one
feasible solution to another. The simplest local search procedure for this scheduling problem
works as follows: Start with any schedule; consider the job ℓ that finishes last; check whether
or not there exists a machine to which it can be reassigned that would cause this job to finish
earlier. If so, transfer job ℓ to this other machine. We can determine whether to transfer job
ℓ by checking if there exists a machine that finishes its currently assigned jobs earlier than
Cℓ−pℓ. The local search algorithm repeats this procedure until the last job to complete cannot
be transferred. An illustration of this local move is shown in Figure 2.3.

In order to analyze the performance of this local search algorithm, we first provide some
natural lower bounds on the length of an optimal schedule, C∗

max. Since each job must be
processed, it follows that

C∗
max ≥ max

j=1,...,n
pj . (2.3)

On the other hand, there is, in total, P =
∑n

j=1 pj units of processing to accomplish, and only
m machines to do this work. Hence, on average, a machine will be assigned P/m units of work,
and consequently, there must exist one machine that is assigned at least that much work. Thus,

C∗
max ≥

n∑
j=1

pj/m. (2.4)

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.3 Scheduling jobs on identical parallel machines 41

Consider the solution produced by the local search algorithm. Let ℓ be a job that completes
last in this final schedule; the completion time of job ℓ, Cℓ, is equal to this solution’s objective
function value. By the fact that the algorithm terminated with this schedule, every other
machine must be busy from time 0 until the start of job ℓ at time Sℓ = Cℓ−pℓ. We can partition
the schedule into two disjoint time intervals, from time 0 until Sℓ, and the time during which
job ℓ is being processed. By (2.3), the latter interval has length at most C∗

max. Now consider
the former time interval; we know that each machine is busy processing jobs throughout this
period. The total amount of work being processed in this interval is mSℓ, which is clearly no
more than the total work to be done,

∑n
j=1 pj . Hence,

Sℓ ≤
n∑

j=1

pj/m. (2.5)

By combining this with (2.4), we see that Sℓ ≤ C∗
max. But now, we see that the length of the

schedule before the start of job ℓ is at most C∗
max, as is the length of the schedule afterward; in

total, the makespan of the schedule computed is at most 2C∗
max.

Now consider the running time of this algorithm. This local search procedure has the
property that the value of Cmax for the sequence of schedules produced, iteration by iteration,
never increases (it can remain the same, but then the number of machines that achieve the
maximum value decreases). One natural assumption to make is that when we transfer a job to
another machine, then we reassign that job to the machine that is currently finishing earliest.
We will analyze the running time of this variant instead. Let Cmin be the completion time of a
machine that completes all its processing the earliest. One consequence of focusing on the new
variant is that Cmin never decreases (and if it remains the same, then the number of machines
that achieve this minimum value decreases). We argue next that this implies that we never
transfer a job twice. Suppose this claim is not true, and consider the first time that a job j
is transferred twice, say, from machine i to i′, and later then to i∗. When job j is reassigned
from machine i to machine i′, it then starts at Cmin for the current schedule. Similarly, when
job j is reassigned from machine i′ to i∗, it then starts at the current C ′

min. Furthermore, no
change occurred to the schedule on machine i′ in between these two moves for job j. Hence,
C ′
min must be strictly smaller than Cmin (in order for the transfer to be an improving move),

but this contradicts our claim that the Cmin value is non-decreasing over the iterations of the
local search algorithm. Hence, no job is transferred twice, and after at most n iterations, the
algorithm must terminate. We have thus shown the following theorem.

Theorem 2.5: The local search procedure for scheduling jobs on identical parallel machines is
a 2-approximation algorithm.

In fact, it is not hard to see that the analysis of the approximation ratio can be refined
slightly. In deriving the inequality (2.5), we included job ℓ among the work to be done prior to
the start of job ℓ. Hence, we actually derived that

Sℓ ≤
∑
j ̸=ℓ

pj/m,

and hence the total length of the schedule produced is at most

pℓ +
∑
j ̸=ℓ

pj/m =

(
1− 1

m

)
pℓ +

n∑
j=1

pj/m.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

42 Greedy algorithms and local search

By applying the two lower bounds (2.3) and (2.4) to these two terms, we see that the schedule
has length at most (2− 1

m)C∗
max. Of course, the difference between this bound and 2 is significant

only if there are very few machines.

Another natural algorithm to compute a schedule is a greedy algorithm that assigns the
jobs as soon as there is machine availability to process them: whenever a machine becomes idle,
then one of the remaining jobs is assigned to start processing on that machine. This algorithm
is often called the list scheduling algorithm, since one can equivalently view the algorithm as
first ordering the jobs in a list (arbitrarily), and the next job to be processed is the one at the
top of the list. Another viewpoint, from the load-balancing perspective, is that the next job
on the list is assigned to the machine that is currently the least heavily loaded. It is in this
sense that one can view the algorithm as a greedy algorithm. The analysis of this algorithm is
now quite trivial; if one uses this schedule as the starting point for the local search procedure,
that algorithm would immediately declare that the solution cannot be improved! To see this,
consider a job ℓ that is (one of the jobs) last to complete its processing. Each machine is busy
until Cℓ − pℓ, since otherwise we would have assigned job ℓ to that other machine. Hence, no
transfers are possible.

Theorem 2.6: The list scheduling algorithm for the problem of minimizing the makespan on
m identical parallel machines is a 2-approximation algorithm.

It is not hard to obtain a stronger result by improving this list scheduling algorithm. Not
all lists yield the same schedule, and it is natural to use an additional greedy rule that first
sorts the jobs in non-increasing order. One way to view the results of Theorems 2.5 and 2.6 is
that the relative error in the length of the schedule produced is entirely due to the length of
the last job to finish. If that job is short, then the error is not too big. This greedy algorithm
is called the longest processing time rule, or LPT.

Theorem 2.7: The longest processing time rule is a 4/3-approximation algorithm for scheduling
jobs to minimize the makespan on identical parallel machines.

Proof. Suppose that the theorem is false, and consider an input that provides a counterexample
to the theorem. For ease of notation, assume that p1 ≥ · · · ≥ pn. First, we can assume that the
last job to complete is indeed the last (and smallest) job in the list. This follows without loss
of generality: any counterexample for which the last job ℓ to complete is not the smallest can
yield a smaller counterexample, simply by omitting all of the jobs ℓ+1, . . . , n; the length of the
schedule produced is the same, and the optimal value of the reduced input can be no larger.
Hence the reduced input is also a counterexample.

So we know that the last job to complete in the schedule is job n. If this is a counterexample,
what do we know about pn(= pℓ)? If pℓ ≤ C∗

max/3, then the analysis of Theorem 2.6 implies
that the schedule length is at most (4/3)C∗

max, and so this is not a counterexample. Hence,
we know that in this purported counterexample, job n (and therefore all of the jobs) has a
processing requirement strictly greater than C∗

max/3. This has the following simple corollary.
In the optimal schedule, each machine may process at most two jobs (since otherwise the total
processing assigned to that machine is more than C∗

max).

However, we have now reduced our assumed counterexample to the point where it simply
cannot exist. For inputs of this structure, we have the following lemma.

Lemma 2.8: For any input to the problem of minimizing the makespan on identical parallel
machines for which the processing requirement of each job is more than one-third the optimal
makespan, the longest processing time rule computes an optimal schedule.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.4 The traveling salesman problem 43

This lemma can be proved by some careful case checking, and we defer this to an exercise
(Exercise 2.2). However, the consequence of the lemma is clear; no counterexample to the
theorem can exist, and hence the theorem must be true.

In Section 3.2, we will see that it is possible to give a polynomial-time approximation scheme
for this problem.

2.4 The traveling salesman problem

In the traveling salesman problem, or TSP, there is a given set of cities {1, 2, . . . , n}, and the
input consists of a symmetric n by n matrix C = (cij) that specifies the cost of traveling from
city i to city j. By convention, we assume that the cost of traveling from any city to itself is
equal to 0, and costs are nonnegative; the fact that the matrix is symmetric means that the cost
of traveling from city i to city j is equal to the cost of traveling from j to i. (The asymmetric
traveling salesman problem, where the restriction that the cost matrix be symmetric is relaxed,
has already made an appearance in Exercise 1.3.) If we instead view the input as an undirected
complete graph with a cost associated with each edge, then a feasible solution, or tour, consists
of a Hamiltonian cycle in this graph; that is, we specify a cyclic permutation of the cities or,
equivalently, a traversal of the cities in the order k(1), k(2), . . . , k(n), where each city j is listed
as a unique image k(i). The cost of the tour is equal to

ck(n)k(1) +

n−1∑
i=1

ck(i)k(i+1).

Observe that each tour has n distinct representations, since it does not matter which city is
selected as the one in which the tour starts.

The traveling salesman problem is one of the most well-studied combinatorial optimization
problems, and this is certainly true from the point of view of approximation algorithms as
well. There are severe limits on our ability to compute near-optimal tours, and we start with
a discussion of these results. It is NP-complete to decide whether a given undirected graph
G = (V,E) has a Hamiltonian cycle. An approximation algorithm for the TSP can be used to
solve the Hamiltonian cycle problem in the following way: Given a graph G = (V,E), form an
input to the TSP by setting, for each pair i, j, the cost cij equal to 1 if (i, j) ∈ E, and equal
to n + 2 otherwise. If there is a Hamiltonian cycle in G, then there is a tour of cost n, and
otherwise each tour costs at least 2n + 1. If there were to exist a 2-approximation algorithm
for the TSP, then we could use this algorithm to distinguish graphs with Hamiltonian cycles
from those without any: run the approximation algorithm on the new TSP input, and if the
tour computed has cost at most 2n, then there exists a Hamiltonian cycle in G, and otherwise
there does not. Of course, there is nothing special about setting the cost for the “non-edges” to
be n+ 2; setting the cost to be αn+ 2 has a similarly inflated consequence, and we obtain an
input to the TSP of polynomial size provided that, for example, α = O(2n). As a result, we
obtain the following theorem.

Theorem 2.9: For any α > 1, there does not exist an α-approximation algorithm for the
traveling salesman problem on n cities, provided P ̸= NP. In fact, the existence of an O(2n)-
approximation algorithm for the TSP would similarly imply that P = NP.

But is this the end of the story? Clearly not. A natural assumption to make about the input to
the TSP is to restrict attention to those inputs that are metric; that is, for each triple i, j, k ∈ V ,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

44 Greedy algorithms and local search

i
j

k

i
j

k

Figure 2.4: Illustration of a greedy step of the nearest addition algorithm.

we have that the triangle inequality

cik ≤ cij + cjk

holds. This assumption rules out the construction used in the reduction for the Hamiltonian
cycle problem above; the non-edges can be given cost at most 2 if we want the triangle inequality
to hold, and this value is too small to yield a nontrivial nonapproximability result. We next
give three approximation algorithms for this metric traveling salesman problem.

Here is a natural greedy heuristic to consider for the traveling salesman problem; this is
often referred to as the nearest addition algorithm. Find the two closest cities, say, i and j, and
start by building a tour on that pair of cities; the tour consists of going from i to j and then
back to i again. This is the first iteration. In each subsequent iteration, we extend the tour on
the current subset S by including one additional city, until we include the full set of cities. In
each iteration, we find a pair of cities i ∈ S and j ̸∈ S for which the cost cij is minimum; let k
be the city that follows i in the current tour on S. We add j to S, and insert j into the current
tour between i and k. An illustration of this algorithm is shown in Figure 2.4.

The crux of the analysis of this algorithm is the relationship of this algorithm to Prim’s
algorithm for the minimum spanning tree in an undirected graph. A spanning tree of a connected
graph G = (V,E) is a minimal subset of edges F ⊆ E such that each pair of nodes in G is
connected by a path using edges only in F . A minimum spanning tree is a spanning tree for
which the total edge cost is minimized. Prim’s algorithm computes a minimum spanning tree by
iteratively constructing a set S along with a tree T , starting with S = {v} for some (arbitrarily
chosen) node v ∈ V and T = (S, F) with F = ∅. In each iteration, it determines the edge (i, j)
such that i ∈ S and j ̸∈ S is of minimum cost, and adds the edge (i, j) to F . Clearly, this is
the same sequence of vertex pairs identified by the nearest addition algorithm. Furthermore,
there is another important relationship between the minimum spanning tree problem and the
traveling salesman problem.

Lemma 2.10: For any input to the traveling salesman problem, the cost of the optimal tour is
at least the cost of the minimum spanning tree on the same input.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.4 The traveling salesman problem 45

Proof. The proof is quite simple. For any input with n ≥ 2, start with the optimal tour. Delete
any one edge from the tour. The result is a spanning tree (albeit a very special one), and this
costs no more than the optimal tour. But the minimum spanning tree must cost no more than
this special tree. Hence, the cost of the minimum spanning tree is at most the cost of the
optimal tour.

By combining these observations, we can obtain the following result with just a bit more
work.

Theorem 2.11: The nearest addition algorithm for the metric traveling salesman problem is a
2-approximation algorithm.

Proof. Let S2, S3, . . . , Sn = {1, . . . , n} be the subsets identified at the end of each iteration
of the nearest addition algorithm (where |Sℓ| = ℓ), and let F = {(i2, j2), (i3, j3), . . . , (in, jn)},
where (iℓ, jℓ) is the edge identified in iteration ℓ− 1 (with iℓ ∈ Sℓ−1, ℓ = 3, . . . , n). As indicated
above, we also know that ({1, . . . , n}, F) is a minimum spanning tree for the original input,
when viewed as a complete undirected graph with edge costs. Thus, if OPT is the optimal
value for the TSP input, then

OPT ≥
n∑

ℓ=2

ciℓjℓ .

The cost of the tour on the first two nodes i2 and j2 is exactly 2ci2j2 . Consider an iteration
in which a city j is inserted between cities i and k in the current tour. How much does the
length of the tour increase? An easy calculation gives cij + cjk− cik. By the triangle inequality,
we have that cjk ≤ cji + cik or, equivalently, cjk − cik ≤ cji. Hence, the increase in cost in this
iteration is at most cij + cji = 2cij . Thus, overall, we know that the final tour has cost at most

2

n∑
ℓ=2

ciℓjℓ ≤ 2OPT,

and the theorem is proved.

In fact, this algorithm can be viewed from another perspective. Although this new perspec-
tive deviates from viewing the algorithm as a“greedy”procedure, this approach ultimately leads
to a better algorithm. First we need some graph-theoretic preliminaries. A graph is said to be
Eulerian if there exists a permutation of its edges of the form (i0, i1), (i1, i2), . . . , (ik−1, ik), (ik, i0);
we will call this permutation a traversal of the edges, since it allows us to visit every edge exactly
once. A graph is Eulerian if and only if it is connected and each node has even degree (where
the degree of a node v is the number of edges with v as one of its endpoints). Furthermore, if a
graph is Eulerian, one can easily construct the required traversal of the edges, given the graph.

To find a good tour for a TSP input, suppose that we first compute a minimum spanning
tree (for example, by Prim’s algorithm). Suppose that we then replace each edge by two copies
of itself. The resulting (multi)graph has cost at most 2OPT and is Eulerian. We can construct
a tour of the cities from the Eulerian traversal of the edges, (i0, i1), (i1, i2), . . . , (ik−1, ik), (ik, i0).
Consider the sequence of nodes, i0, i1, . . . , ik, and remove all but the first occurrence of each
city in this sequence. This yields a tour containing each city exactly once (assuming we then
return to i0 at the end). To bound the length of this tour, consider two consecutive cities in
this tour, iℓ and im. We have omitted iℓ+1, . . . , im−1 because these cities have already been
visited “earlier” in the tour. However, by the triangle inequality, the cost of the edge ciℓ,im can
be upper bounded by the total cost of the edges traversed in the Eulerian traversal between

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

46 Greedy algorithms and local search

iℓ and im, that is, the total cost of the edges (iℓ, iℓ+1), . . . , (im−1, im). In total, the cost of the
tour is at most the total cost of all of the edges in the Eulerian graph, which is at most 2OPT.
Hence, we have also analyzed this double-tree algorithm.

Theorem 2.12: The double-tree algorithm for the metric traveling salesman problem is a 2-
approximation algorithm.

This technique of “skipping over” previously visited cities and bounding the cost of the
resulting tour in terms of the total cost of all the edges is sometimes called shortcutting.

The bigger message of the analysis of the double-tree algorithm is also quite useful; if we
can efficiently construct an Eulerian subgraph of the complete input graph, for which the total
edge cost is at most α times the optimal value of the TSP input, then we have derived an α-
approximation algorithm as well. This strategy can be carried out to yield a 3/2-approximation
algorithm.

Consider the output from the minimum spanning tree computation. This graph is certainly
not Eulerian, since any tree must have nodes of degree one, but it is possible that not many
nodes have odd degree. Let O be the set of odd-degree nodes in the minimum spanning tree. For
any graph, the sum of its node degrees must be even, since each edge in the graph contributes 2
to this total. The total degree of the even-degree nodes must also be even (since we are adding
a collection of even numbers), but then the total degree of the odd-degree nodes must also be
even. In other words, we must have an even number of odd-degree nodes; |O| = 2k for some
positive integer k.

Suppose that we pair up the nodes in O: (i1, i2), (i3, i4), . . . , (i2k−1, i2k). Such a collection
of edges that contain each node in O exactly once is called a perfect matching of O. One of the
classic results of combinatorial optimization is that given a complete graph (on an even number
of nodes) with edge costs, it is possible to compute the perfect matching of minimum total cost
in polynomial time. Given the minimum spanning tree, we identify the set O of odd-degree
nodes with even cardinality, and then compute a minimum-cost perfect matching on O. If we
add this set of edges to our minimum spanning tree, we have constructed an Eulerian graph on
our original set of cities: it is connected (since the spanning tree is connected) and has even
degree (since we added a new edge incident to each node of odd degree in the spanning tree).
As in the double-tree algorithm, we can shortcut this graph to produce a tour of no greater
cost. This algorithm is known as Christofides’ algorithm.

Theorem 2.13: Christofides’ algorithm for the metric traveling salesman problem is a 3/2-
approximation algorithm.

Proof. We want to show that the edges in the Eulerian graph produced by the algorithm have
total cost at most 3

2 OPT. We know that the minimum spanning tree edges have total cost at
most OPT. So we need only show that the perfect matching on O has cost at most OPT /2.
This is surprisingly simple.

First observe that there is a tour on just the nodes in O of total cost at most OPT. This
again uses the shortcutting argument. Start with the optimal tour on the entire set of cities,
and if for two cities i and j, the optimal tour between i and j contains only cities that are not
in O, then include edge (i, j) in the tour on O. Each edge in the tour corresponds to disjoint
paths in the original tour, and hence by the triangle inequality, the total length of the tour on
O is no more than the length of the original tour.

Now consider this “shortcut” tour on the node set O. Color these edges red and blue,
alternating colors as the tour is traversed. This partitions the edges into two sets, the red set
and the blue set; each of these is a perfect matching on the node set O. In total, these two

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.5 Maximizing float in bank accounts 47

S ← ∅
while |S| < k do

i← argmaxi∈B v(S ∪ {i})− v(S)
S ← S ∪ {i}

return S

Algorithm 2.2: A greedy approximation algorithm for the float maximization problem.

edge sets have cost at most OPT. Thus, the cheaper of these two sets has cost at most OPT /2.
Hence, there is a perfect matching on O of cost at most OPT /2. Therefore, the algorithm to
find the minimum-cost perfect matching must find a matching of cost at most OPT /2, and this
completes the proof of the theorem.

Remarkably, no better approximation algorithm for the metric traveling salesman problem
is known. However, substantially better algorithms might yet be found, since the strongest
negative result is as follows.

Theorem 2.14: Unless P = NP, for any constant α < 220
219 ≈ 1.0045, no α-approximation

algorithm for the metric TSP exists.

We can give better approximation algorithms for the problem in special cases. In Section
10.1, we will see that it is possible to obtain a polynomial-time approximation scheme in the
case that cities correspond to points in the Euclidean plane and the cost of traveling between
two cities is equal to the Euclidean distance between the corresponding two points.

2.5 Maximizing float in bank accounts

In the days before quick electronic check clearing, it was often advantageous for large corpora-
tions to maintain checking accounts in various locations in order to maximize float. The float is
the time between making a payment by check and the time that the funds for that payment are
deducted from the company’s banking account. During that time, the company can continue to
accrue interest on the money. Float can also be used by scam artists for check kiting: covering
a deficit in the checking account in one bank by writing a check against another account in
another bank that also has insufficient funds — then a few days later covering this deficit with
a check written against the first account.

We can model the problem of maximizing float as follows. Suppose we wish to open up to k
bank accounts so as to maximize our float. Let B be the set of banks where we can potentially
open accounts, and let P be the set of payees to whom we regularly make payments. Let vij ≥ 0
be the value of the float created by paying payee j ∈ P from bank account i ∈ B; this may
take into account the amount of time it takes for a check written to j to clear at i, the interest
rate at bank i, and other factors. Then we wish to find a set S ⊆ B of banks at which to
open accounts such that |S| ≤ k. Clearly we will pay payee j ∈ P from the account i ∈ S that
maximizes vij . So we wish to find S ⊆ B, |S| ≤ k, that maximizes

∑
j∈P maxi∈S vij . We define

v(S) to be the value of this objective function for S ⊆ B.
A natural greedy algorithm is as follows: we start with S = ∅, and while |S| < k, find

the bank i ∈ B that most increases the objective function, and add it to S. This algorithm is
summarized in Algorithm 2.2.

We will show that this algorithm has a performance guarantee of 1 − 1
e . To do this, we

require the following lemma. We let O denote an optimal solution, so that O ⊆ B and |O| ≤ k.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

48 Greedy algorithms and local search

Lemma 2.15: Let S be the set of banks at the start of some iteration of Algorithm 2.2, and let
i ∈ B be the bank chosen in the iteration. Then

v(S ∪ {i})− v(S) ≥ 1

k
(v(O)− v(S)).

To get some intuition of why this is true, consider the optimal solution O. We can allocate
shares of the value of the objective function v(O) to each bank i ∈ O: the value vij for each
j ∈ P can be allocated to a bank i ∈ O that attains the maximum of maxi∈O vij . Since |O| ≤ k,
some bank i ∈ O is allocated at least v(O)/k. So after choosing the first bank i to add to S, we
have v({i}) ≥ v(O)/k. Intuitively speaking, there is also another bank i′ ∈ O that is allocated
at least a 1/k fraction of whatever wasn’t allocated to the first bank, so that there is an i′ such
that v(S ∪ {i′})− v(S) ≥ 1

k (v(O)− v(S)), and so on.
Given the lemma, we can prove the performance guarantee of the algorithm.

Theorem 2.16: Algorithm 2.2 gives a (1− 1
e)-approximation algorithm for the float maximiza-

tion problem.

Proof. Let St be our greedy solution after t iterations of the algorithm, so that S0 = ∅ and
S = Sk. Let O be an optimal solution. We set v(∅) = 0. Note that Lemma 2.15 implies that
v(St) ≥ 1

kv(O) +
(
1− 1

k

)
v(St−1). By applying this inequality repeatedly, we have

v(S) = v(Sk)

≥ 1

k
v(O) +

(
1− 1

k

)
v(Sk−1)

≥ 1

k
v(O) +

(
1− 1

k

)(
1

k
v(O) +

(
1− 1

k

)
v(Sk−2)

)
≥ v(O)

k

(
1 +

(
1− 1

k

)
+

(
1− 1

k

)2

+ · · ·+
(
1− 1

k

)k−1
)

=
v(O)

k
·
1−

(
1− 1

k

)k
1−

(
1− 1

k

)
= v(O)

(
1−

(
1− 1

k

)k
)

≥ v(O)

(
1− 1

e

)
,

where in the final inequality we use the fact that 1− x ≤ e−x, setting x = 1/k.

To prove Lemma 2.15, we first prove the following.

Lemma 2.17: For the objective function v, for any X ⊆ Y and any ℓ /∈ Y ,

v(Y ∪ {ℓ})− v(Y) ≤ v(X ∪ {ℓ})− v(X).

Proof. Consider any payee j ∈ P . Either j is paid from the same bank account in both X ∪{ℓ}
and X, or it is paid by ℓ from X ∪ {ℓ} and some other bank in X. Consequently,

v(X ∪ {ℓ})− v(X) =
∑
j∈P

(
max

i∈X∪{ℓ}
vij −max

i∈X
vij

)
=
∑
j∈P

max

{
0,

(
vℓj −max

i∈X
vij

)}
. (2.6)

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.6 Finding minimum-degree spanning trees 49

Similarly,

v(Y ∪ {ℓ})− v(Y) =
∑
j∈P

max

{
0,

(
vℓj −max

i∈Y
vij

)}
. (2.7)

Now since X ⊆ Y for a given j ∈ P , maxi∈Y vij ≥ maxi∈X vij , so that

max

{
0,

(
vℓj −max

i∈Y
vij

)}
≤ max

{
0,

(
vℓj −max

i∈X
vij

)}
.

By summing this inequality over all j ∈ P and using the equalities (2.6) and (2.7), we obtain
the desired result.

The property of the value function v that we have just proved is one that plays a central
role in a number of algorithmic settings, and is often called submodularity, though the usual
definition of this property is somewhat different (see Exercise 2.10). This definition captures
the intuitive property of decreasing marginal benefits: as the set includes more elements, the
marginal value of adding a new element decreases.

Finally, we prove Lemma 2.15.

Proof of Lemma 2.15. Let O − S = {i1, . . . , ip}. Note that since |O − S| ≤ |O| ≤ k, then
p ≤ k. Since adding more bank accounts can only increase the overall value of the solution, we
have that

v(O) ≤ v(O ∪ S),

and a simple rewriting gives

v(O ∪ S) = v(S) +

p∑
j=1

[v(S ∪ {i1, . . . , ij})− v(S ∪ {i1, . . . , ij−1})] .

By applying Lemma 2.17, we can upper bound the right-hand side by

v(S) +

p∑
j=1

[v(S ∪ {ij})− v(S)] .

Since the algorithm chooses i ∈ B to maximize v(S ∪ {i}) − v(S), we have that for any j,
v(S ∪ {i})− v(S) ≥ v(S ∪ {ij})− v(S). We can use this bound to see that

v(O) ≤ v(O ∪ S) ≤ v(S) + p[v(S ∪ {i})− v(S)] ≤ v(S) + k[v(S ∪ {i})− v(S)].

This inequality can be rewritten to yield the inequality of the lemma, and this completes the
proof.

This greedy approximation algorithm and its analysis can be extended to similar problems in
which the objective function v(S) is given by a set of items S, and is monotone and submodular.
We leave the definition of these terms and the proofs of the extensions to Exercise 2.10.

2.6 Finding minimum-degree spanning trees

We now turn to a local search algorithm for the problem of minimizing the maximum degree
of a spanning tree. The problem we consider is the following: given a graph G = (V,E) we
wish to find a spanning tree T of G so as to minimize the maximum degree of nodes in T . We

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

50 Greedy algorithms and local search

u

v w

u

v w

y y

Figure 2.5: Illustration of a local move for minimizing the maximum degree of a
spanning tree. The bold solid lines are in the tree, and the dashed lines are graph edges
not in the tree.

will call this the minimum-degree spanning tree problem. This problem is NP-hard. A special
type of spanning tree of a graph is a path that visits all nodes of the graph; this is called a
Hamiltonian path. A spanning tree has maximum degree two if and only if it is a Hamiltonian
path. Furthermore, deciding if a graph G has a Hamiltonian path is NP-complete. Thus, we
have the following theorem.

Theorem 2.18: It is NP-complete to decide whether or not a given graph has a minimum-degree
spanning tree of maximum degree two.

For a given graph G, let T ∗ be the spanning tree that minimizes the maximum degree, and
let OPT be the maximum degree of T ∗. We will give a polynomial-time local search algorithm
that finds a tree T with maximum degree at most 2OPT+⌈log2 n⌉, where n = |V | is the number
of vertices in the graph. To simplify notation, throughout this section we will let ℓ = ⌈log2 n⌉.

The local search algorithm starts with an arbitrary spanning tree T . We will give a local
move to change T into another spanning tree in which the degree of some vertex has been
reduced. Let dT (u) be the degree of u in T . The local move picks a vertex u and tries to reduce
its degree by looking at all edges (v, w) that are not in T but if added to T create a cycle C
containing u. Suppose max(dT (v), dT (w)) ≤ dT (u) − 2. For example, consider the graph in
Figure 2.5, in which the edges of the tree T are shown in bold. In this case, the degree of node
u is 5, but those of v and w are 3. Let T ′ be the result of adding (v, w) and removing an edge
from C incident to u. In the example, if we delete edge (u, y), then the degrees of u, v, and
w will all be 4 after the move. The conditions ensure that this move provides improvement in
general; the degree of u is reduced by one in T ′ (that is, dT ′(u) = dT (u)−1) and the degrees of v
and w in T ′ are not greater than the reduced degree of u; that is, max(dT ′(v), dT ′(w)) ≤ dT ′(u).

The local search algorithm carries out local moves on nodes that have high degree. It makes
sense for us to carry out a local move to reduce the degree of any node, since it is possible that
if we reduce the degree of a low-degree node, it may make possible another local move that
reduces the degree of a high-degree node. However, we do not know how to show that such an
algorithm terminates in polynomial time. To get a polynomial-time algorithm, we apply the
local moves only to nodes whose degree is relatively high. Let ∆(T) be the maximum degree
of T ; that is, ∆(T) = maxu∈V dT (u). The algorithm picks a node in T that has degree at least

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.6 Finding minimum-degree spanning trees 51

∆(T)− ℓ and attempts to reduce its degree using the local move. If there is no move that can
reduce the degree of any node having degree between ∆(T)− ℓ and ∆(T), then the algorithm
stops. We say that the algorithm has found a locally optimal tree. By applying local moves
only to nodes whose degree is between ∆(T) − ℓ and ∆(T), we will be able to show that the
algorithm runs in polynomial time.

We now need to prove two things. First, we need to show that any locally optimal tree has
maximum degree at most 2OPT+ℓ. Second, we need to show that we can find a locally optimal
tree in polynomial time. For most approximation algorithms, the proof that the algorithm runs
in polynomial time is relatively straightforward, but this is often not the case for local search
algorithms. In fact, we usually need to restrict the set of local moves in order to prove that
the algorithm converges to a locally optimal solution in polynomial time. Here we do this by
restricting the local moves to apply only to nodes with high degree.

Theorem 2.19: Let T be a locally optimal tree. Then ∆(T) ≤ 2OPT+ℓ, where ℓ = ⌈log2 n⌉.

Proof. We first explain how we will obtain a lower bound on OPT. Suppose that we remove
k edges of the spanning tree. This breaks the tree into k + 1 different connected components.
Suppose we also find a set of nodes S such that each edge in G connecting two of the k + 1
connected components is incident on a node in S. For example, consider the graph in Figure 2.6
that shows the connected components remaining after the bold edges are deleted, along with
an appropriate choice of the set S. Observe that any spanning tree of the graph must have at
least k edges with endpoints in different components. Thus, the average degree of nodes in S
is at least k/|S| for any spanning tree, and OPT ≥ k/|S|.

Now we show how to find the set of edges to remove and the set of nodes S so that we
can apply this lower bound. Let Si be the nodes of degree at least i in the locally optimal
tree T . We claim that for each Si, where i ≥ ∆(T) − ℓ + 1, there are at least (i − 1)|Si| + 1
distinct edges of T incident on the nodes of Si, and after removing these edges, each edge that
connects distinct connected components is incident on a node of Si−1. Furthermore, we claim
there exists an i such that |Si−1| ≤ 2|Si|, so that the value of OPT implied by removing these
edges with S = Si−1 is

OPT ≥ (i− 1)|Si|+ 1

|Si−1|
≥ (i− 1)|Si|+ 1

2|Si|
> (i− 1)/2 ≥ (∆(T)− ℓ)/2.

Rearranging terms proves the desired inequality.

We turn to the proofs of the claims. We first show that there must exist some i ≥ ∆(T)−ℓ+1
such that |Si−1| ≤ 2|Si|. Suppose not. Then clearly |S∆(T)−ℓ| > 2ℓ|S∆(T)| or |S∆(T)−ℓ| >
n|S∆(T)| ≥ n since |S∆(T)| ≥ 1. This is a contradiction, since any Si can have at most n nodes.

Now we show that there are at least (i− 1)|Si|+1 distinct edges of T incident on the nodes
of Si, and after removing these edges, any edge connecting different connected components is
incident on a node of Si−1. Figure 2.6 gives an example of this construction for i = 4. Each
edge that connects distinct connected components after removing the edges of T incident on
nodes of Si either must be one of the edges of T incident on Si, or must close a cycle C in T
containing some node in Si. Because the tree is locally optimal, it must be the case that at
least one of the endpoints has degree at least i− 1, and so is in Si−1. In removing the edges in
T incident on nodes in Si, there are at least i|Si| edges incident on nodes in Si, since each node
has degree at least i. At most |Si|− 1 such edges can join two nodes in Si since T is a spanning
tree. Thus, there are at least i|Si| − (|Si| − 1) distinct edges of T incident on the nodes Si, and
this proves the claim.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

52 Greedy algorithms and local search

Figure 2.6: Illustration of lower bound on OPT. The vertices in S have white centers.
If the bold edges are deleted, every potential edge for joining the resulting connected
components has an endpoint in S.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.6 Finding minimum-degree spanning trees 53

Theorem 2.20: The algorithm finds a locally optimal tree in polynomial time.

Proof. To prove that the algorithm runs in polynomial time, we will use a potential function
argument. The idea of such an argument is that the function captures the current state of the
algorithm, and that we can determine upper and lower bounds on this function for any feasible
solution, as well as a lower bound on the amount that the function must decrease after each
move. In this way, we can bound the number of moves possible before the algorithm must
terminate, and of course, the resulting tree must therefore be locally optimal.

For a tree T , we let the potential of T , Φ(T), be Φ(T) =
∑

v∈V 3dT (v). Note that Φ(T) ≤
n3∆(T), and so the initial potential is at most n3n. On the other hand, the lowest possible
potential is for a Hamiltonian path, which has potential 2 · 3 + (n − 2)32 > n. We will show
that for each move, the potential function of the resulting tree is at most 1 − 2

27n3 times the
potential function previously.

After 27
2 n

4 ln 3 local moves, the conditions above imply that the potential of the resulting
tree is at most (

1− 2

27n3

) 27
2
n4 ln 3

· (n3n) ≤ e−n ln 3 · (n3n) = n,

using the fact that 1−x ≤ e−x. Since the potential of a tree is greater than n, after O(n4) local
moves there must be no further local moves possible, and the tree must be locally optimal.

We must still prove the claimed potential reduction in each iteration. Suppose the algorithm
reduces the degree of a vertex u from i to i− 1, where i ≥ ∆(T)− ℓ, and adds an edge (v, w).
Then the increase in the potential function due to increasing the degree of v and w is at most
2 · (3i−1 − 3i−2) = 4 · 3i−2, since the degree of v and w can be increased to at most i − 1.
The decrease in the potential function due to decreasing the degree of u is 3i − 3i−1 = 2 · 3i−1.
Observe that

3ℓ ≤ 3 · 3log2 n ≤ 3 · 22 log2 n = 3n2.

Therefore, the overall decrease in the potential function is at least

2 · 3i−1 − 4 · 3i−2 =
2

9
3i ≥ 2

9
3∆(T)−ℓ ≥ 2

27n2
3∆(T) ≥ 2

27n3
Φ(T).

Thus, for the resulting tree T ′ we have that Φ(T ′) ≤ (1 − 2
27n3)Φ(T). This completes the

proof.

By slightly adjusting the parameters within the same proof outline, we can actually prove
a stronger result. Given some constant b > 1, suppose we perform local changes on nodes of
degree at least ∆(T)− ⌈logb n⌉. Then it is possible to show the following.

Corollary 2.21: The local search algorithm runs in polynomial time and results in a spanning
tree T such that ∆(T) ≤ bOPT+⌈logb n⌉.

In Section 9.3, we will prove a still stronger result: we can give a polynomial-time algorithm
that finds a spanning tree T with ∆(T) ≤ OPT+1. Given that it is NP-hard to determine
whether a spanning tree has degree exactly OPT, this is clearly the best possible result that
can be obtained. In the next section, we give another result of this type for the edge coloring
problem. In Section 11.2, we will show that there are interesting extensions of these results to
the case of spanning trees with costs on the edges.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

54 Greedy algorithms and local search

Figure 2.7: A graph with a 3-edge-coloring.

Figure 2.8: The Petersen graph. This graph is not 3-edge-colorable.

2.7 Edge coloring

To conclude this chapter, we give an algorithm that has the elements of both a greedy algorithm
and a local search algorithm: it attempts to make progress in a greedy way, but when blocked
it makes local changes until progress can be made again.

The algorithm is for the problem of finding an edge coloring of a graph. An undirected
graph is k-edge-colorable if each edge can be assigned exactly one of k colors in such a way that
no two edges with the same color share an endpoint. We call the assignment of colors to edges
a k-edge-coloring. For example, Figure 2.7 shows a graph with a 3-edge-coloring. An analogous
notion of vertex coloring will be discussed in Sections 5.12, 6.5, and 13.2.

For a given graph, we would like to obtain a k-edge-coloring with k as small as possible.
Let ∆ be the maximum degree of a vertex in the given graph. Clearly, we cannot hope to find
a k-edge-coloring with k < ∆, since at least ∆ different colors must be incident to any vertex
of maximum degree. Note that this shows that the coloring given in Figure 2.7 is optimal. On
the other hand, consider the example in Figure 2.8, which is called the Petersen graph; it is not
too hard to show that this graph is not 3-edge-colorable, and yet it is easy to color it with four
colors. Furthermore, the following has been shown.

Theorem 2.22: For graphs with ∆ = 3, it is NP-complete to decide whether the graph is

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.7 Edge coloring 55

3-edge-colorable or not.

In this section, we give a polynomial-time algorithm that will find a (∆ + 1)-edge-coloring
for any graph. Given the NP-completeness result, it is clearly the best we can hope to do unless
P = NP.

We give the algorithm and its analysis in the proof of the theorem below. We repeatedly
find an uncolored edge (u, v) and attempt to color it with one of the ∆+1 colors. If no color is
available such that coloring (u, v) would result in a (∆+1)-edge-coloring, then we show that it
is possible to locally change some of the edge colors in such a way that we can correctly color
(u, v).

Theorem 2.23: There is a polynomial-time algorithm to find a (∆+1)-edge-coloring of a graph.

Proof. Our algorithm will start with a completely uncolored graph. In each iteration of the
algorithm we will take some uncolored edge and color it. This will be done in such a way that
the algorithm maintains a legal coloring of the graph at the beginning of each iteration of the
main loop; that is, for any vertex v in the graph, no two colored edges incident on v have the
same color, and at most ∆+1 distinct colors have been used. Clearly this is true initially, when
the entire graph is uncolored. We show that this invariant is maintained throughout the course
of each iteration. In the argument that follows, we say that a vertex v lacks color c if an edge
of color c is not incident on v.

We summarize the algorithm in Algorithm 2.3, and now explain it in detail. Let (u, v0)
be the selected uncolored edge. We then construct a sequence of edges (u, v0), (u, v1), . . . and
colors c0, c1, We will use this sequence to do some local recoloring of edges so that we can
correctly color the uncolored edge. Note that since we are maintaining a legal coloring of ∆+1
colors, and the maximum degree is ∆, each vertex must lack at least one of the ∆+1 colors. To
build this sequence of edges, consider the current vertex vi, starting initially with v0; if vi lacks
a color that u also lacks, then we let ci be this color, and the sequence is complete. If not, then
choose the color ci arbitrarily from among those that vi lacks; note that u will not lack this
color. If this color has not appeared in the sequence c0, c1, . . . to this point, then we let vi+1 be
the vertex such that (u, vi+1) is the edge incident to u of color ci, and this extends our sequence
(sometimes called a fan sequence) one edge further. If we have that ci = cj , where j < i, then
we also stop building our sequence. (See Figure 2.9 for an example of this construction.)

We need to argue that this process terminates either in the case that u and vi lack the same
color ci, or that we have ci = cj for some j < i. Let d be the number of edges incident to u that
are currently colored. Suppose the sequence reaches vertex vd without terminating. If there is
no color cd that both u and vd lack, then any color that vd lacks is one that u does not lack,
which must be one of the colors on the edges (u, v1), . . . , (u, vd−1). Hence, the color we choose
for cd must be the same as one of the previous colors c0, . . . , cd−1.

Suppose we complete the sequence because we find some ci that both u and vi lack. This
case is easy: we recolor edges (u, vj) with color cj for j = 0, . . . , i; call this shifting recoloring.
This situation and the resulting recoloring are depicted in Figure 2.10. In effect, we shift the
uncolored edge to (u, vi) and color it with ci since both u and vi lack ci. The recoloring is
correct since we know that each vj lacks cj and for j < i, cj was incident on u previously via
the edge (u, vj+1), which we now give another color.

Now consider the remaining case, where we complete the sequence because ci = cj for some
j < i. This situation and its recoloring are given in Figure 2.11. We shift the uncolored edge
to (u, vj) by recoloring edges (u, vk) with color ck for 0 ≤ k < j and uncoloring edge (u, vj);
this is correct by the same argument as above. Now vi and vj lack the same color c = ci = cj .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

56 Greedy algorithms and local search

u

v0 v1v2 v3

Figure 2.9: An example of building the fan sequence. Edge (u, v0) is uncolored. Vertex
v0 lacks gray, but u does not lack gray due to (u, v1), so c0 is gray. Vertex v1 lacks black,
but u does not lack black due to (u, v2), so c1 is black. Vertex v2 lacks the dashed color,
but u does not lack dashed due to (u, v3), so c2 is dashed. Vertex v3 lacks black, so c3
is black, and the sequence repeats a color.

u

v0 v1v2 v3

u

v0 v1v2 v3

Figure 2.10: A slightly different fan sequence and its recoloring. As before, edge (u, v0)
is uncolored. Vertex v0 lacks black, but u does not lack black due to (u, v1), so c0 is
black. Vertex v1 lacks gray, but u does not lack gray due to (u, v2), so c1 is gray. Vertex
v2 lacks dashed, but u does not lack dashed due to (u, v3), so c2 is dashed. Vertex v3
lacks dotted, and u also lacks dotted, and thus c3 is dotted. Therefore, we shift colors
as shown and color the edge (u, v3) with dotted.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.7 Edge coloring 57

u

v0 v1v2 v3

u

v0 v1v2 v3

Figure 2.11: The fan sequence from Figure 2.9. We start by shifting the uncolored
edge to (u, v1). Now both v1 and v3 lack black. The dotted color can be the color cu
that u lacks but that v1 and v3 do not lack.

We let cu be a color that u lacks; by our selection (and the fact that we did not fall in the first
case), we know that both vi and vj do not lack cu.

Consider the subgraph induced by taking all of the edges with colors c and cu; since we
have a legal coloring, this subgraph must be a collection of paths and simple cycles. Since each
of u, vi, and vj has exactly one of these two colors incident to it, each is an endpoint of one
of the path components, and since a path has only two endpoints, at least one of vi and vj
must be in a different component than u. Suppose that vj is in a different component than u.
Suppose we recolor every edge of color c with color cu and every edge of color cu with color c
in the component containing u; call this path recoloring. Afterward, u now lacks c (and this
does not affect the colors incident to vj at all), and so we may color the uncolored edge (u, vj)
with c. See Figure 2.12 for an example. Finally, suppose that u and vj are endpoints of the
same path, and so vi must be in a different component. In this case, we can apply the previous
shifting recoloring technique to first uncolor the edge (u, vi). We then apply the path recoloring
technique on the u-vj path to make u lack c; this does not affect any of the colors incident on
vi, and it allows us to color edge (u, vi) with c.

Clearly we color a previously uncolored edge in each iteration of the algorithm, and each
iteration can be implemented in polynomial time.

Exercises

2.1 The k-suppliers problem is similar to the k-center problem given in Section 2.2. The input
to the problem is a positive integer k, and a set of vertices V , along with distances dij
between any two vertices i, j that obey the same properties as in the k-center problem.
However, now the vertices are partitioned into suppliers F ⊆ V and customers D = V −F .
The goal is to find k suppliers such that the maximum distance from a supplier to a
customer is minimized. In other words, we wish to find S ⊆ F , |S| ≤ k, that minimizes
maxj∈D d(j, S).

(a) Give a 3-approximation algorithm for the k-suppliers problem.

(b) Prove that there is no α-approximation algorithm for α < 3 unless P = NP.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

58 Greedy algorithms and local search

u

v0 v1v2 v3

u

v0 v1v2 v3

Figure 2.12: The example of Figure 2.11 continued, now showing the components of
black and dotted edges containing u, v1, and v3. Since u and v3 are at endpoints of the
same black/dotted path, we switch the colors black and dotted on this path, then color
(u, v1) black.

while G is not completely colored do
Pick uncolored edge (u, v0)
i← −1
repeat // Build fan sequence

i← i+ 1
if there is a color vi lacks and u lacks then

Let ci be this color
else

Pick some color ci that vi lacks
Let vi+1 be the edge (u, vi+1) of color ci

until ci is a color u lacks or ci = cj for some j < i
if u and vi lack color ci then

Shift uncolored edge to (u, vi) and color (u, vi) with ci
else

Let j < i be such that ci = cj
Shift uncolored edge to (u, vj)
Pick color cu that u lacks
Let c = ci
Let E′ be edges colored c or cu
if u and vj in different connected components of (V,E′) then

Switch colors cu and c in component containing u of (V,E′)
Color (u, vj) with color c

else // u and vi in different components of (V,E′)
Shift uncolored edge to (u, vi)
Switch colors cu and c in component containing u of (V,E′)
Color (u, vi) with color c

Algorithm 2.3: A greedy algorithm to compute a (∆ + 1)-edge-coloring of a graph.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.7 Edge coloring 59

2.2 Prove Lemma 2.8: show that for any input to the problem of minimizing the makespan on
identical parallel machines for which the processing requirement of each job is more than
one-third the optimal makespan, the longest processing time rule computes an optimal
schedule.

2.3 We consider scheduling jobs on identical machines as in Section 2.3, but jobs are now
subject to precedence constraints. We say i ≺ j if in any feasible schedule, job i
must be completely processed before job j begins processing. A natural variant on the
list scheduling algorithm is one in which whenever a machine becomes idle, then any
remaining job that is available is assigned to start processing on that machine. A job j
is available if all jobs i such that i ≺ j have already been completely processed. Show
that this list scheduling algorithm is a 2-approximation algorithm for the problem with
precedence constraints.

2.4 In this problem, we consider a variant of the problem of scheduling on parallel machines
so as to minimize the length of the schedule. Now each machine i has an associated speed
si, and it takes pj/si units of time to process job j on machine i. Assume that machines
are numbered from 1 to m and ordered such that s1 ≥ s2 ≥ · · · ≥ sm. We call these
related machines.

(a) A ρ-relaxed decision procedure for a scheduling problem is an algorithm such that
given an instance of the scheduling problem and a deadline D either produces a
schedule of length at most ρ · D or correctly states that no schedule of length D
is possible for the instance. Show that given a polynomial-time ρ-relaxed decision
procedure for the problem of scheduling related machines, one can produce a ρ-
approximation algorithm for the problem.

(b) Consider the following variant of the list scheduling algorithm, now for related ma-
chines. Given a deadline D, we label every job j with the slowest machine i such
that the job could complete on that machine in time D; that is, pj/si ≤ D. If there
is no such machine for a job j, it is clear that no schedule of length D is possible.
If machine i becomes idle at a time D or later, it stops processing. If machine i
becomes idle at a time before D, it takes the next job of label i that has not been
processed, and starts processing it. If no job of label i is available, it looks for jobs
of label i+1; if no jobs of label i+1 are available, it looks for jobs of label i+2, and
so on. If no such jobs are available, it stops processing. If not all jobs are processed
by this procedure, then the algorithm states that no schedule of length D is possible.

Prove that this algorithm is a polynomial-time 2-relaxed decision procedure.

2.5 In the minimum-cost Steiner tree problem, we are given as input a complete, undirected
graph G = (V,E) with nonnegative costs cij ≥ 0 for all edges (i, j) ∈ E. The set of
vertices is partitioned into terminals R and nonterminals (or Steiner vertices) V − R.
The goal is to find a minimum-cost tree containing all terminals.

(a) Suppose initially that the edge costs obey the triangle inequality; that is, cij ≤
cik + ckj for all i, j, k ∈ V . Let G[R] be the graph induced on the set of terminals;
that is, G[R] contains the vertices in R and all edges from G that have both endpoints
in R. Consider computing a minimum spanning tree in G[R]. Show that this gives
a 2-approximation algorithm for the minimum-cost Steiner tree problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

60 Greedy algorithms and local search

(b) Now we suppose that edge costs do not obey the triangle inequality, and that the
input graph G is connected but not necessarily complete. Let c′ij be the cost of
the shortest path from i to j in G using input edge costs c. Consider running the
algorithm above in the complete graph G′ on V with edge costs c′ to obtain a tree T ′.
To compute a tree T in the original graph G, for each edge (i, j) ∈ T ′, we add to T all
edges in a shortest path from i to j in G using input edge costs c. Show that this is
still a 2-approximation algorithm for the minimum-cost Steiner tree problem on the
original (incomplete) input graph G. G′ is sometimes called the metric completion
of G.

2.6 Prove that there can be no α-approximation algorithm for the minimum-degree spanning
tree problem for α < 3/2 unless P = NP.

2.7 Suppose that an undirected graph G has a Hamiltonian path. Give a polynomial-time
algorithm to find a path of length at least Ω(logn/(log log n)).

2.8 Consider the local search algorithm of Section 2.6 for finding a minimum-degree spanning
tree, and suppose we apply a local move to a node whenever it is possible to do so; that
is, we don’t restrict local moves to nodes with degrees between ∆(T)−ℓ and ∆(T). What
kind of performance guarantee can you obtain for a locally optimal tree in this case?

2.9 As given in Exercise 2.5, in the Steiner tree problem we are given an undirected graph
G = (V,E) and a set of terminals R ⊆ V . A Steiner tree is a tree in G in which all the
terminals are connected; a nonterminal need not be spanned. Show that the local search
algorithm of Section 2.6 can be adapted to find a Steiner tree whose maximum degree
is at most 2OPT+⌈log2 n⌉, where OPT is the maximum degree of a minimum-degree
Steiner tree.

2.10 Let E be a set of items, and for S ⊆ E, let f(S) give the value of the subset S. Suppose
we wish to find a maximum value subset of E of at most k items. Furthermore, suppose
that f(∅) = 0, and that f is monotone and submodular. We say that f is monotone if for
any S and T with S ⊆ T ⊆ E, then f(S) ≤ f(T). We say that f is submodular if for any
S, T ⊆ E, then

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T).

Show that the greedy (1 − 1
e)-approximation algorithm of Section 2.5 extends to this

problem.

2.11 In the maximum coverage problem, we have a set of elements E, and m subsets of elements
S1, . . . , Sm ⊆ E, each with a nonnegative weight wj ≥ 0. The goal is to choose k elements
such that we maximize the weight of the subsets that are covered. We say that a subset
is covered if we have chosen some element from it. Thus we want to find S ⊆ E such that
|S| = k and that we maximize the total weight of the subsets j such that S ∩ Sj ̸= ∅.

(a) Give a (1− 1
e)-approximation algorithm for this problem.

(b) Show that if an approximation algorithm with performance guarantee better than
1 − 1

e + ϵ exists for the maximum coverage problem for some constant ϵ > 0, then

every NP-complete problem has an O(nO(log log n)) time algorithm. (Hint: Recall
Theorem 1.13.)

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.7 Edge coloring 61

2.12 A matroid (E, I) is a set E of ground elements together with a collection I of subsets of
E; that is, if S ∈ I, then S ⊆ E. A set S ∈ I is said to be independent. The independent
sets of a matroid obey the following two axioms:

• If S is independent, then any S′ ⊆ S is also independent.

• If S and T are independent, and |S| < |T |, then there is some e ∈ T − S such that
S ∪ {e} is also independent.

An independent set S is a base of the matroid if no set strictly containing it is also
independent.

(a) Given an undirected graph G = (V,E), show that the forests of G form a matroid;
that is, show that if E is the ground set, and I the set of forests of G, then the
matroid axioms are obeyed.

(b) Show that for any matroid, every base of the matroid has the same number of ground
elements.

(c) For any given matroid, suppose that for each e ∈ E, we have a nonnegative weight
we ≥ 0. Give a greedy algorithm for the problem of finding a maximum-weight base
of a matroid.

2.13 Let (E, I) be a matroid as defined in Exercise 2.12, and let f be a monotone, submodular
function as defined in Exercise 2.10 such that f(∅) = 0. Consider the following local
search algorithm for finding a maximum-value base of the matroid: First, start with an
arbitrary base S. Then consider all pairs e ∈ S and e′ /∈ S. If S ∪ {e} − {e′} is a base,
and f(S ∪{e′}−{e}) > f(S), then set S ← S ∪{e′}−{e}. Repeat until a locally optimal
solution is reached. The goal of this problem is to show that a locally optimal solution
has value at least half the optimal value.

(a) We begin with a simple case: suppose that the matroid is a uniform matroid; that
is, S ⊆ E is independent if |S| ≤ k for some fixed k. Prove that for a locally optimal
solution S, f(S) ≥ 1

2 OPT.

(b) To prove the general case, it is useful to know that for any two bases of a matroid, X
and Y , there exists a bijection g : X → Y such that for any e ∈ X, S − {e} ∪ {g(e)}
is independent. Use this to prove that for any locally optimal solution S, f(S) ≥
1
2 OPT.

(c) For any ϵ > 0, give a variant of this algorithm that is a (12 − ϵ)-approximation
algorithm.

2.14 In the edge-disjoint paths problem in directed graphs, we are given as input a directed
graph G = (V,A) and k source-sink pairs si, ti ∈ V . The goal of the problem is to find
edge-disjoint paths so that as many source-sink pairs as possible have a path from si to
ti. More formally, let S ⊆ {1, . . . , k}. We want to find S and paths Pi for all i ∈ S such
that |S| is as large as possible and for any i, j ∈ S, i ̸= j, Pi and Pj are edge-disjoint
(Pi ∩ Pj = ∅).
Consider the following greedy algorithm for the problem. Let ℓ be the maximum of

√
m

and the diameter of the graph (where m = |A| is the number of input arcs). For each i
from 1 to k, we check to see if there exists an si-ti path of length at most ℓ in the graph.
If there is such a path Pi, we add i to S and remove the arcs of Pi from the graph.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

62 Greedy algorithms and local search

Show that this greedy algorithm is an Ω(1/ℓ)-approximation algorithm for the edge-
disjoint paths problem in directed graphs.

2.15 Prove that there is no α-approximation algorithm for the edge coloring problem for α <
4/3 unless P = NP.

2.16 Let G = (V,E) be a bipartite graph; that is, V can be partitioned into two sets A and B,
such that each edge in E has one endpoint in A and the other in B. Let ∆ be the maximum
degree of a node in G. Give a polynomial-time algorithm for finding a ∆-edge-coloring of
G.

Chapter Notes

As discussed in the introduction to this chapter, greedy algorithms and local search algorithms
are very popular choices for heuristics for discrete optimization problems. Thus it is not sur-
prising that they are among the earliest algorithms analyzed for a performance guarantee. The
greedy edge coloring algorithm in Section 2.7 is from a 1964 paper due to Vizing [284]. To the
best of our knowledge, this is the earliest polynomial-time algorithm known for a combinatorial
optimization problem that proves that its performance is close to optimal, with an additive per-
formance guarantee. In 1966, Graham [142] gave the list scheduling algorithm for scheduling
identical parallel machines found in Section 2.3. To our knowledge, this is the first appearance
of a polynomial-time algorithm with a relative performance guarantee. The longest processing
time algorithm and its analysis is from a 1969 paper of Graham [143].

Other early examples of the analysis of greedy approximation algorithms include a 1977
paper of Cornuejols, Fisher, and Nemhauser [83], who introduce the float maximization problem
of Section 2.5, as well as the algorithm presented there. The analysis of the algorithm presented
follows that given in Nemhauser and Wolsey [232]. The earliest due date rule given in Section
2.1 is from a 1955 paper of Jackson [174], and is sometimes called Jackson’s rule. The analysis
of the algorithm in the case of negative due dates was given by Kise, Ibaraki, and Mine [195]
in 1979. The nearest addition algorithm for the metric traveling salesman problem given in
Section 2.4 and the analysis of the algorithm are from a 1977 paper of Rosenkrantz, Stearns,
and Lewis [255]. The double-tree algorithm from that section is folklore, while Christofides’
algorithm is due, naturally enough, to Christofides [73]. The hardness result of Theorem 2.9 is
due to Sahni and Gonzalez [257] while the result of Theorem 2.14 is due to Papadimitriou and
Vempala [239].

There is an enormous literature on the traveling salesman problem. For book-length treat-
ments of the problem, see the book edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys [211]
and the book of Applegate, Bixby, Chvátal, and Cook [9].

Of course, greedy algorithms for polynomial-time solvable discrete optimization problems
have also been studied for many years. The greedy algorithm for finding a maximum-weight
base of a matroid in Exercise 2.12 was given by Rado [246] in 1957, Gale [121] in 1968, and
Edmonds [96] in 1971; matroids were first defined by Whitney [285].

Analysis of the performance guarantees of local search algorithms has been relatively rare,
at least until some work on facility location problems from the late 1990s and early 2000s that
will be discussed in Chapter 9. The local search algorithm for scheduling parallel machines
given in Section 2.3 is a simplification of a local search algorithm given in a 1979 paper of Finn
and Horowitz [113]; Finn and Horowitz show that their algorithm has performance guarantee
of at most 2. The local search algorithm for finding a maximum-value base of Exercise 2.13 was
given by Fisher, Nemhauser, and Wolsey [114] in 1978. The local search algorithm for finding

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.7 Edge coloring 63

a minimum-degree spanning tree in Section 2.6 is from 1992 and can be found in Fürer and
Raghavachari [118].

Now to discuss the other results presented in the chapter: The algorithm and analysis of
the k-center problem in Section 2.2 is due to Gonzalez [141]. An alternative 2-approximation
algorithm for the problem is due to Hochbaum and Shmoys [163]. Theorem 2.4, which states
that getting a performance guarantee better than 2 is NP-hard, is due to Hsu and Nemhauser
[172]. Theorem 2.22, which states that deciding if a graph is 3-edge-colorable or not is NP-
complete, is due to Holyer [170].

The k-supplier problem of Exercise 2.1, as well as a 3-approximation algorithm for it, were
introduced in Hochbaum and Shmoys [164]. The list scheduling variant for problems with
precedence constraints in Exercise 2.3 is due to Graham [142]. The idea of a ρ-relaxed deci-
sion procedure in Exercise 2.4 is due to Hochbaum and Shmoys [165]; the 2-relaxed decision
procedure for related machines in that exercise is due to Shmoys, Wein, and Williamson [265].
Exercise 2.7 was suggested to us by Nick Harvey. Exercise 2.9 is due to Fürer and Raghavachari
[118]. Exercises 2.10 and 2.11 are due to Nemhauser, Wolsey, and Fisher [233]. The hardness
result of Exercise 2.11 is due to Feige [107]; Feige also shows that the same result can be ob-
tained under the assumption that P ̸= NP. Kleinberg [199] gives the greedy algorithm for the
edge-disjoint paths problem in directed graphs given in Exercise 2.14. Kőnig [201] shows that
it is possible to ∆-edge-color a bipartite graph as in Exercise 2.16.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

64 Greedy algorithms and local search

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 3

Rounding data and dynamic

programming

Dynamic programming is a standard technique in algorithm design in which an optimal solution
for a problem is built up from optimal solutions for a number of subproblems, normally stored
in a table or multidimensional array. Approximation algorithms can be designed using dynamic
programming in a variety of ways, many of which involve rounding the input data in some way.

For instance, sometimes weakly NP-hard problems have dynamic programming algorithms
that run in time polynomial in the input size if the input is represented in unary rather than
in binary (so, for example, the number 7 would be encoded as 1111111). If so, we say that the
algorithm is pseudopolynomial. Then by rounding the input values so that the number of distinct
values is polynomial in the input size and an error parameter ϵ > 0, this pseudopolynomial
algorithm can be made to run in time polynomial in the size of the original instance. We can
often show that the rounding does not sacrifice too much in the quality of the solution produced.
We will use this technique in discussing the knapsack problem in Section 3.1.

For other problems, such as scheduling problems, we can often make distinctions between
“large” and “small” parts of the input instance; for instance, in scheduling problems, we dis-
tinguish between jobs that have large and small processing times. We can then show that by
rounding the sizes of the large inputs so that, again, the number of distinct, large input values
is polynomial in the input size and an error parameter, we can use dynamic programming to
find an optimal solution on just the large inputs. Then this solution must be augmented to a
solution for the whole input by dealing with the small inputs in some way. Using these ideas,
we will devise polynomial-time approximation schemes for the problem of scheduling parallel
machines introduced in the last chapter, and for a new problem of packing bins.

3.1 The knapsack problem

A traveler with a knapsack comes across a treasure hoard. Unfortunately, his knapsack can hold
only so much. What items should he place in his knapsack in order to maximize the value of the
items he takes away? This unrealistic scenario gives the name to the knapsack problem. In the
knapsack problem, we are given a set of n items I = {1, . . . , n}, where each item i has a value vi
and a size si. All sizes and values are positive integers. The knapsack has capacity B, where B

65

66 Rounding data and dynamic programming

A(1)← {(0, 0), (s1, w1)}
for j ← 2 to n do

A(j)← A(j − 1)
for each (t, w) ∈ A(j − 1) do

if t+ sj ≤ B then
Add (t+ sj , w + vj) to A(j)

Remove dominated pairs from A(j)

return max(t,w)∈A(n)w

Algorithm 3.1: A dynamic programming algorithm for the knapsack problem.

is also a positive integer. The goal is to find a subset of items S ⊆ I that maximizes the value∑
i∈S vi of items in the knapsack subject to the constraint that the total size of these items is

no more than the capacity; that is,
∑

i∈S si ≤ B. We assume that we consider only items that
could actually fit in the knapsack (by themselves), so that si ≤ B for each i ∈ I. Although
the application stated above is unlikely to be useful in real life, the knapsack problem is well
studied because it is a simplified model of a problem that arises in many realistic scenarios.

We now argue that we can use dynamic programming to find the optimal solution to the
knapsack problem. We maintain an array entry A(j) for j = 1, . . . , n. Each entry A(j) is a
list of pairs (t, w). A pair (t, w) in the list of entry A(j) indicates that there is a set S from
the first j items that uses space exactly t ≤ B and has value exactly w; that is, there exists a
set S ⊆ {1, . . . , j}, such that

∑
i∈S si = t ≤ B and

∑
i∈S vi = w. Each list does not contain

all possible such pairs, but instead keeps track of only the most efficient ones. To do this, we
introduce the notion of one pair dominating another one; a pair (t, w) dominates another pair
(t′, w′) if t ≤ t′ and w ≥ w′; that is, the solution indicated by the pair (t, w) uses no more space
than (t′, w′), but has at least as much value. Note that domination is a transitive property;
that is, if (t, w) dominates (t′, w′) and (t′, w′) dominates (t′′, w′′), then (t, w) also dominates
(t′′, w′′). We will ensure that in any list, no pair dominates another one; this means that we
can assume each list A(j) is of the form (t1, w1), . . . , (tk, wk) with t1 < t2 < · · · < tk and
w1 < w2 < · · · < wk. Since the sizes of the items are integers, this implies that there are at
most B + 1 pairs in each list. Furthermore, if we let V =

∑n
i=1 vi be the maximum possible

value for the knapsack, then there can be at most V + 1 pairs in the list. Finally, we ensure
that for each feasible set S ⊆ {1, . . . , j} (with

∑
i∈S si ≤ B), the list A(j) contains some pair

(t, w) that dominates (
∑

i∈S si,
∑

i∈S vi).

In Algorithm 3.1, we give the dynamic program that constructs the lists A(j) and solves the
knapsack problem. We start out with A(1) = {(0, 0), (s1, w1)}. For each j = 2, . . . , n, we do
the following. We first set A(j)← A(j−1), and for each (t, w) ∈ A(j−1), we also add the pair
(t+sj , w+vj) to the list A(j) if t+sj ≤ B. We finally remove from A(j) all dominated pairs by
sorting the list with respect to their space component, retaining the best value for each space
total possible, and removing any larger space total that does not have a corresponding larger
value. One way to view this process is to generate two lists, A(j − 1) and the one augmented
by (sj , wj), and then perform a type of merging of these two lists. We return the pair (t, w)
from A(n) of maximum value as our solution. Next we argue that this algorithm is correct.

Theorem 3.1: Algorithm 3.1 correctly computes the optimal value of the knapsack problem.

Proof. By induction on j we prove that A(j) contains all non-dominated pairs corresponding
to feasible sets S ⊆ {1, . . . , j}. Certainly this is true in the base case by setting A(1) to

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

3.1 The knapsack problem 67

{(0, 0), (s1, w1)}. Now suppose it is true for A(j−1). Let S ⊆ {1, . . . , j}, and let t =
∑

i∈S si ≤
B and w =

∑
i∈S vi. We claim that there is some pair (t′, w′) ∈ A(j) such that t′ ≤ t and

w′ ≥ w. First, suppose that j /∈ S. Then the claim follows by the induction hypothesis and
by the fact that we initially set A(j) to A(j − 1) and removed dominated pairs. Now suppose
j ∈ S. Then for S′ = S−{j}, by the induction hypothesis, there is some (t̂, ŵ) ∈ A(j− 1) that
dominates (

∑
i∈S′ si,

∑
i∈S′ vi), so that t̂ ≤

∑
i∈S′ si and ŵ ≥

∑
i∈S′ vi. Then the algorithm will

add the pair (t̂ + sj , ŵ + vj) to A(j), where t̂ + sj ≤ t ≤ B and ŵ + vj ≥ w. Thus, there will
be some pair (t′, w′) ∈ A(j) that dominates (t, w).

Algorithm 3.1 takes O(nmin(B, V)) time. This is not a polynomial-time algorithm, since
we assume that all input numbers are encoded in binary; thus, the size of the input number
B is essentially log2B, and so the running time O(nB) is exponential in the size of the input
number B, not polynomial. If we were to assume that the input is given in unary, then O(nB)
would be a polynomial in the size of the input. It is sometimes useful to make this distinction
between problems.

Definition 3.2: An algorithm for a problem Π is said to be pseudopolynomial if its running
time is polynomial in the size of the input when the numeric part of the input is encoded in
unary.

If the maximum possible value V were some polynomial in n, then the running time would
indeed be a polynomial in the input size. We now show how to get a polynomial-time approxi-
mation scheme for the knapsack problem by rounding the values of the items so that V is indeed
a polynomial in n. The rounding induces some loss of precision in the value of a solution, but
we will show that this does not affect the final value by too much. Recall the definition of an
approximation scheme from Chapter 1.

Definition 3.3: A polynomial-time approximation scheme (PTAS) is a family of algorithms
{Aϵ}, where there is an algorithm for each ϵ > 0, such that Aϵ is a (1 + ϵ)-approximation
algorithm (for minimization problems) or a (1− ϵ)-approximation algorithm (for maximization
problems).

Note that the running time of the algorithm Aϵ is allowed to depend arbitrarily on 1/ϵ: this
dependence could be exponential in 1/ϵ, or worse. We often focus attention on algorithms for
which we can give a good bound of the dependence of the running time of Aϵ on 1/ϵ. This
motivates the following definition.

Definition 3.4: A fully polynomial-time approximation scheme (FPAS, FPTAS) is an approx-
imation scheme such that the running time of Aϵ is bounded by a polynomial in 1/ϵ.

We can now give a fully polynomial-time approximation scheme for the knapsack problem.
Suppose that we measure value in (integer) multiples of µ (where we shall set µ below), and
convert each value vi by rounding down to the nearest integer multiple of µ; more precisely,
we set v′i to be ⌊vi/µ⌋ for each item i. We can then run the dynamic programming algorithm
of Figure 3.1 on the items with sizes si and values v′i, and output the optimal solution for the
rounded data as a near-optimal solution for the true data. The main idea here is that we wish
to show that the accuracy we lose in rounding is not so great, and yet the rounding enables
us to have the algorithm run in polynomial time. Let us first do a rough estimate; if we used
values ṽi = v′iµ instead of vi, then each value is inaccurate by at most µ, and so each feasible
solution has its value changed by at most nµ. We want the error introduced to be at most ϵ
times a lower bound on the optimal value (and so be sure that the true relative error is at most
ϵ). Let M be the maximum value of an item; that is, M = maxi∈I vi. Then M is a lower bound

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

68 Rounding data and dynamic programming

M ← maxi∈I vi
µ← ϵM/n
v′i ← ⌊vi/µ⌋ for all i ∈ I
Run Algorithm 3.1 for knapsack instance with values v′i

Algorithm 3.2: An approximation scheme for the knapsack problem.

on OPT, since one possible solution is to pack the most valuable item in the knapsack by itself.
Thus, it makes sense to set µ so that nµ = ϵM or, in other words, to set µ = ϵM/n.

Note that with the modified values, V ′ =
∑n

i=1 v
′
i =

∑n
i=1⌊

vi
ϵM/n⌋ = O(n2/ϵ). Thus, the

running time of the algorithm is O(nmin(B, V ′)) = O(n3/ϵ) and is bounded by a polynomial
in 1/ϵ. We can now prove that the algorithm returns a solution whose value is at least (1− ϵ)
times the value of an optimal solution.

Theorem 3.5: Algorithm 3.2 is a fully polynomial-time approximation scheme for the knapsack
problem.

Proof. We need to show that the algorithm returns a solution whose value is at least (1 − ϵ)
times the value of an optimal solution. Let S be the set of items returned by the algorithm. Let
O be an optimal set of items. CertainlyM ≤ OPT, since one possible solution is to put the most
valuable item in a knapsack by itself. Furthermore, by the definition of v′i, µv

′
i ≤ vi ≤ µ(v′i+1),

so that µv′i ≥ vi − µ. Applying the definitions of the rounded data, along with the fact that S
is an optimal solution for the values v′i, we can derive the following chain of inequalities:∑

i∈S
vi ≥ µ

∑
i∈S

v′i

≥ µ
∑
i∈O

v′i

≥
∑
i∈O

vi − |O|µ

≥
∑
i∈O

vi − nµ

=
∑
i∈O

vi − ϵM

≥ OPT−ϵOPT = (1− ϵ)OPT .

3.2 Scheduling jobs on identical parallel machines

We return to the problem of scheduling a collection of n jobs on m identical parallel machines;
in Section 2.3 we presented a result that by first sorting the jobs in order of non-increasing
processing requirement, and then using a list scheduling rule, we find a schedule of length
guaranteed to be at most 4/3 times the optimum. In this section, we will show that this result
contains the seeds of a polynomial-time approximation scheme: for any given value of ρ > 1,
we give an algorithm that runs in polynomial time and finds a solution of objective function
value at most ρ times the optimal value.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

3.2 Scheduling jobs on identical parallel machines 69

As in Section 2.3, we let the processing requirement of job j be pj , j = 1, . . . , n, and let Cmax

denote the length (or makespan) of a given schedule with job completion times Cj , j = 1, . . . , n;
the optimal value is denoted C∗

max. We shall assume that each processing requirement is a
positive integer. The key idea of the analysis of the list scheduling rule was that its error
can be upper bounded by the processing requirement of the last job to complete. The 4/3-
approximation algorithm was based on this fact, combined with the observation that when
each job’s processing requirement is more than C∗

max/3, this natural greedy-type algorithm
actually finds the optimal solution. We present an approximation scheme for this problem
based on a similar principle: we focus on a specified subset of the longest jobs, and compute the
optimal schedule for that subset; then we extend that partial schedule by using list scheduling
on the remaining jobs. We will show that there is a trade-off between the number of long jobs
and the quality of the solution found.

More precisely, let k be a fixed positive integer; we will derive a family of algorithms, and
focus on the algorithm Ak among them. Suppose that we partition the job set into two parts:
the long jobs and the short jobs, where a job ℓ is considered short if pℓ ≤ 1

km

∑n
j=1 pj . Note

that this implies that there are at most km long jobs. Enumerate all possible schedules for
the long jobs, and choose one with the minimum makespan. Extend this schedule by using list
scheduling for the short jobs; that is, given an arbitrary order of the short jobs, schedule these
jobs in order, always assigning the next job to the machine currently least loaded.

Consider the running time of algorithm Ak. To specify a schedule for the long jobs, we
simply indicate to which of the m machines each long job is assigned; thus, there are at most
mkm distinct assignments (since the order of processing on each machine is unimportant). If we
focus on the special case of this problem in which the number of machines is a constant (say,
100, 1,000, or even 1,000,000), then this number is also a constant, not depending on the size
of the input. Thus, we can check each schedule, and determine the optimal length schedule in
polynomial time in this special case.

As in the analysis of the local search algorithm in Section 2.3, we focus on the last job ℓ to
finish. Recall that we derived the equality that

Cmax ≤ pℓ +
∑
j ̸=ℓ

pj/m; (3.1)

the validity of this inequality relied only on the fact that each machine is busy up until the
time that job ℓ starts. To analyze the algorithm that starts by finding the optimal schedule
for the long jobs, we distinguish now between two cases. If the last job to finish (in the entire
schedule), job ℓ, is a short job, then this job was scheduled by the list scheduling rule, and it
follows that inequality (3.1) holds. Since job ℓ is short, and hence pℓ ≤

∑n
j=1 pj/(mk), it also

follows that

Cmax ≤
n∑

j=1

pj/(mk) +
∑
j ̸=ℓ

pj/m ≤
(
1 +

1

k

) n∑
j=1

pj/m ≤
(
1 +

1

k

)
C∗
max.

If job ℓ is a long job, then the schedule delivered by the algorithm is optimal, since its
makespan is equal to the length of the optimal schedule for just the long jobs, which is clearly
no more than C∗

max for the entire input. The algorithm Ak can easily be implemented to run in
polynomial time (treating m as a constant), and hence we have obtained the following theorem.

Theorem 3.6: The family of algorithms {Ak} is a polynomial-time approximation scheme for
the problem of minimizing the makespan on any constant number of identical parallel machines.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

70 Rounding data and dynamic programming

Of course, it is a significant limitation of this theorem that the number of machines is
restricted to be a constant. In fact, it is not too hard to extend these techniques to obtain
a polynomial-time approximation scheme even if the number of machines is allowed to be an
input parameter (and hence the algorithm must also have running time polynomially bounded
in the number of machines m). The key idea is that we didn’t really need the schedule for the
long jobs to be optimal. We used the optimality of the schedule for the long jobs only when
the last job to finish was a long job. If we had found a schedule for the long jobs that had
makespan at most 1 + 1

k times the optimal value, then that clearly would have been sufficient.
We will show how to obtain this near-optimal schedule for long jobs by rounding input sizes
and dynamic programming, as we saw in the previous section on the knapsack problem.

It will be convenient to first set a target length T for the schedule. As before, we also fix
a positive integer k; we will design a family of algorithms {Bk} where Bk either proves that
no schedule of length T exists, or else finds a schedule of length (1 + 1

k)T . Later we will show
how such a family of algorithms also implies the existence of a polynomial-time approximation
scheme. We can assume that T ≥ 1

m

∑n
j=1 pj , since otherwise no feasible schedule exists.

The algorithm Bk is quite simple. We again partition the jobs into long and short jobs, but
in this case, we require that pj > T/k for job j to be considered long. We round down the
processing requirement of each long job to its nearest multiple of T/k2. We will determine in
polynomial time whether or not there is a feasible schedule for these rounded long jobs that
completes within time T . If there is such a schedule, we then interpret it as a schedule for
the long jobs with their original processing requirements. If not, we conclude that no feasible
schedule of length T exists for the original input. Finally, we extend this schedule to include
the short jobs by using the list scheduling algorithm for the short jobs.

We need to prove that the algorithm Bk always produces a schedule of length at most
(1 + 1

k)T whenever there exists a schedule of length at most T . When the original input has a
schedule of length T , then so does the reduced input consisting only of the rounded long jobs
(which is why we rounded down the processing requirements); in this case, the algorithm does
compute a schedule for the original input. Suppose that a schedule is found. It starts with a
schedule of length at most T for the rounded long jobs. Let S be the set of jobs assigned by
this schedule to one machine. Since each job in S is long, and hence has rounded size at least
T/k, it follows that |S| ≤ k. Furthermore, for each job j ∈ S, the difference between its true
processing requirement and its rounded one is at most T/k2. Hence,

∑
j∈S

pj ≤ T + k(T/k2) =

(
1 +

1

k

)
T.

Now consider the effect of assigning the short jobs: each job ℓ, in turn, is assigned to a machine
for which the current load is smallest. Since

∑n
j=1 pj/m ≤ T , we also know that

∑
j ̸=ℓ pj/m < T .

Since the average load assigned to a machine is less than T , there must exist a machine that
is currently assigned jobs of total processing requirement less than T . So, when we choose the
machine that currently has the lightest load, and then add job ℓ, this machine’s new load is at
most

pℓ +
∑
j ̸=ℓ

pj/m < T/k + T =

(
1 +

1

k

)
T.

Hence, the schedule produced by list scheduling will also be of length at most (1 + 1
k)T .

To complete the description of the algorithm Bk, we must still show that we can use dynamic
programming to decide if there is a schedule of length T for the rounded long jobs. Clearly if

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

3.2 Scheduling jobs on identical parallel machines 71

there is a rounded long job of size greater than T , then there is no such schedule. Otherwise,
we can describe an input by a k2-dimensional vector, where the ith component specifies the
number of long jobs of rounded size equal to iT/k2, for each i = 1, . . . , k2. (In fact, we know
that for i < k, there are no such jobs, since that would imply that their original processing
requirement was less than T/k, and hence not long.) So there are at most nk2 distinct inputs
— a polynomial number!

How many distinct ways are there to feasibly assign long jobs to one machine? Each rounded
long job still has processing time at least T/k. Hence, at most k jobs are assigned to one machine.
Again, an assignment to one machine can be described by a k2-dimensional vector, where again
the ith component specifies the number of long jobs of rounded size equal to iT/k2 that are
assigned to that machine. Consider the vector (s1, s2, . . . , sk2); we shall call it a machine
configuration if

k2∑
i=1

si · iT/k2 ≤ T.

Let C denote the set of all machine configurations. Note that there are at most (k+1)k
2
distinct

configurations, since each machine must process a number of rounded long jobs that is in the
set {0, 1, . . . , k}. Since k is fixed, this means that there are a constant number of configurations.

Let OPT(n1, . . . , nk2) denote the minimum number of (identical) machines sufficient to
schedule this arbitrary input. This value is governed by the following recurrence relation, based
on the idea that a schedule consists of assigning some jobs to one machine, and then using as
few machines as possible for the rest:

OPT(n1, . . . , nk2) = 1 + min
(s1,...,sk2)∈C

OPT(n1 − s1, . . . , nk2 − sk2).

This can be viewed as a table with a polynomial number of entries (one for each possible
input type), and to compute each entry, we need to find the minimum over a constant number
of previously computed values. The desired schedule exists exactly when the corresponding
optimal value is at most m.

Finally, we need to show that we can convert the family of algorithms {Bk} into a polynomial-
time approximation scheme. Fix the relative error ϵ > 0. We use a bisection search procedure
to determine a suitable choice of the target value T (which is required as part of the input for
each algorithm Bk). We know that the optimal makespan for our scheduling input is within
the interval [L0, U0], where

L0 = max




n∑
j=1

pj/m

 , max
j=1,...,n

pj


and

U0 =


n∑

j=1

pj/m

+ max
j=1,...,n

pj .

(We strengthen the lower bound with the ⌈·⌉ by relying on the fact that the processing require-
ments are integral.) Throughout the bisection search, we maintain such an interval [L,U], with
the algorithmic invariants (1) that L ≤ C∗

max, and (2) that we can compute a schedule with
makespan at most (1 + ϵ)U . This is clearly true initially: by the arguments of Section 2.3, L0

is a lower bound on the length of an optimal schedule, and using a list scheduling algorithm we
can compute a schedule of length at most U0.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

72 Rounding data and dynamic programming

In each iteration where the current interval is [L,U], we set T = ⌊(L+ U)/2⌋, and run the
algorithm Bk, where k = ⌈1/ϵ⌉. If the algorithm Bk produces a schedule, then update U ← T ;
otherwise, update L← T+1. The bisection continues until L = U , at which point the algorithm
outputs the schedule associated with U (of length at most (1 + ϵ)U).

It is easy to see that the claimed invariant is maintained: (1) when we update the lower
limit L, the algorithm Bk has just shown that no feasible schedule of length T exists, and by
the integrality of the processing times, we know then that T + 1 is a valid lower bound; (2)
when we update the upper limit U , the algorithm Bk has just produced the schedule of length
at most (1 + ϵ)T , which is exactly what is required to justify this update.

The difference between the upper and lower limits is initially at most maxj=1,...,n pj , and is
halved in each iteration. Hence, after a polynomial number of iterations, the difference becomes
less than 1 and, by integrality, is therefore 0. Since both invariants must still hold for this trivial
interval [L,L], then we know that C∗

max ≥ L, and that the final schedule output by the algorithm
is of length at most (1+ϵ)L ≤ (1+ϵ)C∗

max. The algorithm is a (1+ϵ)-approximation algorithm.

Theorem 3.7: There is a polynomial-time approximation scheme for the problem of minimizing
the makespan on an input number of identical parallel machines.

Note that since we consider (k + 1)k
2
configurations and k = ⌈1/ϵ⌉, the running time

in the worst case is exponential in O(1/ϵ2). Thus, in this case, we did not obtain a fully
polynomial-time approximation scheme (in contrast to the knapsack problem). This is for a
fundamental reason. This scheduling problem is strongly NP-complete; that is, even if we
require that the processing times be restricted to values at most q(n), a polynomial function of
the number of jobs, this special case is still NP-complete. We claim that if a fully polynomial-
time approximation scheme exists for this problem, it could be used to solve this special case
in polynomial time, which would imply that P = NP.

How can we use a fully polynomial-time approximation scheme to solve the special case
with polynomially bounded processing times? Let P be the maximum processing time for
an input satisfying this special structure. This implies that the optimal makespan is at most
nP ≤ nq(n). If there were a fully polynomial-time approximation scheme {Ak}, suppose that
we use the algorithm Ak that guarantees a solution with relative error at most 1/k where
k = ⌈2nq(n)⌉. This implies that the algorithm finds a solution of makespan at most

(
1 +

1

k

)
C∗
max ≤ C∗

max +
1

2
.

But since any feasible schedule is simply an assignment of jobs to machines, the makespan is
clearly integer, and hence the algorithm must find the optimal assignment. We know that q(n)
is a polynomial; the requirements of a fully polynomial-time approximation scheme imply that
the running time must be bounded by a polynomial in k, and hence we have computed this
optimal schedule in polynomial time. Therefore, the existence of such a scheme implies that
P = NP. This result is one special case of a much more general result; we know that (with very
mild assumptions on the nature of the objective function) for any optimization problem, if the
problem is strongly NP-complete, then it does not have a fully polynomial-time approximation
scheme. We give this as an exercise (Exercise 3.9).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

3.3 The bin-packing problem 73

3.3 The bin-packing problem

In the bin-packing problem, we are given n pieces (or items) with specified sizes a1, a2, . . . , an,
such that

1 > a1 ≥ a2 ≥ · · · ≥ an > 0;

we wish to pack the pieces into bins, where each bin can hold any subset of pieces of total size
at most 1, so as to minimize the number of bins used.

The bin-packing problem is related to a decision problem called the partition problem. In
the partition problem, we are given n positive integers b1, . . . , bn whose sum B =

∑n
i=1 bi is

even, and we wish to know if we can partition the set of indices {1, . . . , n} into sets S and T
such that

∑
i∈S bi =

∑
i∈T bi. The partition problem is well known to be NP-complete. Notice

that we can reduce this problem to a bin-packing problem by setting ai = 2bi/B and checking
whether we can pack all the pieces into two bins or not. This gives the following theorem.

Theorem 3.8: Unless P = NP, there cannot exist a ρ-approximation algorithm for the bin-
packing problem for any ρ < 3/2.

However, consider the First-Fit-Decreasing algorithm, where the pieces are packed in order
of non-increasing size, and the next piece is always packed into the first bin in which it fits; that
is, we first open bin 1, and we start bin k+ 1 only when the current piece does not fit into any
of the bins 1, . . . , k. If FFD(I) denotes the number of bins used by this algorithm on input I,
and OPT(I) denotes the number of bins used in the optimal packing, then a celebrated classic
result shows that that FFD(I) ≤ (11/9)OPT(I) + 4 for any input I.

Thus, significantly stronger results can be obtained by relaxing the notion of the performance
guarantee to allow for small additive terms. In fact, it is completely consistent with our current
understanding of complexity theory that there is an algorithm that always produces a packing
with at most OPT(I) + 1 bins.

Why is it that we have bothered to mention hardness results of the form“there does not exist
a ρ-approximation algorithm unless P = NP”if such a result can be so easily circumvented? The
reason is that for all of the weighted problems that we have discussed, any distinction between
the two types of guarantees disappears; any algorithm guaranteed to produce a solution of value
at most ρOPT+c can be converted to a ρ-approximation algorithm. Each of these problems
has a natural rescaling property: for any input I and any value κ, we can construct an essentially
identical instance I ′ such that the objective function value of any feasible solution is rescaled
by κ. For example, for the scheduling problem of Section 3.2, if one simply multiplies each
processing time pj by κ, one can accomplish this rescaling, or for a combinatorial problem such
as the unweighted vertex cover problem, one can consider an input with κ disjoint copies of the
original input graph. Such rescaling makes it possible to blunt the effect of any small additive
term c < κ in the guarantee, and make it effectively 0. Observe that the bin-packing problem
does not have this rescaling property; there is no obvious way to“multiply”the instance in a way
that does not blur the combinatorial structure of the original input. (Think about what happens
if you construct a new input that contains two copies of each piece of I!) Thus, whenever we
consider designing approximation algorithms for a new combinatorial optimization problem, it
is important to consider first whether the problem does have the rescaling property, since that
will indicate what sort of performance guarantee one might hope for.

Although we will not prove the performance guarantee for the First-Fit-Decreasing algorithm
for the bin-packing problem, we shall show that an exceedingly simple algorithm does perform
reasonably well. Consider the First-Fit algorithm, which works exactly as First-Fit-Decreasing,
except that we don’t first sort the pieces in non-increasing size order. We can analyze its

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

74 Rounding data and dynamic programming

performance in the following way. If we pair up bins 1 and 2, then 3 and 4, and so forth, then
any such pair must have the property that the total piece size in them is at least 1: in fact, the
first item placed in bin 2k is put there only because it did not fit in bin 2k − 1. Thus, if we
used ℓ bins, then the total size of the pieces in the input, SIZE(I) =

∑n
i=1 ai, is at least ⌊ℓ/2⌋.

However, it is clear that OPT(I) ≥ SIZE(I), and hence, the number of bins used by First-Fit
is FF(I) = ℓ ≤ 2 SIZE(I) + 1 ≤ 2OPT(I) + 1. Of course, this analysis did not use practically
any information about the algorithm; we used only that there should not be two bins whose
contents can be feasibly combined into one bin.

We shall present a family of polynomial-time approximation algorithms parameterized by
ϵ > 0, where each algorithm has the performance guarantee of computing a packing with at
most (1 + ϵ)OPT(I) + 1 bins for each input I. Throughout this discussion, we shall view ϵ
as a positive constant. Note that this family of algorithms does not meet the definition of a
polynomial-time approximation scheme because of the additive constant. This motivates the
following definition.

Definition 3.9: An asymptotic polynomial-time approximation scheme (APTAS) is a family
of algorithms {Aϵ} along with a constant c where there is an algorithm Aϵ for each ϵ > 0 such
that Aϵ returns a solution of value at most (1 + ϵ)OPT+c for minimization problems.

One of the key ingredients of this asymptotic polynomial-time approximation scheme is
the dynamic programming algorithm used in the approximation scheme for scheduling jobs
on identical parallel machines, which was presented in Section 3.2. As stated earlier, that
algorithm computed the minimum number of machines needed to assign jobs, so that each
machine was assigned jobs of total processing requirement at most T . However, by rescaling
each processing time by dividing by T , we have an input for the bin-packing problem. The
dynamic programming algorithm presented solves the bin-packing problem in polynomial time
in the special case in which there are only a constant number of distinct piece sizes, and only
a constant number of pieces can fit into one bin. Starting with an arbitrary input to the
bin-packing problem, we first construct a simplified input of this special form, which we then
solve by dynamic programming. The simplified input will also have the property that we can
transform the resulting packing into a packing for the original input, without introducing too
many additional bins.

As in the scheduling result of Section 3.2, the first key observation is that one may ignore
small pieces of size less than any given threshold, and can analyze its effect in a relatively simple
way.

Lemma 3.10: Any packing of all pieces of size greater than γ into ℓ bins can be extended to a
packing for the entire input with at most max{ℓ, 1

1−γ SIZE(I) + 1} bins.

Proof. Suppose that one uses the First-Fit algorithm, starting with the given packing, to com-
pute a packing that also includes these small pieces. If First-Fit never starts a new bin in
packing the small pieces, then clearly the resulting packing has ℓ bins. If it does start a new
bin, then each bin in the resulting packing (with the lone exception of the last bin started) must
not have been able to fit one additional small piece. Let k + 1 denote the number of bins used
in this latter case. In other words, each of the first k bins must have pieces totaling at least
1− γ, and hence SIZE(I) ≥ (1− γ)k. Equivalently, k ≤ SIZE(I)/(1− γ), which completes the
proof of the lemma.

Suppose that we were aiming to design an algorithm with a performance guarantee that is
better than the one proved for First-Fit (which is truly a modest goal); in particular, we are

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

3.3 The bin-packing problem 75

trying to design an algorithm with performance guarantee 1+ ϵ with ϵ < 1. If we apply Lemma
3.10 by setting γ = ϵ/2, then since 1/(1 − ϵ/2) ≤ 1 + ϵ, we see that the composite algorithm
produces a packing with at most max{ℓ, (1 + ϵ)OPT(I) + 1} bins.

The elimination of the small pieces from the input also enforces one of our requirements
for the special case solvable by dynamic programming: if each piece has size greater than ϵ/2,
then each bin must contain fewer than 2/ϵ pieces in total. We shall assume for the rest of the
discussion that our input I does not have such small pieces to begin with.

The last element of the algorithm is a technique to reduce the number of distinct piece sizes,
which is accomplished by a linear grouping scheme. This scheme works as follows, and is based
on a parameter k, which will be set later. Group the pieces of the given input I as follows: the
first group consists of the k largest pieces, the next group consists of the next k largest pieces,
and so on, until all pieces have been placed in a group. The last group contains h pieces, where
h ≤ k. The rounded instance I ′ is constructed by discarding the first group, and for each other
group, rounding the size of its pieces up to the size of its largest piece. An input I and its
transformed version I ′ are shown in Figure 3.1. We can prove the following lemma relating the
optimal number of bins needed to pack I to the optimal number of bins needed to pack I ′.

Lemma 3.11: Let I ′ be the input obtained from an input I by applying linear grouping with
group size k. Then

OPT(I ′) ≤ OPT(I) ≤ OPT(I ′) + k,

and furthermore, any packing of I ′ can be used to generate a packing of I with at most k
additional bins.

Proof. For the first inequality, observe that any packing of the input I yields a packing of the
input I ′: for I ′, pack its k largest pieces wherever the k largest pieces of I were packed. (There
is a one-to-one correspondence between these two sets of k pieces, and each piece in the group
from I ′ is no larger than the piece to which it corresponds in I.) The second k largest pieces
of I ′ are packed wherever the second group of I were packed, and so forth. It is clear that this
yields a feasible packing of I ′, and the first inequality follows.

To obtain the second inequality, we show how to take a packing of I ′, and use it to obtain
a packing of I. This is also quite simple. To pack I, we pack each of the k largest pieces in
its own bin. Now, the next largest group of k pieces in I can be packed wherever the largest
group of pieces in I ′ are packed. Again, to do this, we use the fact that one can construct
a one-to-one mapping between these two sets of k pieces, where each piece in I is no larger
than its corresponding piece in I ′. The fact that this last inequality is proved algorithmically
is important, since this means that if we do obtain a good packing for I ′, then we can use it to
obtain an “almost-as-good” packing for I.

It is relatively straightforward to complete the derivation of an asymptotic polynomial-
time approximation scheme for the bin-packing problem. If we consider the input I ′, then the
number of distinct piece sizes is at most n/k, where n is the number of pieces in I. Since
there are no small pieces in I, SIZE(I) ≥ ϵn/2. If we set k = ⌊ϵ SIZE(I)⌋, then we see that
n/k ≤ 2n/(ϵ SIZE(I)) ≤ 4/ϵ2, where we crudely bound ⌊α⌋ ≥ α/2 when α ≥ 1; we can assume
ϵ SIZE(I) ≥ 1 since otherwise there are at most (1/ϵ)/(ϵ/2) = 2/ϵ2 (large) pieces and we could
apply the dynamic programming algorithm to solve the input optimally without applying the
linear grouping scheme. Consequently, after performing the linear grouping, we are left with
a bin-packing input in which there are a constant number of distinct piece sizes, and only a
constant number of pieces can fit in each bin; hence, we can obtain an optimal packing for the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

76 Rounding data and dynamic programming

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸︷︷︸

G1 G2 G3 G4 G5 G6 G7

Figure 3.1: An input before and after linear grouping with group size k = 4.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

3.3 The bin-packing problem 77

input I ′ by the dynamic programming algorithm of Section 3.2. This packing for I ′ can then
be used to get a packing for the ungrouped input, and then be extended to include all of the
small pieces with at most (1 + ϵ)OPT(I) + 1 bins, as we show next.

Theorem 3.12: For any ϵ > 0, there is a polynomial-time algorithm for the bin-packing problem
that computes a solution with at most (1 + ϵ)OPT(I) + 1 bins; that is, there is an APTAS for
the bin-packing problem.

Proof. As we discussed earlier, the algorithm will open max{ℓ, (1+ϵ)OPT(I)+1} bins, where ℓ is
the number of bins used to pack the large pieces. By Lemma 3.11, we use at most OPT(I ′)+k ≤
OPT(I)+k bins to pack these pieces, where k = ⌊ϵ SIZE(I)⌋, so that ℓ ≤ OPT(I)+ϵ SIZE(I) ≤
(1 + ϵ)OPT(I), which completes the proof.

It is possible to improve both the running time of this general approach, and its performance
guarantee; we shall return to this problem in Section 4.6.

Exercises

3.1 Consider the following greedy algorithm for the knapsack problem. We initially sort all the
items in order of non-increasing ratio of value to size so that v1/s1 ≥ v2/s2 ≥ · · · ≥ vn/sn.
Let i∗ be the index of an item of maximum value so that vi∗ = maxi∈I vi. The greedy
algorithm puts items in the knapsack in index order until the next item no longer fits;
that is, it finds k such that

∑k
i=1 si ≤ B but

∑k+1
i=1 si > B. The algorithm returns

either {1, . . . , k} or {i∗}, whichever has greater value. Prove that this algorithm is a
1/2-approximation algorithm for the knapsack problem.

3.2 One key element in the construction of the fully polynomial-time approximation scheme
for the knapsack problem was the ability to compute lower and upper bounds for the
optimal value that are within a factor of n of each other (using the maximum value piece
that fits in the knapsack to get the lower bound). Use the result of the previous exercise
to derive a refined approximation scheme that eliminates one factor of n in the running
time of the algorithm.

3.3 Consider the following scheduling problem: there are n jobs to be scheduled on a single
machine, where each job j has a processing time pj , a weight wj , and a due date dj ,
j = 1, . . . , n. The objective is to schedule the jobs so as to maximize the total weight of
the jobs that complete by their due date. First prove that there always exists an optimal
schedule in which all on-time jobs complete before all late jobs, and the on-time jobs
complete in an earliest due date order; use this structural result to show how to solve this
problem using dynamic programming in O(nW) time, where W =

∑
j wj . Now use this

result to derive a fully polynomial-time approximation scheme.

3.4 Instead of maximizing the total weight of the on-time set of jobs, as in the previous
exercise, one could equivalently minimize the total weight of the set of jobs that complete
late. This equivalence is only valid when one thinks of optimization, not approximation,
since if only one job needs to be late then our approximation for the minimization problem
can make only a small error, whereas for the maximization problem the situation is quite
different. Or even worse, suppose that all jobs can complete on time. The good news is
that there is an O(n2) algorithm to solve the following problem: minimize the weight of
the maximum-weight job that completes late. First devise this algorithm, and then show

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

78 Rounding data and dynamic programming

how to use it to derive a fully polynomial-time approximation scheme for the problem of
minimizing the total weight of the jobs that complete late.

3.5 Consider the following scheduling problem: there are n jobs to be scheduled on a constant
number of machines m, where each job j has a processing time pj and a weight wj ,
j = 1, . . . , n; once started, each job must be processed to completion on that machine
without interruption. For a given schedule, let Cj denote the completion time of job j,
j = 1, . . . , n, and the objective is to minimize

∑
j wjCj over all possible schedules. First

show that there exists an optimal schedule where, for each machine, the jobs are scheduled
in non-decreasing pj/wj order. Then use this property to derive a dynamic programming
algorithm that can then be used to obtain a fully polynomial-time approximation scheme.

3.6 Suppose we are given a directed acyclic graph with specified source node s and sink node
t, and each arc e has an associated cost ce and length ℓe. We are also given a length
bound L. Give a fully polynomial-time approximation scheme for the problem of finding
a minimum-cost path from s to t of total length at most L.

3.7 In the proof of Theorem 3.7, we rounded down each processing time to the nearest multiple
of T/k2. Suppose that instead of constructing identical length intervals that get rounded
to the same value, we have intervals that are geometrically increasing in length. Design an
alternative polynomial-time approximation scheme, where the term in the running that
is O(n(1/k)2) is reduced to O(n(1/k) log(1/k)).

3.8 The makespan minimization problem discussed in Section 3.2 can be viewed as minimiz-
ing the L∞ norm of the machine loads. One can instead minimize the L2 norm of the
machine loads or, equivalently, the sum of the squares of the machine loads. To extend the
framework discussed for the makespan objective, first give a dynamic programming algo-
rithm that solves, in polynomial time, the special case in which there are only a constant
number of job lengths, and each job length is at least a constant fraction of the average
machine load (that is,

∑
j pj/m, where m is the number of machines). Then use this to

derive a polynomial-time approximation scheme. (One additional idea might be useful:
for some notion of a “small” job, clump the small jobs into relatively “small” clumps of
jobs that are then assigned to machines together.)

3.9 Suppose we have a strongly NP-hard minimization problem Π with the following two
properties. First, any feasible solution has a nonnegative, integral objective function
value. Second, there is a polynomial p, such that if it takes n bits to encode the input
instance I in unary, OPT(I) ≤ p(n). Prove that if there is a fully polynomial-time
approximation scheme for Π, then there is a pseudopolynomial algorithm for Π. Since
there is no pseudopolynomial algorithm for a strongly NP-hard problem unless P = NP,
conclude that this would imply P = NP.

Chapter Notes

The approach to describing the dynamic program for the knapsack problem in Section 3.1 is
due to Lawler [210], as is Exercise 3.2. The approximation scheme is due to Ibarra and Kim
[173]. Exercises 3.3 and 3.5 are due to Sahni [258]. Gens and Levner [129] proved the result
stated in Exercise 3.4. Throughout the 1970s much of the work in this area was being done in
parallel in both the United States and the Soviet Union (although not recognized at the time);

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

3.3 The bin-packing problem 79

Gens and Levner [128] give a detailed comparison of the evolution of this area at that time.
Exercise 3.6 is due to Hassin [157].

The approximation scheme for scheduling parallel machines with a constant number of
machines given in Section 3.2 is due to Graham [143]. The approximation scheme for the case
in which the number of machines is part of the input is due to Hochbaum and Shmoys [165].
Exercise 3.8 is due to Alon, Azar, Woeginger, and Yadid [6].

Fernandez de la Vega and Lueker [111] gave the first approximation scheme for the bin-
packing problem. The approximation scheme given here is a variant of theirs. The analysis of
the First-Fit-Decreasing algorithm, showing it to be an 11/9-approximation algorithm, is in the
Ph.D. thesis of Johnson [178]. The analysis of First-Fit we give is also in this thesis, although
we use the analysis there of another algorithm called Next-Fit.

Exercise 3.9 is due to Garey and Johnson [122].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

80 Rounding data and dynamic programming

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 4

Deterministic rounding of linear

programs

In the introduction, we said that one of the principal theses of this book is the central role played
by linear programming in the design and analysis of approximation algorithms. In the previous
two chapters, we have not used linear programming at all, but starting with this chapter we
will be using it extensively.

In this chapter, we will look at one of the most straightforward uses of linear programming.
Given an integer programming formulation of a problem, we can relax it to a linear program.
We solve the linear program to obtain a fractional solution, then round it to an integer solution
via some process.

The easiest way to round the fractional solution to an integer solution in which all values are
0 or 1 is to take variables with relatively large values and round them up to 1, while rounding all
other variables down to 0. We saw this technique in Section 1.3 applied to the set cover problem,
in which we chose sets whose corresponding linear programming variables were sufficiently large.
We will see another application of this technique when we introduce the prize-collecting Steiner
tree problem in Section 4.4. We will revisit this problem several times in the course of the book.
For this problem we give an integer programming relaxation in which there are 0-1 variables
for both nodes and edges. We round up the node variables that are sufficiently large in order to
decide which nodes should be spanned in a solution; we then find a tree spanning these nodes.

In Sections 4.1 and 4.2, we consider a single-machine scheduling problem, and see another
way of rounding fractional solutions to integer solutions. We will see that by solving a relaxation,
we are able to get information on how the jobs might be ordered. Then we construct a solution
in which we schedule jobs in the same order as given by the relaxation, and we are able to show
that this leads to a good solution. In the first section, we use a relaxation of the problem to a
preemptive scheduling problem, rather than a linear program. The analysis of this algorithm
gives some ideas for an algorithm in the next section that uses a linear programming relaxation
for a scheduling problem with a more general objective function.

In Section 4.5, we introduce the uncapacitated facility location problem, another problem
that we will revisit several times in the course of this book. In this problem we have clients and
facilities; we must choose a subset of facilities to open, and every client must be assigned to
some open facility. Here the rounding procedure is much more complex than simply choosing

81

82 Deterministic rounding of linear programs

Time0 2 4 5

Job 1 Job 2 Job 3

9

Figure 4.1: An example of a nonpreemptive schedule, in which p1 = 2, r1 = 0, p2 = 1,
r2 = 4, p3 = 4, r3 = 1. In this schedule, C1 = 2, C2 = 5, and C3 = 9, so that∑

j Cj = 2 + 5 + 9 = 16.

large values and rounding up. The fractional values indicate to us which facilities we might
consider opening and which assignments we might think about making.

Finally, in Section 4.6, we revisit the bin-packing problem. We give an integer programming
formulation in which we have an integer variable to indicate how many bins should be packed
in a certain way. Then we round variables down, in the sense that we take the integer part of
each variable and pack bins as indicated, then take all the pieces corresponding to the fractional
part and iterate.

In several cases in this chapter and later in the book, we will need to solve very large linear
programs in which the number of constraints is exponential in the input size of the problem.
These linear programs can be solved in polynomial time using an algorithm called the ellipsoid
method. We introduce the ellipsoid method in Section 4.3, and discuss the cases in which it
can be used to solve exponentially large linear programs in polynomial time.

4.1 Minimizing the sum of completion times on a single ma-
chine

In this section, we consider the problem of scheduling jobs on a single machine so as to minimize
the sum of the job completion times. In particular, we are given as input n jobs, each of which
has a processing time pj and release date rj . The values pj and rj are integers such that rj ≥ 0
and pj > 0. We must construct a schedule for these jobs on a single machine such that at
most one job is processed at each point in time, no job is processed before its release date,
and each job must be processed nonpreemptively; that is, once a job begins to be processed, it
must be processed completely before any other job begins its processing. See Figure 4.1 for an
example. If Cj denotes the time at which job j is finished processing, then the goal is to find
the schedule that minimizes

∑n
j=1Cj . Observe that this objective is equivalent to the problem

of minimizing the average completion time, since the average completion time just rescales the
objective function for each feasible solution by a factor of 1/n.

Below we will show that we can convert any preemptive schedule into a nonpreemptive
schedule in such a way that the completion time of each job at most doubles. In a preemptive
schedule, we can still schedule only one job at a time on the machine, but we do not need to
complete each job’s required processing consecutively; we can interrupt the processing of a job
with the processing of other jobs. In the preemptive version of this problem, the goal is to find
a preemptive schedule that minimizes the sum of the completion times.

An optimal solution to the preemptive version of the scheduling problem can be found in
polynomial time via the shortest remaining processing time (SRPT) rule, which is as follows.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.1 Minimizing the sum of completion times on a single machine 83

Time0 2 4 5

Job 1 Job 2Job 3

7

Figure 4.2: An example of a preemptive schedule created using the SRPT rule, with
the same instance as in Figure 4.1. In this schedule, C1 = 2, C2 = 5, and C3 = 7, so
that

∑
j Cj = 2 + 5 + 7 = 14. Note that we do not interrupt the processing of job 1

when job 3 arrives at time 1, since job 1 has less remaining processing time, but we do
interrupt the processing of job 3 when job 2 arrives.

We start at time 0 and schedule the job with the smallest amount of remaining processing time
as long as the job is past its release date and we have not already completed it. We schedule
it until either it is completed or a new job is released. We then iterate. See Figure 4.2 for an
example.

Let CP
j be the completion time of job j in an optimal preemptive schedule, and let OPT

be the sum of completion times in an optimal nonpreemptive schedule. We have the following
observation.

Observation 4.1:
n∑

j=1

CP
j ≤ OPT .

Proof. This immediately follows from the fact that an optimal nonpreemptive schedule is fea-
sible for the preemptive scheduling problem.

Now consider the following scheduling algorithm. Find an optimal preemptive schedule
using SRPT. We schedule the jobs nonpreemptively in the same order that they complete in
this preemptive schedule. To be more precise, suppose that the jobs are indexed such that
CP
1 ≤ CP

2 ≤ · · · ≤ CP
n . Then we schedule job 1 from its release date r1 to time r1 + p1. We

schedule job 2 to start as soon as possible after job 1; that is, we schedule it from max(r1+p1, r2)
to max(r1 + p1, r2) + p2. The remaining jobs are scheduled analogously. If we let CN

j denote
the completion time of job j in the nonpreemptive schedule that we construct, for j = 1, . . . , n,
then job j is processed from max{CN

j−1, rj} to max{CN
j−1, rj}+ pj .

We show below that scheduling nonpreemptively in this way does not delay the jobs by too
much.

Lemma 4.2: For each job j = 1, . . . , n,

CN
j ≤ 2CP

j .

Proof. Let us first derive some easy lower bounds on CP
j . Since we know that j is processed in

the optimal preemptive schedule after jobs 1, . . . , j − 1, we have

CP
j ≥ max

k=1,...,j
rk and CP

j ≥
j∑

k=1

pk.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

84 Deterministic rounding of linear programs

By construction it is also the case that

CN
j ≥ max

k=1,...,j
rk.

Consider the nonpreemptive schedule constructed by the algorithm, and focus on any period
of time that the machine is idle; idle time occurs only when the next job to be processed has not
yet been released. Consequently, in the time interval from maxk=1,...,j rk to CN

j , there cannot
be any point in time at which the machine is idle. Therefore, this interval can be of length at
most

∑j
k=1 pk since otherwise we would run out of jobs to process. This implies that

CN
j ≤ max

k=1,...,j
rk +

j∑
k=1

pk ≤ 2CP
j ,

where the last inequality follows from the two lower bounds on CP
j derived above.

This leads easily to the following theorem.

Theorem 4.3: Scheduling in order of the completion times of an optimal preemptive schedule
is a 2-approximation algorithm for scheduling a single machine with release dates to minimize
the sum of completion times.

Proof. We have that
n∑

j=1

CN
j ≤ 2

n∑
j=1

CP
j ≤ 2OPT,

where the first inequality follows by Lemma 4.2 and the second by Observation 4.1.

4.2 Minimizing the weighted sum of completion times on a sin-
gle machine

We now consider a generalization of the problem from the previous section. In this generaliza-
tion, each job has a weight wj ≥ 0, and our goal is to minimize the weighted sum of completion
times. If Cj denotes the time at which job j is finished processing, then the goal is to find
a schedule that minimizes

∑n
j=1wjCj . We will call the problem of the previous section the

unweighted case, and the problem in this section the weighted case.
Unlike the unweighted case, it is NP-hard to find an optimal schedule for the preemptive

version of the weighted case. Although the algorithm and analysis of the previous section give
us a way to round any preemptive schedule to one whose sum of weighted completion times is
at most twice more, we cannot use the same technique of finding a lower bound on the cost of
the optimal nonpreemptive schedule by finding an optimal preemptive schedule.

Nevertheless, we can still get a constant approximation algorithm for this problem by using
some of the ideas from the previous section. To obtain the 2-approximation algorithm in the
previous section, we used that CN

j ≤ 2CP
j ; if we look at the proof of Lemma 4.2, to prove

this inequality we used only that the completion times CP
j satisfied CP

j ≥ maxk=1,...,j rk and

CP
j ≥

∑j
k=1 pk (assuming that jobs are indexed such that CP

1 ≤ CP
2 ≤ · · · ≤ CP

n). Furthermore,

in order to obtain an approximation algorithm, we needed that
∑n

j=1C
P
j ≤ OPT. We will show

below that we can give a linear programming relaxation of the problem with variables Cj such

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.2 Minimizing the weighted sum of completion times on a single machine 85

that these inequalities hold within a constant factor, which in turn will lead to a constant factor
approximation algorithm for the problem.

To construct our linear programming relaxation, we will let the variable Cj denote the
completion time of job j. Then our objective function is clear: we want to minimize

∑n
j=1wjCj .

We now need to give constraints. The first set of constraints is easy: for each job j = 1, . . . , n,
job j cannot complete before it is released and processed, so that Cj ≥ rj + pj .

In order to introduce the second set of constraints, consider some set S ⊆ {1, . . . , n} of jobs.
Consider the sum

∑
j∈S pjCj . This sum is minimized when all the jobs in S have a release date

of zero and all the jobs in S finish first in the schedule. Assuming these two conditions hold,
then any completion time Cj for j ∈ S is equal to pj plus the sum of all the processing times
of the jobs in S that preceded j in the schedule. Then in the product pjCj , pj multiplies itself
and the processing times of all jobs in S preceding j in the schedule. The sum

∑
j∈S pjCj must

contain the term pjpk for all pairs j, k ∈ S, since either k precedes j or j precedes k in the
schedule. Thus,

∑
j∈S

pjCj =
∑

j,k∈S:j≤k

pjpk =
1

2

∑
j∈S

pj

2

+
1

2

∑
j∈S

p2j ≥
1

2

∑
j∈S

pj

2

.

Simplifying notation somewhat, let N = {1, . . . , n}, and let p(S) =
∑

j∈S pj , so that the

inequality above becomes
∑

j∈S pjCj ≥ 1
2p(S)

2. As we said above, the sum
∑

j∈S pjCj can be
greater only if the jobs in S have a release date greater than zero or do not finish first in the
schedule, so the inequality must hold unconditionally for any S ⊆ N . Thus, our second set of
constraints is ∑

j∈S
pjCj ≥

1

2
p(S)2

for each S ⊆ N.
This gives our linear programming relaxation for the scheduling problem:

minimize

n∑
j=1

wjCj (4.1)

subject to Cj ≥ rj + pj , ∀j ∈ N, (4.2)∑
j∈S

pjCj ≥
1

2
p(S)2, ∀S ⊆ N. (4.3)

By the arguments above, this LP is a relaxation of the problem, so that for an optimal LP
solution C∗,

∑n
j=1wjC

∗
j ≤ OPT, where OPT denotes the value of the optimal solution to the

problem. There are an exponential number of the second type of constraint (4.3), but we will
show in Section 4.3 that we can use an algorithm called the ellipsoid method to solve this linear
program in polynomial time.

Let C∗ be an optimal solution for the relaxation that we obtain in polynomial time. Our
algorithm is then almost the same as in the previous section: we schedule the jobs nonpreemp-
tively in the same order as of the completion times of C∗. That is, suppose that the jobs are
reindexed so that C∗

1 ≤ C∗
2 ≤ · · · ≤ C∗

n. Then, as in the previous section, we schedule job 1
from its release date r1 to time r1 + p1. We schedule job 2 to start as soon as possible after job
1; that is, we schedule it from max(r1+ p1, r2) to max(r1+ p1, r2)+ p2. The remaining jobs are
scheduled similarly. We claim that this gives a 3-approximation algorithm for the problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

86 Deterministic rounding of linear programs

Theorem 4.4: Scheduling in order of the completion time of C∗ is a 3-approximation algorithm
for scheduling jobs on a single machine with release dates to minimize the sum of weighted
completion times.

Proof. Again, assume that the jobs are reindexed so that C∗
1 ≤ C∗

2 ≤ · · · ≤ C∗
n. Let C

N
j be the

completion time of job j in the schedule we construct. We will show that CN
j ≤ 3C∗

j for each

j = 1, . . . , n. Then we have that
∑n

j=1wjC
N
j ≤ 3

∑n
j=1wjC

∗
j ≤ 3OPT, which gives the desired

result.
As in the proof of Lemma 4.2, there cannot be any idle time between maxk=1,...,j rk and CN

j ,

and therefore it must be the case that CN
j ≤ maxk=1,...,j rk +

∑j
k=1 pk. Let ℓ ∈ {1, . . . , j} be

the index of the job that maximizes maxk=1,...,j rk so that rℓ = maxk=1,...,j rk. By the indexing
of the jobs, C∗

j ≥ C∗
ℓ , and C∗

ℓ ≥ rℓ by the LP constraint (4.2); thus, C∗
j ≥ maxk=1,...,j rk. Let

[j] denote the set {1, . . . , j}. We will argue that C∗
j ≥ 1

2p([j]), and from these simple facts, it
follows that

CN
j ≤ p([j]) + max

k=1,...,j
rk ≤ 2C∗

j + C∗
j = 3C∗

j .

Let S = [j]. From the fact that C∗ is a feasible LP solution, we know that∑
k∈S

pkC
∗
k ≥

1

2
p(S)2.

However, by our relabeling, C∗
j ≥ · · · ≥ C∗

1 , and hence

C∗
j

∑
k∈S

pk = C∗
j · p(S) ≥

∑
k∈S

pkC
∗
k .

By combining these two inequalities and rewriting, we see that

C∗
j · p(S) ≥

1

2
p(S)2.

Dividing both sides by p(S) shows that C∗
j ≥ 1

2p(S) =
1
2p([j]).

In Section 5.9, we will show how randomization can be used to obtain a 2-approximation
algorithm for this problem.

4.3 Solving large linear programs in polynomial time via the
ellipsoid method

We now turn to the question of how to solve the linear program (4.1) in polynomial time.
The most popular and practical algorithm for solving linear programs is known as the simplex
method. Although the simplex method is quite fast in practice, there is no known variant of the
algorithm that runs in polynomial time. Interior-point methods are a class of algorithms for
solving linear programs; while typically not as fast or as popular as the simplex method, interior-
point methods do solve linear programs in polynomial time. However, this isn’t sufficient for
solving the linear program above because the size of the linear program is exponential in the
size of the input scheduling instance. Therefore, we will use a linear programming algorithm
called the ellipsoid method. Because we will use this technique frequently, we will discuss the
general technique before turning to how to solve our particular linear program.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.3 Solving large linear programs in polynomial time via the ellipsoid method 87

Suppose we have the following general linear program:

minimize

n∑
j=1

djxj (4.4)

subject to

n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m,

xj ≥ 0, ∀j.

Suppose that we can give a bound ϕ on the number of bits needed to encode any inequality∑n
j=1 aijxj ≥ bi. Then the ellipsoid method for linear programming allows us to find an optimal

solution to the linear program in time polynomial in n (the number of variables) and ϕ, given a
polynomial-time separation oracle (which we will define momentarily). It is sometimes desirable
for us to obtain an optimal solution that has an additional property of being a basic solution;
we do not define basic solutions here, but the ellipsoid method will return such basic optimal
solutions (see Chapter 11 or Appendix A for a definition). Note that this running time does
not depend on m, the number of constraints of the linear program. Thus, as in the case of the
previous linear program for the single-machine scheduling problem, we can solve linear programs
with exponentially many constraints in polynomial time given that we have a polynomial-time
separation oracle.

A separation oracle takes as input a supposedly feasible solution x to the linear program,
and either verifies that x is indeed a feasible solution to the linear program or, if it is infeasible,
produces a constraint that is violated by x. That is, if it is not the case that

∑n
j=1 aijxj ≥ bi for

each i = 1, . . . ,m, then the separation oracle returns some constraint i such that
∑n

j=1 aijxj <
bi.

In the notes at the end of the chapter, we sketch how a polynomial-time separation oracle
leads to a polynomial-time algorithm for solving LPs with exponentially many constraints. It
is truly remarkable that such LPs are efficiently solvable. Here, however, efficiency is a relative
term: the ellipsoid method is not a practical algorithm. For exponentially large LPs that
we solve via the ellipsoid method, it is sometimes the case that the LP can be written as a
polynomially sized LP, but it is more convenient to discuss the larger LP. We will indicate
when this is the case. Even if there is no known way of rewriting the exponentially sized LP,
one can heuristically find an optimal solution to the LP by repeatedly using any LP algorithm
(typically the simplex method) on a small subset of the constraints and using the separation
oracle to check if the current solution is feasible. If it is feasible, then we have solved the LP,
but if not, we add the violated constraints to the LP and resolve. Practical experience shows
that this approach is much more efficient than can be theoretically justified, and should be in
the algorithm designer’s toolkit.

We now turn to the scheduling problem at hand, and give a polynomial-time separation
oracle for the constraints (4.3). Given a solution C, let us reindex the variables so that C1 ≤
C2 ≤ · · · ≤ Cn. Let S1 = {1}, S2 = {1, 2}, . . . , Sn = {1, . . . , n}. We claim that it is sufficient to
check whether the constraints are violated for the n sets S1, . . . , Sn. If any of these n constraints
are violated, then we return the set as a violated constraint. If not, we show below that all
constraints are satisfied.

Lemma 4.5: Given variables Cj, if constraints (4.3) are satisfied for the n sets S1, . . . , Sn,
then they are satisfied for all S ⊆ N .

Proof. Let S be a constraint that is not satisfied; that is,
∑

j∈S pjCj < 1
2p(S)

2. We will show

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

88 Deterministic rounding of linear programs

that then there must be some set Si that is also not satisfied. We do this by considering changes
to S that decrease the difference

∑
j∈S pjCj − 1

2p(S)
2. Any such change will result in another

set S′ that also does not satisfy the constraint. Note that removing a job k from S decreases
this difference if

−pkCk + pkp(S − k) +
1

2
p2k < 0,

or if Ck > p(S − k) + 1
2pk. Adding a job k to S decreases this difference if

pkCk − pkp(S)−
1

2
p2k < 0,

or if Ck < p(S) + 1
2pk.

Now let ℓ be the highest indexed job in S. We remove ℓ from S if Cℓ > p(S − ℓ) + 1
2pℓ; by

the reasoning above the resulting set S − ℓ also does not satisfy the corresponding constraint
(4.3). We continue to remove the highest indexed job in the resulting set until finally we have
a set S′ such that its highest indexed job ℓ has Cℓ ≤ p(S′ − ℓ) + 1

2pℓ < p(S′) (using pℓ > 0).
Now suppose S′ ̸= Sℓ = {1, . . . , ℓ}. Then there is some k < ℓ such that k /∈ S′. Then since
Ck ≤ Cℓ < p(S′) < p(S′) + 1

2pk, adding k to S′ can only decrease the difference. Thus, we can
add all k < ℓ to S′, and the resulting set Sℓ will also not satisfy the constraint (4.3).

4.4 The prize-collecting Steiner tree problem

We now turn to a variation of the Steiner tree problem introduced in Exercise 2.5. This variation
is called the prize-collecting Steiner tree problem. As input, we are given an undirected graph
G = (V,E), an edge cost ce ≥ 0 for each e ∈ E, a selected root vertex r ∈ V , and a penalty πi ≥ 0
for each i ∈ V . The goal is to find a tree T that contains the root vertex r so as to minimize
the cost of the edges in the tree plus the penalties of all vertices not in the tree. In other words,
if V (T) is the set of vertices in the tree T , the goal is to minimize

∑
e∈T ce +

∑
i∈V−V (T) πi.

The Steiner tree problem of Exercise 2.5 is a special case of the problem in which for every
i ∈ V either πi = ∞ (and thus i must be included in the tree) or πi = 0 (and thus i may be
omitted from the tree with no penalty). The vertices that must be included in the solution in
the Steiner tree problem are called terminals.

One application of the prize-collecting Steiner tree problem is deciding how to extend cable
access to new customers. In this case, each vertex represents a potential new customer, the cost
of edge (i, j) represents the cost of connecting i to j by cable, the root vertex r represents a site
that is already connected to the cable network, and the “penalties” πi represent the potential
profit to be gained by connecting customer i to the network. Thus, the goal is to minimize
the total cost of connecting new customers to the network plus the profits lost by leaving the
unconnected customers out of the network.

The prize-collecting Steiner tree problem can be modeled as an integer program. We use a
0-1 variable yi for each i ∈ V and xe for each e ∈ E. Variable yi is set to 1 if i is in the solution
tree and 0 if it is not, while xe is set to 1 if e is in the solution tree and 0 if it is not. Obviously,
then, the objective function is

minimize
∑
e∈E

cexe +
∑
i∈V

πi(1− yi).

We now need constraints to enforce that the tree connects the root r to each vertex i with
yi = 1. Given a nonempty set of vertices S ⊂ V , let δ(S) denote the set of edges in the cut

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.4 The prize-collecting Steiner tree problem 89

defined by S; that is, δ(S) is the set of all edges with exactly one endpoint in S. We will
introduce the constraints ∑

e∈δ(S)

xe ≥ yi

for each i ∈ S, and each S ⊆ V − r. To see that these constraints enforce that the tree
connects the root to each vertex i with yi = 1, take any feasible solution x and consider the
graph G′ = (V,E′) with E′ = {e ∈ E : xe = 1}. Pick any i such that yi = 1. The constraints
ensure that for any r-i cut S, there must be at least one edge of E′ in δ(S): that is, the size of
the minimum r-i cut in G′ must be at least one. Thus, by the max-flow/min-cut theorem the
maximum r-i flow in G′ is at least one, which implies that there is a path from r to i in G′.
Similarly, if x is not feasible, then there is some r-i cut S for which there are no edges of E′ in
δ(S), which implies that the size of minimum r-i cut is zero, and thus the maximum r-i flow is
zero. Hence, there is a path from r to i with yi = 1 if and only if these constraints are satisfied,
and if they are all satisfied, there will be a tree connecting r to all i such that yi = 1. Thus,
the following integer program models the prize-collecting Steiner tree problem:

minimize
∑
e∈E

cexe +
∑
i∈V

πi(1− yi)

subject to
∑

e∈δ(S)

xe ≥ yi, ∀S ⊆ V − r, S ̸= ∅,∀i ∈ S, (4.5)

yr = 1,

yi ∈ {0, 1} , ∀i ∈ V,

xe ∈ {0, 1} , ∀e ∈ E.

In order to apply deterministic rounding to the problem, we relax the integer programming
formulation to a linear programming relaxation by replacing the constraints yi ∈ {0, 1} and
xe ∈ {0, 1} with yi ≥ 0 and xe ≥ 0. We can now apply the ellipsoid method, introduced
in Section 4.3, to solve the linear program in polynomial time. The separation oracle for the
constraints

∑
e∈δ(S) xe ≥ yi is as follows: given a solution (x, y), we construct a network flow

problem on the graph G in which the capacity of each edge e is set to xe. For each vertex
i, we check whether the maximum flow from i to the root r is at least yi. If not, then the
minimum cut S separating i from r gives a violated constraint such that

∑
e∈δ(S) xe < yi for

i ∈ S, S ⊆ V − r. If the flow is at least yi, then for all cuts S separating i from r, i ∈ S,
S ⊆ V − r,

∑
e∈δ(S) xe ≥ yi by the max-flow/min-cut theorem. Hence, given a solution (x, y),

we can find a violated constraint, if any exists, in polynomial time.
Given an optimal solution (x∗, y∗) to the linear programming relaxation, there is a very

simple deterministic rounding algorithm for the problem, which we give in Algorithm 4.1. It is
similar to the deterministic rounding algorithm for the set cover problem given in Section 1.3:
for some value α ∈ [0, 1), let U be the set of all vertices such that yi ≥ α. Since yr = 1, the
root r is in U . Now build a tree on the vertices in U in the graph G. Since we want to build
a tree with cost as low as possible, this is just a Steiner tree problem on the graph G in which
the terminals are the set U . We could apply the algorithm given in Exercise 2.5. Instead, we
use another algorithm, given in Exercise 7.6 of Chapter 7, whose analysis will be very easy once
we have studied the primal-dual method of that chapter. Let T be the tree produced by that
algorithm.

We now begin the analysis of the algorithm in terms of the parameter α. Later we will fix
the value of α to give the best possible performance guarantee for the deterministic rounding

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

90 Deterministic rounding of linear programs

Solve LP, get optimal primal solution (x∗, y∗)
U ← {i ∈ V : y∗i ≥ α}
Use algorithm of Exercise 7.6 to build tree T on U
return T

Algorithm 4.1: Deterministic rounding algorithm for the prize-collecting Steiner tree problem.

algorithm. We will analyze the cost of the constructed tree T and the penalties on the vertices
not in T separately, comparing them to their contribution to the objective function of the linear
programming relaxation. We use the result of Exercise 7.6 to analyze the cost of the tree T .

Lemma 4.6 (Exercise 7.6): The tree T returned by the algorithm of Exercise 7.6 has cost∑
e∈T

ce ≤
2

α

∑
e∈E

cex
∗
e.

The analysis for the penalties is simple.

Lemma 4.7: ∑
i∈V−V (T)

πi ≤
1

1− α

∑
i∈V

πi(1− y∗i)

Proof. If i is not in the tree T , then clearly it was not in the set of vertices U , and so y∗i < α.

Thus, 1− y∗i > 1− α, and
1−y∗i
1−α > 1. The lemma statement follows.

Combining the two lemmas immediately gives the following theorem and corollary.

Theorem 4.8: The cost of the solution produced by Algorithm 4.1 is∑
e∈T

ce +
∑

i∈V−V (T)

πi ≤
2

α

∑
e∈E

cex
∗
e +

1

1− α

∑
i∈V

πi(1− y∗i).

Corollary 4.9: Using Algorithm 4.1 with α = 2
3 gives a 3-approximation algorithm for the

prize-collecting Steiner tree problem.

Proof. Clearly the algorithm runs in polynomial time. We can bound the performance guarantee
by the max{2/α, 1/(1 − α)}. We can minimize this maximum by setting 2

α = 1
1−α ; thus, we

obtain α = 2
3 . Then by Theorem 4.8, the cost of the tree obtained is

∑
e∈T

ce +
∑

i∈V−V (T)

πi ≤ 3

(∑
e∈E

cex
∗
e +

∑
i∈V

πi(1− y∗i)

)
≤ 3OPT,

since
∑

e∈E cex
∗
e+
∑

i∈V πi(1−y∗i) is the objective function of the linear programming relaxation
of the problem.

In Algorithm 4.1, we choose a set of vertices U such that y∗i ≥ α = 2/3 and construct a
Steiner tree on that set of vertices. A very natural idea is to try all possible values α: since
there are |V | variables y∗i , there are at most |V | distinct values of y∗i . Thus, we can construct

|V | sets Uj =
{
i ∈ V : y∗i ≥ y∗j

}
. For each j ∈ V , construct a Steiner tree Tj on the vertices Uj ,

and return the best overall solution out of the |V | solutions constructed. Unfortunately, we do

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.5 The uncapacitated facility location problem 91

not know how to analyze such an algorithm directly. However, we will see in Chapter 5 that
this algorithm can be analyzed as a deterministic variant of a randomized algorithm. We will
return to the prize-collecting Steiner tree problem in Section 5.7.

4.5 The uncapacitated facility location problem

We now start our consideration of the uncapacitated facility location problem. We will return
to this problem many times, since many of the techniques we discuss in this book are useful
for devising approximation algorithms for this problem. In the uncapacitated facility location
problem, we have a set of clients or demands D and a set of facilities F . For each client j ∈ D
and facility i ∈ F , there is a cost cij of assigning client j to facility i. Furthermore, there is a
cost fi associated with each facility i ∈ F . The goal of the problem is to choose a subset of
facilities F ′ ⊆ F so as to minimize the total cost of the facilities in F ′ and the cost of assigning
each client j ∈ D to the nearest facility in F ′. In other words, we wish to find F ′ so as to
minimize

∑
i∈F ′ fi+

∑
j∈D mini∈F ′ cij . We call the first part of the cost the facility cost and the

second part of the cost the assignment cost or service cost. We say that we open the facilities
in F ′.

The uncapacitated facility location problem is a simplified variant of a problem that arises
in many different contexts. In one large computer company, a version of this problem occurs
in deciding where to build or lease facilities to warehouse expensive parts needed for computer
repair. The clients represent customers with service agreements that might require the use of
the part. The facility cost is the cost of building or leasing the warehouse, and the assignment
cost is the distance from the warehouse to the customer. In this problem it is also important
to ensure that almost all of the customers are within a four-hour trip of a facility containing
the needed part. Other typical complications include limits on the number of clients that can
be served by a given facility (the capacitated facility location problem), and multiple types
of facilities (for example, both distribution centers and warehouses, with clients assigned to
warehouses, and warehouses assigned to distribution centers).

In its full generality, the uncapacitated facility location problem is as hard to approximate
as the set cover problem (see Exercise 1.4). However, it is relatively common for facilities and
clients to be points in a metric space, with assignment costs cij representing the distance from
facility i to client j. For this reason, we will from here on consider the metric uncapacitated
facility location problem, in which clients and facilities correspond to points in a metric space,
and assignment costs obey the triangle inequality. More precisely, given clients j, l and facilities
i, k, we have that cij ≤ cil+ ckl+ ckj (see Figure 4.3). Since the clients and facilities correspond
to points in a metric space, we assume that we have distances cii′ between two facilities i and
i′, and cjj′ between two clients j and j′; we will not need this assumption in this section, but it
will prove useful in later sections. We are able to give much better approximation algorithms
for the metric version of the problem than we can for the more general version.

Our first approach to this problem will be to apply a deterministic rounding technique,
from which we will get a 4-approximation algorithm. In subsequent chapters we will get im-
proved performance guarantees by applying randomized rounding, the primal-dual method,
local search, and greedy techniques. We begin by defining an integer programming formulation
for the problem. We will have decision variables yi ∈ {0, 1} for each facility i ∈ F ; if we decide
to open facility i, then yi = 1 and yi = 0 otherwise. We also introduce decision variables
xij ∈ {0, 1} for all i ∈ F and all j ∈ D; if we assign client j to facility i, then xij = 1 while
xij = 0 otherwise. Then the objective function is relatively simple: we wish to minimize the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

92 Deterministic rounding of linear programs

i

j

l
k

Figure 4.3: An illustration of the inequality obeyed by the assignment costs. The
circles represent clients, and the squares represent facilities. For clients j, l and facilities
i, k, cij ≤ cil + ckl + ckj .

total facility cost plus the total assignment cost. This can be expressed as

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij .

We need to ensure that each client j ∈ D is assigned to exactly one facility. This can be
expressed via the following constraint: ∑

i∈F
xij = 1.

Finally, we need to make sure that clients are assigned to facilities that are open. We achieve
this by introducing the constraint xij ≤ yi for all i ∈ F and j ∈ D; this ensures that whenever
xij = 1 and client j is assigned to facility i, then yi = 1 and the facility is open. Thus, the integer
programming formulation of the uncapacitated facility location problem can be summarized as
follows:

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij (4.6)

subject to
∑
i∈F

xij = 1, ∀j ∈ D, (4.7)

xij ≤ yi, ∀i ∈ F, j ∈ D, (4.8)

xij ∈ {0, 1}, ∀i ∈ F, j ∈ D,

yi ∈ {0, 1}, ∀i ∈ F.

As usual, we obtain a linear programming relaxation from the integer program by replacing
the constraints xij ∈ {0, 1} and yi ∈ {0, 1} with xij ≥ 0 and yi ≥ 0.

It will be useful for us to consider the dual of the linear programming relaxation. Although
one can derive the dual in a purely mechanical way, we will instead motivate it as a natural
lower bound on the uncapacitated facility location problem. The most trivial lower bound for
this problem is to ignore the facility costs entirely (that is, to pretend that the cost fi = 0, for
each i ∈ F). In that case, the optimal solution is to open all facilities and to assign each client
to its nearest facility: if we set vj = mini∈F cij , then this lower bound is

∑
j∈D vj . How can this

be improved? Suppose that each facility takes its cost fi, and divides it into shares apportioned
among the clients: fi =

∑
j∈D wij , where each wij ≥ 0. The meaning of this share is that client

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.5 The uncapacitated facility location problem 93

j needs to pay this share only if it uses facility i. In this way, we no longer charge explicitly for
opening a facility, but still recoup some of its cost. But in this way, we still have the situation
that all of the (explicit) facility costs are 0, and so the optimal solution is to assign each client
to the facility where the net cost is minimum; that is, we now can set vj = mini∈F (cij + wij),
and then

∑
j∈D vj is a lower bound on the true optimal value. Of course, we did not specify

a way to determine each client’s share of facility cost fi; we can make this an optimization
problem by setting the shares so as to maximize the value of the resulting lower bound. If we
allow vj to be any value for which vj ≤ cij +wij and maximize

∑
j∈D vj , then at the optimum

vj will be set to the smallest such right-hand side. Thus, we have derived the following form
for this lower bound, which is the dual linear program for the primal linear program (4.6):

maximize
∑
j∈D

vj

subject to
∑
j∈D

wij ≤ fi, ∀i ∈ F,

vj − wij ≤ cij , ∀i ∈ F, j ∈ D,

wij ≥ 0, ∀i ∈ F, j ∈ D.

If Z∗
LP is the optimal value of the primal linear program (4.6) and OPT is the value of the

optimal solution to the instance of the uncapacitated facility location problem, then for any
feasible solution (v, w) to the dual linear program, by weak duality we have that

∑
j∈D vj ≤

Z∗
LP ≤ OPT.

Of course, as with any primal-dual linear programming pair, we have a correspondence
between primal constraints and dual variables, and vice versa. For example, the dual variable
wij corresponds to the primal constraint xij ≤ yi, and the primal variable xij corresponds to
the dual constraint vj − wij ≤ cij .

We would like to use the information from an optimal solution (x∗, y∗) to the primal LP
to determine a low-cost integral solution. In particular, if a client j is fractionally assigned to
some facility i — that is, x∗ij > 0 — then perhaps we should also consider assigning j to i. We
formalize this by saying that i is a neighbor of j (see Figure 4.4).

Definition 4.10: Given an LP solution x∗, we say that facility i neighbors client j if x∗ij > 0.
We let N(j) = {i ∈ F : x∗ij > 0}.

The following lemma shows a connection between the cost of assigning j to a neighboring
facility and the value of the dual variables.

Lemma 4.11: If (x∗, y∗) is an optimal solution to the facility location LP and (v∗, w∗) is an
optimal solution to its dual, then x∗ij > 0 implies cij ≤ v∗j .

Proof. By complementary slackness, x∗ij > 0 implies v∗j −w∗
ij = cij . Furthermore, since w∗

ij ≥ 0,
we have that cij ≤ v∗j .

The following is an intuitive argument about why neighboring facilities are useful. If we
open a set of facilities S such that for all clients j ∈ D, there exists an open facility i ∈ N(j),
and then the cost of assigning j to i is no more than v∗j by Lemma 4.11. Thus, the total
assignment cost is no more than

∑
j∈D v∗j ≤ OPT, since this is the dual objective function.

Unfortunately, such a set of facilities S might have a very high facility cost. What can we
do to have a good facility cost? Here is an idea: suppose we can partition some subset F ′ ⊆ F

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

94 Deterministic rounding of linear programs

i

j

h

l

Figure 4.4: A representation of the neighborhoods N(j) and N2(j). The circles repre-
sent clients, the squares represent facilities, and the edges are drawn between facilities
i and clients k such that xik > 0. The central client is j. The surrounding facilities are
the facilities N(j). The shaded clients are in N2(j).

of the facilities into sets Fk such that each Fk = N(jk) for some client jk. Then if we open the
cheapest facility ik in N(jk), we can bound the cost of ik by

fik = fik
∑

i∈N(jk)

x∗ijk ≤
∑

i∈N(jk)

fix
∗
ijk

,

where the equality follows from constraint (4.7) of the linear program, and the inequality follows
from the choice of ik as the cheapest facility in Fk. Using the LP constraints (4.8) that xij ≤ yi,
we see that

fik ≤
∑

i∈N(jk)

fix
∗
ijk
≤

∑
i∈N(jk)

fiy
∗
i .

If we sum this inequality over all facilities that we open, then we have∑
k

fik ≤
∑
k

∑
i∈N(jk)

fiy
∗
i =

∑
i∈F ′

fiy
∗
i ≤

∑
i∈F

fiy
∗
i ,

where the equality follows since the N(jk) partition F ′. This scheme bounds the facility costs
of open facilities by the facility cost of the linear programming solution.

Opening facilities in this way does not guarantee us that every client will be a neighbor of
an open facility. However, we can take advantage of the fact that assignment costs obey the
triangle inequality and make sure that clients are not too far away from an open facility. We
first define an augmented version of neighborhood (see also Figure 4.4).

Definition 4.12: Let N2(j) denote all neighboring clients of the neighboring facilities of client
j; that is, N2(j) = {k ∈ D : client k neighbors some facility i ∈ N(j)}.

Consider Algorithm 4.2. The algorithm loops until all clients are assigned to some facility.
In each loop it picks the client jk that minimizes v∗j ; we will see in a little bit why this is
helpful. It then opens the cheapest facility ik in the neighborhood of N(jk), and assigns jk and

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.6 The bin-packing problem 95

Solve LP, get optimal primal solution (x∗, y∗) and dual solution (v∗, w∗)
C ← D
k ← 0
while C ̸= ∅ do

k ← k + 1
Choose jk ∈ C that minimizes v∗j over all j ∈ C

Choose ik ∈ N(jk) to be the cheapest facility in N(jk)
Assign jk and all unassigned clients in N2(jk) to ik
C ← C − {jk} −N2(jk)

Algorithm 4.2: Deterministic rounding algorithm for the uncapacitated facility location problem.

all previously unassigned clients in N2(jk) to ik. Note that by assigning the clients in N2(jk)
to ik, we ensure that the neighborhoods N(jk) form a partition of a subset of the facilities:
because no client in the neighborhood of any facility of N(jk) is unassigned after iteration k,
no facility of N(jk) is a neighbor of some client jl chosen in later iterations (l > k).

We can now analyze the performance of this algorithm.

Theorem 4.13: Algorithm 4.2 is a 4-approximation algorithm for the uncapacitated facility
location problem.

Proof. We have shown above that
∑

k fik ≤
∑

i∈F fiy
∗
i ≤ OPT . Fix an iteration k, and let

j = jk and i = ik. By Lemma 4.11, the cost of assigning j to i is cij ≤ v∗j . As depicted in Figure

4.4, consider the cost of assigning an unassigned client l ∈ N2(j) to facility i, where client l
neighbors facility h that neighbors client j; then, applying the triangle inequality and Lemma
4.11, we see that

cil ≤ cij + chj + chl ≤ v∗j + v∗j + v∗l .

Recall that we have selected client j in this iteration because, among all currently unassigned
clients, it has the smallest dual variable v∗j . However, l is also still unassigned, and so we
know that v∗j ≤ v∗l . Thus, we can conclude that cil ≤ 3v∗l . Combining all of these bounds, we
see that the solution constructed has facility cost at most OPT and assignment cost at most
3
∑

j∈D v∗j ≤ 3OPT (by weak duality), for an overall cost of at most 4 times optimal.

In Section 5.8, we will see how randomization can help us improve this algorithm to a 3-
approximation algorithm. In subsequent chapters we will improve the performance guarantee
still further. The following is known about the hardness of approximating the metric uncapac-
itated facility location problem via a reduction from the set cover problem.

Theorem 4.14: There is no α-approximation algorithm for the metric uncapacitated facility
location problem with constant α < 1.463 unless each problem in NP has an O(nO(log log n)) time
algorithm.

We will prove this theorem in Section 16.2.

4.6 The bin-packing problem

We return to the bin-packing problem, for which we gave an asymptotic polynomial-time ap-
proximation scheme in Section 3.3. Recall that in the bin-packing problem, we are given a
collection of n items (or pieces), where item j is of size aj ∈ (0, 1], j = 1, . . . , n, and we wish

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

96 Deterministic rounding of linear programs

to assign each item to a bin, so that the total size assigned to each bin is at most 1; the ob-
jective is to use as few bins as possible. We showed previously that for each ϵ > 0, there is a
polynomial-time algorithm that computes a solution with at most (1 + ϵ)OPTBP (I) + 1 bins,
where OPTBP (I) is the optimal value for instance I of the problem. We shall improve on that
result significantly; we shall give a polynomial-time algorithm that finds a solution that uses at
most OPTBP (I) +O(log2(OPTBP (I))) bins. In obtaining this new bound, there will be three
key components: an integer programming formulation to replace the dynamic programming for-
mulation, and the integer program will be approximately solved by rounding its LP relaxation;
an improved grouping scheme, which we call the harmonic grouping scheme; and an ingenious
recursive application of the previous two components.

We first present the integer programming formulation on which the new algorithm will be
based. Suppose that we group pieces of identical size, so that there are b1 pieces of the largest
size s1, b2 of the second largest size s2, . . . , bm pieces of the smallest size sm. Consider the ways
in which a single bin can be packed. The contents of each bin can be described by an m-tuple
(t1, . . . , tm), where ti indicates the number of pieces of size si that are included. We shall call
such an m-tuple a configuration if

∑
i tisi ≤ 1; that is, the total size of the contents of the bin

is at most 1, and so each configuration corresponds to one feasible way to pack a bin. There
might be an exponential number of configurations. Let N denote the number of configurations,
and let T1, . . . , TN be a complete enumeration of them, where tij denotes the ith component of
Tj . We introduce a variable xj for each Tj that specifies the number of bins packed according
to configuration Tj ; that is, xj is an integer variable. The total number of bins used can be
computed by summing these variables. If we pack xj bins according to configuration Tj , then
this packs tijxj pieces of size si, i = 1, . . . ,m. In this way, we can restrict attention to feasible
solutions by requiring that we pack at least bi pieces of size si, in total. This leads to the
following integer programming formulation of the bin-packing problem; this is sometimes called
the configuration integer program:

minimize
N∑
j=1

xj (4.9)

subject to

N∑
j=1

tijxj ≥ bi, i = 1, . . . ,m,

xj ∈ N, j = 1, . . . , N.

This formulation was introduced in the context of designing practical algorithms to find optimal
solutions to certain bin-packing problems.

Our algorithm is based on solving the linear programming relaxation of this integer program;
we let OPTLP (I) denote the optimal value of this linear program. If we recall that SIZE(I) =∑m

i=1 sibi, then clearly we have that

SIZE(I) ≤ OPTLP (I) ≤ OPTBP (I).

Recall from Section 4.3 that the ellipsoid method is a polynomial-time algorithm for linear
programs that have a polynomial number of variables, and for which there is a polynomial-time
separation oracle to find a violated constraint. The configuration LP has few constraints, but
an exponential number of variables. However, its dual linear program will then have m variables

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.6 The bin-packing problem 97

and an exponential number of constraints, and is as follows:

maximize

m∑
i=1

biyi

subject to

m∑
i=1

tijyi ≤ 1, j = 1, . . . , N,

yi ≥ 0, i = 1, . . . ,m.

We observe that the problem of deciding whether or not there is a violated dual constraint
given dual variables y is simply a knapsack problem. If we view yi as the value of piece i, then
the dual constraints say that for all possible ways of packing pieces into a bin (or knapsack)
of size 1, the total value is at most 1. Hence, to obtain a separation oracle, we can use an
algorithm for the knapsack problem to decide, given values y, whether or not there is a way of
packing pieces into a bin of size 1 that has value more than 1; such a packing will correspond
to a violated dual constraint. Since the knapsack problem is NP-hard, it would seem that it
is not possible to obtain a polynomial-time separation oracle. However, by delving deeper into
the analysis of the ellipsoid method, one can show that a fully polynomial-time approximation
scheme for the knapsack problem (as given in Section 3.1) is sufficient to ensure the polynomial-
time convergence of the ellipsoid method; we defer the details of how this can be done until
Section 15.3, after which we give the problem as an exercise (Exercise 15.8). Hence, one can
approximately solve the configuration linear program, within an additive error of 1, in time
bounded by a polynomial in m and log(n/sm).

In Section 3.3, one of the key ingredients for the asymptotic polynomial-time approximation
scheme is a result that enables us to ignore pieces smaller than a given threshold γ. By applying
this result, Lemma 3.10, we can assume, without loss of generality, that the smallest piece size
sm ≥ 1/SIZE(I), since smaller pieces can again be packed later without changing the order of
magnitude of the additive error.

The harmonic grouping scheme works as follows: process the pieces in order of decreasing
size, close the current group whenever its total size is at least 2, and then start a new group
with the next piece. Let r denote the number of groups, let Gi denote the ith group, and let
ni denote the number of pieces in Gi. Observe that since we sort the pieces from largest to
smallest, it follows that for i = 2, . . . , r − 1, we have that ni ≥ ni−1. (For i = r, the group
Gr need not have total size at least 2.) As in the proof of Lemma 3.11, from a given input I
we form a new instance I ′, where a number of pieces are discarded and packed separately. For
each i = 2, 3, . . . , r − 1, we put ni−1 pieces in I ′ of size equal to the largest piece in Gi and
discard the remaining pieces. In effect, we discard G1, Gr, and the ni − ni−1 smallest pieces in
Gi, i = 2, . . . , r − 1, while increasing the size of the remaining pieces in a group to be equal to
the largest one. Figure 4.5 shows the effect of the harmonic grouping on one input.

First of all, it should be clear that any packing of the rounded instance I ′ can be used to
pack those pieces of the original instance that were not discarded; there is a natural mapping
from any nondiscarded piece in the original instance to a piece at least as large in I ′. The
following lemma gives two key properties of the harmonic grouping scheme.

Lemma 4.15: Let I ′ be the bin-packing input obtained from an input I by applying the harmonic
grouping scheme. The number of distinct piece sizes in I ′ is at most SIZE(I)/2; the total size
of all discarded pieces is O(log SIZE(I)).

Proof. The first claim of the lemma is easy: each distinct piece size in I ′ corresponds to one

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

98 Deterministic rounding of linear programs

0

1

0

1

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

I

I
′

G1

n1 = 2

︷︸︸︷

G6

n6 = 7

︷ ︸︸ ︷

G5

n5 = 6

︷ ︸︸ ︷

G4

n4 = 4

︷ ︸︸ ︷

G3

n3 = 3

︷ ︸︸ ︷

G2

n2 = 3

︷ ︸︸ ︷

Figure 4.5: An input before and after harmonic grouping.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.6 The bin-packing problem 99

BinPack(I)

if SIZE(I) < 10 then
Pack remaining pieces using First Fit

else
Apply harmonic grouping scheme to create instance I ′; pack discards in

O(log SIZE(I)) bins using First Fit
Let x be optimal solution to configuration LP for instance I ′

Pack ⌊xj⌋ bins in configuration Tj for j = 1, . . . , N ; call the packed pieces instance I1
Let I2 be remaining pieces from I ′

Pack I2 via BinPack(I2)

Algorithm 4.3: Deterministic rounding algorithm for packing large pieces of the bin-packing problem.

of the groups G2, . . . , Gr−1; each of these groups has size at least 2, and so there are at most
SIZE(I)/2 of them. To prove the second property, suppose, for the moment, that each group
Gi has at most one more piece than the previous group Gi−1, i = 2, . . . , r−1. Consequently, we
discard at most one item from each of the groups G2, . . . , Gr−1. To bound the total size of the
discarded pieces, the total size of each group is at most 3, and so the total size of G1 and Gr

is at most 6. Furthermore, the size of the smallest piece in group Gi is at most 3/ni. Since we
discard a piece from Gi, i = 2, . . . , r− 1, only when Gi is the first group that has ni pieces and
we discard its smallest piece, the total size of these discarded pieces is at most

∑nr
j=1 3/j. Recall

from Section 1.6 that the kth harmonic number, Hk, is defined to be Hk = 1+ 1
2+

1
3+· · ·+

1
k and

that Hk = O(log k). Since each piece has size at least 1/ SIZE(I), we have that nr ≤ 3 SIZE(I),
and so we see that the total size of the discarded pieces is O(log SIZE(I)).

Now consider the general case in which each group need not be only one larger than the
previous one. Consider any group Gi that contains more pieces than Gi−1, i = 2, . . . , r − 1;
more precisely, suppose that it contains k = ni − ni−1 more pieces. The k discarded pieces are
of size at most 3(k/ni) since they are the k smallest of ni pieces of total at most 3. We can
upper bound this value by adding k terms, each of which is at least 3/ni; that is, the total
size of these discarded pieces is at most

∑ni
j=ni−1+1 3/j. Adding these terms together (for all

groups), we get that the total size of the discarded pieces is at most
∑nr

j=1 3/j, which we have
already seen is O(log SIZE(I)).

The harmonic grouping scheme can be used to design an approximation algorithm that
always finds a packing with OPTLP (I) + O(log2(SIZE(I))) bins. This algorithm uses the har-
monic scheme recursively. The algorithm applies the grouping scheme, packs the discarded
pieces using the First-Fit algorithm (or virtually any other simple algorithm), and solves the
linear program for the rounded instance. The fractional variables of the LP are rounded down
to the nearest integer to obtain a packing of a subset of the pieces. This leaves some pieces
unpacked, and these are handled by a recursive call until the total size of the remaining pieces is
less than a specified constant (say, for example, 10). The algorithm is summarized in Algorithm
4.3.

We shall use I to denote the original instance, I ′ to denote the instance on which the first
linear program is solved, and I1 and I2 to denote the pieces packed based on the integer part
of the fractional solution and those left over for the recursive call, respectively. The key to the
analysis of this algorithm is the following lemma.

Lemma 4.16: For any bin-packing input I, from which the harmonic grouping scheme produces

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

100 Deterministic rounding of linear programs

an input I ′, which is then partitioned into I1 and I2, based on the integer and fractional parts
of an optimal solution to the configuration linear program, we have that

OPTLP (I1) + OPTLP (I2) ≤ OPTLP (I
′) ≤ OPTLP (I). (4.10)

Proof. The crucial property of the harmonic grouping scheme is that each piece in the input
I ′ can be mapped to a distinct piece in the original input I of no lesser size. By inverting this
mapping, any feasible solution for I can be interpreted as a feasible solution for I ′ (where each
piece in I that is not the image of a piece in I ′ is simply deleted). Hence, the optimal value for
the bin-packing problem for I ′ is at most the optimal value for I. Similarly, each configuration
for I induces a corresponding configuration for I ′, and so we see that

OPTLP (I
′) ≤ OPTLP (I).

By definition, if x is an optimal solution to the configuration LP for I ′ used to construct I1 and
I2, we have that ⌊xj⌋, j = 1, . . . , N , is a feasible solution for the configuration LP for I1 (which
is even integer!), and xj − ⌊xj⌋, j = 1, . . . , N , is a feasible solution for the configuration LP for

I2. Hence, the sum of the optimal values for these two LPs is at most
∑N

j=1 xj = OPTLP (I
′).

In fact, one can prove that OPTLP (I1)+OPTLP (I2) = OPTLP (I
′), but this is not needed.

Each level of the recursion partitions the pieces into one of three sets: those pieces packed
by the integer part of the LP solution, those pieces packed after having been discarded by the
grouping scheme, and those pieces packed by a recursive call of the algorithm. (So, for the
top level of the recursion, the first corresponds to I1 and the last corresponds to I2.) If one
focuses on those pieces that fall in the first category over all recursive calls of the algorithm, the
inequality (4.10) implies that the sum of the LP values of these inputs is at most OPTLP (I).

This implies that the only error introduced in each level of recursion is caused by the
discarded pieces. We have bounded the total size of the pieces discarded in one level of recursion,
and so we need to bound the number of levels of recursion. We will do this by showing that the
total size of the input called in the recursive call is at most half the total size of the original
input.

The recursive input I2 is the leftover that corresponds to the fractional part of the optimal
configuration LP solution x; hence, we can bound its total size by the sum of the fractions∑N

j=1 xj − ⌊xj⌋. A very crude upper bound on this sum is to count the number of nonzeroes
in the optimal LP solution x. We claim that the number of nonzeroes in the optimal solution
x can be bounded by the number of constraints in the configuration LP. We leave this as an
exercise to the reader (Exercise 4.5), though it follows directly from the properties of basic
optimal solutions, which we discuss in Chapter 11 and Appendix A. The number of constraints
is the number of distinct piece sizes in I ′. By Lemma 4.15, this is at most SIZE(I)/2.

By combining all of these arguments, we see that the total size of I2, that is, SIZE(I2),
is at most SIZE(I)/2. Hence, the size of the instance decreases by a factor of 2 in each level
of recursion; the recursion terminates when the total size remaining is less than 10, and so
there are O(log SIZE(I)) levels. In each of these levels, we use O(log SIZE(I)) bins to pack the
discarded pieces; since SIZE(I) ≤ OPTLP (I) ≤ OPTBP (I), we obtain the following theorem.

Theorem 4.17: The recursive application of the harmonic grouping scheme yields a polynomial-
time approximation algorithm for the bin-packing problem that uses OPTBP (I)+O(log2(OPTBP (I)))
bins.

It is an important open question whether this result can be improved; it is possible that the
bin-packing problem can be approximated within an additive error of 1; however, showing that
this is impossible would also be a striking advance.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.6 The bin-packing problem 101

Exercises

4.1 The following problem arises in telecommunications networks, and is known as the SONET
ring loading problem. The network consists of a cycle on n nodes, numbered 0 through
n − 1 clockwise around the cycle. Some set C of calls is given; each call is a pair (i, j)
originating at node i and destined to node j. The call can be routed either clockwise or
counterclockwise around the ring. The objective is to route the calls so as to minimize
the total load on the network. The load Li on link (i, i+1(mod n)) is the number of calls
routed through link (i, i+ 1(mod n)), and the total load is max1≤i≤n Li.

Give a 2-approximation algorithm for the SONET ring loading problem.

4.2 Consider the scheduling problem of Section 4.2, but without release dates. That is, we
must schedule jobs nonpreemptively on a single machine to minimize the weighted sum
of completion times

∑n
j=1wjCj . Suppose that jobs are indexed such that w1

p1
≥ w2

p2
≥

· · · ≥ wn
pn

. Then show it is optimal to schedule job 1 first, job 2 second, and so on. This
scheduling rule is called Smith’s rule.

4.3 Recall from Exercise 2.3 the concept of precedence constraints between jobs in a scheduling
problem: We say i ≺ j if in any feasible schedule, job i must be completely processed
before job j begins processing. Consider a variation of the single-machine scheduling
problem from Section 4.2 in which we have precedence constraints but no release dates.
That is, we are given n jobs with processing times pj > 0 and weights wj ≥ 0, and the
goal is to find a nonpreemptive schedule on a single machine that is feasible with respect
to the precedence constraints ≺ and that minimizes the weighted sum of completed times∑n

j=1wjCj . Use the ideas of Section 4.2 to give a 2-approximation algorithm for this
problem.

4.4 In the algorithm for the bin-packing problem, we used harmonic grouping in each iter-
ation of the algorithm to create an instance I ′ from I. Consider the following group-
ing scheme: for i = 0, . . . , ⌈log2 SIZE(I)⌉, create a group Gi such that all pieces from
I of size (2−(i+1), 2−i] are placed in group Gi. In each group Gi, create subgroups
Gi,1, Gi,2, . . . , Gi,ki by arranging the pieces in Gi from largest to smallest and putting the
4 ·2i largest in the first subgroup, the next 4 ·2i in the next subgroup, and so on. Now cre-
ate instance I ′ from I in the following manner: for each i = 0, . . . , ⌈log2 SIZE(I)⌉, discard
subgroups Gi,1 and Gi,ki (i.e., the first and last subgroups of Gi), and for j = 2, . . . , ki−1
round each piece of subgroup Gi,j to the size of the largest piece in Gi,j .

Prove that by using this grouping scheme within the bin-packing algorithm, we obtain an
algorithm that uses at most OPTBP (I) +O(log2(OPTBP (I))) for all instances I.

4.5 Show that there exists an optimal solution x to the linear programming relaxation of the
integer program (4.9) that has at most m nonzero entries, where m is the number of
different piece sizes.

4.6 Let G = (A,B,E) be a bipartite graph; that is, each edge (i, j) ∈ E has i ∈ A and j ∈ B.
Assume that |A| ≤ |B| and that we are given nonnegative costs cij ≥ 0 for each edge
(i, j) ∈ E. A complete matching of A is a subset of edges M ⊆ E such that each vertex in
A has exactly one edge of M incident on it, and each vertex in B has at most one edge of
M incident on it. We wish to find a minimum-cost complete matching. We can formulate
an integer program for this problem in which we have an integer variable xij ∈ {0, 1} for

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

102 Deterministic rounding of linear programs

each edge (i, j) ∈ E, where xij = 1 if (i, j) is in the matching, and 0 otherwise. Then the
integer program is as follows:

minimize
∑

(i,j)∈E

cijxij

subject to
∑

j∈B:(i,j)∈E

xij = 1, ∀i ∈ A,

∑
i∈A:(i,j)∈E

xij ≤ 1, ∀j ∈ B,

xij ∈ {0, 1} ∀(i, j) ∈ E.

Consider the linear programming relaxation of the integer program in which we replace
the integer constraints xij ∈ {0, 1} with xij ≥ 0 for all (i, j) ∈ E.

(a) Show that given any fractional solution to the linear programming relaxation, it is
possible to find in polynomial time an integer solution that costs no more than the
fractional solution. (Hint: Given a set of fractional variables, find a way to modify
their values repeatedly such that the solution stays feasible, the overall cost does
not increase, and at least one additional fractional variable becomes 0 or 1.) Con-
clude that there is a polynomial-time algorithm for finding a minimum-cost complete
matching.

(b) Show that any extreme point of the linear programming relaxation has the property
that xij ∈ {0, 1} for all (i, j) ∈ E. (Recall that an extreme point x is a feasible
solution that cannot be expressed as λx1 + (1 − λ)x2 for 0 < λ < 1 and feasible
solutions x1 and x2 distinct from x.)

4.7 This exercise introduces a deterministic rounding technique called pipage rounding, which
builds on ideas similar to those used in Exercise 4.6. To illustrate this technique, we will
consider the problem of finding a maximum cut in a graph with a constraint on the size
of each part. In the maximum cut problem, we are given as input an undirected graph
G = (V,E) with nonnegative weights wij ≥ 0 for all (i, j) ∈ E. We wish to partition the
vertex set into two parts U and W = V − U so as to maximize the weight of the edges
whose two endpoints are in different parts. We will also assume that we are given an
integer k ≤ |V |/2, and we must find a partition such that |U | = k (we will consider the
maximum cut problem without this constraint in Sections 5.1 and 6.2).

(a) Show that the following nonlinear integer program models the maximum cut problem
with a constraint on the size of the parts:

maximize
∑

(i,j)∈E

wij(xi + xj − 2xixj)

subject to
∑
i∈V

xi = k,

xi ∈ {0, 1} , ∀i ∈ V.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

4.6 The bin-packing problem 103

(b) Show that the following linear program is a relaxation of the problem:

maximize
∑

(i,j)∈E

wijzij

subject to zij ≤ xi + xj , ∀(i, j) ∈ E,

zij ≤ 2− xi − xj , ∀(i, j) ∈ E,∑
i∈V

xi = k,

0 ≤ zij ≤ 1, ∀(i, j) ∈ E,

0 ≤ xi ≤ 1, ∀i ∈ V.

(c) Let F (x) =
∑

(i,j)∈E wij(xi+xj−2xixj) be the objective function from the nonlinear
integer program. Show that for any (x, z) that is a feasible solution to the linear
programming relaxation, F (x) ≥ 1

2

∑
(i,j)∈E wijzij .

(d) Argue that given a fractional solution x, for two fractional variables xi and xj , it is
possible to increase one by ϵ > 0 and decrease the other by ϵ such that F (x) does
not decrease and one of the two variables becomes integer.

(e) Use the arguments above to devise a 1
2 -approximation algorithm for the maximum

cut problem with a constraint on the size of the parts.

Chapter Notes

Early deterministic LP rounding algorithms include the set cover algorithm given in Section 1.3
due to Hochbaum [160] and the bin-packing algorithm of Section 4.6 due to Karmarkar and Karp
[187]. Both of these papers appeared in 1982. Work on deterministic rounding approximation
algorithms did not precede this date by much because the first polynomial-time algorithms for
solving linear programs did not appear until the late 1970s with the publication of the ellipsoid
method.

As discussed in the introduction to the chapter, the easiest way to round a fractional solution
is to round some variables up to 1 and others down to 0. This is the case for the prize-collecting
Steiner tree problem introduced in Section 4.4. The prize-collecting Steiner tree problem is a
variant of a problem introduced by Balas [31]. This version of the problem and the algorithm
of this section are due to Bienstock, Goemans, Simchi-Levi, and Williamson [48].

The ellipsoid method discussed in Section 4.3 as a polynomial-time algorithm for solving
linear programs was first given by Khachiyan [189], building on earlier work for non-linear
programs by Shor [267]. The algorithm that uses a separation oracle for solving linear programs
with an exponential number of constraints is due to Grötschel, Lovász, and Schrijver [144]. An
extended treatment of the topic can be found in the book of Grötschel, Lovász, and Schrijver
[145]; a survey-level treatment can be found in Bland, Goldfarb, and Todd [50].

At a high level, the ellipsoid method works as follows. Suppose we are trying to solve
the linear program (4.4) from Section 4.3. Initially, the algorithm finds an ellipsoid in ℜn

containing all basic feasible solutions for the linear program (see Chapter 11 or Appendix
A for discussion of basic feasible and basic optimal solutions). Let x̃ be the center of the
ellipsoid. The algorithm calls the separation oracle with x̃. If x̃ is feasible, it creates a constraint∑n

j=1 djxj ≤
∑n

j=1 dj x̃j , since a basic optimal solution must have objective function value no
greater than the feasible solution x̃ (this constraint is sometimes called an objective function

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

104 Deterministic rounding of linear programs

cut). If x̃ is not feasible, the separation oracle returns a constraint
∑n

j=1 aijxj ≥ bi that is
violated by x̃. In either case, we have a hyperplane through x̃ such that a basic optimal
solution to the linear program (if one exists) must lie on one side of the hyperplane; in the case
of a feasible x̃ the hyperplane is

∑n
j=1 djxj ≤

∑n
j=1 dj x̃j , and in the case of an infeasible x̃

the hyperplane is
∑n

j=1 aijxj ≥
∑n

j=1 aij x̃j . The hyperplane containing x̃ splits the ellipsoid in
two. The algorithm then finds a new ellipsoid containing the appropriate half of the original
ellipsoid, and then considers the center of the new ellipsoid. This process repeats until the
ellipsoid is sufficiently small that it can contain at most one basic feasible solution, if any; this
then must be a basic optimal solution if one exists. The key to the proof of the running time of
the algorithm is to show that after O(n) iterations, the volume of the ellipsoid has dropped by
a constant factor; then by relating the size of the initial to the final ellipsoid, the polynomial
bound on the running time can be obtained.

As we saw in the chapter, sometimes rounding algorithms are more sophisticated than
simply choosing large fractional variables and rounding up. The algorithm for the unweighted
single-machine scheduling problem in Section 4.1 is due to Phillips, Stein, and Wein [241].
The algorithm for the weighted case in Section 4.2 is due to Hall, Schulz, Shmoys, and Wein
[155]; the linear programming formulation used in the section was developed by Wolsey [292]
and Queyranne [243], and the separation oracle for the linear program in Section 4.3 is due to
Queyranne [243]. The algorithm for the uncapacitated facility location problem in Section 4.5 is
due to Chudak and Shmoys [77], building on earlier work of Shmoys, Tardos, and Aardal [264].
The hardness result of Theorem 4.14 is due to Guha and Khuller [146]. The pipage rounding
technique in Exercise 4.7 for the maximum cut problem with size constraints is due to Ageev
and Sviridenko [3, 2].

Smith’s rule in Exercise 4.2 is due to Smith [270]. The result of Exercise 4.3 is due to Hall,
Schulz, Shmoys, and Wein [155]. Exercise 4.4 is due to Karmarkar and Karp [187]. Exercise
4.6 is essentially due to Birkhoff [49].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 5

Random sampling and randomized

rounding of linear programs

Sometimes it turns out to be useful to allow our algorithms to make random choices; that is, the
algorithm can flip a coin, or flip a biased coin, or draw a value uniformly from a given interval.
The performance guarantee of an approximation algorithm that makes random choices is then
the expected value of the solution produced relative to the value of an optimal solution, where
the expectation is taken over the random choices of the algorithm.

At first this might seem like a weaker class of algorithm. In what sense is there a perfor-
mance guarantee if it only holds in expectation? However, in most cases we will be able to
show that randomized approximation algorithms can be derandomized: that is, we can use a
certain algorithmic technique known as the method of conditional expectations to produce a
deterministic version of the algorithm that has the same performance guarantee as the random-
ized version. Of what use then is randomization? It turns out that it is often much simpler
to state and analyze the randomized version of the algorithm than to state and analyze the
deterministic version that results from derandomization. Thus randomization gains us simplic-
ity in our algorithm design and analysis, while derandomization ensures that the performance
guarantee can be obtained deterministically.

In a few cases, it is easy to state the deterministic, derandomized version of an algorithm,
but we only know how to analyze the randomized version. Here the randomized algorithm
allows us to analyze an algorithm that we are unable to analyze otherwise. We will see an
example of this when we revisit the prize-collecting Steiner tree problem in Section 5.7.

It is also sometimes the case that we can prove that the performance guarantee of a random-
ized approximation algorithm holds with high probability. By this we mean that the probability
that the performance guarantee does not hold is one over some polynomial in the input size of
the problem. Usually we can make this polynomial as large as we want (and thus the probability
as small as we want) by weakening the performance guarantee by some constant factor. Here
derandomization is less necessary, though sometimes still possible by using more sophisticated
techniques.

We begin the chapter by looking at very simple randomized algorithms for two problems, the
maximum satisfiability problem and the maximum cut problem. Here we show that sampling
a solution uniformly at random from the set of all possible solutions gives a good randomized
approximation algorithm. For the maximum satisfiability problem, we are able to go still further

105

106 Random sampling and randomized rounding of linear programs

and show that biasing our choice yields a better performance guarantee. We then revisit the
idea of using randomized rounding of linear programming relaxations introduced in Section 1.7,
and show that it leads to still better approximation algorithms for the maximum satisfiability
problem, as well as better algorithms for other problems we have seen previously, such as the
prize-collecting Steiner tree problem, the uncapacitated facility location problem, and a single
machine scheduling problem.

We then give Chernoff bounds, which allow us to bound the probability that a sum of random
variables is far away from its expected value. We show how these bounds can be applied to an
integer multicommodity flow problem, which is historically the first use of randomized rounding.
We end with a much more sophisticated use of drawing a random sample, and show that this
technique can be used to 3-color certain kinds of dense 3-colorable graphs with high probability.

5.1 Simple algorithms for MAX SAT and MAX CUT

Two problems will play an especially prominent role in our discussion of randomization in the
design and analysis of approximation algorithms: the maximum satisfiability problem, and the
maximum cut problem. The former will be highlighted in this chapter, whereas the central
developments for the latter will be deferred to the next chapter. However, in this section we
will give a simple randomized 1

2 -approximation algorithm for each problem.

In the maximum satisfiability problem (often abbreviated as MAX SAT), the input consists
of n Boolean variables x1, . . . , xn (each of which may be set to either true or false), m clauses
C1, . . . , Cm (each of which consists of a disjunction (that is, an “or”) of some number of the
variables and their negations – for example, x3∨ x̄5∨x11, where x̄i is the negation of xi), and a
nonnegative weight wj for each clause Cj . The objective of the problem is to find an assignment
of true/false to the xi that maximizes the weight of the satisfied clauses. A clause is said to be
satisfied if one of the unnegated variables is set to true, or one of the negated variables is set
to false. For example, in the clause x3 ∨ x̄5 ∨ x11, the clause is not satisfied only if x3 is set to
false, x5 to true, and x11 to false.

Some terminology will be useful in discussing the MAX SAT problem. We say that a variable
xi or a negated variable x̄i is a literal, so that each clause consists of some number of literals. A
variable xi is called a positive literal and a negated variable x̄i is called a negative literal. The
number of literals in a clause is called its size or length. We will denote the length of a clause
Cj by lj . Clauses of length one are sometimes called unit clauses. Without loss of generality,
we assume that no literal is repeated in a clause (since this does not affect the satisfiability of
the instance), and that at most one of xi and x̄i appears in a clause (since if both xi and x̄i
are in a clause, it is trivially satisfiable). Finally, it is natural to assume that the clauses are
distinct, since we can simply sum the weights of two identical clauses.

A very straightforward use of randomization for MAX SAT is to set each xi to true inde-
pendently with probability 1/2. An alternate perspective on this algorithm is that we choose
a setting of the variables uniformly at random from the space of all possible settings. It turns
out that this gives a reasonable approximation algorithm for this problem.

Theorem 5.1: Setting each xi to true with probability 1/2 independently gives a randomized
1
2 -approximation algorithm for the maximum satisfiability problem.

Proof. Consider a random variable Yj such that Yj is 1 if clause j is satisfied and 0 otherwise.
Let W be a random variable that is equal to the total weight of the satisfied clauses, so that
W =

∑m
j=1wjYj . Let OPT denote the optimum value of the MAX SAT instance. Then, by

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.1 Simple algorithms for MAX SAT and MAX CUT 107

linearity of expectation, and the definition of the expectation of a 0-1 random variable, we know
that

E[W] =

m∑
j=1

wjE[Yj] =

m∑
j=1

wj Pr[clause Cj satisfied].

For each clause Cj , j = 1, . . . , n, the probability that it is not satisfied is the probability that
each positive literal in Cj is set to false and each negative literal in Cj is set to true, each of
which happens with probability 1/2 independently; hence

Pr[clause Cj satisfied] =

(
1−

(
1

2

)lj
)
≥ 1

2
,

where the last inequality is a consequence of the fact that lj ≥ 1. Hence,

E[W] ≥ 1

2

m∑
j=1

wj ≥
1

2
OPT,

where the last inequality follows from the fact that the total weight is an easy upper bound on
the optimal value, since each weight is assumed to be nonnegative.

Observe that if lj ≥ k for each clause j, then the analysis above shows that the algorithm is a(
1−

(
1
2

)k)
-approximation algorithm for such instances. Thus the performance of the algorithm

is better on MAX SAT instances consisting of long clauses. This observation will be useful to
us later on.

Although this seems like a pretty naive algorithm, a hardness theorem shows that this is
the best that can be done in some cases. Consider the case in which lj = 3 for all clauses j; this
restriction of the problem is sometimes called MAX E3SAT, since there are exactly 3 literals in
each clause. The analysis above shows that the randomized algorithm gives an approximation

algorithm with performance guarantee
(
1−

(
1
2

)3)
= 7

8 . A truly remarkable result shows that

nothing better is possible for these instances unless P = NP.

Theorem 5.2: If there is an (78+ϵ)-approximation algorithm for MAX E3SAT for any constant
ϵ > 0, then P = NP.

We discuss this result further in Section 16.3.

In the maximum cut problem (sometimes abbreviated MAX CUT), the input is an undi-
rected graph G = (V,E), along with a nonnegative weight wij ≥ 0 for each edge (i, j) ∈ E.
The goal is to partition the vertex set into two parts, U and W = V − U , so as to maximize
the weight of the edges whose two endpoints are in different parts, one in U and one in W . We
say that an edge with endpoints in both U and W is in the cut. In the case wij = 1 for each
edge (i, j) ∈ E, we have an unweighted MAX CUT problem.

It is easy to give a 1
2 -approximation algorithm for the MAX CUT problem along the same

lines as the previous randomized algorithm for MAX SAT. Here we place each vertex v ∈ V into
U independently with probability 1/2. As with the MAX SAT algorithm, this can be viewed
as sampling a solution uniformly from the space of all possible solutions.

Theorem 5.3: If we place each vertex v ∈ V into U independently with probability 1/2, then
we obtain a randomized 1

2 -approximation algorithm for the maximum cut problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

108 Random sampling and randomized rounding of linear programs

Proof. Consider a random variable Xij that is 1 if the edge (i, j) is in the cut, and 0 otherwise.
Let Z be the random variable equal to the total weight of edges in the cut, so that Z =∑

(i,j)∈E wijXij . Let OPT denote the optimal value of the maximum cut instance. Then, as
before, by linearity of expectation and the definition of expectation of a 0-1 random variable,
we get that

E[Z] =
∑

(i,j)∈E

wijE[Xij] =
∑

(i,j)∈E

wij Pr[Edge (i, j) in cut].

In this case, the probability that a specific edge (i, j) is in the cut is easy to calculate: since the
two endpoints are placed in the sets independently, they are in different sets with probability
equal to 1

2 . Hence,

E[Z] =
1

2

∑
(i,j)∈E

wij ≥
1

2
OPT,

where the inequality follows directly from the fact that the sum of the (nonnegative) weights
of all edges is obviously an upper bound on the weight of the edges in an optimal cut.

We will show in Section 6.2 that by using more sophisticated techniques we can get a
substantially better performance guarantee for the MAX CUT problem.

5.2 Derandomization

As we mentioned in the introduction to the chapter, it is often possible to derandomize a
randomized algorithm; that is, to obtain a deterministic algorithm whose solution value is as
good as the expected value of the randomized algorithm.

To illustrate, we will show how the algorithm of the preceding section for the maximum
satisfiability problem can be derandomized by replacing the randomized decision of whether to
set xi to true with a deterministic one that will preserve the expected value of the solution.
These decisions will be made sequentially: the value of x1 is determined first, then x2, and so
on.

How should x1 be set so as to preserve the expected value of the algorithm? Assume for the
moment that we will make the choice of x1 deterministically, and all other variables will be set
true with probability 1/2 as before. Then the best way to set x1 is that which will maximize
the expected value of the resulting solution; that is, we should determine the expected value of
W , the weight of satisfied clauses, given that x1 is set to true, and the expected weight of W
given that x1 is set to false, and set x1 to whichever value maximizes the expected value of W .
It makes intuitive sense that this should work, since the maximum is always greater than an
average, and the expected value of W is the average of its expected value given the two possible
settings of x1. In this way, we maintain an algorithmic invariant that the expected value is at
least half the optimum, while having fewer random variables left.

More formally, if E[W |x1 ← true] ≥ E[W |x1 ← false], then we set x1 true, otherwise we set
it to false. Since by the definition of conditional expectations,

E[W] = E[W |x1 ← true] Pr[x1 ← true] + E[W |x1 ← false] Pr[x1 ← false]

=
1

2
(E[W |x1 ← true] + E[W |x1 ← false]) ,

if we set x1 to truth value b1 so as to maximize the conditional expectation, then E[W |x1 ←
b1] ≥ E[W]; that is, the deterministic choice of how to set x1 guarantees an expected value no
less than the expected value of the completely randomized algorithm.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.2 Derandomization 109

Assuming for the moment that we can compute these conditional expectations, the deter-
ministic decision of how to set the remaining variables is similar. Assume that we have set
variables x1, . . . , xi to truth values b1, . . . , bi respectively. How shall we set variable xi+1?
Again, assume that the remaining variables are set randomly. Then the best way to set
xi+1 is so as to maximize the expected value given the previous settings of x1, . . . , xi. So if
E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← true] ≥ E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← false] we set xi+1

to true (thus setting bi+1 to true), otherwise we set xi+1 to false (thus setting bi+1 to false).
Then since

E[W |x1 ← b1, . . . , xi ← bi]

= E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← true] Pr[xi+1 ← true]

+ E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← false] Pr[xi+1 ← false]

=
1

2
(E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← true] + E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← false]) ,

setting xi+1 to truth value bi+1 as described above ensures that

E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← bi+1] ≥ E[W |x1 ← b1, . . . , xi ← bi].

By induction, this implies that E[W |x1 ← b1, . . . , xi ← bi, xi+1 ← bi+1] ≥ E[W].
We continue this process until all n variables have been set. Then since the conditional

expectation given the setting of all n variables, E[W |x1 ← b1, . . . , xn ← bn], is simply the value
of the solution given by the deterministic algorithm, we know that the value of the solution
returned is at least E[W] ≥ 1

2 OPT . Therefore, the algorithm is a 1
2 -approximation algorithm.

These conditional expectations are not difficult to compute. By definition,

E[W |x1 ← b1, . . . , xi ← bi] =
m∑
j=1

wjE[Yj |x1 ← b1, . . . , xi ← bi]

=

m∑
j=1

wj Pr[clause Cj satisfied|x1 ← b1, . . . , xi ← bi].

Furthermore, the probability that clause Cj is satisfied given that x1 ← b1, . . . , xi ← bi is easily
seen to be 1 if the settings of x1, . . . , xi already satisfy the clause, and is 1− (1/2)k otherwise,
where k is the number of literals in the clause that remain unset by this procedure. For example,
consider the clause x3 ∨ x̄5 ∨ x̄7. It is the case that

Pr[clause satisfied|x1 ← true, x2 ← false, x3 ← true] = 1,

since setting x3 to true satisfies the clause. On the other hand,

Pr[clause satisfied|x1 ← true, x2 ← false, x3 ← false] = 1−
(
1

2

)2

=
3

4
,

since the clause will be unsatisfied only if x5 and x7 are set true, an event that occurs with
probability 1/4.

This technique for derandomizing algorithms works with a wide variety of randomized algo-
rithms in which variables are set independently and the conditional expectations are polynomial-
time computable. It is sometimes called the method of conditional expectations, due to its use of
conditional expectations. In particular, an almost identical argument leads to a derandomized
version of the randomized 1

2 -approximation algorithm for the MAX CUT problem. Most of
the randomized algorithms we discuss in this chapter can be derandomized via this method.
The randomized versions of the algorithms are easier to present and analyze, and so we will
frequently not discuss their deterministic variants.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

110 Random sampling and randomized rounding of linear programs

5.3 Flipping biased coins

How might we improve the randomized algorithm for MAX SAT? We will show here that biasing
the probability with which we set xi is actually helpful; that is, we will set xi true with some
probability not equal to 1/2. To do this, it is easiest to start by considering only MAX SAT
instances with no unit clauses x̄i, that is, no negated unit clauses. We will later show that
we can remove this assumption. Suppose now we set each xi to be true independently with
probability p > 1/2. As in the analysis of the previous randomized algorithm, we will need to
analyze the probability that any given clause is satisfied.

Lemma 5.4: If each xi is set to true with probability p > 1/2 independently, then the probability
that any given clause is satisfied is at least min(p, 1−p2) for MAX SAT instances with no negated
unit clauses.

Proof. If the clause is a unit clause, then the probability the clause is satisfied is p, since it
must be of the form xi, and the probability xi is set true is p. If the clause has length at least
two, then the probability that the clause is satisfied is 1 − pa(1 − p)b, where a is the number
of negated variables in the clause and b is the number of unnegated variables in the clause, so
that a+ b = lj ≥ 2. Since p > 1

2 > 1− p, this probability is at least 1− pa+b = 1− plj ≥ 1− p2,
and the lemma is proved.

We can obtain the best performance guarantee by setting p = 1 − p2. This yields p =
1
2(
√
5− 1) ≈ .618. The lemma immediately implies the following theorem.

Theorem 5.5: Setting each xi to true with probability p independently gives a randomized
min(p, 1− p2)-approximation algorithm for MAX SAT instances with no negated unit clauses.

Proof. This follows since

E[W] =

m∑
j=1

wj Pr[clause Cj satisfied] ≥ min(p, 1− p2)

m∑
j=1

wj ≥ min(p, 1− p2)OPT .

We would like to extend this result to all MAX SAT instances. To do this, we will use a
better bound on OPT than

∑m
j=1wj . Assume that for every i the weight of the unit clause

xi appearing in the instance is at least the weight of the unit clause x̄i; this is without loss of
generality since we could negate all occurrences of xi if the assumption is not true. Let vi be
the weight of the unit clause x̄i if it exists in the instance, and let vi be zero otherwise.

Lemma 5.6: OPT ≤
∑m

j=1wj −
∑n

i=1 vi.

Proof. For each i, the optimal solution can satisfy exactly one of xi and x̄i. Thus the weight of
the optimal solution cannot include both the weight of the clause xi and the clause x̄i. Since
vi is the smaller of these two weights, the lemma follows.

We can now extend the result.

Theorem 5.7: We can obtain a randomized 1
2(
√
5−1)-approximation algorithm for MAX SAT.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.4 Randomized rounding 111

Proof. Let U be the set of indices of clauses of the instance excluding unit clauses of the form
x̄i. As above, we assume without loss of generality that the weight of each clause x̄i is no
greater than the weight of clause xi. Thus

∑
j∈U wj =

∑m
j=1wj −

∑n
i=1 vi. Then set each xi to

be true independently with probability p = 1
2(
√
5− 1). Then

E[W] =

m∑
j=1

wj Pr[clause Cj satisfied]

≥
∑
j∈U

wj Pr[clause Cj satisfied]

≥ p ·
∑
j∈U

wj (5.1)

= p ·

 m∑
j=1

wj −
n∑

i=1

vi

 ≥ p ·OPT,

where (5.1) follows by Theorem 5.5 and the fact that p = min(p, 1− p2).

This algorithm can be derandomized using the method of conditional expectations.

5.4 Randomized rounding

The algorithm of the previous section shows that biasing the probability with which we set xi
true yields an improved approximation algorithm. However, we gave each variable the same
bias. In this section, we show that we can do still better by giving each variable its own bias. We
do this by returning to the idea of randomized rounding, which we examined briefly in Section
1.7 in the context of the set cover problem.

Recall that in randomized rounding, we first set up an integer programming formulation of
the problem at hand in which there are 0-1 integer variables. In this case we will create an
integer program with a 0-1 variable yi for each Boolean variable xi such that yi = 1 corresponds
to xi set true. The integer program is relaxed to a linear program by replacing the constraints
yi ∈ {0, 1} with 0 ≤ yi ≤ 1, and the linear programming relaxation is solved in polynomial
time. Recall that the central idea of randomized rounding is that the fractional value y∗i is
interpreted as the probability that yi should be set to 1. In this case, we set each xi to true
with probability y∗i independently.

We now give an integer programming formulation of the MAX SAT problem. In addition
to the variables yi, we introduce a variable zj for each clause Cj that will be 1 if the clause is
satisfied and 0 otherwise. For each clause Cj let Pj be the indices of the variables xi that occur
positively in the clause, and let Nj be the indices of the variables xi that are negated in the
clause. We denote the clause Cj by ∨

i∈Pj

xi ∨
∨
i∈Nj

x̄i.

Then the inequality ∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

112 Random sampling and randomized rounding of linear programs

must hold for clause Cj since if each variable that occurs positively in the clause is set to false
(and its corresponding yi is set to 0) and each variable that occurs negatively is set to true
(and its corresponding yi is set to 1), then the clause is not satisfied, and zj must be 0. This
inequality yields the following integer programming formulation of the MAX SAT problem:

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj , ∀Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

x̄i,

yi ∈ {0, 1} , i = 1, . . . , n,

0 ≤ zj ≤ 1, j = 1, . . . ,m.

If Z∗
IP is the optimal value of this integer program, then it is not hard to see that Z∗

IP = OPT.

The corresponding linear programming relaxation of this integer program is

maximize
m∑
j=1

wjzj

subject to
∑
i∈Pj

yi +
∑
i∈Nj

(1− yi) ≥ zj , ∀Cj =
∨
i∈Pj

xi ∨
∨
i∈Nj

x̄i,

0 ≤ yi ≤ 1, i = 1, . . . , n,

0 ≤ zj ≤ 1, j = 1, . . . ,m.

If Z∗
LP is the optimal value of this linear program, then clearly Z∗

LP ≥ Z∗
IP = OPT .

Let (y∗, z∗) be an optimal solution to the linear programming relaxation. We now consider
the result of using randomized rounding, and setting xi to true with probability y∗i indepen-
dently. Before we can begin the analysis, we will need two facts. The first is commonly called
the arithmetic-geometric mean inequality, because it compares the arithmetic and geometric
means of a set of numbers.

Fact 5.8 (Arithmetic-geometric mean inequality): For any nonnegative a1, . . . , ak,(
k∏

i=1

ai

)1/k

≤ 1

k

k∑
i=1

ai.

Fact 5.9: If a function f(x) is concave on the interval [0, 1] (that is, f ′′(x) ≤ 0 on [0, 1]), and
f(0) = a and f(1) = b+ a, then f(x) ≥ bx+ a for x ∈ [0, 1] (see Figure 5.1).

Theorem 5.10: Randomized rounding gives a randomized (1− 1
e)-approximation algorithm for

MAX SAT.

Proof. As in the analyses of the algorithms in the previous sections, the main difficulty is
analyzing the probability that a given clause Cj is satisfied. Pick an arbitrary clause Cj . Then,
by applying the arithmetic-geometric mean inequality, we see that

Pr[clause Cj not satisfied] =
∏
i∈Pj

(1− y∗i)
∏
i∈Nj

y∗i ≤

 1

lj

∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

lj

.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.4 Randomized rounding 113

a

a+b

0 1

Figure 5.1: An illustration of Fact 5.9.

By rearranging terms, we can derive that

 1

lj

∑
i∈Pj

(1− y∗i) +
∑
i∈Nj

y∗i

lj

=

1− 1

lj

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i)

lj

.

By invoking the corresponding inequality from the linear program,

∑
i∈Pj

y∗i +
∑
i∈Nj

(1− y∗i) ≥ z∗j ,

we see that

Pr[clause Cj not satisfied] ≤
(
1−

z∗j
lj

)lj

.

The function f(z∗j) = 1−
(
1− z∗j

lj

)lj
is concave for lj ≥ 1. Then by using Fact 5.9,

Pr[clause Cj satisfied] ≥ 1−
(
1−

z∗j
lj

)lj

≥

[
1−

(
1− 1

lj

)lj
]
z∗j .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

114 Random sampling and randomized rounding of linear programs

Therefore the expected value of the randomized rounding algorithm is

E[W] =
m∑
j=1

wj Pr[clause Cj satisfied]

≥
m∑
j=1

wjz
∗
j

[
1−

(
1− 1

lj

)lj
]

≥ min
k≥1

[
1−

(
1− 1

k

)k
]

m∑
j=1

wjz
∗
j .

Note that
[
1−

(
1− 1

k

)k]
is a nonincreasing function in k and that it approaches

(
1− 1

e

)
from

above as k tends to infinity. Since
∑m

j=1wjz
∗
j = Z∗

LP ≥ OPT, we have that

E[W] ≥ min
k≥1

[
1−

(
1− 1

k

)k
]

m∑
j=1

wjz
∗
j ≥

(
1− 1

e

)
OPT .

This randomized rounding algorithm can be derandomized in the standard way using the
method of conditional expectations.

5.5 Choosing the better of two solutions

In this section we observe that choosing the best solution from the two given by the randomized
rounding algorithm of the previous section and the unbiased randomized algorithm of the first
section gives a better performance guarantee than that of either algorithm. This happens
because, as we shall see, the algorithms have contrasting bad cases: when one algorithm is far
from optimal, the other is close, and vice versa. This technique can be useful in other situations,
and does not require using randomized algorithms.

In this case, consider a given clause Cj of length lj . The randomized rounding algorithm of

Section 5.4 satisfies the clause with probability at least

[
1−

(
1− 1

lj

)lj]
z∗j , while the unbiased

randomized algorithm of Section 5.1 satisfies the clause with probability 1−2−lj ≥ (1−2−lj)z∗j .
Thus when the clause is short, it is very likely to be satisfied by the randomized rounding
algorithm, though not by the unbiased randomized algorithm, and when the clause is long the
opposite is true. This observation is made precise and rigorous in the following theorem.

Theorem 5.11: Choosing the better of the two solutions given by the randomized rounding al-
gorithm and the unbiased randomized algorithm yields a randomized 3

4 -approximation algorithm
for MAX SAT.

Proof. Let W1 be a random variable denoting the value of the solution returned by the random-
ized rounding algorithm, and let W2 be a random variable denoting the value of the solution
returned by the unbiased randomized algorithm. Then we wish to show that

E[max(W1,W2)] ≥
3

4
OPT .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.5 Choosing the better of two solutions 115

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6

randomized rounding
flipping coins

average

Figure 5.2: Illustration of the proof of Theorem 5.11. The “randomized rounding”
line is the function 1− (1− 1

k)
k. The “flipping coins” line is the function 1− 2−k. The

“average” line is the average of these two functions, which is at least 3
4 for all integers

k ≥ 1.

To obtain this inequality, observe that

E[max(W1,W2)] ≥ E

[
1

2
W1 +

1

2
W2

]
=

1

2
E[W1] +

1

2
E[W2]

≥ 1

2

m∑
j=1

wjz
∗
j

[
1−

(
1− 1

lj

)lj
]
+

1

2

m∑
j=1

wj

(
1− 2−lj

)

≥
m∑
j=1

wjz
∗
j

[
1

2

(
1−

(
1− 1

lj

)lj
)

+
1

2

(
1− 2−lj

)]
.

We claim that [
1

2

(
1−

(
1− 1

lj

)lj
)

+
1

2

(
1− 2−lj

)]
≥ 3

4

for all positive integers lj . We will prove this shortly, but this can be seen in Figure 5.2. Given
the claim, we have that

E[max(W1,W2)] ≥
3

4

m∑
j=1

wjz
∗
j =

3

4
Z∗
LP ≥

3

4
OPT .

Now to prove the claim. Observe that the claim holds for lj = 1, since

1

2
· 1 + 1

2
· 1
2
=

3

4
,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

116 Random sampling and randomized rounding of linear programs

and the claim holds for lj = 2, since

1

2
·

(
1−

(
1

2

)2
)

+
1

2
(1− 2−2) =

3

4
.

For all lj ≥ 3,

(
1−

(
1− 1

lj

)lj)
≥ 1− 1

e and
(
1− 2−lj

)
≥ 7

8 , and

1

2

(
1− 1

e

)
+

1

2
· 7
8
≈ .753 ≥ 3

4
,

so the claim is proven.

Notice that taking the best solution of the two derandomized algorithms gives at least
max(E[W1], E[W2]) ≥ 1

2E[W1] +
1
2E[W2]. The proof above shows that this quantity is at least

3
4 OPT. Thus taking the best solution of the two derandomized algorithms is a deterministic
3
4 -approximation algorithm.

5.6 Non-linear randomized rounding

Thus far in our applications of randomized rounding, we have used the variable y∗i from the
linear programming relaxation as a probability to decide whether to set yi to 1 in the integer
programming formulation of the problem. In the case of the MAX SAT problem, we set xi
to true with probability y∗i . There is no reason, however, that we cannot use some function
f : [0, 1]→ [0, 1] to set xi to true with probability f(y∗i). Sometimes this yields approximation
algorithms with better performance guarantees than using the identity function, as we will see
in this section.

In this section we will show that a 3
4 -approximation algorithm for MAX SAT can be obtained

directly by using randomized rounding with a non-linear function f . In fact, there is considerable
freedom in choosing such a function f : let f be any function such that f : [0, 1]→ [0, 1] and

1− 4−x ≤ f(x) ≤ 4x−1. (5.2)

See Figure 5.3 for a plot of the bounding functions. We will see that this ensures that the
probability a clause Cj is satisfied is at least 1−4−z∗j ≥ 3

4z
∗
j , which will give the 3

4 -approximation
algorithm.

Theorem 5.12: Randomized rounding with the function f is a randomized 3
4 -approximation

algorithm for MAX SAT.

Proof. Once again, we only need analyze the probability that a given clause Cj is satisfied. By
the definition of f ,

Pr[clause Cj not satisfied] =
∏
i∈Pj

(1− f(y∗i))
∏
i∈Nj

f(y∗i) ≤
∏
i∈Pj

4−y∗i
∏
i∈Nj

4y
∗
i −1.

Rewriting the product and using the linear programming constraint for clause Cj gives us

Pr[clause Cj not satisfied] ≤
∏
i∈Pj

4−y∗i
∏
i∈Nj

4y
∗
i −1 = 4

−
(∑

i∈Pj
y∗i +

∑
i∈Nj

(1−y∗i)
)
≤ 4−z∗j .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.6 Non-linear randomized rounding 117

0

0.5

1

0 0.5 1

Figure 5.3: A plot of the functions of (5.2). The upper curve is 4x−1 and the lower
curve is 1− 4−x.

Then using Fact 5.9 and observing that the function g(z) = 1−4−z is concave on [0,1], we have

Pr[clause Cj satisfied] ≥ 1− 4−z∗j ≥ (1− 4−1)z∗j =
3

4
z∗j .

It follows that the expected performance of the algorithm is

E[W] =
m∑
j=1

wj Pr[clause Cj satisfied] ≥ 3

4

m∑
j=1

wjz
∗
j ≥

3

4
OPT .

Once again, the algorithm can be derandomized using the method of conditional expecta-
tions.

There are other choices of the function f that also lead to a 3
4 -approximation algorithm for

MAX SAT. Some other possibilities are presented in the exercises at the end of the chapter.
Is it possible to get an algorithm with a performance guarantee better than 3

4 by using some
more complicated form of randomized rounding? It turns out that the answer is no, at least
for any algorithm that derives its performance guarantee by comparing its value to that of the
linear programming relaxation. To see this, consider the instance of the maximum satisfiability
problem with two variables x1 and x2 and four clauses of weight one each, x1 ∨ x2, x1 ∨ x̄2,
x̄1∨x2, and x̄1∨ x̄2. Any feasible solution, including the optimal solution, satisfies exactly three
of the four clauses. However, if we set y1 = y2 =

1
2 and zj = 1 for all four clauses Cj , then this

solution is feasible for the linear program and has value 4. Thus the value to any solution to
the MAX SAT instance can be at most 3

4

∑m
j=1wjz

∗
j . We say that this integer programming

formulation of the maximum satisfiability problem has an integrality gap of 3
4 .

Definition 5.13: The integrality gap of an integer program is the worst-case ratio over all
instances of the problem of value of an optimal solution to the integer programming formulation
to value of an optimal solution to its linear programming relaxation.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

118 Random sampling and randomized rounding of linear programs

The example above shows that the integrality gap is at most 3
4 , whereas the proof of Theo-

rem 5.12 shows that it is at least 3
4 . If an integer programming formulation has integrality gap

ρ, then any algorithm for a maximization problem whose performance guarantee α is proven by
showing that the value of its solution is at least α times the value of the linear programming re-
laxation can have performance guarantee at most ρ. A similar statement holds for minimization
problems.

5.7 The prize-collecting Steiner tree problem

We now consider other problems for which randomized techniques are useful. In particular, in
the next few sections, we revisit some of the problems we studied earlier in the book and show
that we can obtain improved performance guarantees by using the randomized methods that
we have developed in this chapter.

We start by returning to the prize-collecting Steiner tree problem we discussed in Section 4.4.
Recall that in this problem we are given an undirected graph G = (V,E), an edge cost ce ≥ 0
for each e ∈ E, a selected root vertex r ∈ V , and a penalty πi ≥ 0 for each i ∈ V . The goal is to
find a tree T that contains the root vertex r so as to minimize

∑
e∈T ce +

∑
i∈V−V (T) πi, where

V (T) is the set of vertices in the tree. We used the following linear programming relaxation
of the problem:

minimize
∑
e∈E

cexe +
∑
i∈V

πi(1− yi)

subject to
∑

e∈δ(S)

xe ≥ yi, ∀S ⊆ V − r, S ̸= ∅,∀i ∈ S,

yr = 1,

yi ≥ 0, ∀i ∈ V,

xe ≥ 0, ∀e ∈ E.

In the 3-approximation algorithm given in Section 4.4, we found an optimal LP solution (x∗, y∗),
and for a specified value of α, built a Steiner tree on all nodes such that y∗i ≥ α. We claimed
that the cost of the edges in the tree is within a factor of 2/α of the fractional cost of the tree
edges in the LP solution, while the cost of the penalties is within a factor of 1/(1 − α) of the
cost of the penalties in the LP solution. Thus if α is close to 1, the cost of the tree edges is
within a factor of two of the corresponding cost of the LP, while if α is close to 0, our penalty
cost is close to the corresponding cost of the LP.

In the previous section we set α = 2/3 to trade off the costs of the tree edges and the
penalties, resulting in a performance guarantee of 3. Suppose instead that we choose the value
of α randomly rather than considering just one value of α. We will see that this improves the
performance guarantee from 3 to about 2.54.

Recall Lemma 4.6 from Section 4.4, which allowed us to bound the cost of the spanning tree
T constructed in terms of α and the LP solution (x∗, y∗).

Lemma 5.14 (Lemma 4.6): ∑
e∈T

ce ≤
2

α

∑
e∈E

cex
∗
e.

Because the bound becomes infinite as α tends to zero, we don’t want to choose α too
close to zero. Instead, we will choose α uniformly from the range [γ, 1], and will later decide

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.7 The prize-collecting Steiner tree problem 119

how to set γ. Recall that in computing the expected value of a continuous random variable
X, if that variable has a probability density function f(x) over the domain [a, b] (specifying
the probability that X = x), then we compute the expectation of X by integrating f(x)xdx
over that interval. The probability density function for a uniform random variable over [γ, 1] is
the constant 1/(1− γ). We can then analyze the expected cost of the tree for the randomized
algorithm below.

Lemma 5.15:

E

[∑
e∈T

ce

]
≤
(

2

1− γ
ln

1

γ

)∑
e∈E

cex
∗
e

Proof. Using simple algebra and calculus, we obtain

E

[∑
e∈T

ce

]
≤ E

[
2

α

∑
e∈E

cex
∗
e

]

= E

[
2

α

]∑
e∈E

cex
∗
e

=

(
1

1− γ

∫ 1

γ

2

x
dx

)∑
e∈E

cex
∗
e

=

[
2

1− γ
lnx

]1
γ

·
∑
e∈E

cex
∗
e

=

(
2

1− γ
ln

1

γ

)∑
e∈E

cex
∗
e.

The expected penalty for the vertices not in the tree is also easy to analyze.

Lemma 5.16:

E

 ∑
i∈V−V (T)

πi

 ≤ 1

1− γ

∑
i∈V

πi(1− y∗i)

Proof. Let U = {i ∈ V : y∗i ≥ α}; any vertex not in the tree must not be in U , so we have
that

∑
i∈V−V (T) πi ≤

∑
i/∈U πi. Observe that if y∗i ≥ γ, then the probability that i /∈ U is

(1− y∗i)/(1− γ). If y∗i < γ, then i /∈ U with probability 1. But then 1 ≤ (1− y∗i)/(1− γ), and
so the lemma statement follows.

Thus we have the following theorem and corollary.

Theorem 5.17: The expected cost of the solution produced by the randomized algorithm is

E

∑
e∈T

ce +
∑

i∈V−V (T)

πi

 ≤ (2

1− γ
ln

1

γ

)∑
e∈E

cex
∗
e +

1

1− γ

∑
i∈V

πi(1− y∗i).

Corollary 5.18: Using the randomized rounding algorithm with γ = e−1/2 gives a (1−e−1/2)−1-
approximation algorithm for the prize-collecting Steiner tree problem, where (1 − e−1/2)−1 ≈
2.54.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

120 Random sampling and randomized rounding of linear programs

Proof. We want to ensure that the maximum of the coefficients of the two terms in the bound
of Theorem 5.17 is as small as possible. The first coefficient is a decreasing function of γ, and
the second is an increasing function. We can minimize the maximum by setting them equal.
By setting 2

1−γ ln 1
γ = 1

1−γ , we obtain γ = e−1/2. Then by Theorem 5.17, the expected cost of
the tree obtained is no greater than

1

1− e−1/2

(∑
e∈E

cex
∗
e +

∑
i∈V

πi(1− y∗i)

)
≤ 1

1− e−1/2
·OPT .

The derandomization of the algorithm is straightforward: since there are |V | variables y∗i ,

there are at most |V | distinct values of y∗i . Thus, consider the |V | sets Uj =
{
i ∈ V : y∗i ≥ y∗j

}
.

Any possible value of α corresponds to one of these |V | sets. Thus if a random choice of α has a
certain expected performance guarantee, the algorithm which tries each set Uj and chooses the
best solution generated will have a deterministic performance guarantee at least as good as that
of the expectation of the randomized algorithm. Interestingly, the use of randomization allows
us to analyze this natural deterministic algorithm, whereas we know of no means of analyzing
the deterministic algorithm directly.

Recall from the end of the previous section that we defined the integrality gap of an integer
programming formulation to be the worst-case ratio, over all instances of a problem, of the
value of an optimal solution to the integer programming formulation to the value of an optimal
solution to the linear programming relaxation. We also explained that the integrality gap
bounds the performance guarantee that we can get via LP rounding arguments. Consider a
graph G that is a cycle on n nodes, and let the penalty for each node be infinite and the cost
of each edge by 1. Then there is a feasible solution to the linear programming relaxation of
cost n/2 by setting each edge variable to 1/2, while there is an optimal integral solution of cost
n − 1 by taking every edge of the cycle except one (see Figure 5.4). Hence the integrality gap
for this instance of the problem is at least (n − 1)/(n/2) = 2 − 2/n. Thus we cannot expect
a performance guarantee for the prize-collecting Steiner tree problem better than 2 − 2

n using
LP rounding arguments with this formulation. In Chapter 14, we will return to the prize-
collecting Steiner tree problem and show that the primal-dual method can be used to obtain a
2-approximation algorithm for the problem. The argument there will show that the integrality
gap of the integer programming formulation is at most 2.

5.8 The uncapacitated facility location problem

In this section, we revisit the metric uncapacitated facility location problem introduced in
Section 4.5. Recall that in this problem we are given a set of clients D and a set of facilities F ,
along with facility costs fi for all facilities i ∈ F , and assignment costs cij for all facilities i ∈ F
and clients j ∈ D. All clients and facilities are points in a metric space, and given clients j, l
and facilities i, k, we have that cij ≤ cil+ ckl+ ckj . The goal of the problem is to select a subset
of facilities to open and an assignment of clients to open facilities so as to minimize the total
cost of the open facilities plus the assignment costs. We used the following linear programming

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.8 The uncapacitated facility location problem 121

r r

Figure 5.4: Example of integrality gap of the integer programming formulation for
the prize-collecting Steiner tree problem. On the left is a feasible solution for the linear
program in which each edge has value 1/2. On the right is an optimal solution for the
integer programming formulation in which each edge shown has value 1.

relaxation of the problem:

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij

subject to
∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F, j ∈ D,

xij ≥ 0, ∀i ∈ F, j ∈ D,

yi ≥ 0, ∀i ∈ F,

where the variable xij indicates whether client j is assigned to facility i, and the variable yi
indicates whether facility i is open or not. We also used the dual of the LP relaxation:

maximize
∑
j∈D

vj

subject to
∑
j∈D

wij ≤ fi, ∀i ∈ F,

vj − wij ≤ cij , ∀i ∈ F, j ∈ D,

wij ≥ 0, ∀i ∈ F, j ∈ D.

Finally, given an LP solution (x∗, y∗), we said that a client j neighbors a facility i if x∗ij > 0.
We denote the neighbors of j as N(j) = {i ∈ F : x∗ij > 0}, and the neighbors of the neighbors

of j as N2(j) = {k ∈ D : ∃i ∈ N(j), x∗ik > 0}. Recall that we showed in Lemma 4.11 that if
(v∗, w∗) is an optimal dual solution and i ∈ N(j) then the cost of assigning j to i is bounded
by v∗j (that is, cij ≤ v∗j).

We gave a 4-approximation algorithm in Algorithm 4.2 of Section 4.5 that works by choosing
an unassigned client j that minimizes the value of v∗j among all remaining unassigned clients,
opening the cheapest facility in the neighborhood of N(j), and then assigning j and all clients
in N2(j) to this facility. We showed that for an optimal LP solution (x∗, y∗) and optimal dual
solution v∗, this gave a solution of cost at most

∑
i∈F fiy

∗
i + 3

∑
j∈D v∗j ≤ 4 ·OPT.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

122 Random sampling and randomized rounding of linear programs

Solve LP, get optimal primal solution (x∗, y∗) and dual solution (v∗, w∗)
C ← D
k ← 0
while C ̸= ∅ do

k ← k + 1
Choose jk ∈ C that minimizes v∗j + C∗

j over all j ∈ C

Choose ik ∈ N(jk) according to the probability distribution x∗ijk
Assign jk and all unassigned clients in N2(jk) to ik
C ← C − {jk} −N2(jk)

Algorithm 5.1: Randomized rounding algorithm for the uncapacitated facility location problem.

i

j

h

l

Figure 5.5: Illustration of proof of Theorem 5.19.

This analysis is a little unsatisfactory in the sense that we bound
∑

i∈F fiy
∗
i by OPT, whereas

we know that we have the stronger bound
∑

i∈F fiy
∗
i +
∑

i∈F,j∈D cijx
∗
ij ≤ OPT. In this section,

we show that by using randomized rounding we can modify the algorithm of Section 4.5 slightly
and improve the analysis to a 3-approximation algorithm.

The basic idea is that once we have selected a client j in the algorithm, instead of opening
the cheapest facility in N(j), we use randomized rounding to choose the facility, and open
facility i ∈ N(j) with probability x∗ij (note that

∑
i∈N(j) x

∗
ij = 1). This improves the analysis

since in the previous version of the algorithm we had to make worst-case assumptions about
how far away the cheapest facility would be from the clients assigned to it. In this algorithm
we can amortize the costs over all possible choices of facilities in N(j).

In order to get our analysis to work, we modify the choice of client selected in each iteration
as well. We define C∗

j =
∑

i∈F cijx
∗
ij ; that is, the assignment cost incurred by client j in the

LP solution (x∗, y∗). We now choose the unassigned client that minimizes v∗j + C∗
j over all

unassigned clients in each iteration. Our new algorithm is given in Algorithm 5.1. Note that
the only changes from the previous algorithm of Section 4.5 (Algorithm 4.2) are in the third to
the last and second to the last lines.

We can now analyze this new algorithm.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.8 The uncapacitated facility location problem 123

Theorem 5.19: Algorithm 5.1 is a randomized 3-approximation algorithm for the uncapacitated
facility location problem.

Proof. In an iteration k, the expected cost of the facility opened is∑
i∈N(jk)

fix
∗
ijk
≤

∑
i∈N(jk)

fiy
∗
i ,

using the LP constraint x∗ijk ≤ y∗i . As we argued in Section 4.5, the neighborhoods N(jk) form
a partition of a subset of the facilities so that the overall expected cost of facilities opened is at
most ∑

k

∑
i∈N(jk)

fiy
∗
i ≤

∑
i∈F

fiy
∗
i .

We now fix an iteration k and let j denote the client jk selected and let i denote the facility
ik opened. The expected cost of assigning j to i is∑

i∈N(j)

cijx
∗
ij = C∗

j .

As can be seen from Figure 5.5, the expected cost of assigning an unassigned client l ∈ N2(j)
to i, where the client l neighbors facility h which neighbors client j is at most

chl + chj +
∑

i∈N(j)

cijx
∗
ij = chl + chj + C∗

j .

By Lemma 4.11, chl ≤ v∗l and chj ≤ v∗j , so that this cost is at most v∗l + v∗j + C∗
j . Then since

we chose j to minimize v∗j +C∗
j among all unassigned clients, we know that v∗j +C∗

j ≤ v∗l +C∗
l .

Hence the expected cost of assigning l to i is at most

v∗l + v∗j + C∗
j ≤ 2v∗l + C∗

l .

Thus we have that our total expected cost is no more than∑
i∈F

fiy
∗
i +

∑
j∈D

(2v∗j + C∗
j) =

∑
i∈F

fiy
∗
i +

∑
i∈F,j∈D

cijx
∗
ij + 2

∑
j∈D

v∗j

≤ 3OPT .

Note that we were able to reduce the performance guarantee from 4 to 3 because the random
choice of facility allows us to include the assignment cost C∗

j in the analysis; instead of bounding
only the facility cost by OPT, we can bound both the facility cost and part of the assignment
cost by OPT.

One can imagine a different type of randomized rounding algorithm: suppose we obtain an
optimal LP solution (x∗, y∗) and open each facility i ∈ F with probability y∗i . Given the open
facilities, we then assign each client to the closest open facility. This algorithm has the nice
feature that the expected facility cost is

∑
i∈F fiy

∗
i . However, this simple algorithm clearly has

the difficulty that with non-zero probability, the algorithm opens no facilities at all, and hence
the expected assignment cost is unbounded. We consider a modified version of this algorithm
later in the book, in Section 12.1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

124 Random sampling and randomized rounding of linear programs

5.9 Scheduling a single machine with release dates

In this section, we return to the problem considered in Section 4.2 of scheduling a single machine
with release dates so as to minimize the weighted sum of completion times. Recall that we are
given as input n jobs, each of which has a processing time pj > 0, weight wj ≥ 0, and release
date rj ≥ 0. The values pj , rj , and wj are all nonnegative integers. We must construct a
schedule for these jobs on a single machine such that at most one job is processed at any point
in time, no job is processed before its release date, and once a job begins to be processed, it
must be processed nonpreemptively; that is, it must be processed completely before any other
job can be scheduled. If Cj denotes the time at which job j is finished processing, then the goal
is to find the schedule that minimizes

∑n
j=1wjCj .

In Section 4.2, we gave a linear programming relaxation of the problem. In order to apply
randomized rounding, we will use a different integer programming formulation of this problem.
In fact, we will not use an integer programming formulation of the problem, but an inte-

ger programming relaxation. Solutions in which jobs are scheduled preemptively are feasible;
however, the contribution of job j to the objective function is less than wjCj unless job j is
scheduled nonpreemptively. Thus the integer program is a relaxation since for any solution
corresponding to a nonpreemptive schedule, the objective function value is equal to the sum of
weighted completion times of the schedule.

Furthermore, although this relaxation is an integer program and has a number of constraints
and variables exponential in the size of the problem instance, we will be able to find a solution
to it in polynomial time.

We now give the integer programming relaxation. Let T equal maxj rj +
∑n

j=1 pj , which is
the latest possible time any job can be processed in any schedule that processes a job nonpre-
emptively whenever it can. We introduce variables yjt for j = 1, . . . , n, t = 1, . . . , T , where

yjt =

{
1 if job j is processed in time [t− 1, t)
0 otherwise

We derive a series of constraints for the integer program to capture the constraints of the
scheduling problem. Since at most one job can be processed at any point in time, for each time
t = 1, . . . , T we impose the constraint

n∑
j=1

yjt ≤ 1.

Since each job j must be processed for pj units of time, for each job j = 1, . . . , n we impose the
constraint

T∑
t=1

yjt = pj .

Since no job j can be processed before its release date, we set

yjt = 0

for each job j = 1, . . . , n and each time t = 1, . . . , rj . For t = rj + 1, . . . , T , obviously we want

yjt ∈ {0, 1} .

Note that this integer program has size that is exponential in the size of the scheduling instance
because T is exponential in the number of bits used to encode rj and pj .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.9 Scheduling a single machine with release dates 125

Finally, we need to express the completion time of job j in terms of the variables yjt,
j = 1, . . . , n. Given a nonpreemptive schedule, suppose that job j completes at time D. If we
set the variables yjt to indicate the times at which jobs are processed in the schedule, and so
yjt = 1 for t = D−pj+1, . . . , D, whereas yjt = 0 otherwise. Observe that if we take the average
of the midpoints of each unit of time at which job j is processed (t− 1

2 for t = D−pj+1, , . . . , D),
we get the midpoint of the processing time of the job, namely D − pj

2 . Thus

1

pj

D∑
t=D−pj+1

(
t− 1

2

)
= D − pj

2
.

Given the settings of the variables yjt, we can rewrite this as

1

pj

T∑
t=1

yjt

(
t− 1

2

)
= D − pj

2
.

We wish to have variable Cj represent the completion time of job j. Rearranging terms, then,
we set the variable Cj as follows:

Cj =
1

pj

T∑
t=1

yjt

(
t− 1

2

)
+

pj
2
.

This variable Cj underestimates the completion time of job j when all of the variables yjt
that are set to 1 are not consecutive in time. To see this, first start with the case above in which
yjt = 1 for t = D−pj +1, . . . , D for a completion time D. By the arguments above, Cj = D. If
we then modify the variables yjt by successively setting yjt = 0 for some t ∈ [D− pj +1, D− 1]
and yjt = 1 for some t ≤ D − pj , it is clear that the variable Cj only decreases.

The overall integer programming relaxation of the problem we will use is

minimize

n∑
j=1

wjCj (5.3)

subject to

n∑
j=1

yjt ≤ 1, t = 1, . . . , T, (5.4)

T∑
t=1

yjt = pj , j = 1, . . . , n, (5.5)

yjt = 0, j = 1, . . . , n; t = 1, . . . , rj ,

yjt ∈ {0, 1} , j = 1, . . . , n; t = 1, . . . , T,

Cj =
1

pj

T∑
t=1

yjt

(
t− 1

2

)
+

pj
2
, j = 1, . . . , n. (5.6)

Even though we restrict the variables yjt to take on integer values, the corresponding linear
programming relaxation is well-known to have optimal solutions for which these variables have
integer values (for a simpler case of this phenomenon, see Exercise 4.6).

We can now consider a randomized rounding algorithm for this problem. Let (y∗, C∗) be
an optimal solution to the integer programming relaxation. For each job j, let Xj be a random

variable which is t − 1
2 with probability y∗jt/pj ; observe that by (5.5),

∑T
t=1

y∗jt
pj

= 1 so that

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

126 Random sampling and randomized rounding of linear programs

the y∗jt/pj give a probability distribution on time t for each job j. We defer for the moment a
discussion on how to make this run in randomized polynomial time, since T is exponential in
the input size and we need to solve the integer program in order to perform the randomized
rounding. As in the algorithms of Sections 4.1 and 4.2, we now schedule the jobs as early as
possible in the same relative order as the value of the Xj . Without loss of generality, suppose
that X1 ≤ X2 ≤ · · · ≤ Xn. Then we schedule job 1 as early as possible (that is, not before r1),
then job 2, and in general schedule job j to start at the maximum of the completion time of
job j − 1 and rj . Let Ĉj be a random variable denoting the completion time of job j in this
schedule.

We begin the analysis of this algorithm by considering the expected value of Ĉj given a
fixed value of Xj .

Lemma 5.20: E[Ĉj |Xj = x] ≤ pj + 2x.

Proof. As we argued in the proof of Lemma 4.2, there cannot be any idle time between
maxk=1,...,j rk and Ĉj , and therefore it must be the case that Ĉj ≤ maxk=1,...,j rk +

∑j
k=1 pj .

Because the ordering of the jobs results from randomized rounding, we let R be a random
variable such that R = maxk=1,...,j rk, and let random variable P =

∑j−1
k=1 pj , so that the bound

on Ĉj becomes Ĉj ≤ R+ P + pj .
First, we bound the value of R given that Xj = x. Note that since y∗kt = 0 for t ≤ rk, it

must be the case that Xk ≥ rk +
1
2 for any job k. Thus,

R ≤ max
k:Xk≤Xj

rk ≤ max
k:Xk≤Xj

Xk −
1

2
≤ Xj −

1

2
= x− 1

2
.

Now we bound the expected value of P given that Xj = x. We can bound it as follows:

E[P |Xj = x] =
∑
k:k ̸=j

pk Pr[job k is processed before j|Xj = x]

=
∑
k:k ̸=j

pk Pr[Xk ≤ Xj |Xj = x]

=
∑
k:k ̸=j

pk

x+ 1
2∑

t=1

Pr

[
Xk = t− 1

2

]
.

Since we set Xk = t− 1
2 with probability y∗kt/pk, then

E[P |Xj = x] =
∑
k:k ̸=j

pk

x+ 1
2∑

t=1

y∗kt
pk

 =
∑
k:k ̸=j

x+ 1
2∑

t=1

y∗kt =

x+ 1
2∑

t=1

∑
k:k ̸=j

y∗kt.

Constraint (5.4) of the integer programming relaxation imposes that
∑

k:k ̸=j ykt ≤ 1 for all
times t, so then

E[P |Xj = x] =

x+ 1
2∑

t=1

∑
k:k ̸=j

y∗kt ≤ x+
1

2
.

Therefore,

E[Ĉj |Xj = x] ≤ pj + E[R|Xj = x] + E[P |Xj = x] ≤ pj +

(
x− 1

2

)
+

(
x+

1

2

)
= pj + 2x.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.9 Scheduling a single machine with release dates 127

Given the lemma above, we can prove the following theorem.

Theorem 5.21: The randomized rounding algorithm is a randomized 2-approximation algo-
rithm for the single machine scheduling problem with release dates minimizing the sum of
weighted completion times.

Proof. Using the lemma above, we have that

E[Ĉj] =

T∑
t=1

E

[
Ĉj

∣∣∣∣Xj = t− 1

2

]
Pr

[
Xj = t− 1

2

]

≤ pj + 2

T∑
t=1

(
t− 1

2

)
Pr

[
Xj = t− 1

2

]

= pj + 2

T∑
t=1

(
t− 1

2

)
y∗jt
pj

= 2

[
pj
2

+
1

pj

T−1∑
t=0

(
t− 1

2

)
y∗jt

]
= 2C∗

j , (5.7)

where equation (5.7) follows from the definition of C∗
j in the integer programming relaxation

(equation (5.6)). Thus we have that

E

 n∑
j=1

wjĈj

 =

n∑
j=1

wjE[Ĉj] ≤ 2

n∑
j=1

wjC
∗
j ≤ 2OPT,

since
∑n

j=1wjC
∗
j is the objective function of the integer programming relaxation and thus a

lower bound on OPT .

Unlike the previous randomized algorithms of the section, we do not know directly how
to derandomize this algorithm, although a deterministic 2-approximation algorithm for this
problem does exist.

We now show that the integer programming relaxation can be solved in polynomial time,
and that the randomized rounding algorithm can be made to run in polynomial time. First,
sort the jobs in order of non-increasing ratio of weight to processing time; we assume jobs are
then indexed in this order so that w1

p1
≥ w2

p2
≥ · · · ≥ wn

pn
. Now we use the following rule to

create a (possibly preemptive) schedule: we always schedule the job of minimum index which
is available but not yet completely processed. More formally, as t varies from 1 to T , let j be
the smallest index such that rj ≤ t − 1 and

∑t−1
z=1 y

∗
jz < pj , if such a job j exists. Then set

y∗jt = 1 for job j and y∗kt = 0 for all jobs k ̸= j. If no such j exists, we set y∗jt = 0 for all jobs j.
Since in creating this schedule there are only n points in time corresponding to release dates rj
and n points in time at which a job has finished being processed, there are at most 2n point in
time at which the index attaining the minimum might change. Thus we can actually give the
schedule as a sequence of at most 2n intervals of time, specifying which job (if any) is scheduled
for each interval. It is not hard to see that we can compute this set of intervals in polynomial
time without explicitly enumerating each time t. Furthermore, from the discussion above in
which we explained how to express the variable Cj in terms of the yjt, we know that if yjt = 1

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

128 Random sampling and randomized rounding of linear programs

for t = a+ 1 to b, then
∑b

t=a+1 yjt
(
t− 1

2

)
= (b− a)(b− 1

2(b− a)), so that we can compute the
values of the variables C∗

j from these intervals.

The randomized rounding algorithm can be made to run in polynomial time because it is
equivalent to the following algorithm: for each job j, choose a value αj ∈ [0, 1] independently
and uniformly. Let Xj be the αj-point of job j: that is, the time when αjpj units of job
j have been processed in the preemptive schedule. Observe that it is easy to compute this
point in time from the intervals describing the preemptive schedule. Then schedule the jobs
according to the ordering of the Xj as in the randomized rounding algorithm. To see why this
is equivalent to the original algorithm, consider the probability that Xj ∈ [t − 1, t). This is
simply the probability that αjpj units of job j have finished processing in this interval, which
is the probability that

t−1∑
s=1

y∗js ≤ αjpj <
t∑

s=1

y∗js.

This, then, is the probability that αj ∈ [1pj
∑t−1

s=1 y
∗
js,

1
pj

∑t
s=1 y

∗
js); since αj is chosen uniformly,

this probability is y∗jt/pj . So the probability that Xj ∈ [t − 1, t) in the αj-point algorithm is
the same as in the original algorithm, and the proof of the performance guarantee goes through
with some small modifications.

Interestingly, one can also prove that if a single value of α is chosen uniformly from [0, 1],
and Xj is the α-point of job j, then scheduling jobs according to the ordering of the Xj is also a
2-approximation algorithm. Proving this fact is beyond the scope of this section. However, the
algorithm in which a single value of α is chosen is easy to derandomize, because it is possible to
show that at most n different schedules can result from all possible choices of α ∈ [0, 1]. Then
to derive a deterministic 2-approximation algorithm, we need only enumerate the n different
schedules, and choose the one that minimizes the weighted sum of the completion times.

We need only show that the constructed solution (y∗, C∗) is in fact optimal. This is left to
the reader to complete by a straightforward interchange argument in Exercise 5.11.

Lemma 5.22: The solution (y∗, C∗) given above to the integer program is an optimal solution.

5.10 Chernoff bounds

This section introduces some theorems that are extremely useful for analyzing randomized
rounding algorithms. In essence, the theorems say that it is very likely that the sum of n
independent 0-1 random variables is not far away from the expected value of the sum. In the
subsequent two sections, we will illustrate the usefulness of these bounds.

We begin by stating the main theorems.

Theorem 5.23: Let X1, . . . , Xn be n independent 0-1 random variables, not necessarily iden-
tically distributed. Then for X =

∑n
i=1Xi and µ = E[X], L ≤ µ ≤ U , and δ > 0,

Pr[X ≥ (1 + δ)U] <

(
eδ

(1 + δ)(1+δ)

)U

,

and

Pr[X ≤ (1− δ)L] <

(
e−δ

(1− δ)(1−δ)

)L

.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.10 Chernoff bounds 129

The second theorem generalizes the first by replacing 0-1 random variables with 0-ai random
variables, where 0 < ai ≤ 1.

Theorem 5.24: Let X1, . . . , Xn be n independent random variables, not necessarily identically
distributed, such that each Xi takes either the value 0 or the value ai for some 0 < ai ≤ 1.
Then for X =

∑n
i=1Xi and µ = E[X], L ≤ µ ≤ U , and δ > 0,

Pr[X ≥ (1 + δ)U] <

(
eδ

(1 + δ)(1+δ)

)U

,

and

Pr[X ≤ (1− δ)L] <

(
e−δ

(1− δ)(1−δ)

)L

.

These theorems are generalizations of results due to Chernoff and are sometimes called
Chernoff bounds, since they bound the probability that the sum of variables is far away from
its mean.

To prove the bounds, we will need the following commonly used inequality known as
Markov’s inequality.

Lemma 5.25 (Markov’s inequality): If X is a random variable taking on nonnegative values,
then Pr[X ≥ a] ≤ E[X]/a for a > 0.

Proof. Since X takes on nonnegative values, E[X] ≥ aPr[X ≥ a] and the inequality follows.

Now we can prove Theorem 5.24.

Proof of Theorem 5.24. We only prove the first bound in the theorem; the proof of the other
bound is analogous. Note that if E[X] = 0, then X = 0 and the bound holds trivially, so we can
assume E[X] > 0 and E[Xi] > 0 for some i. We ignore all i such that E[Xi] = 0 since Xi = 0
for such i. Let pi = Pr[Xi = ai]. Since E[Xi] > 0, pi > 0. Then µ = E[X] =

∑n
i=1 piai ≤ U .

For any t > 0,
Pr[X ≥ (1 + δ)U] = Pr[etX ≥ et(1+δ)U].

By Markov’s inequality,

Pr[etX ≥ et(1+δ)U] ≤ E[etX]

et(1+δ)U
. (5.8)

Now

E[etX] = E
[
et

∑n
i=1 Xi

]
= E

[
n∏

i=1

etXi

]
=

n∏
i=1

E[etXi], (5.9)

where the last equality follows by the independence of the Xi. Then for each i,

E[etXi] = (1− pi) + pie
tai = 1 + pi(e

tai − 1).

We will later show that etai − 1 ≤ ai(e
t − 1) for t > 0, so that E[etXi] ≤ 1 + piai(e

t − 1). Using
that 1 + x < ex for x > 0, and that t, ai, pi > 0, we obtain

E[etXi] < epiai(e
t−1).

Plugging these back into equation (5.9), we have

E[etX] <

n∏
i=1

epiai(e
t−1) = e

∑n
i=1 piai(e

t−1) ≤ eU(et−1).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

130 Random sampling and randomized rounding of linear programs

Then putting this back into inequality (5.8) and setting t = ln(1 + δ) > 0, we see that

Pr[X ≥ (1 + δ)U] ≤ E[etX]

et(1+δ)U

<
eU(et−1)

et(1+δ)U

=

(
eδ

(1 + δ)(1+δ)

)U

,

as desired.
Finally, to see that eait − 1 ≤ ai(e

t − 1) for t > 0, let f(t) = ai(e
t − 1) − eait − 1. Then

f ′(t) = aie
t − aie

ait ≥ 0 for any t ≥ 0 given that 0 < ai ≤ 1; thus f(t) is nondecreasing for
t ≥ 0. Since f(0) = 0 and the function f is nondecreasing, the inequality holds.

The right-hand sides of the inequalities in Theorems 5.23 and 5.24 are a bit complicated,
and so it will be useful to consider variants of the results in which the right-hand side is simpler,
at the cost of restricting the results somewhat.

Lemma 5.26: For 0 ≤ δ ≤ 1, we have that(
eδ

(1 + δ)(1+δ)

)U

≤ e−Uδ2/3

and for 0 ≤ δ < 1, we have that (
e−δ

(1− δ)(1−δ)

)L

≤ e−Lδ2/2.

Proof. For the first inequality, we take the logarithm of both sides. We would like to show that

U(δ − (1 + δ) ln(1 + δ)) ≤ −Uδ2/3.

We observe that the inequality holds for δ = 0; if we can show that the derivative of the left-
hand side is no more than that of the right-hand side for 0 ≤ δ ≤ 1, the inequality will hold for
0 ≤ δ ≤ 1. Taking derivatives of both sides, we need to show that

−U ln(1 + δ) ≤ −2Uδ/3.

Letting f(δ) = −U ln(1 + δ) + 2Uδ/3, we need to show that f(δ) ≤ 0 on [0, 1]. Note that
f(0) = 0 and f(1) ≤ 0 since − ln 2 ≈ −0.693 < −2/3. As long as the function f(δ) is convex on
[0, 1] (that is, f ′′(δ) ≥ 0), we may conclude that f(δ) ≤ 0 on [0, 1], in the convex analog of Fact
5.9. We observe that f ′(δ) = −U/(1 + δ) + 2U/3 and f ′′(δ) = U/(1 + δ)2, so that f ′′(δ) ≥ 0 for
δ ∈ [0, 1], and the inequality is shown.

We turn to the second inequality for the case 0 ≤ δ < 1. Taking the logarithm of both sides,
we would like to show that

L(−δ − (1− δ) ln(1− δ)) ≤ −Lδ2/2.

The inequality holds for δ = 0, and will hold for 0 < δ < 1 if the derivative of the left-hand side
is no more than the derivative of the right-hand side for 0 ≤ δ < 1. Taking derivatives of both
sides, we would like to show that

L ln(1− δ) ≤ −Lδ

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.10 Chernoff bounds 131

for 0 ≤ δ < 1. Again the inequality holds for δ = 0 and will hold for 0 ≤ δ < 1 if the derivative
of the left-hand side is no more than the derivative of the right-hand side for 0 ≤ δ < 1. Taking
derivatives of both sides again, we obtain

−L/(1− δ) ≤ −L,

which holds for 0 ≤ δ < 1.

It will sometimes be useful to provide a bound on the probability that X ≤ (1− δ)L in the
case δ = 1. Notice that since the variables Xi are either 0-1 or 0-ai this is asking for a bound
on the probability that X = 0. We can give a bound as follows.

Lemma 5.27: Let X1, . . . , Xn be n independent random variables, not necessarily identically
distributed, such that each Xi takes either the value 0 or the value ai for some 0 < ai ≤ 1.
Then for X =

∑n
i=1Xi and µ = E[X], L ≤ µ,

Pr[X = 0] < e−L.

Proof. We assume µ = E[X] > 0 since otherwise X = 0 and L ≤ µ = 0 and the bound holds
trivially. Let pi = Pr[Xi = ai]. Then µ =

∑n
i=1 aipi and

Pr[X = 0] =
n∏

i=1

(1− pi).

Applying the arithmetic/geometric mean inequality from Fact 5.8, we get that

n∏
i=1

(1− pi) ≤

[
1

n

n∑
i=1

(1− pi)

]n
=

[
1− 1

n

n∑
i=1

pi

]n
.

Since each ai ≤ 1, we then obtain[
1− 1

n

n∑
i=1

pi

]n
≤

[
1− 1

n

n∑
i=1

aipi

]n
=

[
1− 1

n
µ

]n
.

Then using the fact that 1− x < e−x for x > 0, we get[
1− 1

n
µ

]n
< e−µ ≤ e−L.

As a corollary, we can then extend the bound of Lemma 5.26 to the case δ = 1. In fact,
since the probability that X < (1− δ)L for δ > 1 and L ≥ 0 is 0, we can extend the bound to
any positive δ.

Corollary 5.28: Let X1, . . . , Xn be n independent random variables, not necessarily identically
distributed, such that each Xi takes either the value 0 or the value ai for some ai ≤ 1. Then
for X =

∑n
i=1Xi and µ = E[X], 0 ≤ L ≤ µ, and δ > 0,

Pr[X ≤ (1− δ)L] < e−Lδ2/2.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

132 Random sampling and randomized rounding of linear programs

5.11 Integer multicommodity flows

To see how Chernoff bounds can be used in the context of randomized rounding, we will apply
them to the minimum-capacity multicommodity flow problem. In this problem, we are given as
input an undirected graph G = (V,E) and k pairs of vertices si, ti ∈ V , i = 1, . . . , k. The goal is
to find, for each i = 1, . . . , k, a single simple path from si to ti so as to minimize the maximum
number of paths containing the same edge. This problem arises in routing wires on chips. In
this problem, k wires need to be routed, each wire from some point si on the chip to another
point ti on the chip. Wires must be routed through channels on the chip, which correspond to
edges in a graph. The goal is to route the wires so as minimize the channel capacity needed;
that is, the number of wires routed through the same channel. The problem as stated here is
a special case of a more interesting problem, since often the wires must join up three or more
points on a chip.

We give an integer programming formulation of the problem. Let Pi be the set of all possible
simple paths P in G from si to ti, where P is the set of edges in the path. We create a 0-1
variable xP for each path P ∈ Pi to indicate when path P from si to ti is used. Then the total
number of paths using an edge e ∈ E is simply

∑
P :e∈P xP . We create another decision variable

W to denote the maximum number of paths using an edge, so that our objective function is to
minimize W . We have the constraint that∑

P :e∈P
xP ≤W

for each edge e ∈ E. Finally, we need to choose some path P ∈ Pi for every si-ti pair, so that∑
P∈Pi

xP = 1

for each i = 1, . . . , k. This gives us the following integer programming formulation of the
minimum-capacity multicommodity flow problem:

minimize W (5.10)

subject to
∑
P∈Pi

xP = 1, i = 1, . . . , k,

∑
P :e∈P

xP ≤W, e ∈ E, (5.11)

xP ∈ {0, 1} , ∀P ∈ Pi, i = 1, . . . , k.

The integer program can be relaxed to a linear program by replacing the constraints xP ∈
{0, 1} with xP ≥ 0. We claim for now that this linear program can be solved in polynomial
time and that most a polynomial number of variables xP of an optimal solution can be nonzero.

We now apply randomized rounding to obtain a solution to the problem. For i = 1, . . . , k, we
choose exactly one path P ∈ Pi according to the probability distribution x∗P on paths P ∈ Pi,
where x∗ is an optimal solution of value W ∗.

Assuming W ∗ is large enough, we can show that the total number of paths going through
any edge is close to W ∗ by using the Chernoff bound from Theorem 5.23. Let n be the number
of vertices in the graph. Recall that in Section 1.7 we said that a probabilistic event happens
with high probability if the probability that it does not occur is at most n−c for some integer
c ≥ 1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.12 Random sampling and coloring dense 3-colorable graphs 133

Theorem 5.29: If W ∗ ≥ c lnn for some constant c, then with high probability, the total number
of paths using any edge is at most W ∗ +

√
cW ∗ lnn.

Proof. For each e ∈ E, define random variables X i
e, where Xi

e = 1 if the chosen si-ti path uses
edge e, and Xi

e = 0 otherwise. Then the number of paths using edge e is Ye =
∑k

i=1X
i
e. We

want to bound maxe∈E Ye, and show that this is close to the LP value W ∗. Certainly

E[Ye] =

k∑
i=1

∑
P∈Pi:e∈P

x∗P =
∑

P :e∈P
x∗P ≤W ∗,

by constraint (5.11) from the LP. For a fixed edge e, the random variables X i
e are independent,

so we can apply the Chernoff bound of Theorem 5.23. Set δ =
√

(c lnn)/W ∗. Since W ∗ ≥ c lnn
by assumption, it follows that δ ≤ 1. Then by Theorem 5.23 and Lemma 5.26 with U = W ∗,

Pr[Ye ≥ (1 + δ)W ∗] < e−W ∗δ2/3 = e−(c lnn)/3 =
1

nc/3
.

Also (1 + δ)W ∗ = W ∗ +
√
cW ∗ lnn. Since there can be at most n2 edges,

Pr

[
max
e∈E

Ye ≥ (1 + δ)W ∗
]
≤

∑
e∈E

Pr[Ye ≥ (1 + δ)W ∗]

≤ n2 · 1

nc/3
= n2−c/3.

For a constant c ≥ 12, this ensures that the theorem statement fails to hold with probability at
most 1

n2 , and by increasing c we can make the probability as small as we like.

Observe that since W ∗ ≥ c lnn, the theorem above guarantees that the randomized al-
gorithm produces a solution of no more than 2W ∗ ≤ 2OPT. However, the algorithm might
produce a solution considerably closer to optimal if W ∗ ≫ c lnn. We also observe the following
corollary.

Corollary 5.30: If W ∗ ≥ 1, then with high probability, the total number of paths using any
edge is O(log n) ·W ∗.

Proof. We repeat the proof above with U = (c lnn)W ∗ and δ = 1.

In fact, the statement of the corollary can be sharpened by replacing the O(log n) with
O(log n/ log logn) (see Exercise 5.13).

To solve the linear program in polynomial time, we show that it is equivalent to a polynomially-
sized linear program; we leave this as an exercise to the reader (Exercise 5.14, to be precise).

5.12 Random sampling and coloring dense 3-colorable graphs

In this section we turn to another application of Chernoff bounds. We consider coloring a δ-
dense 3-colorable graph. We say that a graph is dense if for some constant α the number of
edges in the graph is at least α

(
n
2

)
; in other words, some constant fraction of the edges that

could exist in the graph do exist. A δ-dense graph is a special case of a dense graph. A graph
is δ-dense if every node has at least δn neighbors for some constant δ; that is, every node has
some constant fraction of neighbors it could have. Finally, a graph is k-colorable if each of the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

134 Random sampling and randomized rounding of linear programs

nodes can be assigned exactly one of k colors in such a way that no edge has its two endpoints
assigned the same color. In general, it is NP-complete to decide whether a graph is 3-colorable;
in fact, the following is known.

Theorem 5.31: It is NP-hard to decide if a graph can be colored with only 3 colors, or needs
at least 5 colors.

Theorem 5.32: Assuming a variant of the unique games conjecture, for any constant k > 3,
it is NP-hard to decide if a graph can be colored with only 3 colors, or needs at least k colors.

In Sections 6.5 and 13.2 we will discuss approximation algorithms for coloring any 3-colorable
graph. Here we will show that with high probability we can properly color any δ-dense 3-
colorable graph in polynomial time. While this is not an approximation algorithm, it is a useful
application of Chernoff bounds, which we will use again in Section 12.4.

In this case, we use the bounds to show that if we know the correct coloring for a small,
randomly chosen sample of a δ-dense graph, we can give a polynomial-time algorithm that with
high probability successfully colors the rest of the graph. This would seem to pose a problem,
though, since we do not know the coloring for the sample. Nevertheless, if the sample is no
larger than O(log n), we can enumerate all possible colorings of the sample in polynomial time,
and run the algorithm above for each coloring. Since one of the colorings of the sample will be
the correct one, for at least one of the possible colorings of the sample the algorithm will result
in a correct coloring of the graph with high probability.

More specifically, given a δ-dense graph, we will select a random subset S ⊆ V of O((lnn)/δ)
vertices by including each vertex in the subset with probability (3c lnn)/δn for some constant c.
We will show first that the set size is no more than (6c lnn)/δ with high probability, and then
that with high probability, every vertex has at least one neighbor in S. Thus given a correct
coloring of S, we can use the information about the coloring of S to deduce the colors of the
rest of the vertices. Since each vertex has a neighbor in S, its color is restricted to be one of
the two remaining colors, and this turns out to be enough of a restriction that we can infer the
remaining coloring. Finally, although we do not know the correct coloring of S we can run this
algorithm for each of the 3(6c lnn)/δ = nO(c/δ) possible colorings of S. One of the colorings of
S will be the correct coloring, and thus in at least one run of the algorithm we will be able to
color the graph successfully.

Lemma 5.33: With probability at most n−c/δ, the set S has size |S| ≥ (6c lnn)/δ.

Proof. We use the Chernoff bound (Theorem 5.23 and Lemma 5.26). Let Xi be a 0-1 random
variable indicating whether vertex i is included in S. Then since each vertex is included with
probability 3c lnn/δn, µ = E[

∑n
i=1Xi] = (3c lnn)/δ. Applying the lemma with U = (3c lnn)/δ,

the probability that |S| ≥ 2U is at most e−µ/3 = n−c/δ.

Lemma 5.34: The probability that a given vertex v /∈ S has no neighbor in S is at most n−3c.

Proof. Let Xi be a 0-1 random variable indicating whether the ith neighbor of v is in S or not.
Then µ = E[

∑
iXi] ≥ 3c lnn, since v has at least δn neighbors. Then applying Lemma 5.27

with L = 3c lnn, the probability that v has no neighbors in S is no more than Pr[
∑

iXi = 0] ≤
e−L = n−3c.

Corollary 5.35: With probability at least 1 − 2n−(c−1), |S| ≤ (6c lnn)/δ and every v ̸∈ S has
at least one neighbor in S.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.12 Random sampling and coloring dense 3-colorable graphs 135

Proof. This follows from Lemmas 5.33 and 5.34. The probability that both statements of the
lemma are true is at least one minus the sum of the probabilities that either statement is false.
The probability that every v /∈ S has no neighbor in S is at worst n times the probability that
a given vertex v /∈ S has no neighbor in S. Since δ ≤ 1, the overall probability that both
statements are true is at least

1− n−c/δ − n · n−3c ≥ 1− 2n−(c−1).

Now we assume we have some coloring of the vertices in S, not necessarily one that is
consistent with the correct coloring of the graph. We also assume that every vertex not in S
has at least one neighbor in S. We further assume that the coloring of S is such that every edge
with both endpoints in S has differently colored endpoints, since otherwise this is clearly not a
correct coloring of the graph. Assume we color the graph with colors {0, 1, 2}. Given a vertex
v /∈ S, because it has some neighbor in S colored with some color n(v) ∈ {0, 1, 2}, we know that
v cannot be colored with color n(v). Possibly v has other neighbors in S with colors other than
n(v). Either this forces the color of v or there is no way we can successfully color v; in the latter
case our current coloring of S must not have been correct, and we terminate. If the color of v
is not determined, then we create a binary variable x(v), which if true indicates that we color v
with color n(v) + 1 (mod 3), and if false indicates that we color v with color n(v)− 1 (mod 3).
Now every edge (u, v) ∈ E for u, v /∈ S imposes the constraint n(u) ̸= n(v). To capture this,
we create an instance of the maximum satisfiability problem such that all clauses are satisfiable
if and only if the vertices not in S can be correctly colored. For each possible setting of the
Boolean variables x(u) and x(v) that would cause n(u) = n(v), we create a disjunction of x(u)
and x(v) that is false if it implies n(u) = n(v); for example, if x(u) = true and x(v) = false
implies that n(u) = n(v), then we create a clause (x(u) ∨ x(v)). Since G is 3-colorable, given a
correct coloring of S, there exists a setting of the variables x(v) which satisfies all the clauses.
Since each clause has two variables, it is possible to determine in polynomial time whether the
instance is satisfiable or not; we leave it as an exercise to the reader to prove this (Exercise
6.3). Obviously if we find a setting of the variables that satisfies all constraints, this implies a
correct coloring of the entire graph, whereas if the constraints are not satisfiable, our current
coloring of S must not have been correct.

In Section 12.4, we’ll revisit the idea from this section of drawing a small random sample of
a graph and using it to determine the overall solution for the maximum cut problem in dense
graphs.

Exercises

5.1 In the maximum k-cut problem, we are given an undirected graph G = (V,E), and non-
negative weights wij ≥ 0 for all (i, j) ∈ E. The goal is to partition the vertex set V into k
parts V1, . . . , Vk so as to maximize the weight of all edges whose endpoints are in different
parts (i.e., max(i,j)∈E:i∈Va,j∈Vb,a ̸=bwij).

Give a randomized k−1
k -approximation algorithm for the MAX k-CUT problem.

5.2 Consider the following greedy algorithm for the maximum cut problem. We suppose the
vertices are numbered 1, . . . , n. In the first iteration, the algorithm places vertex 1 in U .
In the kth iteration of the algorithm, we will place vertex k in either U or inW . In order to
decide which choice to make, we will look at all the edges F that have the vertex k as one

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

136 Random sampling and randomized rounding of linear programs

endpoint and whose other endpoint is 1, . . . , k−1, so that F = {(j, k) ∈ E : 1 ≤ j ≤ k − 1}.
We choose to put vertex k in U or W depending on which of these two choices maximizes
the number of edges of F being in the cut.

(a) Prove that this algorithm is a 1/2-approximation algorithm for the maximum cut
problem.

(b) Prove that this algorithm is equivalent to the derandomization of the maximum cut
algorithm of Section 5.1 via the method of conditional expectations.

5.3 In the maximum directed cut problem (sometimes called MAX DICUT) we are given as
input a directed graph G = (V,A). Each directed arc (i, j) ∈ A has nonnegative weight
wij ≥ 0. The goal is to partition V into two sets U and W = V −U so as to maximize the
total weight of the arcs going from U to W (that is, arcs (i, j) with i ∈ U and j ∈ W).
Give a randomized 1

4 -approximation algorithm for this problem.

5.4 Consider the non-linear randomized rounding algorithm for MAX SAT as given in Section
5.6. Prove that using randomized rounding with the linear function f(yi) =

1
2yi +

1
4 also

gives a 3
4 -approximation algorithm for MAX SAT.

5.5 Consider the non-linear randomized rounding algorithm for MAX SAT as given in Section
5.6. Prove that using randomized rounding with the piecewise linear function

f(yi) =


3
4yi +

1
4 for 0 ≤ yi ≤ 1

3
1/2 for 1

3 ≤ yi ≤ 2
3

3
4yi for 2

3 ≤ yi ≤ 1

also gives a 3
4 -approximation algorithm for MAX SAT.

5.6 Consider again the maximum directed cut problem from Exercise 5.3.

(a) Show that the following integer program models the maximum directed cut problem:

maximize
∑

(i,j)∈A

wijzij

subject to zij ≤ xi, ∀(i, j) ∈ A,

zij ≤ 1− xj , ∀(i, j) ∈ A,

xi ∈ {0, 1} , ∀i ∈ V,

0 ≤ zij ≤ 1, ∀(i, j) ∈ A.

(b) Consider a randomized rounding algorithm for the maximum directed cut prob-
lem that solves a linear programming relaxation of the integer program and puts
vertex i ∈ U with probability 1/4 + xi/2. Show that this gives a randomized 1/2-
approximation algorithm for the maximum directed cut problem.

5.7 In this exercise, we consider how to derandomize the randomized rounding algorithm
for the set cover problem given in Section 1.7. We would like to apply the method of
conditional expectations, but we need to ensure that at the end of the process we obtain
a valid set cover. Let Xj be a random variable indicating whether set Sj is included in
the solution. Then if wj is the weight of set Sj , let W be the weight of the set cover

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.12 Random sampling and coloring dense 3-colorable graphs 137

obtained by randomized rounding, so that W =
∑m

j=1wjXj . Let Z be a random variable
such that Z = 1 if randomized rounding does not produce a valid set cover, and Z = 0 if
it does. Then consider applying the method of conditional expectations to the objective
function W + λZ for some choice of λ ≥ 0. Show that for the proper choice of λ, the
method of conditional expectations applied to the randomized rounding algorithm yields
an O(lnn)-approximation algorithm for the set cover problem that always produces a set
cover.

5.8 Consider a variation of the maximum satisfiability problem in which all variables occur
positively in each clause, and there is an additional nonnegative weight vi ≥ 0 for each
Boolean variable xi. The goal is now to set the Boolean variables to maximize the total
weight of the satisfied clauses plus the total weight of variables set to be false. Give
an integer programming formulation for this problem, with 0-1 variables yi to indicate
whether xi is set true. Show that a randomized rounding of the linear program in which
variable xi is set true with probability 1 − λ + λy∗i gives a 2(

√
2 − 1)-approximation

algorithm for some appropriate setting of λ; note that 2(
√
2− 1) ≈ .828.

5.9 Recall the maximum coverage problem from Exercise 2.11; in it, we are given a set of
elements E, and m subsets of elements S1, . . . , Sm ⊆ E with a nonnegative weight wj ≥ 0
for each subset Sj . We would like to find a subset S ⊆ E of size k that maximizes the
total weight of the subsets covered by S, where S covers Sj if S ∩ Sj ̸= ∅.

(a) Show that the following nonlinear integer program models the maximum coverage
problem:

maximize
∑
j∈[m]

wj

1−
∏
e∈Sj

(1− xe)


subject to

∑
e∈E

xe = k,

xe ∈ {0, 1} , ∀e ∈ E.

(b) Show that the following linear program is a relaxation of the maximum coverage
problem:

maximize
∑
j∈[m]

wjzj

subject to
∑
e∈Sj

xe ≥ zj , ∀j ∈ [m]

∑
e∈E

xe = k,

0 ≤ zj ≤ 1, ∀j ∈ [m],

0 ≤ xe ≤ 1, ∀e ∈ E.

(c) Using the pipage rounding technique from Exercise 4.7, give an algorithm that de-
terministically rounds the optimal LP solution to an integer solution and has a
performance guarantee of 1− 1

e .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

138 Random sampling and randomized rounding of linear programs

5.10 In the uniform labeling problem, we are given a graph G = (V,E), costs ce ≥ 0 for
all e ∈ E, and a set of labels L that can be assigned to the vertices of V . There is a
nonnegative cost civ ≥ 0 for assigning label i ∈ L to vertex v ∈ V , and an edge e = (u, v)
incurs cost ce if u and v are assigned different labels. The goal of the problem is to assign
each vertex in V a label so as to minimize the total cost.

We give an integer programming formulation of the problem. Let the variable xiv ∈ {0, 1}
be 1 if vertex v is assigned label i ∈ L, and 0 otherwise. Let the variable zie be 1 if exactly
one of the two endpoints of the edge e is assigned label i, and 0 otherwise. Then the
integer programming formulation is as follows:

minimize
1

2

∑
e∈E

ce
∑
i∈L

zie +
∑

v∈V,i∈L
civx

i
v

subject to
∑
i∈L

xiv = 1, ∀v ∈ V,

zie ≥ xiu − xiv ∀(u, v) ∈ E, ∀i ∈ L,

zie ≥ xiv − xiu ∀(u, v) ∈ E, ∀i ∈ L,

zie ∈ {0, 1} , ∀e ∈ E, ∀i ∈ L,

xiv ∈ {0, 1} , ∀v ∈ V, ∀i ∈ L.

(a) Prove that the integer programming formulation models the uniform labeling prob-
lem.

Consider now the following algorithm. First, the algorithm solves the linear programming
relaxation of the integer program above. The algorithm then proceeds in phases. In each
phase, it picks a label i ∈ L uniformly at random, and a number α ∈ [0, 1] uniformly at
random. For each vertex v ∈ V that has not yet been assigned a label, we assign it label
i if α ≤ xiv.

(b) Suppose that vertex v ∈ V has not yet been assigned a label. Prove that the
probability that v is assigned label i ∈ L in the next phase is exactly xiv/|L|, and
the probability that it is assigned a label in the next phase is exactly 1/|L|. Further
prove that the probability that v is assigned label i by the algorithm is exactly xiv.

(c) We say that an edge e is separated by a phase if both endpoints were not assigned
labels prior to the phase, and exactly one of the endpoints is assigned a label in
this phase. Prove that the probability that an edge e is separated by a phase is
1
|L|
∑

i∈L zie.

(d) Prove that the probability that the endpoints of edge e receive different labels is at
most

∑
i∈L zie.

(e) Prove that the algorithm is a 2-approximation algorithm for the uniform labeling
problem.

5.11 Prove Lemma 5.22, and show that the integer programming solution (y∗, C∗) described
at the end of Section 5.9 must be optimal for the integer program (5.3).

5.12 Using randomized rounding and first fit, give a randomized polynomial-time algorithm
for the bin-packing problem that uses ρ ·OPT(I) + k bins for some ρ < 2 and some small
constant k. One idea is to consider the linear program from Section 4.6.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

5.12 Random sampling and coloring dense 3-colorable graphs 139

5.13 Show that the O(log n) factor in Corollary 5.30 can be replaced with O(log n/ log log n)
by using Theorem 5.23.

5.14 Show that there is a linear programming relaxation for the integer multicommodity flow
problem of Section 5.10 that is equivalent to the linear program (5.10) but has a number
of variables and constraints that are bounded by a polynomial in the input size of the
flow problem.

Chapter Notes

The textbooks of Mitzenmacher and Upfal [226] and Motwani and Raghavan [228] give more
extensive treatments of randomized algorithms.

A 1967 paper of Erdős [99] on the maximum cut problem showed that sampling a solution
uniformly at random as in Theorem 5.3 gives a solution whose expected value is at least half the
sum of the edge weights. This is one of the first randomized approximation algorithms of which
we are aware. This algorithm can also be viewed as a randomized version of a deterministic
algorithm given by Sahni and Gonzalez [257] (the deterministic algorithm of Sahni and Gonzalez
is given in Exercise 5.2).

Raghavan and Thompson [247] were the first to introduce the idea of the randomized round-
ing of a linear programming relaxation. The result for integer multicommodity flows in Section
5.11 is from their paper.

Random sampling and randomized rounding are most easily applied to unconstrained prob-
lems, such as the maximum satisfiability problem and the maximum cut problem, in which any
solution is feasible. Even problems such as the prize-collecting Steiner tree problem and the un-
capacitated facility location problem can be viewed as unconstrained problems: we merely need
to select a set of vertices to span or facilities to open. Randomized approximation algorithms
for constrained problems exist, but are much rarer.

The results for the maximum satisfiability problem in this chapter are due to a variety of
authors. The simple randomized algorithm of Section 5.1 is given by Yannakakis [293] as a ran-
domized variant of an earlier deterministic algorithm introduced by Johnson [179]. The “biased
coins” algorithm of Section 5.3 is a similar randomization of an algorithm of Lieberherr and
Specker [216]. The randomized rounding, “better of two”, and non-linear randomized rounding
algorithms in Sections 5.4, 5.5, and 5.6 respectively are due to Goemans and Williamson [137].

The derandomization of randomized algorithms is a major topic of study. The method of
conditional expectations given in Section 5.2 is implicit in the work of Erdős and Selfridge [101],
and has been developed by Spencer [271].

The randomized algorithm for the prize-collecting Steiner tree problem in Section 5.7 is an
unpublished result of Goemans.

The algorithm of Section 5.8 for uncapacitated facility location is due to Chudak and Shmoys
[77].

The scheduling algorithm of Section 5.9 is due to Schulz and Skutella [261]. The algorithm
for solving the integer programming relaxation of this problem is due to Goemans [132], and
the α-point algorithm that uses a single value of α is also due to Goemans [133].

Chernoff [71] gives the general ideas used in the proof of Chernoff bounds. Our proofs of
these bounds follow those of Mitzenmacher and Upfal [226] and Motwani and Raghavan [228].

The randomized algorithm for 3-coloring a dense 3-colorable graph is due to Arora, Karger,
and Karpinski [16]; a deterministic algorithm for the problem had earlier been given by Edwards

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

140 Random sampling and randomized rounding of linear programs

[97]. Theorems 5.31 and 5.32 are due to Khanna, Linial and Safra [190] (see also Guruswami
and Khanna [152]) and Dinur, Mossel, and Regev [90] respectively.

Exercises 5.4 and 5.5 are due to Goemans and Williamson [137]. Exercise 5.6 is due to
Trevisan [279, 280]. Exercise 5.7 is due to Norton [237]. Ageev and Sviridenko [1] gave the
algorithm and analysis in Exercise 5.8, while Exercise 5.9 is also due to Ageev and Sviridenko
[2, 3]. The algorithm for the uniform labeling problem in Exercise 5.10 is due to Kleinberg
and Tardos [197]; the uniform labeling problem models a problem arising in image processing.
Exercise 5.12 is an unpublished result of Williamson.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 6

Randomized rounding of

semidefinite programs

We now turn to a new tool which gives substantially improved performance guarantees for some
problems. So far we have used linear programming relaxations to design and analyze various
approximation algorithms. In this section, we show how nonlinear programming relaxations can
give us better algorithms than we know how to obtain via linear programming; in particular we
use a type of nonlinear program called a semidefinite program. Part of the power of semidefinite
programming is that semidefinite programs can be solved in polynomial time.

We begin with a brief overview of semidefinite programming. Throughout the chapter we
assume some basic knowledge of vectors and linear algebra; see the notes at the end of the
chapter for suggested references on these topics. We then give an application of semidefinite
programming to approximating the maximum cut problem. The algorithm for this problem
introduces a technique of rounding the semidefinite program by choosing a random hyperplane.
We then explore other problems for which choosing a random hyperplane, or multiple random
hyperplanes, is useful, including approximating quadratic programs, approximating clustering
problems, and coloring 3-colorable graphs.

6.1 A brief introduction to semidefinite programming

Semidefinite programming uses symmetric, positive semidefinite matrices, so we briefly review
a few properties of these matrices. In what follows, XT is the transpose of the matrix X, and
vectors v ∈ ℜn are assumed to be column vectors, so that vT v is the inner product of v with
itself, while vvT is an n by n matrix.

Definition 6.1: A matrix X ∈ ℜn×n is positive semidefinite iff for all y ∈ ℜn, yTXy ≥ 0.

Sometimes we abbreviate “positive semidefinite” as “psd.” Sometimes we will write X ≽ 0 to
denote that a matrix X is positive semidefinite. Symmetric positive semidefinite matrices have
some special properties which we list below. From here on, we will generally assume (unless
otherwise stated) that any psd matrix X is also symmetric.

Fact 6.2: If X ∈ ℜn×n is a symmetric matrix, then the following statements are equivalent:

1. X is psd;

141

142 Randomized rounding of semidefinite programs

2. X has non-negative eigenvalues;

3. X = V TV for some V ∈ ℜm×n where m ≤ n;

4. X =
∑n

i=1 λiwiw
T
i for some λi ≥ 0 and vectors wi ∈ ℜn such that wT

i wi = 1 and
wT
i wj = 0 for i ̸= j.

A semidefinite program (SDP) is similar to a linear program in that there is a linear objective
function and linear constraints. In addition, however, a square symmetric matrix of variables
can be constrained to be positive semidefinite. Below is an example in which the variables are
xij for 1 ≤ i, j ≤ n.

maximize or minimize
∑
i,j

cijxij (6.1)

subject to
∑
i,j

aijkxij = bk, ∀k,

xij = xji, ∀i, j,
X = (xij) ≽ 0.

Given some technical conditions, semidefinite programs can be solved to within an additive
error of ϵ in time that is polynomial in the size of the input and log(1/ϵ). We explain the
technical conditions in more detail in the notes at the end of the chapter. We will usually
ignore the additive error when discussing semidefinite programs and assume that the SDPs can
be solved exactly, since the algorithms we will use do not assume exact solutions, and one can
usually analyze the algorithm that has additive error in the same way with only a small loss in
performance guarantee.

We will often use semidefinite programming in the form of vector programming. The vari-
ables of vector programs are vectors vi ∈ ℜn, where the dimension n of the space is the number
of vectors in the vector program. The vector program has an objective function and constraints
that are linear in the inner product of these vectors. We write the inner product of vi and vj
as vi · vj , or sometimes as vTi vj . Below we give an example of a vector program.

maximize or minimize
∑
i,j

cij(vi · vj) (6.2)

subject to
∑
i,j

aijk(vi · vj) = bk, ∀k,

vi ∈ ℜn, i = 1, . . . , n.

We claim that in fact the SDP (6.1) and the vector program (6.2) are equivalent. This follows
from Fact 6.2; in particular, it follows since a symmetric X is psd if and only if X = V TV for
some matrix V . Given a solution to the SDP (6.1), we can take the solution X, compute in
polynomial time a matrix V for which X = V TV (to within small error, which we again will
ignore), and set vi to be the ith column of V . Then xij = vTi vj = vi · vj , and the vi are a
feasible solution of the same value to the vector program (6.2). Similarly, given a solution vi to
the vector program, we construct a matrix V whose ith column is vi, and let X = V TV . Then
X is symmetric and psd, with xij = vi · vj , so that X is a feasible solution of the same value
for the SDP (6.1).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.2 Finding large cuts 143

6.2 Finding large cuts

In this section, we show how to use semidefinite programming to find an improved approximation
algorithm for the maximum cut problem, or MAX CUT problem, which we introduced in Section
5.1. Recall that for this problem, the input is an undirected graph G = (V,E), and nonnegative
weights wij ≥ 0 for each edge (i, j) ∈ E. The goal is to partition the vertex set into two parts,
U and W = V − U , so as to maximize the weight of the edges whose two endpoints are in
different parts, one in U and one in W . In Section 5.1, we gave a 1

2 -approximation algorithm
for the maximum cut problem.

We will now use semidefinite programming to give a .878-approximation algorithm for the
problem in general graphs. We start by considering the following formulation of the maximum
cut problem:

maximize
1

2

∑
(i,j)∈E

wij(1− yiyj) (6.3)

subject to yi ∈ {−1,+1} , i = 1, . . . , n.

We claim that if we can solve this formulation, then we can solve the MAX CUT problem.

Lemma 6.3: The program (6.3) models the maximum cut problem.

Proof. Consider the cut U = {i : yi = −1} and W = {i : yi = +1}. Note that if an edge (i, j)
is in this cut, then yiyj = −1, while if the edge is not in the cut, yiyj = 1. Thus

1

2

∑
(i,j)∈E

wij(1− yiyj)

gives the weight of all the edges in the cut. Hence finding the setting of the yi to ±1 that
maximizes this sum gives the maximum-weight cut.

We can now consider the following vector programming relaxation of the program (6.3):

maximize
1

2

∑
(i,j)∈E

wij(1− vi · vj) (6.4)

subject to vi · vi = 1, i = 1, . . . , n,

vi ∈ ℜn, i = 1, . . . , n.

This program is a relaxation of (6.3) since we can take any feasible solution y and produce
a feasible solution to this program of the same value by setting vi = (yi, 0, 0, . . . , 0): clearly
vi · vi = 1 and vi · vj = yiyj for this solution. Thus if ZV P is the value of an optimal solution to
the vector program, it must be the case that ZV P ≥ OPT.

We can solve (6.4) in polynomial time. We would now like to round the solution to obtain
a near-optimal cut. To do this, we introduce a form of randomized rounding suitable for vector
programming. In particular, we pick a random vector r = (r1, . . . , rn) by drawing each compo-
nent from N (0, 1), the normal distribution with mean 0 and variance 1. The normal distribution
can be simulated by an algorithm that draws repeatedly from the uniform distribution on [0,1].
Then given a solution to (6.4), we iterate through all the vertices and put i ∈ U if vi · r ≥ 0 and
i ∈W otherwise.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

144 Randomized rounding of semidefinite programs

Figure 6.1: An illustration of a random hyperplane.

Another way of looking at this algorithm is that we consider the hyperplane with normal
r containing the origin. All vectors vi lie on the unit sphere, since vi · vi = 1 and they are
unit vectors. The hyperplane with normal r containing the origin splits the sphere in half; all
vertices in one half (the half such that vi · r ≥ 0) are put into U , and all vertices in the other
half are put into W (see Figure 6.1). As we will see below, the vector r/∥r∥ is uniform over the
unit sphere, so this is equivalent to randomly splitting the unit sphere in half. For this reason,
this technique is sometimes called choosing a random hyperplane.

To prove that this is a good approximation algorithm, we need the following facts.

Fact 6.4: The normalization of r, r/||r||, is uniformly distributed over the n-dimensional unit
sphere.

Fact 6.5: The projections of r onto two unit vectors e1 and e2 are independent and are normally
distributed with mean 0 and variance 1 iff e1 and e2 are orthogonal.

Corollary 6.6: Let r′ be the projection of r onto a two-dimensional plane. Then the normal-
ization of r′, r′/||r′||, is uniformly distributed on a unit circle in the plane.

We now begin the proof that choosing a random hyperplane gives a .878-approximation
algorithm for the problem. We will need the following two lemmas.

Lemma 6.7: The probability that edge (i, j) is in the cut is 1
π arccos(vi · vj).

Proof. Let r′ be the projection of r onto the plane defined by vi and vj . If r = r′ + r′′, then r′′

is orthogonal to both vi and vj , and vi · r = vi · (r′ + r′′) = vi · r′. Similarly vj · r = vj · r′.
Consider Figure 6.2, where line AC is perpendicular to the vector vi and line BD is per-

pendicular to the vector vj . By Corollary 6.6, the vector r′ with its tail at the origin O is
oriented with respect to the vector vi by an angle α chosen uniformly from [0, 2π). If r′ is to
the right of the line AC, vi will have a nonnegative inner product with r′, otherwise not. If r′

is above the line BD, vj will have nonnegative inner product with r′, otherwise not. Thus we
have i ∈ W and j ∈ U if r′ is in the sector AB and i ∈ U and j ∈ W if r′ is in the sector
CD. If the angle formed by vi and vj is θ radians, then the angles ∠AOB and ∠COD are also
θ radians. Hence the fraction of values for which α, the angle of r′, corresponds to the event

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.2 Finding large cuts 145

θ
θ

θ

vi

vj

A

B

C

D

O

Figure 6.2: Figure for proof of Lemma 6.7.

in which (i, j) is in the cut is 2θ/2π. Thus the probability that (i, j) is in the cut is θ
π . We

know that vi · vj = ∥vi∥∥vj∥ cos θ. Since vi and vj are both unit length vectors, we have that
θ = arccos(vi · vj), which completes the proof of the lemma.

Lemma 6.8: For x ∈ [−1, 1],

1

π
arccos(x) ≥ 0.878 · 1

2
(1− x).

Proof. The proof follows from simple calculus. See Figure 6.3 for an illustration.

Theorem 6.9: Rounding the vector program (6.4) by choosing a random hyperplane is a .878-
approximation algorithm for the maximum cut problem.

Proof. Let Xij be a random variable for edge (i, j) such that Xij = 1 if (i, j) is in the cut given
by the algorithm, and 0 otherwise. Let W be a random variable which gives the weight of the
cut; that is, W =

∑
(i,j)∈E wijXij . Then by Lemma 6.7,

E[W] =
∑

(i,j)∈E

wij · Pr[edge (i, j) is in cut] =
∑

(i,j)∈E

wij ·
1

π
arccos(vi · vj).

By Lemma 6.8, we can bound each term 1
π arccos(vi · vj) below by 0.878 · 12(1− vi · vj), so that

E[W] ≥ 0.878 · 1
2

∑
(i,j)∈E

wij(1− vi · vj) = 0.878 · ZV P ≥ 0.878 ·OPT .

We know that ZV P ≥ OPT. The proof of the theorem above shows that there is a cut of value
at least 0.878 ·ZV P , so that OPT ≥ 0.878 ·ZV P . Thus we have that OPT ≤ ZV P ≤ 1

0.878 OPT.
It has been shown that there are graphs for which the upper inequality is met with equality.
This implies that we can get no better performance guarantee for the maximum cut problem

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

146 Randomized rounding of semidefinite programs

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

(1/pi) arccos(x)
1/2 (1-x)

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1

ratio
.878

Figure 6.3: Illustration of Lemma 6.8. The upper figure shows plots of the functions
1
π arccos(x) and 1

2(1−x). The lower figure shows a plot of the ratio of the two functions.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.3 Approximating quadratic programs 147

by using ZV P as an upper bound on OPT. Currently, .878 is the best performance guarantee
known for the maximum cut problem problem. The following theorems show that this is either
close to, or exactly, the best performance guarantee that is likely attainable.

Theorem 6.10: If there is an α-approximation algorithm for the maximum cut problem with
α > 16

17 ≈ 0.941, then P = NP.

Theorem 6.11: Given the unique games conjecture there is no α-approximation algorithm for
the maximum cut problem with constant

α > min
−1≤x≤1

1
π arccos(x)
1
2(1− x)

≥ .878

unless P = NP.

We sketch the proof of the second theorem in Section 16.5.
So far we have only discussed a randomized algorithm for the maximum cut problem. It

is possible to derandomize the algorithm by using a sophisticated application of the method
of conditional expectations that iteratively determines the various coordinates of the random
vector. The derandomization incurs a loss in the performance guarantee that can be made as
small as desired (by increasing the running time).

6.3 Approximating quadratic programs

We can extend the algorithm above for the maximum cut problem to the following more general
problem. Suppose we wish to approximate the quadratic program below:

maximize
∑

1≤i,j≤n

aijxixj (6.5)

subject to xi ∈ {−1,+1} , i = 1, . . . , n.

We need to be slightly careful in this case since as stated it is possible that the value of an
optimal solution is negative (for instance, if the values of aii are negative and all other aij are
zero). Thus far we have only been considering problems in which all feasible solutions have
nonnegative value so that the definition of an α-approximation algorithm makes sense. To see
that the definition might not make sense in the case of negative solution values, suppose we have
an α-approximation algorithm for a maximization problem with α < 1 and suppose we have
a problem instance in which OPT is negative. Then the approximation algorithm guarantees
the value of our solution is at least α · OPT, which means that the value of our solution will
be greater than that of OPT. In order to get around this difficulty, in this case we will restrict
the objective function matrix A = (aij) in (6.5) to itself be positive semidefinite. Observe then
that for any feasible solution x, the value of the objective function will be xTAx and will be
nonnegative by the definition of positive semidefinite matrices.

As in the case of the maximum cut problem, we can then have the following vector pro-
gramming relaxation:

maximize
∑

1≤i,j≤n

aij(vi · vj) (6.6)

subject to vi · vi = 1, i = 1, . . . , n,

vi ∈ ℜn, i = 1, . . . , n.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

148 Randomized rounding of semidefinite programs

Let ZV P be the value of an optimal solution for this vector program. By the same argument as
in the previous section, ZV P ≥ OPT.

We can also use the same algorithm as we did for the maximum cut problem. We solve the
vector program (6.6) in polynomial time and obtain vectors vi. We choose a random hyperplane
with normal r, and generate a solution x̄ for the quadratic program (6.5) by setting x̄i = 1 if
r · vi ≥ 0 and x̄i = −1 otherwise. We will show below that this gives a 2

π -approximation
algorithm for the quadratic program (6.5).

Lemma 6.12:

E[x̄ix̄j] =
2

π
arcsin(vi · vj)

Proof. Recall from Lemma 6.7 that the probability vi and vj will be on different sides of the
random hyperplane is 1

π arccos(vi ·vj). Thus the probability that x̄i and x̄j have different values
is 1

π arccos(vi · vj). Observe that if x̄i and x̄j have different values, then their product must be
−1, while if they have the same value, their product must be 1. Thus the probability that the
product is 1 must be 1− 1

π arccos(vi · vj). Hence

E[x̄ix̄j] = Pr[x̄ix̄j = 1]− Pr[x̄ix̄j = −1]

=

(
1− 1

π
arccos(vi · vj)

)
−
(
1

π
arccos(vi · vj)

)
= 1− 2

π
arccos(vi · vj).

Using arcsin(x) + arccos(x) = π
2 , we get

E[x̄ix̄j] = 1− 2

π

[π
2
− arcsin(vi · vj)

]
=

2

π
arcsin(vi · vj).

We would like to make the same argument as we did for the maximum cut problem in
Theorem 6.9, but there is a difficulty with the analysis. Let

α = min
−1≤x≤1

2
π arcsin(x)

x
.

Then we would like to argue that the expected value of the solution is

E

∑
i,j

aij x̄ix̄j

 =
∑
i,j

aijE[x̄ix̄j]

=
2

π

∑
i,j

aij arcsin(vi · vj)

≥ α
∑
i,j

aij(vi · vj)

≥ α ·OPT

by the same reasoning as in Theorem 6.9. However, the penultimate inequality is not necessarily
correct since it may be the case that some of the aij are negative. We are assuming that the
inequality holds on a term-by-term basis, and this is not true when some of the aij < 0.

Thus in order to analyze this algorithm, we will have to use a global analysis, rather than
a term-by-term analysis. To do so, we will need the following fact, called the Schur product
theorem, and the subsequent two corollaries.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.3 Approximating quadratic programs 149

Fact 6.13 (Schur product theorem): For matrices A = (aij) and B = (bij), define A ◦B =
(aijbij). Then if A ≽ 0 and B ≽ 0, then A ◦B ≽ 0.

Corollary 6.14: If A ≽ 0 and B ≽ 0, then
∑

i,j aijbij ≥ 0.

Proof. By Fact 6.13, we know that A ◦B ≽ 0, so that for the vector 1⃗ of all ones,
∑

i,j aijbij =

1⃗T (A ◦B)⃗1 ≥ 0, by the definition of psd matrices.

Corollary 6.15: If X ≽ 0, |xij | ≤ 1 for all i, j, and Z = (zij) such that zij = arcsin(xij)−xij,
then Z ≽ 0.

Proof. We recall that the Taylor series expansion for arcsinx around zero is

arcsinx = x+
1

2 · 3
x3 +

1 · 3
2 · 4 · 5

x5 + · · ·+ 1 · 3 · 5 · · · (2n+ 1)

2 · 4 · 6 · · · 2n · (2n+ 1)
x2n+1 + · · · ,

and it converges for |x| ≤ 1. Since the matrix Z = (zij) where zij = arcsin(xij) − xij , we can
express it as

Z =
1

2 · 3
((X ◦X) ◦X) +

1 · 3
2 · 4 · 5

(((((X ◦X) ◦X) ◦X) ◦X) + · · · .

By Fact 6.13, because X ≽ 0, each term on the right-hand side is a positive semidefinite matrix,
and therefore their sum will be also.

We can now show the following theorem.

Theorem 6.16: Rounding the vector program (6.6) by choosing a random hyperplane is a 2
π -

approximation algorithm for the quadratic program (6.5) when the objective function matrix A
is positive semidefinite.

Proof. We want to show that

E

∑
i,j

aij x̄ix̄j

 ≥ 2

π

∑
i,j

aij(vi · vj) ≥
2

π
·OPT .

We know that

E

∑
i,j

aij x̄ix̄j

 =
2

π

∑
i,j

aij arcsin(vi · vj).

Thus we need to show that

2

π

∑
i,j

aij arcsin(vi · vj)−
2

π

∑
i,j

aij(vi · vj) ≥ 0.

By setting xij = vi · vj and letting θij denote the angle between the two vectors, we obtain that
X = (xij) ≽ 0 and |xij | ≤ 1 since

|vi · vj | = |∥vi∥∥vj∥ cos θij | = | cos θij | ≤ 1.

Thus we want to show that

2

π

∑
i,j

aij(arcsin(xij)− xij) ≥ 0.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

150 Randomized rounding of semidefinite programs

If we set zij = arcsin(xij)− xij , then it is equivalent to show that

2

π

∑
i,j

aijzij ≥ 0.

This follows since Z = (zij) ≽ 0 by Corollary 6.15 and thus
∑

i,j aijzij ≥ 0 by Corollary 6.14
since A ≽ 0.

6.4 Finding a correlation clustering

In this section, we show that semidefinite programming can be used to obtain a good correlation
clustering in an undirected graph. In this problem we are given an undirected graph in which
each edge (i, j) ∈ E is given two nonnegative weights, w+

ij ≥ 0 and w−
ij ≥ 0. The goal is to

cluster the vertices into sets of similar vertices; the degree to which i and j are similar is given
by w+

ij and the degree to which they are different is given by w−
ij . We represent a clustering of

the vertices by a partition S of the vertex set into non-empty subsets. Let δ(S) be the set of
edges that have endpoints in different sets of the partition, and let E(S) be the set of edges
that have both endpoints in the same part of the partition. Then the goal of the problem is to
find a partition S that maximizes the total w+ weight of edges inside the sets of the partition
plus the total w− weight of edges between sets of the partition; in other words, we find S to
maximize ∑

(i,j)∈E(S)

w+
ij +

∑
(i,j)∈δ(S)

w−
ij .

Observe that it is easy to get a 1
2 -approximation algorithm for this problem. If we put all the

vertices into a single cluster (that is, S = {V }), then the value of this solution is
∑

(i,j)∈E w+
ij . If

we make each vertex its own cluster (that is, S = {{i} : i ∈ V }), then the value of this solution
is
∑

(i,j)∈E w−
ij . Since OPT ≤

∑
(i,j)∈E(w

+
ij+w−

ij), at least one of these two solutions has a value

of at least 1
2 OPT.

We now show that we can obtain a 3
4 -approximation algorithm by using semidefinite pro-

gramming. Here we model the problem as follows. Let ek be the kth unit vector; that is, it
has a one in the kth coordinate and zeros elsewhere. We will have a vector xi for each vertex
i ∈ V ; we set xi = ek if i is in the kth cluster. The model of the problem then becomes

maximize
∑

(i,j)∈E

(
w+
ij(xi · xj) + w−

ij(1− xi · xj)
)

subject to xi ∈ {e1, . . . , en} , ∀i,

since ek · el = 1 if k = l and 0 otherwise. We can then relax this model to the following vector
program:

maximize
∑

(i,j)∈E

(
w+
ij(vi · vj) + w−

ij(1− vi · vj)
)

(6.7)

subject to vi · vi = 1, ∀i,
vi · vj ≥ 0, ∀i, j,

vi ∈ ℜn, ∀i.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.4 Finding a correlation clustering 151

Let ZCC be the value of an optimal solution for the vector program. Observe that the vector
program is a relaxation, since any feasible solution to the model above is feasible for the vector
program and has the same value. Thus ZCC ≥ OPT .

In the previous two sections, we chose a random hyperplane to partition the vectors into
two sets; in the case of the maximum cut problem, this gave the two sides of the cut, and in
the case of quadratic programming this gave the variables of value +1 and −1. In this case, we
will choose two random hyperplanes, with two independent random vectors r1 and r2 as their
normals. This partitions the vertices into 22 = 4 sets: in particular, we partition the vertices
into the sets

R1 = {i ∈ V : r1 · vi ≥ 0, r2 · vi ≥ 0}
R2 = {i ∈ V : r1 · vi ≥ 0, r2 · vi < 0}
R3 = {i ∈ V : r1 · vi < 0, r2 · vi ≥ 0}
R4 = {i ∈ V : r1 · vi < 0, r2 · vi < 0} .

We will show that the solution consisting of these four clusters, with S = {R1, R2, R3, R4},
comes within a factor of 3

4 of the optimal value. We first need the following lemma.

Lemma 6.17: For x ∈ [0, 1],
(1− 1

π arccos(x))2

x
≥ .75

and
1− (1− 1

π arccos(x))2

(1− x)
≥ .75.

Proof. These statements follow by simple calculus. See Figure 6.4 for an illustration.

We can now give the main theorem.

Theorem 6.18: Rounding the vector program (6.7) by using two random hyperplanes as above
gives a 3

4 -approximation algorithm for the correlation clustering problem.

Proof. Let Xij be a random variable which is 1 if vertices i and j end up in the same cluster, and
is 0 otherwise. Note that the probability that a single random hyperplane has the vectors vi and
vj on different sides of the hyperplane is 1

π arccos(vi·vj) by Lemma 6.7. Then the probability that
vi and vj are on the same side of a single random hyperplane is 1− 1

π arccos(vi ·vj). Furthermore,
the probability that the vectors are both on the same sides of the two random hyperplanes
defined by r1 and r2 is (1− 1

π arccos(vi · vj))2, since r1 and r2 are chosen independently. Thus
E[Xij] = (1− 1

π arccos(vi · vj))2.
Let W be a random variable denoting the weight of the partition. Observe that

W =
∑

(i,j)∈E

(
w+
ijXij + w−

ij(1−Xij)
)
.

Thus

E[W] =
∑

(i,j)∈E

(
w+
ijE[Xij] + w−

ij(1− E[Xij])
)

=
∑

(i,j)∈E

[
w+
ij

(
1− 1

π
arccos(vi · vj)

)2

+ w−
ij

(
1−

(
1− 1

π
arccos(vi · vj)

)2
)]

.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

152 Randomized rounding of semidefinite programs

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

(1-(1/pi) arccos(x))^2/x
.75

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

(1-(1-(1/pi)arccos(x))^2)/(1-x)
.75

Figure 6.4: Illustration of Lemma 6.17. The upper figure shows a plot of[
(1− 1

π arccos(x))2
]
/x and the lower figure shows a plot of

[
1− (1− 1

π arccos(x))2
]
/(1−

x).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.5 Coloring 3-colorable graphs 153

We now want to use Lemma 6.17 to bound each term in the sum from below; we can do so
because the constraints of the vector program imply that vi · vj ∈ [0, 1]. Thus

E[W] ≥ .75
∑

(i,j)∈E

(
w+
ij(vi · vj) + w−

ij(1− vi · vj)
)
= .75 · ZCC ≥ .75 ·OPT .

6.5 Coloring 3-colorable graphs

In Section 5.12, we saw that with high probability we can 3-color a δ-dense 3-colorable graph.
The situation for arbitrary 3-colorable graphs is much worse, however. We will give a quite
simple algorithm that colors a 3-colorable graph G = (V,E) with O(

√
n) colors, where n = |V |.

Then by using semidefinite programming, we will obtain an algorithm that uses Õ(n0.387) colors
where Õ is defined below.

Definition 6.19: A function g(n) = Õ(f(n)) if there exists some constant c ≥ 0 and some n0

such that for all n ≥ n0, g(n) = O(f(n) logc n).

The best known algorithm does not use much fewer than Õ(n0.387) colors. Graph coloring
is one of the most difficult problems to approximate.

Some coloring problems are quite simple: it is known that a 2-colorable graph can be
2-colored in polynomial time, and that an arbitrary graph with maximum degree ∆ can be
(∆ + 1)-colored in polynomial time. We leave these results as exercises (Exercise 6.4).

Given these results, it is quite simple to give an algorithm that colors a 3-colorable graph
with O(

√
n) colors. As long as there exists a vertex in the graph with degree at least

√
n,

we pick three new colors, color the vertex with one of the new colors, and use the 2-coloring
algorithm to 2-color the neighbors of the vertex with the other two new colors; we know that
we can do this because the graph is 3-colorable. We remove all these vertices from the graph
and repeat. When we have no vertices in the graph of degree at least

√
n, we use the algorithm

that colors a graph with ∆ + 1 colors to color the remaining graph with
√
n new colors.

We can prove the following.

Theorem 6.20: The algorithm above colors any 3-colorable graph with at most 4
√
n colors.

Proof. Each time the algorithm finds a vertex of degree at least
√
n, we use three new colors.

This can happen at most n/
√
n times, since we remove at least

√
n vertices from the graph each

time we do this. Hence this loop uses at most 3
√
n colors. The final step uses an additional√

n colors.

We now turn to semidefinite programming to help improve our coloring algorithms. We will
use the following vector program in which we have a vector vi for each i ∈ V :

minimize λ (6.8)

subject to vi · vj ≤ λ, ∀(i, j) ∈ E,

vi · vi = 1, ∀i ∈ V,

vi ∈ ℜn, ∀i ∈ V.

The lemma below suggests why the vector program will be useful in deriving an algorithm for
coloring 3-colorable graphs.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

154 Randomized rounding of semidefinite programs

Red Green

Blue

Figure 6.5: Proof of Lemma 6.21.

Lemma 6.21: For any 3-colorable graph, there is a feasible solution to (6.8) with λ ≤ −1
2 .

Proof. Consider an equilateral triangle, and associate the unit vectors for all the vertices with
the three different colors with the three different vertices of the triangle (see Figure 6.5). Note
that the angle between any two vectors of the same color is 0, while the angle between vectors
of different colors is 2π/3. Then for vi, vj such that (i, j) ∈ E, we have

vi · vj = ∥vi∥∥vj∥ cos
(
2π

3

)
= −1

2
.

Since we have given a feasible solution to the vector program with λ = −1/2, it must be the
case that for the optimal solution λ ≤ −1/2.

Note that the proof of the lemma has actually shown the following corollary; this will be
useful later on.

Corollary 6.22: For any 3-colorable graph, there is a feasible solution to (6.8) such that vi ·vj =
−1/2 for all edges (i, j) ∈ E.

To achieve our result, we will show how to obtain a randomized algorithm that produces
a semicoloring. A semicoloring is a coloring of nodes such that at most n/4 edges have
endpoints with the same color. This implies that at least n/2 vertices are colored such that
any edge between them has endpoints that are colored differently. We claim that an algorithm
for producing a semicoloring is sufficient, for if we can semicolor a graph with k colors, then we
can color the entire graph with k logn colors in the following way. We first semicolor the graph
with k colors, and take the vertices that are colored correctly. We then semicolor the vertices
left over (no more than n/2) with k new colors, take the vertices that are colored correctly, and
repeat. This takes log n iterations, after which the entire graph is colored correctly with k log n
colors.

Now we give the randomized algorithm for producing a semicoloring. The basic idea is
similar to that used in the correlation clustering algorithm in Section 6.4. We solve the vector
program (6.8), and choose t = 2 + log3∆ random vectors r1, . . . , rt, where ∆ is the maximum
degree of any vertex in the graph. The t random vectors define 2t different regions into which
the vectors vi can fall: one region for each distinct possibility of whether rj · vi ≥ 0 or rj · vi < 0
for all j = 1, . . . , t. We then color the vectors in each region with a distinct color.

Theorem 6.23: This coloring algorithm produces a semicoloring of 4∆log3 2 colors with proba-
bility at least 1/2.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.5 Coloring 3-colorable graphs 155

Proof. Since we used 2t colors for t = 2 + log3∆, we use 4 · 2log3 ∆ = 4∆log3 2 colors.

We now need to show that this produces a semicoloring with probability at least 1/2. First,
we consider the probability that vertices i and j get the same color for a given edge (i, j). This
probability is the probability that both i and j fall into the same region; that is, the probability
that none of the t random hyperplanes separate i and j. Note that by Lemma 6.7, the probability
that a single random hyperplane separates i and j is 1

π arccos(vi · vj). Therefore the probability
that t independently chosen hyperplanes fail to separate i and j is (1− 1

π arccos(vi · vj))t. Thus

Pr[i and j get the same color for edge (i, j)] =

(
1− 1

π
arccos(vi · vj)

)t

≤
(
1− 1

π
arccos(λ)

)t

,

where the last inequality follows from the inequalities of the vector program (6.8) and since
arccos is a nonincreasing function. Then by Lemma 6.21,(

1− 1

π
arccos(λ)

)t

≤
(
1− 1

π
arccos(−1/2)

)t

.

Finally, using some simple algebra and the definition of t,(
1− 1

π
arccos(−1/2)

)t

=

(
1− 1

π

2π

3

)t

=

(
1

3

)t

≤ 1

9∆
.

Therefore,

Pr[i and j get the same color for edge (i, j)] ≤ 1

9∆
.

If m denotes the number of edges in the graph, then m ≤ n∆/2. Thus the expected number
of edges which have both endpoints colored the same is no more than m/9∆, which is at most
n/18. Let X be a random variable denoting the number of edges which have both endpoints
colored the same. By Markov’s inequality (Lemma 5.25), the probability that there are more
than n/4 edges which have both endpoints colored the same is at most

Pr[X ≥ n/4] ≤ E[X]

n/4
≤ n/18

n/4
≤ 1

2
.

If we use n as a bound on the maximum degree ∆, then we obtain an algorithm that
produces a semicoloring with O(nlog3 2) colors and thus a coloring with Õ(nlog3 2) colors. Since
log3 2 ≈ .631, this is worse than the algorithm we presented at the beginning of the section that
uses O(n1/2) colors. However, we can use some ideas from that algorithm to do better. Let
σ be some parameter we will choose later. As long as there is a vertex in the graph of degree
at least σ, we pick three new colors, color the vertex with one of the new colors, and use the
2-coloring algorithm to 2-color the neighbors of the vertex with the other two new colors; we
know that we can do this because the graph is 3-colorable. We remove all these vertices from
the graph and repeat. When we have no vertices in the graph of degree at least σ, we use the
algorithm above to semicolor the remaining graph with O(σlog3 2) new colors. We can now show
the following.

Theorem 6.24: The algorithm above semicolors a 3-colorable graph with O(n0.387) colors with
probability at least 1/2.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

156 Randomized rounding of semidefinite programs

Proof. The first part of this algorithm uses 3n/σ colors in total, since we remove at least σ
vertices from the graph each time. To balance the two parts of the algorithm, we set σ such
that n

σ = σlog3 2, which gives σ = nlog6 3, or σ ≈ n0.613. Thus both parts use O(n0.387) colors,
which gives the theorem.

From the theorem we get an overall algorithm that colors a graph with Õ(n0.387) colors.

In Section 13.2, we will show how to use semidefinite programming to obtain an algorithm
that 3-colors a graph with Õ(∆1/3

√
ln∆) colors. Using the same ideas as above, this can be

converted into an algorithm that colors using Õ(n1/4) colors.

Exercises

6.1 As with linear programs, semidefinite programs have duals. The dual of the MAX CUT
SDP (6.4) is:

minimize
1

2

∑
i<j

wij +
1

4

∑
i

γi

subject to W + diag(γ) ≽ 0,

where the matrix W is the symmetric matrix of the edge weights wij and diag(γ) is the
matrix of zeroes with γi as the ith entry on the diagonal. Show that the value of any
feasible solution for this dual is an upper bound on the cost of any cut.

6.2 Semidefinite programming can also be used to give improved approximation algorithms
for the maximum satisfiability problem. First we start with the MAX 2SAT problem, in
which every clause has at most two literals.

(a) As in the case of the maximum cut problem, we’d like to express the MAX 2SAT
problem as a “integer quadratic program” in which the only constraints are yi ∈
{−1, 1} and the objective function is quadratic in the yi. Show that the MAX 2SAT
problem can be expressed this way. (Hint: it may help to introduce a variable y0
which indicates whether the value −1 or 1 is “TRUE”).

(b) Derive a .878-approximation algorithm for the MAX 2SAT problem.

(c) Use this .878-approximation algorithm for MAX 2SAT to derive a (34+ϵ)-approximation
algorithm for the maximum satisfiability problem, for some ϵ > 0. How large an ϵ
can you get?

6.3 Given a MAX 2SAT instance as defined in Exercise 6.2, prove that it possible to decide
in polynomial time whether all the clauses can be satisfied or not.

6.4 Give polynomial-time algorithms for the following:

(a) Coloring a 2-colorable graph with 2 colors.

(b) Coloring a graph of maximum degree ∆ with ∆ + 1 colors.

6.5 An important quantity in combinatorial optimization is called the Lovász Theta Function.
The theta function is defined on undirected graphsG = (V,E). One of its many definitions

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.5 Coloring 3-colorable graphs 157

is given below as a semidefinite program:

ϑ(Ḡ) = maximize
∑
i,j

bij

subject to
∑
i

bii = 1,

bij = 0, ∀i ̸= j, (i, j) /∈ E,

B = (bij) ≽ 0, B symmetric.

Lovász showed that ω(G) ≤ ϑ(Ḡ) ≤ χ(G), where ω(G) is the size of the largest clique in
G and χ(G) is the minimum number of colors needed to color G.

(a) Show that ω(G) ≤ ϑ(Ḡ).

(b) The following is a small variation in the vector program we used for graph coloring:

minimize α

subject to vi · vj = α, ∀(i, j) ∈ E,

vi · vi = 1, ∀i ∈ V,

vi ∈ ℜn, ∀i ∈ V.

Its dual is

maximize −
∑
i

ui · ui

subject to
∑
i̸=j

ui · uj ≥ 1,

ui · uj = 0, ∀(i, j) /∈ E, i ̸= j,

ui ∈ ℜn ∀i ∈ V.

Show that the value of the dual is 1/(1 − ϑ(Ḡ)). By strong duality, this is also the
value of the primal; however, see the chapter notes for a discussion of conditions
under which strong duality holds.

The value of this vector program is sometimes called the strict vector chromatic
number of the graph, and the value of original vector programming relaxation (6.8)
is the vector chromatic number of the graph.

6.6 Recall the maximum directed cut problem from Exercises 5.3 and 5.6: we are given as
input a directed graphG = (V,A), with a nonnegative weight wij ≥ 0 for all arcs (i, j) ∈ A.
The goal is to partition V into two sets U and W = V − U so as to maximize the total
weight of the arcs going from U to W (that is, arcs (i, j) with i ∈ U and j ∈W).

(a) As in the case of the maximum cut problem, we’d like to express the maximum di-
rected cut problem as an integer quadratic program in which the only constraints are
yi ∈ {−1, 1} and the objective function is quadratic in yi. Show that the maximum
directed cut problem can be expressed in this way. (Hint: As is the case for MAX
2SAT in Exercise 6.2, it may help to introduce a variable y0 which indicates whether
the value −1 or 1 means that yi is in the set U).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

158 Randomized rounding of semidefinite programs

(b) Find an α-approximation algorithm for the maximum directed cut problem using a
vector programming relaxation of the integer quadratic program above. Find the
best value of α that you can.

6.7 Recall the MAX 2SAT problem from Exercise 6.2 above. We consider a variant, called
MAX E2SAT, in which every clause has exactly two literals in it; that is, there are no
unit clauses. We say that a MAX E2SAT instance is balanced if for each i, the weight
of clauses in which xi appears is equal to the weight of the clauses in which x̄i appears.
Give a β-approximation algorithm for balanced MAX E2SAT instances, where

β = min
x:−1≤x≤1

1
2 + 1

2π arccosx
3
4 −

1
4x

≈ .94394.

6.8 Consider again the maximum directed cut problem given in Exercise 6.6. We say that an
instance of the directed cut problem is balanced if for each vertex i ∈ V , the total weight
of arcs entering i is equal to the total weight of arcs leaving i. Give an α-approximation
algorithm for balanced maximum directed cut instances, where α is the same performance
guarantee as for the maximum cut problem; that is,

α = min
x:−1≤x≤1

1
π arccos(x)
1
2(1− x)

.

Chapter Notes

Strang [273, 274] provides introductions to linear algebra that are useful in the context of our
discussion of semidefinite programming and various operations on vectors and matrices.

A 1979 paper of Lovász [219] gives an early application of SDP to combinatorial optimization
with his ϑ-number for graphs (see Exercise 6.5). The algorithmic implications of the ϑ-number
were highlighted in the work of Grötschel, Lovász, and Schrijver [144]; they showed that the
ellipsoid method could be used to solve the associated semidefinite program for the ϑ-number,
and that in general the ellipsoid method could be used to solve convex programs in polynomial
time given a polynomial-time separation oracle. Alizadeh [5] and Nesterov and Nemirovskii [236]
showed that polynomial-time interior-point methods for linear programming could be extended
to SDP. A good overview of SDP can be found in the edited volume of Wolkowicz, Saigal, and
Vandenberghe [290].

Unlike linear programs, the most general case of semidefinite programs is not solvable in
polynomial time without additional assumptions. There are examples of SDPs in which the
coefficients of all variables are either 1 or 2, but whose optimal value is doubly exponential in
the number of variables (see [5, Section 3.3]), and so no polynomial-time algorithm is possible.
Even when SDPs are solvable in polynomial time, they are only solvable to within an additive
error of ϵ; this is in part due to the fact that exact solutions can be irrational, and thus not
expressible in polynomial space. To show that an SDP is solvable in polynomial time to within
an additive error of ϵ, it is sufficient for the feasible region to be nonempty and to be contained
in a polynomially-size ball centered on the origin. These conditions are met for the problems
we discuss. Weak duality always holds for semidefinite programs. If there are points in the
interior of the feasible region of the primal and dual (called the “Slater conditions”), strong
duality also holds. As a quick way to see the solvability of semidefinite programs in polynomial
time, we observe that the constraint X ≽ 0 is equivalent to the infinite family of constraints
yTXy ≥ 0 for all y ∈ ℜn. Suppose we compute the minimum eigenvalue λ and corresponding

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

6.5 Coloring 3-colorable graphs 159

eigenvector v of the matrix X. If λ ≥ 0, then X is positive semidefinite, whereas if λ < 0, then
vT (Xv) = vT (λv) = λvT v < 0 gives a violated constraint. Thus we have a separation oracle
and can apply the ellipsoid method to find an approximate solution assuming the initial feasible
region can be bounded by a polynomially-sized ellipsoid and assuming that we can carry out the
eigenvalue and eigenvector computation to reasonable precision in polynomial time. Grötschel,
Lovász, and Schrijver [144] avoid the issue of computing an eigenvector in polynomial time by
giving a polynomial-time separation oracle that computes a basis of the columns of X, and then
computes determinants to check whether X is positive semidefinite and to return a constraint
yTXy < 0 if not.

The SDP-based algorithm of Section 6.2 for the maximum cut problem is due to Goemans
and Williamson [139]; they gave the first use of semidefinite programming for approximation
algorithms. Knuth [200, Section 3.4.1C] gives algorithms for sampling from the normal distri-
bution via samples from the uniform [0,1] distribution. Fact 6.4 is from Knuth [200, p. 135-136]
and Fact 6.5 is a paraphrase of Theorem IV.16.3 of Rényi [251]. Feige and Schechtman [109] give
graphs for which ZV P = 1

0.878 OPT. Theorem 6.10 is due to H̊astad [159]. Theorem 6.11 is due
to Khot, Kindler, Mossel, and O’Donnell [193] together with a result of Mossel, O’Donnell, and
Oleszkiewicz [227]. The derandomization of the maximum cut algorithm is due to Mahajan and
Ramesh [222]. This derandomization technique works for many of the randomized algorithms
in this chapter that use random hyperplanes.

Subsequent to the work of Goemans and Williamson, Nesterov [235] gave the algorithm for
quadratic programs found in Section 6.3, Swamy [277] gave the algorithm of Section 6.4 on
correlation clustering, and Karger, Motwani, and Sudan [182] gave the SDP-based algorithm
for coloring 3-colorable graphs in Section 6.5. The O(

√
n)-approximation algorithm for coloring

3-colorable graphs given at the beginning of Section 6.5 is due to Wigderson [286].
Fact 6.13 is known as the Schur product theorem; see, for example, Theorem 7.5.3 of Horn

and Johnson [171].
Exercises 6.1, 6.2, and Exercise 6.6 are from Goemans and Williamson [139]. Exercise 6.3

has been shown by Even, Itai, and Shamir [104], who also point to previous work on the 2SAT
problem. Exercise 6.5 is due to Tardos and Williamson as cited in [182]. Exercises 6.7 and
6.8 on balanced MAX 2SAT and balanced maximum directed cut problem instances are due to
Khot, Kindler, Mossel, and O’Donnell [193].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

160 Randomized rounding of semidefinite programs

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 7

The primal-dual method

We introduced the primal-dual method in Section 1.5, and showed how it gave an approximation
algorithm for the set cover problem. Although there it did not give a better performance
guarantee than various LP rounding algorithms, we observed that in practice the primal-dual
method gives much faster algorithms than those that require solving a linear program.

In this chapter, we will cover primal-dual algorithms in more depth. We begin by reviewing
the primal-dual algorithm for the set cover problem from Section 1.5. We then apply the
primal-dual method to a number of problems, gradually developing a number of principles in
deciding how to apply the technique so as to get good performance guarantees. In discussing
the feedback vertex set problem in Section 7.2, we see that it is sometimes useful to focus on
increasing particular dual variables that correspond to small or minimal constraints not satisfied
by the current primal solution. In Section 7.3, we discuss the shortest s-t path problem, and
see that to obtain a good performance guarantee it is sometimes necessary to remove unneeded
elements in the primal solution returned by the algorithm. In Section 7.4 we introduce the
generalized Steiner tree problem (also known as the Steiner forest problem), and show that
to obtain a good performance guarantee it can be helpful to increase multiple dual variables
at the same time. In Section 7.5, we see that it can be useful to consider alternate integer
programming formulations in order to obtain improved performance guarantees. We conclude
the chapter with an application of the primal-dual method to the uncapacitated facility location
problem, and an extension of this algorithm to the related k-median problem. For the latter
problem, we use a technique called Lagrangean relaxation to obtain the appropriate relaxation
for the approximation algorithm.

7.1 The set cover problem: a review

We begin by reviewing the primal-dual algorithm and its analysis for the set cover problem from
Section 1.5. Recall that in the set cover problem, we are given as input a ground set of elements
E = {e1, . . . , en}, some subsets of those elements S1, S2, . . . , Sm ⊆ E, and a nonnegative weight
wj for each subset Sj . The goal is to find a minimum-weight collection of subsets that covers all
of E; that is, we wish to find an I ⊆ {1, . . . ,m} that minimizes

∑
j∈I wj subject to

∪
j∈I Sj = E.

We observed in Section 1.5 that the set cover problem can be modelled as the following

161

162 The primal-dual method

y ← 0
I ← ∅
while there exists ei /∈

∪
j∈I Sj do

Increase the dual variable yi until there is some ℓ such that
∑

j:ej∈Sℓ
yj = wℓ

I ← I ∪ {ℓ}
return I

Algorithm 7.1: Primal-dual algorithm for the set cover problem.

integer program:

minimize
m∑
j=1

wjxj (7.1)

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, . . . , n, (7.2)

xj ∈ {0, 1} j = 1, . . . ,m. (7.3)

If we relax the integer program to a linear program by replacing the constraints xj ∈ {0, 1}
with xj ≥ 0, and take the dual, we obtain

maximize

n∑
i=1

yi

subject to
∑

i:ei∈Sj

yi ≤ wj , j = 1, . . . ,m,

yi ≥ 0, i = 1, . . . , n.

We then gave the following algorithm, which we repeat in Algorithm 7.1. We begin with
the dual solution y = 0; this is a feasible solution since wj ≥ 0 for all j. We also have an
infeasible primal solution I = ∅. As long as there is some element ei not covered by I, we
look at all the sets Sj that contain ei, and consider the amount by which we can increase
the dual variable yi associated with ei and still maintain dual feasibility. This amount is

ϵ = minj:ei∈Sj

(
wj −

∑
k:ek∈Sj

yk

)
(note that possibly this is zero). We then increase yi by ϵ.

This will cause some dual constraint associated with some set Sℓ to become tight; that is, after
increasing yi we will have for this set Sℓ ∑

k:ek∈Sℓ

yk = wℓ.

We add the set Sℓ to our cover (by adding ℓ to I) and continue until all elements are covered.
In Section 1.5, we argued that this algorithm is an f -approximation algorithm for the set

cover problem, where f = maxi | {j : ei ∈ Sj} |. We repeat the analysis here, since there are
several features of the analysis that are used frequently in analyzing primal-dual approximation
algorithms.

Theorem 7.1: Algorithm 7.1 is an f-approximation algorithm for the set cover problem.

Proof. For the cover I constructed by the algorithm, we would like to show that
∑

j∈I wj ≤
f · OPT. Let Z∗

LP be the optimal value of the linear programming relaxation of (7.1). It is

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.1 The set cover problem: a review 163

sufficient to show that
∑

j∈I wj ≤ f ·
∑n

i=1 yi for the final dual solution y, since by weak duality
we know that for any dual feasible solution y,

∑n
i=1 yi ≤ Z∗

LP , and since the LP is a relaxation,
Z∗
LP ≤ OPT.
Because we only added a set Sj to our cover when its corresponding dual inequality was

tight, we know that for any j ∈ I, wj =
∑

i:ei∈Sj
yi. Thus we have that∑

j∈I
wj =

∑
j∈I

∑
i:ei∈Sj

yi

=

n∑
i=1

yi · | {j ∈ I : ei ∈ Sj} |

where the second equality comes from rewriting the double sum. We then observe that since
| {j ∈ I : ei ∈ Sj} | ≤ f , we get that

∑
j∈I

wj ≤ f ·
n∑

i=1

yi ≤ f ·OPT .

We’ll be using several features of the algorithm and the analysis repeatedly in this chapter.
In particular: we maintain a feasible dual solution, and increase dual variables until a dual
constraint becomes tight. This indicates an object that we need to add to our primal solution
(a set, in this case). When we analyze the cost of the primal solution, each object in the solution
was given by a tight dual inequality. Thus we can rewrite the cost of the primal solution in
terms of the dual variables. We then compare this cost with the dual objective function and
show that the primal cost is within a certain factor of the dual objective, which shows that we
are close to the value of an optimal solution.

In this case, we increase dual variables until wj =
∑

i:ei∈Sj
yi for some set Sj , which we then

add to our primal solution. When we have a feasible primal solution I, we can rewrite its cost
in terms of the dual variables by using the tight dual inequalities, so that∑

j∈I
wj =

∑
j∈I

∑
i:ei∈Sj

yi.

By exchanging the double summation, we have that

∑
j∈I

wj =

n∑
i=1

yi · | {j ∈ I : ei ∈ Sj} |.

Then by bounding the value of | {j ∈ I : ei ∈ Sj} | by f , we get that the cost is at most f times
the dual objective function, proving a performance guarantee on the algorithm. Because we
will use this form of analysis frequently in this chapter, we will call it the standard primal-dual
analysis.

This method of analysis is strongly related to the complementary slackness conditions dis-
cussed at the end of Section 1.4. Let I be the set cover returned by the primal-dual algorithm,
and consider an integer primal solution x∗ for the integer programming formulation (7.1) of the
set cover problem in which we set x∗j = 1 for each set j ∈ I. Then we know that whenever
x∗j > 0, the corresponding dual inequality is tight, so this part of the complementary slackness

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

164 The primal-dual method

conditions is satisfied. If it were also the case that whenever y∗i > 0, the corresponding primal
inequality were tight (namely,

∑
j:ei∈Sj

x∗j = 1) then the complementary slackness conditions
would imply that x∗ is an optimal solution. This is not the case, but we have an approximate
form of the complementary slackness condition that holds; namely, whenever y∗i > 0,

∑
j:ei∈Sj

x∗j = | {j ∈ I : ei ∈ Sj} | ≤ f.

Whenever we can show that these complementary slackness conditions hold within a factor of
α, we can then obtain an α-approximation algorithm.

Recall from Section 5.6 that we defined the integrality gap of an integer programming
formulation to be the worst-case ratio over all instances of the problem of the optimal value
of the integer program to the optimal value of the linear programming relaxation. Standard
primal-dual algorithms construct a primal integer solution and a solution to the dual of the
linear programming relaxation, and the performance guarantee of the algorithm gives an upper
bound on the ratio of these two values over all possible instances of the problem. Therefore, the
performance guarantee of a primal-dual algorithm provides an upper bound on the integrality
gap of an integer programming formulation. However, the opposite is also true: the integrality
gap gives a lower bound on the performance guarantee that can be achieved via a standard
primal-dual algorithm and analysis, or indeed any algorithm that compares the value of its
solution with the value of the linear programming relaxation. In this chapter we will sometimes
be able to show limits on primal-dual algorithms that use particular integer programming
formulations due to an instance of the problem with a bad integrality gap.

7.2 Choosing variables to increase: the feedback vertex set
problem in undirected graphs

In the feedback vertex set problem in undirected graphs, we are given an undirected graph
G = (V,E) and nonnegative weights wi ≥ 0 for vertices i ∈ V . The goal is to choose a
minimum-cost subset of vertices S ⊆ V such that every cycle C in the graph contains some
vertex of S. We sometimes say that S hits every cycle of the graph. Another way to view the
problem is that the goal is to find a minimum-cost subset of vertices S such that removing S
from the graph leaves the graph acyclic. Let G[V −S] be the graph on the set of vertices V −S
with the edges from G that have both endpoints in V − S; we say that G[V − S] is the graph
induced by V − S. A third way to view the problem is to find a minimum-cost set of vertices
S such that the induced graph G[V − S] is acyclic.

We will give a primal-dual algorithm for this problem. In the case of the set cover problem,
it did not matter which dual variable was increased; we could increase any variable yi corre-
sponding to an uncovered element ei and obtain the same performance guarantee. However, it
is often helpful to carefully select the dual variable to increase, and we will see this principle in
the course of devising an algorithm for the feedback vertex set problem.

If we let C denote the set of all cycles C in the graph, we can formulate the feedback vertex

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.2 Choosing variables to increase: the feedback vertex set problem in undirected graphs 165

set problem in undirected graphs as the following integer program:

minimize
∑
i∈V

wixi (7.4)

subject to
∑
i∈C

xi ≥ 1, ∀C ∈ C,

xi ∈ {0, 1} , ∀i ∈ V.

Initially this might not seem like such a good choice of a formulation: the number of cycles in
the graph can be exponential in the size of the graph. However, with the primal-dual method we
do not actually need to solve either the integer program or its linear programming relaxation;
our use of the linear program and the dual only guides the algorithm and its analysis, so having
an exponential number of constraints is not problematic.

If we relax the integer program to a linear program by replacing the constraints xi ∈ {0, 1}
with xi ≥ 0, and take its dual, we obtain

maximize
∑
C∈C

yC

subject to
∑

C∈C:i∈C
yC ≤ wi, ∀i ∈ V,

yC ≥ 0, ∀C ∈ C.

Again, it might seem worrisome that we now have an exponential number of dual variables,
since the primal-dual method maintains a feasible dual solution. In the course of the algorithm,
however, only a polynomial number of these will become nonzero, so we only need to keep track
of these nonzero variables.

By analogy with the primal-dual algorithm for the set-cover problem, we obtain Algorithm
7.2. We start with the dual feasible solution in which all yC are set to zero, and with the primal
infeasible solution S = ∅. We see if there is any cycle C left in the induced graph G[V − S].
If there is, then we determine the amount by which we can increase the dual variable yC while
still maintaining dual feasibility. This amount is ϵ = mini∈C

(
wi −

∑
C′:i∈C′ yC′

)
. Increasing

yC causes a dual inequality to become tight for some vertex ℓ ∈ C; in particular, it becomes
tight for a vertex ℓ ∈ C that attains the minimum in the expression for ϵ. We add this vertex
ℓ to our solution S and we remove ℓ from the graph. We also repeatedly remove any vertices
of degree one from the graph (since they cannot be in any cycle) until we are left with a graph
that contains only vertices of degree two or higher. Let n = |V | be the number of vertices in
the graph. Then note that we can add at most n vertices to our solution, so that we only go
through the main loop at most n times, and at most n dual variables are nonzero.

Suppose we now analyze the algorithm as we did for the set cover problem. Let S be the
final set of vertices chosen. We know that for any i ∈ S, wi =

∑
C:i∈C yC . Thus we can write

the cost of our chosen solution as∑
i∈S

wi =
∑
i∈S

∑
C:i∈C

yC =
∑
C∈C
|S ∩ C|yC .

Note that |S ∩ C| is simply the number of vertices of the solution S in the cycle C. If we can
show that |S ∩ C| ≤ α whenever yC > 0, then we will have

∑
i∈S wi ≤ α

∑
C∈C yC ≤ α ·OPT.

Unfortunately, if in the main loop of the algorithm we choose an arbitrary cycle C and
increase its dual variable yC , it is possible that |S∩C| can be quite large. In order to do better,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

166 The primal-dual method

y ← 0
S ← ∅
while there exists a cycle C in G do

Increase yC until there is some ℓ ∈ C such that
∑

C′∈C:ℓ∈C′ yC′ = wℓ

S ← S ∪ {ℓ}
Remove ℓ from G
Repeatedly remove vertices of degree one from G

return S

Algorithm 7.2: Primal-dual algorithm for the feedback vertex set problem (first attempt).

we need to make a careful choice of cycle C. If we can always choose a short cycle, with |C| ≤ α,
then certainly we will have |S∩C| ≤ |C| ≤ α. This isn’t always possible either: the graph itself
can simply be one large cycle through all n vertices. In such a case, however, we only need to
choose one vertex from the cycle in order to have a feasible solution. This leads to the following
observation.

Observation 7.2: For any path P of vertices of degree two in graph G, Algorithm 7.2 will
choose at most one vertex from P ; that is, |S ∩ P | ≤ 1 for the final solution S given by the
algorithm.

Proof. Once S contains a vertex of P , we remove that vertex from the graph. Its neighbors in
P will then have degree one and be removed. Iteratively, the entire path P will be removed
from the graph, and so no further vertices of P will be added to S.

Suppose that in the main loop of Algorithm 7.2 we choose the cycle C that minimizes the
number of vertices that have degree three or higher. Note that in such a cycle, vertices of degree
three or more alternate with paths of vertices of degree two (possibly paths of a single edge).
Thus by Observation 7.2, the value of |S ∩C| for the final solution S will be at most twice the
number of vertices of degree three or higher in C. The next lemma shows us that we can find
a cycle C with at most O(log n) vertices of degree three or higher.

Lemma 7.3: In any graph G that has no vertices of degree one, there is a cycle with at most
2⌈log2 n⌉ vertices of degree three or more, and it can be found in linear time.

Proof. If G has only vertices of degree two, then the statement is trivially true. Otherwise,
pick an arbitrary vertex of degree three or higher. We start a variant of a breadth-first search
from this vertex, in which we treat every path of vertices of degree two as a single edge joining
vertices of degree three or more; note that since there are no degree one vertices, every such
path joins vertices of degree at least three. Thus each level of the breadth-first search tree
consists only of vertices of degree three or more. This implies that the number of vertices at
each level is at least twice the number of vertices of the previous level. Observe then that the
depth of the breadth-first search can be at most ⌈log2 n⌉: once we reach level ⌈log2 n⌉, we have
reached all n vertices of the graph. We continue the breadth-first search until we close a cycle;
that is, we find a path of vertices of degree two from a node on the current level to a previously
visited node. This cycle has at most 2⌈log2 n⌉ vertices of degree three or more, since at worst
the cycle is closed by an edge joining two vertices at depth ⌈log2 n⌉.

We give the revised algorithm in Algorithm 7.3. We can now show the following theorem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.2 Choosing variables to increase: the feedback vertex set problem in undirected graphs 167

y ← 0
S ← ∅
Repeatedly remove vertices of degree one from G
while there exists a cycle in G do

Find cycle C with at most 2⌈log2 n⌉ vertices of degree three or more
Increase yC until there is some ℓ ∈ C such that

∑
C′∈C:ℓ∈C′ yC′ = wℓ

S ← S ∪ {ℓ}
Remove ℓ from G
Repeatedly remove vertices of degree one from G

return S

Algorithm 7.3: Primal-dual algorithm for the feedback vertex set problem (second attempt).

Theorem 7.4: Algorithm 7.3 is a (4⌈log2 n⌉)-approximation algorithm for the feedback vertex
set problem in undirected graphs.

Proof. As we showed above, the cost of our final solution S is∑
i∈S

wi =
∑
i∈S

∑
C:i∈C

yC =
∑
C∈C
|S ∩ C|yC .

By construction, yC > 0 only when C contains at most 2⌈log2 n⌉ vertices of degree three or more
in the graph at the time we increased yC . Note that at this time S ∩ C = ∅. By Observation
7.2, each path of vertices of degree two joining two vertices of degree three or more in C can
contain at most one vertex of S. Thus if C has at most 2⌈log2 n⌉ vertices of degree three or
more, it can have at most 4⌈log2 n⌉ vertices of S overall: possibly each vertex of degree 3 or
more is in S, and then at most one of the vertices in the path joining adjacent vertices of degree
three or more can be in S. Since as the algorithm proceeds, the degree of a vertex can only go
down, we obtain that whenever yC > 0, |S ∩ C| ≤ 4⌈log2 n⌉. Thus we have that

∑
i∈S

wi =
∑
C∈C
|S ∩ C|yC ≤ (4⌈log2 n⌉)

∑
C∈C

yC ≤ (4⌈log2 n⌉)OPT .

The important observation of this section is that in order to get a good performance guar-
antee, one must choose carefully the dual variable to increase, and it is frequently useful to
choose a dual variable that is small or minimal in some sense.

The integrality gap of the integer programming formulation (7.4) is known to be Ω(logn),
and so a performance guarantee of O(log n) is the best we can hope for from a primal-dual
algorithm using this formulation. However, this does not rule out obtaining a better performance
guarantee by a primal-dual algorithm using a different integer programming formulation of the
problem. In Section 14.2, we will show that we can obtain a primal-dual 2-approximation
algorithm for the feedback vertex set problem in undirected graphs by considering a more
sophisticated integer programming formulation of the problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

168 The primal-dual method

7.3 Cleaning up the primal solution: the shortest s-t path prob-
lem

In the shortest s-t path problem, we are given an undirected graph G = (V,E), nonnegative
costs ce ≥ 0 on all edges e ∈ E, and a pair of distinguished vertices s and t. The goal is
to find the minimum-cost path from s to t. It is well-known that the optimal solution can
be found in polynomial time; for instance, Dijkstra’s algorithm finds an optimal solution in
polynomial time. However, it is instructive to think about applying the primal-dual method to
this problem, in part because it gives us insight into using the primal-dual method for related
problems that are NP-hard; we will see this in the next section. Additionally, the algorithm we
find using the primal-dual method turns out to be equivalent to Dijkstra’s algorithm.

Let S = {S ⊆ V : s ∈ S, t /∈ S}; that is, S is the set of all s-t cuts in the graph. Then we
can model the shortest s-t path problem with the following integer program:

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe ≥ 1, ∀S ∈ S,

xe ∈ {0, 1} , ∀e ∈ E,

where δ(S) is the set of all edges that have one endpoint in S and the other endpoint not in
S. To see that this integer program models the shortest s-t path problem, take any feasible
solution x and consider the graph G′ = (V,E′) with E′ = {e ∈ E : xe = 1}. The constraints
ensure that for any s-t cut S, there must be at least one edge of E′ in δ(S): that is, the size of
the minimum s-t cut in G′ must be at least one. Thus by the max-flow min-cut theorem the
maximum s-t flow in G′ is at least one, which implies that there is a path from s to t in G′.
Similarly, if x is not feasible, then there is some s-t cut S for which there are no edges of E′ in
δ(S), which implies that the size of minimum s-t cut is zero, and thus the maximum s-t flow is
zero. Hence there is no path from s to t in G′.

Once again the number of constraints in the integer program is exponential in the size of
the problem, and as with the feedback vertex set problem in Section 7.2, this is not problematic
since we only use the formulation to guide the algorithm and its analysis.

If we replace the constraints xe ∈ {0, 1} with xe ≥ 0 to obtain a linear programming
relaxation and take the dual of this linear program, we obtain:

maximize
∑
S∈S

yS

subject to
∑

S∈S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

yS ≥ 0 ∀S ∈ S.

The dual variables yS have a nice geometric interpretation; they can be interpreted as “moats”
surrounding the set S of width yS ; see Figure 7.1 for an illustration. Any path from s to t must
cross this moat, and hence must have cost at least yS . Moats must be nonoverlapping, and
thus for any edge e, we cannot have edge e crossing moats of total width more than ce; thus
the dual constraint that

∑
S:e∈δ(S) yS ≤ ce. We can have many moats, and any s-t path must

cross them all, and have total length at most
∑

S∈S yS .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.3 Cleaning up the primal solution: the shortest s-t path problem 169

s

t

S

yS

Figure 7.1: An illustration of a moat separating s from t. The moat contains the
nodes in S and its width is yS .

y ← 0
F ← ∅
while there is no s-t path in (V, F) do

Let C be the connected component of (V, F) containing s
Increase yC until there is an edge e′ ∈ δ(C) such that

∑
S∈S:e′∈δ(S) yS = ce′

F ← F ∪ {e′}
Let P be an s-t path in (V, F)
return P

Algorithm 7.4: Primal-dual algorithm for the shortest s-t path problem.

We now give a primal-dual algorithm for the shortest s-t path problem in Algorithm 7.4
which follows the general lines of the primal-dual algorithms we have given previously for the
set cover and feedback vertex set problems. We start with a dual feasible solution y = 0 and the
primal infeasible solution of F = ∅. While we don’t yet have a feasible solution, we increase the
dual variable yC associated with an s-t cut C which the current solution does not satisfy; that
is, for which F ∩ δ(C) = ∅. We call such constraints violated constraints. Following the lesson
of the previous section, we carefully choose the “smallest” such constraint: we let C be the set
of vertices of the connected component containing s in the set of edges F . Because F does not
contain an s-t path, we know that t /∈ C, and by the definition of a connected component we
know that δ(C) ∩ F = ∅. We increase the dual variable yC until some constraint of the dual
becomes tight for some edge e′ ∈ E, and we add e′ to F .

Once our primal solution F is feasible and contains an s-t path, we end the main loop. Now
we do something slightly different than before: we don’t return the solution F , but rather a
subset of F . Let P be any s-t path such that P ⊆ F . Our algorithm returns P . We do this
since it may be too expensive to return all the edges in F , so we effectively delete any edge we

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

170 The primal-dual method

do not need and return only the edges in P .

We begin the analysis by showing that the set of edges F found by the algorithm forms a
tree; this implies that the s-t path P is unique.

Lemma 7.5: At any point in Algorithm 7.4, the set of edges in F forms a tree containing the
vertex s.

Proof. We prove this by induction on the number of edges added to F . In each step of the main
loop we consider the connected component C of (V, F) containing s, and add an edge e′ from
the set δ(C) to our solution F . Since exactly one endpoint of e′ is in C, e′ cannot close a cycle
in the tree F , and causes F to span a new vertex not previously spanned.

We can now show that this algorithm gives an optimal algorithm for the shortest s-t path
problem.

Theorem 7.6: Algorithm 7.4 finds a shortest path from s to t.

Proof. We prove this using the standard primal-dual analysis . As usual, since for every edge
e ∈ P , we have that ce =

∑
S:e∈δ(S) yS , and we know that∑

e∈P
ce =

∑
e∈P

∑
S:e∈δ(S)

yS =
∑

S:s∈S,t/∈S

|P ∩ δ(S)|yS .

If we can now show that whenever yS > 0, we have |P ∩ δ(S)| = 1, then we will show that∑
e∈P

ce =
∑

S:s∈S,t/∈S

yS ≤ OPT

by weak duality. But of course since P is an s-t path of cost no less than OPT, it must have
cost exactly OPT.

We now show that if yS > 0, then |P ∩ δ(S)| = 1. Suppose otherwise, and |P ∩ δ(S)| > 1.
Then there must be a subpath P ′ of P joining two vertices of S such that the only vertices of
P ′ in S are its start and end vertices; see Figure 7.2. Since yS > 0, we know that at the time
we increased yS , F was a tree spanning just the vertices in S. Thus F ∪ P ′ must contain a
cycle. Since P is a subset of the final set of edges F , this implies that the final F contains a
cycle, which contradicts Lemma 7.5. Thus it must be the case that |P ∩ δ(S)| = 1.

As we stated previously, one can show that this algorithm behaves in exactly the same way
as Dijkstra’s algorithm for solving the shortest s-t path problem; proving this equivalence is
given as Exercise 7.1.

7.4 Increasing multiple variables at once: the generalized Steiner
tree problem

We now turn to a problem known as the generalized Steiner tree problem or the Steiner forest
problem. In this problem we are given an undirected graph G = (V,E), nonnegative costs ce ≥ 0
for all edges e ∈ E, and k pairs of vertices si, ti ∈ V . The goal is to find a minimum-cost subset
of edges F ⊆ E such that every si-ti pair is connected in the set of selected edges; that is, si
and ti are connected in (V, F) for all i.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.4 Increasing multiple variables at once: the generalized Steiner tree problem 171

s

t

P
′

S

Figure 7.2: Proof of Theorem 7.6. The heavy line is the path P ; the dotted heavy line
is the subpath P ′.

Let Si be the subsets of vertices separating si and ti; that is, Si = {S ⊆ V : |S ∩ {si, ti} | = 1}.
Then we can model this problem with the following integer program:

minimize
∑
e∈E

cexe (7.5)

subject to
∑

e∈δ(S)

xe ≥ 1, ∀S ⊆ V : S ∈ Si for some i,

xe ∈ {0, 1} , e ∈ E.

The set of constraints enforce that for any si-ti cut S with si ∈ S, ti /∈ S or vice versa, we must
select one edge from δ(S). The argument that this models the generalized Steiner tree problem
is similar to that for the shortest s-t path problem in the previous section. Given the linear
programming relaxation obtained by dropping the constraints xe ∈ {0, 1} and replacing them
with xe ≥ 0, the dual of this linear program is

maximize
∑

S⊆V :∃i,S∈Si

yS

subject to
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

yS ≥ 0, ∃i : S ∈ Si.

As in the case of the shortest s-t path problem, the dual has a natural geometric interpretation
as moats. In this case, however, we can have moats around any set of vertices S ∈ Si for any
i. See Figure 7.3 for an illustration.

Our initial attempt at a primal-dual algorithm is given in Algorithm 7.5, and is similar to
the shortest s-t path algorithm given in the previous section. In every iteration, we choose some
connected component C such that |C ∩ {si, ti} | = 1 for some i. We increase the dual variable
yC associated with C until the dual inequality associated with some edge e′ ∈ δ(C) becomes
tight, and we add this edge to our primal solution F .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

172 The primal-dual method

s1 s2

t3

δ

Figure 7.3: Illustration of moats for the generalized Steiner tree problem. Each of s1,
s2, and t3 has a white moat surrounding just that node; additionally, there is a grey
moat depicting y{s1,s2,t3} = δ.

y ← 0
F ← ∅
while not all si-ti pairs are connected in (V, F) do

Let C be a connected component of (V, F) such that |C ∩ {si, ti} | = 1 for some i
Increase yC until there is an edge e′ ∈ δ(C) such that

∑
S∈Si:e′∈δ(S) yS = ce′

F ← F ∪ {e′}
return F

Algorithm 7.5: Primal-dual algorithm for the generalized Steiner tree problem (first attempt).

Using the standard primal-dual analysis, we can analyze the cost of the final solution F as
follows: ∑

e∈F
ce =

∑
e∈F

∑
S:e∈δ(S)

yS =
∑
S

|δ(S) ∩ F |yS .

In order to compare the term
∑

S |δ(S)∩F |yS with the dual objective function
∑

S yS , we will
need to show that |δ(S) ∩ F | ≤ α for some α whenever yS > 0.

Unfortunately, it is possible to give an example showing that |δ(S)∩F | = k (where k is the
number of si-ti pairs) for yS > 0 no matter what connected component is chosen in the main
loop of Algorithm 7.5. To see this, consider the complete graph on k+1 vertices. Let each edge
have cost 1, let one vertex correspond to all si, and let the remaining k vertices be t1, . . . , tk
(see Figure 7.4). The algorithm must choose one of the k + 1 vertices initially for the set C.
The dual yC gets value yC = 1, and this is the only non-zero dual at the end of the algorithm.
The final solution F has edges from the vertex chosen for C to all k other vertices, giving
|δ(C)∩ F | = k. However, observe that in the final solution if we take the average of |δ(C)∩ F |
over all the k+1 vertices we could have chosen for the initial set C, we get 2k/(k+1) ≈ 2 since∑

j∈V |δ({j}) ∩ F | = 2k.
This observation suggests that perhaps we should increase the dual variables for several sets

C at once. We present this variation in Algorithm 7.6. Let C be the set of all the connected

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.4 Increasing multiple variables at once: the generalized Steiner tree problem 173

t1

t2 t3

t4

s1, s2, s3, s4

Figure 7.4: Bad example for Algorithm 7.5. If the algorithm chooses the vertex
s1, . . . , s4 as its initial connected component C, then it will eventually add all solid
edges to F , and |δ(C) ∩ F | = 4.

components C such that |C ∩ {si, ti} | = 1. We increase associated dual variables yC for all
C ∈ C at the same rate until a dual inequality becomes tight for some edge e ∈ δ(C) for a set C
whose dual we increased. We then add e to our solution F and continue. Additionally, we index
the edges we add as we go along: e1 is added in the first iteration, e2 in the second, and so on.
Once we have a feasible solution F such that all si-ti pairs are connected in F , we go through
the edges in the reverse of the order in which they were added, from the edge added in the last
iteration to the edge added in the first iteration. If the edge can be removed without affecting
the feasibility of the solution, it is deleted. The final set of edges returned after this “reverse
deletion” step is F ′. This reverse deletion step is solely to simplify our analysis; in Exercise 7.4
the reader is asked to show that removing all unnecessary edges in any order gives an equally
good approximation algorithm.

Given the geometric interpretation of the dual variables as moats, we can give an illustration
of the algorithm in Figure 7.5.

We can now show that our intuition gathered from the bad example in Figure 7.4 is essen-
tially correct, and that the algorithm is a 2-approximation algorithm for the generalized Steiner
tree problem. In order to do this, we first state a lemma, whose proof we defer for a moment.

Lemma 7.7: For any C in any iteration of the algorithm,∑
C∈C
|δ(C) ∩ F ′| ≤ 2|C|.

In terms of the geometric interpretation, we wish to show that the number of times that the
edges in the solution cross a moat is at most twice the number of moats; see Figure 7.6. The
main intuition of the proof is that the degree of nodes in a tree is at most twice the number of
nodes, where we treat each connected component C as a node of the tree and the edges in δ(C)
as the edges of the tree. The proof is slightly more complicated than this because only some
components C are in C, but we show that every “leaf” of the tree is a component in C and this
is sufficient to prove the result.

We now show that the lemma implies the desired performance guarantee.

Theorem 7.8: Algorithm 7.6 is a 2-approximation algorithm for the generalized Steiner tree
problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

174 The primal-dual method

s1

t1

s2 t2

s3

t3

s1

t1

s2 t2

s3

t3

s1

t1

s2 t2

s3

t3

s1

t1

s2 t2

s3

t3

s1

t1

s2 t2

s3

t3

s1

t1

s2 t2

s3

t3

Figure 7.5: Illustration of the primal-dual algorithm for the generalized Steiner tree
problem. Two edges go tight simultaneously in the last iteration before the deletion
step. The deletion step removes the edge (s1, s2) added in the first iteration. The final
set of edges is shown in the last figure.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.4 Increasing multiple variables at once: the generalized Steiner tree problem 175

y ← 0
F ← ∅
ℓ← 0
while not all si-ti pairs are connected in (V, F) do

ℓ← ℓ+ 1
Let C be the set of all connected components C of (V, F) such that |C ∩ {si, ti} | = 1
for some i
Increase yC for all C in C uniformly until for some eℓ ∈ δ(C ′), C ′ ∈ C,
ceℓ =

∑
S:eℓ∈δ(S) yS

F ← F ∪ {eℓ}
F ′ ← F
for k ← ℓ downto 1 do

if F ′ − ek is a feasible solution then
Remove ek from F ′

return F ′

Algorithm 7.6: Primal-dual algorithm for the generalized Steiner tree problem (second attempt).

Proof. As usual, we begin by expressing the cost of our primal solution in terms of the dual
variables: ∑

e∈F ′

ce =
∑
e∈F ′

∑
S:e∈δ(S)

yS =
∑
S

|F ′ ∩ δ(S)|yS .

We would like to show that ∑
S

|F ′ ∩ δ(S)|yS ≤ 2
∑
S

yS , (7.6)

since by weak duality, this will imply that the algorithm is a 2-approximation algorithm. As
is suggested by the bad example in Figure 7.4, we cannot simply prove this by showing that
|F ′∩ δ(S)| ≤ 2 whenever yS > 0. Instead, we show inequality (7.6) by induction on the number
of iterations of the algorithm. Initially all dual variables yS = 0, so inequality (7.6) holds.
Suppose that the inequality holds at the beginning of some iteration of the main loop of the
algorithm. Then in this iteration we increase each yC for C ∈ C by the same amount (call it ϵ).
This increases the left-hand side of (7.6) by

ϵ
∑
C∈C
|F ′ ∩ δ(C)|

and the right-hand side by
2ϵ|C|.

However, by the inequality of Lemma 7.7, this means that the increase in the left-hand side
is no greater than the increase in the right-hand side. Thus if the inequality held before the
increase of the dual variables in this iteration, it will also hold afterwards.

We now turn to the proof of Lemma 7.7. We first need an observation.

Observation 7.9: At any point in the algorithm, the set of edges F is a forest.

Proof. We prove the statement by induction on the number of iterations of the algorithm. The
set F = ∅ is initially a forest. Any time we add an edge to the solution, it has at most one

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

176 The primal-dual method

s1

t1

s2 t2

s3

t3

Figure 7.6: Illustration of Lemma 7.7. Consider the 5 thin dark moats. The edges
of F ′ cross these moats 8 times (twice each by the edges joining s1-t1, s2-t2, t2-t3, and
t2-s3). Each moat corresponds to a connected component C ∈ C in the iteration in
which the corresponding duals yC were increased. Thus in this iteration we see that
8 =

∑
C∈C |δ(C) ∩ F ′| ≤ 2|C| = 10.

endpoint in any given connected component of C. Thus it joins two connected components of
the forest F , and the forest remains a forest.

Proof of Lemma 7.7. Consider the iteration in which edge ei is added to F . Let Fi be the
edges already in F at this point; that is, Fi = {e1, . . . , ei−1}. Let H = F ′ − Fi. Observe that
Fi ∪H = Fi ∪ F ′ is a feasible solution to the problem, since F ′ by itself is a feasible solution
to the problem. We claim also that if we remove any edge e ∈ H from Fi ∪ H, it will not
be a feasible solution. This follows from the deletion procedure at the end of the algorithm:
at the time we consider edge ei−1 for deletion, the edges in F ′ at that point in the procedure
are exactly those in Fi ∪H. Hence it must be the case that any edge already considered and
remaining in F ′ is necessary for the solution to be feasible. These edges are exactly the edges
in H.

We form a new graph by contracting each connected component of (V, Fi) to a single vertex.
Let V ′ be this new set of vertices. Observe that since at any point F is a forest, once we
have contracted all the edges in Fi into vertices V ′, no edge in H can have both endpoints
corresponding to the same vertex in V ′. Thus we can consider the forest of edges H on the set
of vertices V ′, where each edge in H is connected to the two vertices in V ′ corresponding to the
two connected components it joined in (V, Fi). See Figure 7.7 for an illustration. We let deg(v)
for v ∈ V ′ represent the degree of vertex v in this forest. We also color the vertices in V ′ with
two different colors, red and blue. The red vertices in V ′ are those connected components C of
(V, Fi) that are in the set C in this iteration (that is, for some j, |C ∩ {sj , tj} | = 1). The blue
vertices are all the other vertices of V ′. Let R denote the set of red vertices in V ′ and B the
set of blue vertices v that have deg(v) > 0.

We now observe that we can rewrite the desired inequality∑
C∈C
|δ(C) ∩ F ′| ≤ 2|C|

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.4 Increasing multiple variables at once: the generalized Steiner tree problem 177

Figure 7.7: Proof of Lemma 7.7. On the left is the current set of connected components,
with the edges in H shown in dashed lines. The right side shows the contracted graph.

in terms of this forest. The right-hand side is 2|R|. Since F ′ ⊆ Fi ∪H and no edge of Fi can
appear in δ(C) for C ∈ C (since C is a connected component of Fi), the left-hand side is no
greater than

∑
v∈R deg(v). So we wish to prove that

∑
v∈R deg(v) ≤ 2|R|.

To prove this, we claim that no blue vertex can have degree exactly one. If this is true, then
we have that ∑

v∈R
deg(v) =

∑
v∈R∪B

deg(v)−
∑
v∈B

deg(v).

Then since the total degree of a forest is no more than twice the number of vertices in it, and
since all blue vertices of non-zero degree have degree at least two by the claim, we have that∑

v∈R
deg(v) ≤ 2(|R|+ |B|)− 2|B| = 2|R|,

as desired.
It remains to prove that no blue vertex can have degree one. Suppose otherwise, and let

v ∈ V ′ be a blue vertex of degree one, let C be the connected component of the uncontracted
graph corresponding to v, and let e ∈ H be the incident edge. By our initial discussion, e must
be necessary for the feasibility of the solution. Thus it must be on some path between sj and tj
for some j, and |C ∩ {sj , tj} | = 1. But in this case, C must be in C, and v must be red, which
is a contradiction.

Since the proof shows that the algorithm finds a solution to the integer programming for-
mulation (7.5) of cost at most twice the value of a dual solution to the dual of the linear
programming relaxation, the proof implies that the integrality gap of the formulation is at
most 2. We can use the integrality gap instance for the prize-collecting Steiner tree problem in
Section 5.7 (see Figure 5.4) to show that the integrality gap for this formulation is essentially
2, so that no better performance guarantee can be obtained by using a primal-dual algorithm
with this formulation.

In Section 16.4, we will consider a directed version of the generalized Steiner tree problem,
and we will show that it is substantially more difficult to approximate the directed version of
the problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

178 The primal-dual method

7.5 Strengthening inequalities: the minimum knapsack prob-
lem

In this section, we turn to a minimization version of the knapsack problem introduced in Section
3.1. As in the previous version of the knapsack problem, we are given a set I of n items,
I = {1, 2, . . . , n}. Each item has a value vi and a size si. In the previous version of the problem,
we additionally had a knapsack capacity B, and the goal was to find the maximum-value subset
of items such that the total size of the items was at most the capacity of the knapsack. In the
minimization version of the problem, we are given a demand D, and the goal of the problem
is to find a subset of items having minimum total size such that the total value is at least the
demand. That is, we try to find a subset X ⊆ I of items minimizing s(X) =

∑
i∈X si subject

to the constraint that v(X) =
∑

i∈X vi ≥ D.
We can formulate the problem as the following integer program, in which the primal variable

xi indicates whether item i is chosen to be in the solution or not:

minimize
∑
i∈I

sixi

subject to
∑
i∈I

vixi ≥ D,

xi ∈ {0, 1} , ∀i ∈ I.

We obtain a linear programming relaxation for the problem by replacing the constraints xi ∈
{0, 1} with linear constraints 0 ≤ xi ≤ 1 for all i ∈ I. However, this linear programming
relaxation is not a particularly good one, in the sense that it has a bad integrality gap. Consider
a two-item set I = {1, 2}, where v1 = D − 1, v2 = D, s1 = 0 and s2 = 1. The only feasible
integer solutions require us to take item 2 (x2 = 1), for a total size of 1. But the solution
x1 = 1, x2 = 1/D is feasible for the linear programming relaxation and has total size 1/D. This
example shows that the integrality gap of this formulation is at least 1/(1/D) = D.

To get a primal-dual algorithm with a reasonable performance guarantee, we must use a
different integer programming formulation of the same problem, one with a better integrality
gap. We introduce a new set of constraints, one for every subset A ⊆ I of items such that
v(A) < D. Let DA = D − v(A); we can think of DA as the demand left over if the items in
A are added to the knapsack. Notice that even if we select every item in the set A, we must
still choose additional items of total value at least DA. Given the set A, this is simply another
minimum knapsack problem on the set of items I − A, where the desired demand is now DA.
Given A, we can also reduce the value of each item in I−A to be the minimum of its value and
DA; since the desired demand is DA, we don’t need the value of the item to be any larger. We
let vAi = min(vi, DA). Then for any A ⊆ I and any set of items X ⊆ I such that v(X) ≥ D,
it is the case that

∑
i∈X−A vAi ≥ DA. We can then give the following integer programming

formulation of the problem:

minimize
∑
i∈I

sixi

subject to
∑

i∈I−A

vAi xi ≥ DA, ∀A ⊆ I,

xi ∈ {0, 1} , ∀i ∈ I.

As we argued above, any integer solution corresponding to a knapsack of value at least D is

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.5 Strengthening inequalities: the minimum knapsack problem 179

y ← 0
A← ∅
while v(A) < D do

Increase yA until for some i ∈ I −A,
∑

B⊆I:i/∈B vBi yB = si
A← A ∪ {i}

return A.

Algorithm 7.7: Primal-dual algorithm for the minimum knapsack problem.

a feasible solution to the integer program, and thus the integer program models the minimum
knapsack problem.

We now consider the linear programming relaxation of the integer program above, replacing
the constraints xi ∈ {0, 1} with xi ≥ 0:

minimize
∑
i∈I

sixi

subject to
∑

i∈I−A

vAi xi ≥ DA, ∀A ⊆ I,

xi ≥ 0, ∀i ∈ I.

Observe that for the instance that gave a bad integrality gap for the previous integer pro-
gramming formulation, the given LP solution is no longer feasible. In that example, we had
I = {1, 2}, with v1 = D − 1, v2 = D, s1 = 0, and s2 = 1. Now consider the constraint cor-
responding to A = {1}. We have DA = D − v1 = 1, and vA2 = min(v2, DA) = 1, so that the
constraint

∑
i∈I−A vAi xi ≥ DA is x2 ≥ 1 for this choice of A. The constraint forces us to take

item 2; we cannot take a 1/D fraction of item 2 to meet the missing single unit of demand.
The dual of the linear programming relaxation is

maximize
∑

A:A⊆I

DAyA∑
A⊆I:i/∈A

vAi yA ≤ si, ∀i ∈ I,

yA ≥ 0, ∀A ⊂ I.

We can now consider a primal-dual algorithm for the problem using the primal and dual
formulations as given above. We start with an empty set of selected items, and a dual solution
yA = 0 for all A ⊆ I. Now we must select some dual variable to increase. Which one should it
be? Following the idea introduced previously of choosing a variable corresponding to a minimal
object of some sort, we increase the dual variable y∅. A dual constraint will become tight for
some item i ∈ I, and we will add this to our set of selected items. Which variable should we
increase next? Notice that in order to maintain dual feasibility, it will have to be a variable yA
for some set A such that i ∈ A; if i /∈ A, then we cannot increase yA without violating the tight
dual constraint for i. The most natural choice is to increase yA for A = {i}. We continue in
this fashion, letting A be our set of selected items; whenever a dual constraint becomes tight
for some new item j ∈ I, we add j to A, and in the next iteration increase the dual variable
yA. The algorithm is given in Algorithm 7.7. The algorithm terminates when v(A) ≥ D.

We can now show that the algorithm is a 2-approximation algorithm for the minimum
knapsack problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

180 The primal-dual method

Theorem 7.10: Algorithm 7.7 is a 2-approximation algorithm for the minimum knapsack prob-
lem.

Proof. Let ℓ be the final item selected by the algorithm, and let X be the set of items returned
at the end of the algorithm. We know that v(X) ≥ D; since item ℓ was added to X, it must be
the case that before ℓ was added, the total value of the set of items was less than D, so that
v(X − ℓ) < D.

Following the standard primal-dual analysis, we know that∑
i∈X

si =
∑
i∈X

∑
A⊆I:i/∈A

vAi yA.

Reversing the double sum, we have that∑
i∈X

∑
A⊆I:i/∈A

vAi yA =
∑
A⊆I

yA
∑

i∈X−A

vAi .

Note that in any iteration of the algorithm except the last one, adding the next item i to the
current set of items A did not cause the value of the knapsack to become at least D; that
is, vi < D − v(A) = DA at that point in the algorithm. Thus for all items i ∈ X except ℓ,
vAi = min(vi, DA) = vi for the point in the algorithm at which A was the current set of items.
Thus we can rewrite∑

i∈X−A

vAi = vAℓ +
∑

i∈X−A:i ̸=ℓ

vAi = vAℓ + v(X − ℓ)− v(A).

Note that vAℓ ≤ DA by definition, and as argued at the beginning of the proof v(X − ℓ) < D so
that v(X − ℓ)− v(A) < D − v(A) = DA; thus we have that

vAℓ + v(X − ℓ)− v(A) < 2DA.

Therefore ∑
i∈X

si =
∑
A⊆I

yA
∑

i∈X−A

vAi < 2
∑

A:A⊆I

DAyA ≤ 2OPT,

where the final inequality follows by weak duality since
∑

A:A⊆I DAyA is the dual objective
function.

The proof of the performance guarantee of the algorithm shows that the integrality gap of
the new integer programming formulation must be at most 2.

7.6 The uncapacitated facility location problem

We now return to the uncapacitated facility location problem introduced in Section 4.5 for
which we gave a randomized approximation algorithm in Section 5.8. Recall that the input to
the problem is a set of clients D and a set of facilities F , with facility costs fi for all facilities
i ∈ F , and assignment costs cij for all facilities i ∈ F and clients j ∈ D. The goal is to select
a subset of facilities to open and an assignment of clients to open facilities so as to minimize
the total cost of the open facilities plus the assignment costs. As before, we consider the metric
uncapacitated facility location and assume that the clients and facilities are points in a metric

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.6 The uncapacitated facility location problem 181

space, and the assignment cost cij is the distance between client j and facility i. In particular,
given clients j, l and facilities i, k, we have that cij ≤ cil + ckl + ckj by the triangle inequality.

We will now give a primal-dual approximation algorithm for the problem. Recall the linear
programming relaxation of the problem we used in previous sections:

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij

subject to
∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F, j ∈ D,

xij ≥ 0, ∀i ∈ F, j ∈ D,

yi ≥ 0, ∀i ∈ F,

in which variable xij indicates whether client j is assigned to facility i, and variable yi indicates
whether facility i is open or not. The dual of the LP relaxation is

maximize
∑
j∈D

vj

subject to
∑
j∈D

wij ≤ fi, ∀i ∈ F,

vj − wij ≤ cij , ∀i ∈ F, j ∈ D,

wij ≥ 0, ∀i ∈ F, j ∈ D.

It is also useful to recall the intuition for the dual which we gave in Section 4.5. We can
view the dual variables vj as the amount that each client j will pay towards its part of the cost
of the solution. If facility costs are all zero, then vj = mini∈F cij . To handle nonzero facility
costs, the cost fi is split into nonnegative cost shares wij apportioned among the clients, so
that

∑
j∈D wij ≤ fi. A client j only needs to pay this share if it uses facility i. In this way, we

no longer charge explicitly for opening a facility, but still recover some of its cost. Each client j
is willing to pay the lowest cost over all facilities of its service cost and its share of the facility
cost, so that vj = mini∈F (cij + wij). By allowing vj to be any value for which vj ≤ cij + wij ,
the objective function maximizing

∑
j∈D vj forces vj to be equal to the smallest right-hand side

over all facilities i ∈ F . Thus any feasible solution to the dual is a lower bound on the cost of
an optimal solution to the facility location problem.

To get some intuition for why a primal-dual analysis will be useful for this problem, let us
first consider a dual feasible solution (v∗, w∗) that is maximal; that is, we cannot increase any
v∗j by any positive amount and then derive a set of w∗

ij that gives a dual feasible solution. Such
a dual solution has some very nice structure. To discuss this further, we modify a definition
used in previous sections, and introduce a new one.

Definition 7.11: Given a dual solution (v∗, w∗), we say that a client j neighbors a facility i

(or that i neighbors j) if v∗j ≥ cij. We let N(j) =
{
i ∈ F : v∗j ≥ cij

}
be the neighbors of a client

j and N(i) =
{
j ∈ D : v∗j ≥ cij

}
be the neighbors of a facility i.

Definition 7.12: Given a dual solution (v∗, w∗), we say that a client j contributes to a facility
i if w∗

ij > 0.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

182 The primal-dual method

In other words, a client j contributes to facility i if it has a nonzero cost share w∗
ij for that

facility.

We observe that given dual variables v∗, we can derive a feasible set of cost shares w∗ (if
they exist) by setting w∗

ij = max(0, v∗j − cij). Observe that if we derive w∗ in this way and
client j contributes to facility i, then j neighbors i (j ∈ N(i)), since w∗

ij > 0 implies v∗j > cij .
Furthermore, if j ∈ N(i), then v∗j = cij + w∗

ij .

Let T be the set of all facilities such that the sum of the cost shares is equal to the
cost of the facility; in other words, the corresponding dual inequality is tight. Then T ={
i ∈ F :

∑
j∈D w∗

ij = fi

}
. First we claim that in a maximal dual solution (v∗, w∗), every client

must neighbor some facility in T . To see this we claim that in a maximal dual solution, it
must be the case that v∗j = mini∈F (cij + w∗

ij), and some facility i ∈ F attaining the minimum
must be in T . Then for this facility i, v∗j ≥ cij , and j neighbors i ∈ T . To see the claim,
clearly if v∗j < mini∈F (cij + w∗

ij), we can feasibly increase v∗j and the solution is not maximal.
If v∗j = mini∈F (cij + w∗

ij) and all facilities i attaining the minimum are not in T , then since∑
k∈D w∗

ik < fi for these facilities i we can feasibly increase v∗j and w∗
ij for these facilities i, and

once again the solution is not maximal.

Given some facility i ∈ T , the cost of the facility plus the cost of assigning the neighbors
N(i) to i is exactly equal to the sum of the dual variables of the neighboring clients; that is,

fi +
∑

j∈N(i)

cij =
∑

j∈N(i)

(w∗
ij + cij) =

∑
j∈N(i)

v∗j ,

where the first equality follows since w∗
ij > 0 implies that j ∈ N(i) and the second equality

follows since j ∈ N(i) implies that w∗
ij+cij = v∗j . Since all clients have a neighbor in T , it would

then seem that we could get an optimal algorithm by opening all facilities in T and assigning
each client to its neighbor in T . The difficulty with this approach is that a given client j might
neighbor several facilities in T and might contribute to many of them; we then use v∗j multiple
times to pay for the cost of these facilities. We can fix this by only opening a subset T ′ of T
such that each client contributes to the cost of at most one facility in T ′. If we do this in such a
way that clients not neighboring a facility in T ′ are nonetheless not too far away from a facility
in T ′, we can get a good performance guarantee for the algorithm.

We now give the primal-dual algorithm in Algorithm 7.8. We generate a maximal dual
solution by increasing the dual variables vj . We let S be the set of clients whose duals we are
increasing, and T be the set of facilities whose dual inequality is tight. Initially S = D and
T = ∅. We increase vj uniformly for all j ∈ S. Once vj = cij for some i, we increase wij

uniformly with vj . We increase vj until one of two things happens: either j becomes a neighbor
of a facility in T , or a dual inequality becomes tight for some facility i. In the first case, we
remove j from S, and in the second case we add i to T , and remove all neighboring clients N(i)
from S. Once S is empty and every client neighbors a facility in T , we select a subset T ′ of T
by iteratively picking an arbitrary i ∈ T , then deleting all facilities i′ in T such that there exists
some client j that contributes to both i and i′. We then open all facilities in T ′ and assign
every client to the closest open facility.

We claim the following lemma about the set of facilities T ′ and the dual solution (v, w)
produced by the algorithm. It shows that if a client does not have a neighbor in T ′, then it is
not far away from a facility in T ′.

Lemma 7.13: If a client j does not have a neighbor in T ′, then there exists a facility i ∈ T ′

such that cij ≤ 3vj.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.6 The uncapacitated facility location problem 183

v ← 0, w ← 0
S ← D
T ← ∅
while S ̸= ∅ do // While not all clients neighbor a facility in T

Increase vj for all j ∈ S and wij for all i ∈ N(j), j ∈ S uniformly until some j ∈ S
neighbors some i ∈ T or some i /∈ T has a tight dual inequality

if some j ∈ S neighbors some i ∈ T then
S ← S − {j}

if i /∈ T has a tight dual inequality then
// facility i is added to T
T ← T ∪ {i}
S ← S −N(i)

T ′ ← ∅
while T ̸= ∅ do

Pick i ∈ T ; T ′ ← T ′ ∪ {i}
// remove all facilities h if some client j contributes to h and i
T ← T − {h ∈ T : ∃j ∈ D,wij > 0 and whj > 0}

Algorithm 7.8: Primal-dual algorithm for the uncapacitated facility location problem.

The intuition is that if a client j does not have a neighbor in T ′, then it must have neighbored
some tight facility h /∈ T ′ such that some other client k contributed both to h and another facility
i ∈ T ′ (see Figure 7.8). By applying triangle inequality we obtain the factor of 3. We defer the
proof of the lemma for the moment and show that it implies a performance guarantee of 3 for
the algorithm.

Theorem 7.14: Algorithm 7.8 is a 3-approximation algorithm for the uncapacitated facility
location problem.

Proof. For any client that contributes to a facility in T ′, we assign it to this facility. Note
that by construction of the algorithm, any client contributes to at most one facility in T ′, so
this assignment is unique. For clients that neighbor facilities in T ′ but do not contribute to
any of them, assign each to some arbitrary neighboring facility in T ′. Let A(i) ⊆ N(i) be the
neighboring clients assigned to a facility i ∈ T ′. Then as discussed above, the cost of opening
the facilities in T ′ plus the cost of assigning the neighboring clients is

∑
i∈T ′

fi +
∑

j∈A(i)

cij

 =
∑
i∈T ′

∑
j∈A(i)

(wij + cij) =
∑
i∈T ′

∑
j∈A(i)

vj ,

where the first equality holds because i ∈ T ′ implies
∑

j∈D wij = fi and wij > 0 implies j ∈ A(i).
Let Z be the set of all clients not neighboring a facility in T ′, so that Z = D −

∪
i∈T ′ A(i). We

have by Lemma 7.13 that the cost of assigning any j ∈ Z to some facility in T ′ is at most 3vj .
Thus the total assignment cost for these clients is at most

3
∑
j∈Z

vj .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

184 The primal-dual method

h /∈ T ′

i ∈ T ′

j

k

vj ≥ chj

whk > 0 → vk > chk

wik > 0 → vk > cik

Figure 7.8: Proof of Lemma 7.13.

Putting everything together, we have that the cost of the solution is at most∑
i∈T ′

∑
j∈A(i)

vj + 3
∑
j∈Z

vj ≤ 3
∑
j∈D

vj ≤ 3OPT,

where the final inequality follows by weak duality.

Now we finish the proof of the lemma.

Proof of Lemma 7.13. Let j be an arbitrary client that does not neighbor a facility in T ′.
During the course of the algorithm, we stopped increasing vj because j neighbored some h ∈ T .
Obviously h /∈ T ′, since otherwise j would neighbor a facility in T ′. The facility h must have
been removed from T ′ during the final phase of the algorithm because there exists another client
k such that k contributes to both h and another facility i ∈ T ′. See Figure 7.8. We would now
like to show that the cost of assigning j to this facility i is at most 3vj . In particular, we will
show that each of the three terms in chj + chk + cik is no more than vj , which will then prove
by the triangle inequality that cij ≤ 3vj .

We know that chj ≤ vj simply because j neighbors h. Now consider the point in the
algorithm at which we stop increasing vj . By our choice of h, at this point in the algorithm
either h is already in T or the algorithm adds h to T . Because client k contributes to facility
h, it must be the case that either vk has already stopped increasing or we stop increasing it at
the same point that we stop increasing vj . Because the dual variables are increased uniformly,
we must have that vj ≥ vk. Since client k contributes to both facilities h and i, we know that
vk ≥ chk and vk ≥ cik. Thus vj ≥ vk ≥ chk and vj ≥ vk ≥ cik, as claimed.

7.7 Lagrangean relaxation and the k-median problem

In this section, we look at a variant of the uncapacitated facility location problem called the
k-median problem. As in the uncapacitated facility location problem, we are given as input a set
of clients D and a set of facilities F , with assignment costs cij for all facilities i ∈ F and clients
j ∈ D. However, there are no longer costs for opening facilities; instead, we are given as input
a positive integer k that is an upper bound on the number of facilities that can be opened. The
goal is to select a subset of facilities of at most k facilities to open and an assignment of clients
to open facilities so as to minimize the total assignment costs. As before, we assume that the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.7 Lagrangean relaxation and the k-median problem 185

clients and facilities are points in a metric space, and the assignment cost cij is the distance
between client j and facility i. Since the facilities are points in a metric space, we also have
distances between pairs of facilities, a fact we will use in our algorithm. For facilities h, i ∈ F ,
let chi denote the distance between h and i.

An alternate perspective on the k-median problem is that it is a type of clustering problem.
In Section 2.2, we saw the k-center problem, in which we wished to find k clusters of a set
of vertices. Each cluster was defined by a cluster center; each vertex assigned itself to the
closest cluster center, and the goal was to find a set of k cluster centers such that the maximum
distance of a vertex to its cluster center was minimized. In the k-median problem, the facilities
correspond to potential cluster centers, and the clients correspond to vertices. As in the k-center
problem, we choose k cluster centers, and each vertex assigns itself to the closest cluster center.
However, rather than trying to minimize the maximum distance of a vertex to its cluster center,
we minimize the sum of the distances of the vertices to their cluster centers. For the rest of
this section, we will discuss the k-median problem in terms of a facility location problem; since
the clustering problem is completely equivalent, this is just a choice of terminology.

We can formulate the k-median problem as an integer program very similar to the one used
for the uncapacitated facility location in Section 4.5. If we let yi ∈ {0, 1} indicate whether
we open facility i, then in order to limit the number of open facilities to k, we introduce the
constraint

∑
i∈F yi ≤ k. This gives the following integer programming formulation:

minimize
∑

i∈F,j∈D
cijxij

subject to
∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F, j ∈ D,∑
i∈F

yi ≤ k,

xij ∈ {0, 1} , ∀i ∈ F, j ∈ D,

yi ∈ {0, 1} , ∀i ∈ F.

The only differences from the uncapacitated facility location integer program of Section 4.5 is
the extra constraint and the objective function, which has no facility costs.

We use the idea of Lagrangean relaxation to reduce the k-median problem to the uncapaci-
tated facility location problem. In Lagrangean relaxation, we eliminate complicating constraints
but add penalties for their violation to the objective function. For example, consider the linear
programming relaxation of the integer program for the k-median problem:

minimize
∑

i∈F,j∈D
cijxij (7.7)

subject to
∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F, j ∈ D,∑
i∈F

yi ≤ k,

xij ≥ 0 ∀i ∈ F, j ∈ D,

yi ≥ 0, ∀i ∈ F.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

186 The primal-dual method

To make the problem more closely resemble the uncapacitated facility location problem, we
would like to get rid of the constraint

∑
i∈F yi ≤ k. To do this, we add a penalty λ

(∑
i∈F yi − k

)
to the objective function for some constant λ ≥ 0. The penalty term favors solutions that obey
the constraint. So our new linear program is then

minimize
∑

i∈F,j∈D
cijxij +

∑
i∈F

λyi − λk (7.8)

subject to
∑
i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi, ∀i ∈ F, j ∈ D,

xij ≥ 0, ∀i ∈ F, j ∈ D,

yi ≥ 0, ∀i ∈ F.

First, observe that any feasible solution for the linear programming relaxation (7.7) of the k-
median problem is also feasible for this linear program (7.8). Also, for any λ ≥ 0, any feasible
solution for the linear programming relaxation of the k-median problem (7.7) has an objective
function value in this linear program (7.8) at most that of its value in (7.7). Therefore, this
linear program (7.8) gives a lower bound on the cost of an optimal solution to the k-median
problem. We will denote the optimum cost of the k-median problem as OPTk. Observe that
except for the constant term of −λk, the linear program now looks exactly like the linear
programming relaxation of the uncapacitated facility location problem in which each facility
cost fi = λ. If we take the dual of this linear program, we obtain

maximize
∑
j∈D

vj − λk (7.9)

subject to
∑
j∈D

wij ≤ λ, ∀i ∈ F,

vj − wij ≤ cij , ∀i ∈ F, j ∈ D,

wij ≥ 0, ∀i ∈ F, j ∈ D.

Again, this is the same as the dual of the linear programming relaxation of the uncapacitated
facility location problem except that each facility cost is λ and there is an extra constant term
of −λk in the objective function.

We would like to use the primal-dual algorithm for the uncapacitated facility location prob-
lem from the previous section in which all facility costs fi are set to λ for some choice of λ ≥ 0.
While this will open some set of facilities, how can we then obtain a performance guarantee?
In the previous section, we show that the algorithm opens a set S of facilities and constructs a
feasible dual (v, w) so that ∑

j∈D
min
i∈S

cij +
∑
i∈S

fi ≤ 3
∑
j∈D

vj .

For notational convenience, let c(S) =
∑

j∈D mini∈S cij . In Exercise 7.8, we observe that this
claim can be strengthened slightly to

c(S) + 3
∑
i∈S

fi ≤ 3
∑
j∈D

vj .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.7 Lagrangean relaxation and the k-median problem 187

Substituting fi = λ, and rearranging, this gives us that

c(S) ≤ 3

∑
j∈D

vj − λ|S|

 . (7.10)

Note that if, by chance, the algorithm opens a set of facilities S such that |S| = k, we then
have that

c(S) ≤ 3

∑
j∈D

vj − λk

 ≤ 3 ·OPTk .

This follows since (v, w) is a feasible solution to the dual program (7.9), which is a lower bound
on the cost of an optimal solution to the k-median problem, and since

∑
j∈D vj −λk is the dual

objective function.

A natural idea is to try to find some value of λ such that the facility location algorithm
opens a set of facilities S with |S| = k. We will do this via a bisection search. To initialize the
search, we need two initial values of λ, one for which the facility location algorithm opens at
least k facilities, and one for which it opens at most k facilities. Consider what happens with
the facility location algorithm when λ = 0. If the algorithm opens fewer than k facilities, then
we can open an additional k − |S| facilities at no cost, and apply the previous reasoning to get
a solution of cost at most 3OPTk. So we assume that with λ = 0, the algorithm opens more
than k facilities. It is also not hard to show that if λ =

∑
j∈D

∑
i∈F cij , then the algorithm

opens a single facility.

Thus we can run the bisection search on λ as follows. We initially set λ1 = 0 and
λ2 =

∑
j∈D

∑
i∈F cij ; as discussed above, these two values of λ return solutions S1 and S2 (re-

spectively) in which |S1| > k and |S2| < k. We run the algorithm on the value λ = 1
2(λ1 + λ2).

If the algorithm returns a solution S with exactly k facilities, then by the arguments above,
we are done, and we have a solution of cost at most 3OPTk. If S has more than k facilities,
then we set λ1 = λ and S1 = S, otherwise S has fewer than k facilities and we set λ2 = λ and
S2 = S. We then repeat until either the algorithm finds a solution with exactly k facilities or the
interval λ2 − λ1 becomes suitably small, at which point we will be able to obtain a solution to
the k-median problem by appropriately combining the solutions from S1 and S2. If we let cmin

be the smallest nonzero assignment cost, we run the bisection search until either the algorithm
finds a solution with exactly k facilities, or λ2−λ1 ≤ ϵcmin/|F |. In the latter case, we will use S1

and S2 to obtain a solution S in polynomial time such that |S| = k and c(S) ≤ 2(3 + ϵ)OPTk.
This will give us a 2(3 + ϵ)-approximation algorithm for the k-median problem.

If we have not terminated with a solution with exactly k facilities, the algorithm terminates
with solutions S1 and S2 and corresponding dual solutions (v1, w1) and (v2, w2) such that

|S1| > k > |S2| and c(Sℓ) ≤ 3
(∑

j∈D vℓj − λℓk
)
for ℓ = 1, 2 by inequality (7.10). Also, by the

termination condition, λ2 − λ1 ≤ ϵcmin/|F |. Without loss of generality, we can assume that
0 < cmin ≤ OPTk, since otherwise OPTk = 0; we leave it as an exercise to show that we can find
an optimal solution to the k-median problem in polynomial time if OPTk = 0 (Exercise 7.9).

Note that the binary search on λ makes O(log
|F |

∑
cij

ϵcmin
) calls to the facility location algorithm,

and thus the overall algorithm runs in polynomial time.

We will now show how we can use the two solutions S1 and S2 to obtain a solution S in
polynomial time such that |S| = k and c(S) ≤ 2(3 + ϵ)OPTk. To do this, we first need to
relate the costs of the two solutions to OPTk. Let α1 and α2 be such that α1|S1|+ α2|S2| = k,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

188 The primal-dual method

α1 + α2 = 1, with α1, α2 ≥ 0. Note that this implies that

α1 =
k − |S2|
|S1| − |S2|

and α2 =
|S1| − k

|S1| − |S2|
.

We can then get a dual solution (ṽ, w̃) by letting ṽ = α1v
1 + α2v

2 and w̃ = α1w
1 + α2w

2.
Note that (ṽ, w̃) is feasible for the dual linear program (7.9) with facility costs λ2 since it is
a convex combination of two feasible dual solutions. We can now prove the following lemma,
which states that the convex combination of the costs of S1 and S2 must be close to the cost of
an optimal solution.

Lemma 7.15:

α1c(S1) + α2c(S2) ≤ (3 + ϵ)OPTk .

Proof. We first observe that

c(S1) ≤ 3

∑
j∈D

v1j − λ1|S1|


= 3

∑
j∈D

v1j − (λ1 + λ2 − λ2)|S1|


= 3

∑
j∈D

v1j − λ2|S1|

+ (λ2 − λ1)|S1|

≤ 3

∑
j∈D

v1j − λ2|S1|

+ ϵOPTk,

where the last inequality follows from our bound on the difference λ2 − λ1.

Now if we take the convex combination of the inequality above and our bound on c(S2), we
obtain

α1c(S1) + α2c(S2) ≤ 3α1

∑
j∈D

v1j − λ2|S1|

+ α1ϵOPTk

+ 3α2

∑
j∈D

v2j − λ2|S2|

 .

Recalling that ṽ = α1v
1 + α2v

2 is a dual feasible solution for facility costs λ2, that α1|S1| +
α2|S2| = k, and that α1 ≤ 1, we have that

α1c(S1) + α2c(S2) ≤ 3

∑
j∈D

ṽj − λ2k

+ α1ϵ ·OPTk ≤ (3 + ϵ)OPTk .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.7 Lagrangean relaxation and the k-median problem 189

Our algorithm then splits into two cases, a simple case when α2 ≥ 1
2 and a more complicated

case when α2 < 1
2 . If α2 ≥ 1

2 , we return S2 as our solution. Note that |S2| < k, and thus is a
feasible solution. Using α2 ≥ 1

2 and Lemma 7.15, we obtain

c(S2) ≤ 2α2c(S2) ≤ 2 (α1c(S1) + α2c(S2)) ≤ 2(3 + ϵ)OPTk,

as desired.

Before we give our algorithm for the remaining case, we let c(j, S) = mini∈S cij , so that∑
j∈D c(j, S) = c(S). Now for each facility i ∈ S2, we open the closest facility h ∈ S1; that is,

the facility h ∈ S1 that minimizes cih. If this doesn’t open |S2| facilities of S1 because some
facilities in S2 are close to the same facility in S1, we open some arbitrary facilities in S1 so that
exactly |S2| are opened. We then choose a random subset of k− |S2| of the |S1| − |S2| facilities
of S1 remaining, and open these. Let S be the resulting set of facilities opened.

We now show the following lemma.

Lemma 7.16: If α2 <
1
2 , then opening the facilities as above has cost E[c(S)] ≤ 2(3+ ϵ)OPTk.

Proof. To prove the lemma, we consider the expected cost of assigning a given client j ∈ D to
a facility opened by the randomized algorithm. Let us suppose that the facility 1 ∈ S1 is the
open facility in S1 closest to j ; that is, c1j = c(j, S1); similarly, let 2 ∈ S2 be the open facility

in S2 closest to j. Note that with probability k−|S2|
|S1|−|S2| = α1, the facility 1 ∈ S1 is opened in

the randomized step of the algorithm if it has not already been opened by the first step of the
algorithm. Thus with probability at least α1, the cost of assigning j to the closest open facility
in S is at most c1j = c(j, S1). With probability at most 1−α1 = α2, the facility 1 is not opened.
In this case, we can at worst assign j to a facility opened in the first step of the algorithm; in
particular, we assign j to the facility in S1 closest to 2 ∈ S2. Let i ∈ S1 be the closest facility
to 2 ∈ S2; see Figure 7.9. Then

cij ≤ ci2 + c2j

by triangle inequality. We know that ci2 ≤ c12 since i is the closest facility in S1 to 2, so that

cij ≤ c12 + c2j .

Finally, by triangle inequality c12 ≤ c1j + c2j , so that we have

cij ≤ c1j + c2j + c2j = c(j, S1) + 2c(j, S2).

Thus the expected cost of assigning j to the closest facility in S is

E[c(j, S)] ≤ α1c(j, S1) + α2(c(j, S1) + 2c(j, S2)) = c(j, S1) + 2α2c(j, S2).

By the assumption α2 <
1
2 , so that α1 = 1− α2 >

1
2 , we obtain

E[c(j, S)] ≤ 2(α1c(j, S1) + α2c(j, S2)).

Then summing over all j ∈ D and using Lemma 7.15, we obtain

E[c(S)] ≤ 2(α1c(S1) + α2c(S2)) ≤ 2(3 + ϵ)OPTk .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

190 The primal-dual method

S1
S2

j

1

2

i

Figure 7.9: The bad case of assigning clients. Client j is closest to 1 in S1, closest to
2 in S2, but gets assigned to i in S1 since this is the closest facility in S1 to 2 in S2.

This algorithm can be derandomized by the method of conditional expectations; we leave
this as an exercise (Exercise 7.10).

In Chapter 9, we will see improved algorithms for the k-median problem using local search
and greedy algorithms. In particular, in Section 9.4, we will see a dual fitting greedy algorithm
for the uncapacitated facility location problem that opens a set S of facilities such that

c(S) + 2
∑
i∈S

fi ≤ 2
∑
j∈D

vj ,

where v is a feasible solution to the dual of the linear programming relaxation of the uncapac-
itated facility location problem. Then we will be able to follow the same logic as the algorithm
above to get a 2(2 + ϵ)-approximation algorithm for the k-median problem.

Note that it is crucial for the analysis that we have an uncapacitated facility location algo-
rithm that returns a solution S such that

c(S) + α
∑
i∈S

fi ≤ α
∑
j∈D

vj

for some α. If this is the case, then when we set fi = λ, we are able to derive that

c(S) ≤ α

∑
j∈D

vj − λ|S|

 ,

which then allows us to use as a bound the objective function of the dual of the Lagrangean
relaxation. Such algorithms are called Lagrangean multiplier preserving. In Chapter 14, we
will see another example of a Lagrangean multiplier preserving algorithm: a primal-dual 2-
approximation algorithm for the prize-collecting Steiner tree problem.

The following hardness result is known for the k-median problem via a reduction from the
set cover problem. We discuss this result further in Section 16.2.

Theorem 7.17: There is no α-approximation algorithm for the k-median problem with constant
α < 1 + 2

e ≈ 1.736 unless each problem in NP has an O(nO(log log n)) time algorithm.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.7 Lagrangean relaxation and the k-median problem 191

Exercises

7.1 Prove that the shortest s-t path algorithm in Section 7.3 is equivalent to Dijkstra’s al-
gorithm: that is, in each step, it adds the same edge that Dijkstra’s algorithm would
add.

7.2 Consider the multicut problem in trees. In this problem, we are given a tree T = (V,E), k
pairs of vertices si-ti, and costs ce ≥ 0 for each edge e ∈ E. The goal is to find a minimum-
cost set of edges F such that for all i, si and ti are in different connected components of
G′ = (V,E − F).

Let Pi be the set of edges in the unique path in T between si and ti. Then we can
formulate the problem as the following integer program:

minimize
∑
e∈E

cexe

subject to
∑
e∈Pi

xe ≥ 1, 1 ≤ i ≤ k,

xe ∈ {0, 1} , e ∈ E.

Suppose we root the tree at an arbitrary vertex r. Let depth(v) be the number of edges
on the path from v to r. Let lca(si, ti) be the vertex v on the path from si to ti whose
depth is minimum. Suppose we use the primal-dual method to solve this problem, where
the dual variable we increase in each iteration corresponds to the violated constraint that
maximizes depth(lca(si, ti)).

Prove that this gives a 2-approximation algorithm for the multicut problem in trees.

7.3 The local ratio technique is another technique that is highly related to the primal-dual
method; however, its use of duality is implicit. Consider the following local ratio algorithm
for the set cover problem. As with the primal-dual algorithm, we compute a collection
I of indices of a set cover, where I is initially empty. In each iteration, we find some
element ei not covered by the current collection I. Let ϵ be the minimum weight of any
set containing ei. We subtract ϵ from the weight of each set containing ei; some such set
now has weight zero, and we add the index of this set to I.

We now analyze the performance of this algorithm. To do this, let ϵj be the value of ϵ
from the jth iteration of the algorithm.

(a) Show that the cost of the solution returned is at most f
∑

j ϵj , where f = maxi | {j : ei ∈ Sj} |.
(b) Show that the cost of the optimal solution must be at least

∑
j ϵj .

(c) Conclude that the algorithm is an f -approximation algorithm.

In its most general application, the local ratio technique depends upon the local ratio
theorem, stated below. For a minimization problem Π with weights w, we say that a
feasible solution F is α-approximate with respect to w if the weight of F is at most α
times the weight of an optimal solution given weights w. Then the local ratio theorem
states that if we have nonnegative weights w such that w = w1+w2, where w1 and w2 are
also nonnegative weights, and we have a feasible solution F such that F is α-approximate
with respect to both w1 and w2, then F is α-approximate with respect to w.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

192 The primal-dual method

(d) Prove the local ratio theorem.

(e) Explain how the set cover algorithm above can be analyzed in terms of the local
ratio theorem to prove that it is an f -approximation algorithm.

Most of the algorithms of this chapter have local ratio variants.

7.4 In the 2-approximation algorithm for the generalized Steiner tree problem that we gave
in Section 7.4, we first add certain edges, then remove unnecessary edges in the order
opposite of the order in which they were added.

Prove that one can in fact remove unnecessary edges in any order and still obtain a 2-
approximation algorithm for the problem. That is, we replace the edge removal steps in
Algorithm 7.6 with a step that checks if there exists any edge e in F ′ such that F ′ − e is
feasible. If so, e is removed from F ′, and if not, F ′ is returned as the final solution. Prove
that

∑
e∈F ′ ce ≤ 2

∑
S yS for the dual y generated by the algorithm.

7.5 In the minimum-cost branching problem we are given a directed graph G = (V,A), a root
vertex r ∈ V , and weights wij ≥ 0 for all (i, j) ∈ A. The goal of the problem is to find a
minimum-cost set of arcs F ⊆ A such that for every v ∈ V , there is exactly one directed
path in F from r to v. Use the primal-dual method to give an optimal algorithm for this
problem.

7.6 Recall that in our algorithms of Sections 4.4 and 5.7 for the prize-collecting Steiner tree
problem, we used the following linear programming relaxation of the problem:

minimize
∑
e∈E

cexe +
∑
i∈V

πi(1− yi)

subject to
∑

e∈δ(S)

xe ≥ yi, ∀i ∈ S,∀S ⊆ V − r, S ̸= ∅,

yr = 1,

yi ≥ 0, ∀i ∈ V,

xe ≥ 0, ∀e ∈ E.

Given an optimal solution (x∗, y∗) to the linear program, we then selected a set of vertices
U such that U = {i ∈ V : y∗i ≥ α} for some value of α > 0.

Give a primal-dual algorithm that finds a Steiner tree T on the set of terminals U such
that ∑

e∈T
ce ≤

2

α

∑
e∈E

cex
∗
e.

(Hint: you should not need to design a new primal-dual algorithm.)

7.7 In the k-path partition problem, we are given a complete, undirected graph G = (V,E)
with edge costs ce ≥ 0 that obey the triangle inequality (that is, c(u,v) ≤ c(u,w)+ c(w,v) for
all u, v, w ∈ V), and a parameter k such that |V | is a multiple of k. The goal is to find
a minimum-cost collection of paths of k vertices each such that each vertex is on exactly
one path.

A related problem is that of partitioning a graph into 0(mod k)-trees. The input to this
problem is the same as that above, except that the graph is not necessarily complete and

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.7 Lagrangean relaxation and the k-median problem 193

edge costs do not necessarily obey the triangle inequality. The goal is to find a minimum-
cost collection of trees such that each tree has 0(mod k) vertices, and each vertex is in
exactly one tree.

(a) Given an α-approximation algorithm for the second problem, produce a 2α
(
1− 1

k

)
-

approximation algorithm for the first.

(b) Use the primal-dual method to give a 2-approximation algorithm for the second
problem.

(c) Give a 4
(
1− 1

k

)
-approximation algorithm for the problem of partitioning a graph

into cycles of length exactly k.

7.8 Show that the performance guarantee of the primal-dual algorithm for the uncapacitated
facility location algorithm in Section 7.6 can be strengthened in the following way. Suppose
that the algorithm opens the set T ′ of facilities and constructs the dual solution (v, w).
Show that ∑

j∈D
min
i∈T ′

cij + 3
∑
i∈T ′

fi ≤ 3
∑
j∈D

vj .

7.9 Show that for the k-median problem as defined in Section 7.7, the optimal solution can
be found in polynomial time if the optimum cost OPTk = 0.

7.10 By using the method of conditional expectations, show that the randomized algorithm for
choosing k facilities in the k-median algorithm of Section 7.7 can be made deterministic.

Chapter Notes

The primal-dual method for approximation algorithms is a generalization of the primal-dual
method used for linear programming and combinatorial optimization problems such as the short-
est s-t path problem, the maximum flow problem, the assignment problem, the minimum-cost
branching problem, and others. For an overview of the primal-dual method and its application
to these problems, see Papadimitriou and Steiglitz [238]. Edmonds [95] gives the primal-dual
algorithm for the minimum-cost branching problem in Exercise 7.5. The idea of Section 7.3
that the shortest s-t path problem can be solved by an algorithm that greedily increases dual
variables is due to Hoffman [168]. Dijkstra’s algorithm for the same problem is due, of course,
to Dijkstra [88].

The first use of the primal-dual method for approximation algorithms is due to Bar-Yehuda
and Even [35]; they gave the algorithm of Section 7.1 for the set cover problem. Work in primal-
dual approximation algorithms was revived by work on the generalized Steiner tree problem
of Section 7.4. The first 2-approximation algorithm for the generalized Steiner tree problem is
due to Agrawal, Klein, and Ravi [4], and the algorithm presented in Section 7.4 is essentially
that of [4]. The use of linear programming and LP duality in the algorithm was made explicit
Goemans and Williamson [138], who extended the technique to other problems (such as the
k-path partition problem of Exercise 7.7). The idea of depicting dual variables as moats is due
to Jünger and Pulleyblank [180].

Several uses of the primal-dual method for approximation algorithms then followed. Bar-
Yehuda, Geiger, Naor, and Roth [37] gave the feedback vertex set algorithm of Section 7.2,
using Lemma 7.3, which is due to Erdős and Pósa [100]. Jain and Vazirani [177] developed the
primal-dual algorithm for the uncapacitated facility location problem and the use of Lagrangean

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

194 The primal-dual method

relaxation for the k-median problem in Sections 7.6 and 7.7. Carnes and Shmoys [61] gave
the primal-dual algorithm for the minimum knapsack problem in Section 7.5; their algorithm
uses an integer programming formulation of the problem due to Carr, Fleischer, Leung, and
Phillips [62], who gave an LP-rounding 2-approximation algorithm for the problem based on
their formulation.

Surveys of the primal-dual method for approximation algorithms are given by Bertsimas
and Teo [46], Goemans and Williamson [140], and Williamson [288].

The local ratio technique of Exercise 7.3 is due to Bar-Yehuda and Even [36]. All of the
algorithms in Sections 7.1 through 7.4 are known to have local ratio equivalents. A formal proof
of the equivalence of the primal-dual method and the local ratio technique for a defined set of
problems is given in Bar-Yehuda and Rawitz [38]. Surveys of the local ratio technique have
been given by Bar-Yehuda [33], Bar-Yehuda, Bendel, Freund, and Rawitz [34], and Bar-Yehuda
and Rawitz [38].

The hardness result for the k-median problem in Theorem 7.17 is due to Jain, Mahdian,
Markakis, Saberi, and Vazirani [176], following work of Guha and Khuller [146] for the hardness
of the uncapacitated facility location problem. The result of Exercise 7.2 is due to Garg,
Vazirani, and Yannakakis [127]. The results of Exercises 7.4 and 7.7 are from Goemans and
Williamson [138]. The result of Exercise 7.8 is from Jain and Vazirani [177]; Exercise 7.10 is
also from this paper.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 8

Cuts and metrics

In this chapter, we think about problems involving metrics. A metric (V, d) on a set of vertices
V gives a distance duv for each pair of vertices u, v ∈ V such that three properties are obeyed:
(1) duv = 0 if and only if v = u; (2) duv = dvu for all u, v ∈ V and (3) duv ≤ duw + dwv for all
u, v, w ∈ V . The final property is sometimes called the triangle inequality. We will sometimes
simply refer to the metric d instead of (V, d) if the set of vertices V is clear from the context. A
concept related to a metric is a semimetric (V, d), in which properties (2) and (3) are obeyed,
but not necessarily (1), so that if duv = 0, then possibly u ̸= v (a semimetric maintains that
duu = 0). We may sometimes ignore this distinction between metrics and semimetrics, and call
them both metrics.

Metrics turn out to be a useful way of thinking about graph problems involving cuts. Many
important problems in discrete optimization require findings cuts in graphs of various types.
To see the connection between cuts and metrics, note that for any cut S ⊆ V , we can define
d where duv = 1 if u ∈ S and v /∈ S, and duv = 0 otherwise. Note that (V, d) is then a
semimetric; it is sometimes called the cut semimetric associated with S. Then a problem
in a graph G = (V,E) in which we are trying to find a cut to minimize or maximize the
sum of weights we of the edges e in the cut becomes one of finding a cut semimetric that
minimizes or maximizes

∑
e=(u,v)∈E weduv. In several examples in this chapter, we set up a linear

programming relaxation with variables duv in which we have constraints on d corresponding
to the properties of a semimetric. Then we use the metric properties of duv to help find the
desired cut. In many cases, we consider for some vertex s ∈ V all the vertices within some small
distance r of s (using the LP variables duv as distances) and put them on the same side of the
cut and all other vertices on the other side; we view this as taking a ball of radius r around s.
This is a technique we will use extensively.

We will also consider the notion of approximating a given metric (V, d) by a metric of a
simpler form. In particular, we will consider tree metrics; tree metrics are metrics that are
defined by shortest paths in a tree. Sometimes we wish to approximate problems involving
distances in a graph, in which the problem becomes straightforward in a tree metric. We can
sometimes get good approximation algorithms by first approximating the graph distances by a
tree metric, then solving the problem easily in the tree metric.

We begin the chapter by considering a number of different cut problems. We start in Section
8.1 with the multiway cut problem, and first show that a simple algorithm involving finding

195

196 Cuts and metrics

a number of minimum s-t cuts gives a 2-approximation algorithm. We then show that the
randomized rounding of an LP solution along the lines described above improves this to a 3

2 -
approximation algorithm. We consider the multicut problem in Section 8.3, which also uses an
LP relaxation and a rounding technique as described above. For this problem, we introduce
an important technique called “region growing” that relates the edges in the cut formed by a
ball to the value of the LP solution on edges inside the ball. In the following section, we apply
the region growing technique to the problem of finding small balanced cuts; balanced cuts are
ones in which the two parts of the cut have roughly equal numbers of vertices. The final three
sections of the chapter discuss the technique of approximating metrics by tree metrics, and
present applications of this technique to the buy-at-bulk network design problem and the linear
arrangement problem.

8.1 The multiway cut problem and a minimum-cut-based algo-
rithm

We begin by considering a simple variety of cut problem, and give an approximation algorithm
that does not require using a linear programming relaxation. We then show that using a linear
programming relaxation and treating its solution as a metric on the set of vertices gives a
better performance guarantee. The problem is known as the multiway cut problem. We are
given an undirected graph G = (V,E), costs ce ≥ 0 for all edges e ∈ E, and k distinguished
vertices s1, . . . , sk. The goal is to remove a minimum-cost set of edges F such that no pair of
distinguished vertices si and sj for i ̸= j are in the same connected component of (V,E − F).

One application of this problem arises in distributed computing. Each vertex represents an
object, and an edge e between them of cost ce represents the amount of communication between
the objects. The objects need to be partitioned to reside on k different machines, with special
object si needing to reside on the ith machine. The goal is to partition the objects onto the k
machines in such a way that communication between the machines is minimized.

Our algorithm for the multiway cut problem begins with some observations about the struc-
ture of any feasible solution F . Given a feasible F , let Ci be the set of vertices reachable in
(V,E − F) from each distinguished vertex si. Let Fi = δ(Ci), where δ(S) is the set of all
edges in E with exactly one endpoint in S. Observe that each Fi is a cut separating si from
s1, . . . , si−1, si+1, . . . , sk. We call Fi an isolating cut: it isolates si from the other distinguished
vertices. Observe also that some edges might appear in two different Fi: an edge e can have
one endpoint in Ci and the other in Cj for some j ̸= i, so that e ∈ Fi and e ∈ Fj .

Our algorithm will compute aminimum isolating cut Fi between si and s1, . . . , si−1, si+1, . . . , sk
for each i: we can do this by adding a sink vertex t to the graph with infinite cost edges from
the distinguished vertices (other than si) to the sink, and then computing a minimum si-t cut.
We return as our solution

∪k
i=1 Fi.

Theorem 8.1: The algorithm of computing a minimum cut between each si and the other
distinguished vertices is a 2-approximation algorithm for the multiway cut problem.

Proof. As above, let Fi be the minimum isolating cut between si and the other distinguished
vertices. Let F ∗ be an optimal solution, and let F ∗

i be the isolating cut in the optimal solution
for si. For a subset of edges A ⊆ E, let c(A) =

∑
e∈A ce. Because Fi is a minimum isolating

cut for si, we know that c(Fi) ≤ c(F ∗
i). Hence the cost of the solution of the algorithm is at

most
∑k

i=1 c(Fi) ≤
∑k

i=1 c(F
∗
i). We observed above that each edge in the optimal solution F ∗

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.2 The multiway cut problem and an LP rounding algorithm 197

can be in at most two F ∗
i , so that

k∑
i=1

c(Fi) ≤
k∑

i=1

c(F ∗
i) ≤ 2c(F ∗) = 2OPT .

By being only slightly cleverer, we can improve the performance guarantee a little bit.
Without loss of generality, let Fk be the costliest cut of F1, . . . , Fk. Note that the union of the
first k−1 isolating cuts, F =

∪k−1
i=1 Fi, is also a feasible solution for the problem: if sk can reach

any other distinguished vertex si in (V,E − F), then Fi was not an isolating cut for si. Then
we have the following.

Corollary 8.2: The algorithm of returning the cheapest k − 1 minimum isolating cuts is a
(2− 2

k)-approximation algorithm for the multiway cut problem.

Proof. We use the same notation as in the proof of the theorem above. Observe that the cost
of our new solution F is at most (1− 1

k)
∑k

i=1 c(Fi). Thus its cost is at most(
1− 1

k

) k∑
i=1

c(Fi) ≤
(
1− 1

k

) k∑
i=1

c(F ∗
i) ≤ 2

(
1− 1

k

)
OPT .

8.2 The multiway cut problem and an LP rounding algorithm

We now show that one can obtain a better approximation algorithm for the multiway cut
problem via LP rounding.

First, we need to strengthen some of our observations above. We noted that for any feasible
solution F to the problem, we can compute sets Ci of vertices reachable from each distinguished
vertex si. We claim for any minimal solution F , the Ci must be a partition of the vertices V .
To see this, suppose we are given some solution F such that the corresponding sets Ci do not
partition V . Let S be all vertices not reachable from any si. Pick some j arbitrarily and add S
to Cj . Let the new solution be F ′ =

∪k
i=1 δ(Ci). Then we claim that F ′ ⊆ F . Observe that for

any i ̸= j, δ(Ci) is in F . Furthermore, any edge e ∈ δ(Cj) must have some endpoint in some
Ci with i ̸= j. Thus e ∈ δ(Ci) and is in F also.

Therefore, another way of looking at the multiway cut problem is finding an optimal par-
tition of V into sets Ci such that si ∈ Ci for all i and such that the cost of F =

∪k
i=1 δ(Ci) is

minimized. Given this perspective, we formulate the problem as an integer program. For each
vertex u ∈ V , we have k different variables, xiu. The variable xiu = 1 if u is assigned to the set
Ci and is 0 otherwise. We create a variable zie which will be 1 if e ∈ δ(Ci) and 0 otherwise.
Since if e ∈ δ(Ci), it is also the case that e ∈ δ(Cj) for some j ̸= i, the objective function of the
integer program is then

1

2

∑
e∈E

ce

k∑
i=1

zie;

this will give exactly the cost of the edges in the solution F =
∪k

i=1 δ(Ci) for the assignment
of vertices to sets Ci given by the variables xiu. Now we consider constraints for the program.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

198 Cuts and metrics

Obviously si must be assigned to Ci, so we have xisi = 1 for all i. To enforce that zie = 1 when
e ∈ δ(Ci) for e = (u, v), we add constraints zie ≥ xiu − xiv and zie ≥ xiv − xiu; this enforces that
zi ≥ |xiu − xiv|. Since the integer program will minimize the objective function and zie appears
with a nonnegative coefficient in the objective function, at optimality we will have zie = |xiu−xiv|.
Thus zie = 1 if one of the two endpoints of the edge e = (u, v) is assigned to the set Ci and the
other is not. Then the overall integer program is as follows:

minimize
1

2

∑
e∈E

ce

k∑
i=1

zie (8.1)

subject to

k∑
i=1

xiu = 1, ∀u ∈ V, (8.2)

zie ≥ xiu − xiv, ∀e = (u, v) ∈ E,

zie ≥ xiv − xiu, ∀e = (u, v) ∈ E,

xisi = 1, i = 1, . . . , k,

xiu ∈ {0, 1}, ∀u ∈ V, i = 1, . . . , k.

The linear programming relaxation of this integer program is closely connected with the ℓ1
metric for measuring distances in Euclidean space. Let x, y ∈ ℜn, and suppose that xi, yi are
the ith coordinates of x and y. Then the ℓ1 metric is as follows.

Definition 8.3: Given x, y ∈ ℜn, the ℓ1-metric is a metric such that the distance between x
and y is ∥x− y∥1 =

∑n
i=1 |xi − yi|.

We relax the integer program above to a linear program by replacing the integrality condition
xiu ∈ {0, 1} with xiu ≥ 0. Observe then that the linear program can be given a much more
compact formulation. The variable xiu is the ith coordinate of a vector xu. Each xu ∈ ℜk;
in fact, because of constraint (8.2), each xu lies in the k-simplex ∆k, where ∆k = {x ∈ ℜk :∑k

i=1 x
i = 1}. Each distinguished vertex si has xsi = ei, where ei is the vector with 1 in the

ith coordinate and zeroes elsewhere. Finally, we observe that
∑k

i=1 z
i
e =

∑k
i=1 |xiu − xiv| =

∥xu − xv∥1, which is just the distance between the points xu and xv under the ℓ1 metric. Thus
the linear programming relaxation becomes

minimize
1

2

∑
e=(u,v)∈E

ce∥xu − xv∥1 (8.3)

subject to xsi = ei, i = 1, . . . , k,

xu ∈ ∆k, ∀u ∈ V.

In Figure 8.1, we give a geometric representation of an instance with k = 3.

We will give an approximation algorithm by the randomized rounding of the solution of the
linear program. In particular, we will take all vertices that are close to the distinguished vertex
si in the LP solution and put them in Ci. For any r ≥ 0 and 1 ≤ i ≤ k, let B(ei, r) be the set
of vertices corresponding to the points xu in a ball of radius r in the ℓ1 metric around ei; that
is, B(ei, r) =

{
u ∈ V : 1

2∥ei − xu∥1 ≤ r
}
. We will sometimes write B(si, r) instead of B(ei, r).

We include the factor of 1/2 in the definition so that all vertices are within a ball of radius 1:
B(ei, 1) = V for all i. See Figure 8.1 for an illustration.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.2 The multiway cut problem and an LP rounding algorithm 199

s1

(1,0,0)

s2

(0,1,0)

s3

(0,0,1)

Figure 8.1: A geometric representation of an LP solution for k = 3. The distinguished
vertices s1, s2, and s3 are given by the coordinates (1, 0, 0), (0, 1, 0), and (0, 0, 1) re-
spectively. Any other vertex lies in the triangle defined by these three coordinates. The
dotted line represents a ball around s1.

Let x be an LP solution to (8.3)
for all 1 ≤ i ≤ k do Ci ← ∅
Pick r ∈ (0, 1) uniformly at random
Pick a random permutation π of {1, . . . , k}
X ← ∅ // X keeps track of all currently assigned vertices

for i← 1 to k − 1 do
Cπ(i) ← B(sπ(i), r)−X

X ← X ∪ Cπ(i)

Cπ(k) ← V −X

return F =
∪k

i=1 δ(Ci)

Algorithm 8.1: Randomized rounding algorithm for the multiway cut problem.

We now consider Algorithm 8.1. The algorithm selects r ∈ (0, 1) uniformly at random, and
a random permutation π of the indices {1, . . . , k}. The algorithm proceeds through the indices
in the order given by the permutation. For index π(i) in the ordering, the algorithm assigns all
previously unassigned vertices in B(sπ(i), r) to Cπ(i). At the end of the order, any unassigned
vertices are assigned to Cπ(k). See Figure 8.2 for an example.

Before we get into the details of the proof, let’s look at an example that will show why
picking a random radius and a random permutation π are useful in giving a good performance
guarantee. To simplify matters, suppose that k is large, and suppose we have an edge (u, v)
where xv = (0, 1, 0, 0, . . .) and xu = (12 ,

1
2 , 0, 0, . . .); see Figure 8.3 for an illustration. We suppose

that xs1 = (1, 0, 0, . . .) and xs2 = (0, 1, 0, . . .). Note that in this case, u can only be in the balls
B(s1, r) or B(s2, r) since r < 1 and 1

2∥ei − xu∥1 = 1 for i ̸= 1, 2. Thus u can only be assigned
to C1, C2, or Cπ(k), with the last case occurring if xu /∈ B(s1, r) and xu /∈ B(s2, r). Somewhat
similarly, v can only be assigned to C1 or C2; in this case, xv is always in B(s2, r) since r > 0
and ∥e2 − xv∥1 = 0.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

200 Cuts and metrics

s1

(1,0,0)

s2

(0,1,0)

s3

(0,0,1)

Figure 8.2: A geometric representation of the algorithm for k = 3. The random
permutation is 1,3,2. The ball around s3 assigns to C3 all vertices in the ball not
already assigned to C1.

Now, suppose we have a fixed permutation π. If the permutation orders s1 before s2,
and s2 is not last in the permutation, then we claim (u, v) enters the cut with probability
∥xu − xv∥1 = 1. To see this, note that if 1/2 ≤ r < 1, then u ∈ B(s1, r) but v /∈ B(s1, r) so
that u ∈ C1 and v ∈ C2. If 0 < r < 1/2, then v ∈ B(s2, r) but u /∈ B(s2, r), so that v ∈ C2; we
observed above that u can only be assigned to C1, C2, and Cπ(k), so that if u /∈ B(s2, r) and
π(k) ̸= 2, it must be the case that u /∈ C2 and (u, v) is in the cut. Note that if s2 is last in the
permutation, this can only lower the probability that (u, v) is in the cut. In general, we can
upper bound the probability that an edge (u, v) ends up in the cut by ∥xu−xv∥1, but analyzing
the algorithm with this probability is only good enough to give a performance guarantee of 2,
since the contribution of edge e = (u, v) to the objective function is 1

2ce∥xu− xv∥1. However, if
the permutation π orders s2 before s1, then the edge is in the cut if 0 < r < 1/2, since v ∈ C2

but u /∈ C2 as before, while if r > 1/2, then the edge cannot end up in the cut at all because
both u and v are in B(s2, r) and hence both are assigned to C2. Since the probability that s2
is ordered before s1 is 1/2 in a random permutation, the overall probability that (u, v) is in the
cut is at most

Pr[(u, v) in cut |s1 before s2] Pr[s1 before s2] + Pr[(u, v) in cut |s2 before s1] Pr[s2 before s1]

≤ ∥xu − xv∥1 ·
1

2
+

1

2
∥xu − xv∥1 ·

1

2

=
3

2
· 1
2
∥xu − xv∥1,

which will give us a performance guarantee of 3/2.
To start the analysis, we need some lemmas that will be helpful later on. The first lemma

observes that any coordinate accounts for at most half of the ℓ1 distance. The second lemma
gives us a condition under which a vertex is in a ball of radius r.

Lemma 8.4: For any index ℓ and any two vertices u, v ∈ V ,

|xℓu − xℓv| ≤
1

2
∥xu − xv∥1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.2 The multiway cut problem and an LP rounding algorithm 201

s1 = (1, 0, 0, . . .) s2 = v = (0, 1, 0, . . .)

u = (1/2, 1/2, 0, . . .)

Figure 8.3: An illustration of the ideas of the analysis.

Proof. Without loss of generality, assume that xℓu ≥ xℓv. Then

|xℓu − xℓv| = xℓu − xℓv =

1−
∑
j ̸=ℓ

xju

−
1−

∑
j ̸=ℓ

xjv

 =
∑
j ̸=ℓ

(xjv − xju) ≤
∑
j ̸=ℓ

|xju − xjv|.

By adding |xℓu − xℓv| to both sides, we have

2|xℓu − xℓv| ≤ ∥xu − xv∥1,

which gives the lemma.

Lemma 8.5: u ∈ B(si, r) if and only if 1− xiu ≤ r.

Proof. We have u ∈ B(si, r) if and only if 1
2∥ei − xu∥1 ≤ r. This is equivalent to 1

2

∑k
ℓ=1 |eℓi −

xℓu| ≤ r which is equivalent to 1
2

∑
ℓ ̸=i x

ℓ
u + 1

2(1 − xiu) ≤ r. Since
∑

ℓ ̸=i x
ℓ
u = 1 − xiu, this is

equivalent to 1− xiu ≤ r.

Theorem 8.6: Algorithm 8.1 is a randomized 3
2 -approximation algorithm for the multiway cut

problem.

Proof. Pick an arbitrary edge (u, v) ∈ E. We claim that the probability that the endpoints lie
in different parts of the partition is at most 3

4∥xu−xv∥1. Let W be a random variable denoting
the value of the cut, and let Zuv be a 0-1 random variable which is 1 if u and v are in different
parts of the partition, so that W =

∑
e=(u,v)∈E ceZuv. Given the claim, we have

E[W] = E

 ∑
e=(u,v)∈E

ceZuv


=

∑
e=(u,v)∈E

ceE[Zuv]

=
∑

e=(u,v)∈E

ce · Pr[(u, v) in cut]

≤
∑

e=(u,v)∈E

ce ·
3

4
∥xu − xv∥1

=
3

2
· 1
2

∑
e=(u,v)∈E

ce∥xu − xv∥1

≤ 3

2
OPT,

where the final inequality follows since 1
2

∑
e=(u,v)∈E ce∥xu − xv∥1 is the objective function of

the LP relaxation.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

202 Cuts and metrics

Now to prove the claim. We say that an index i settles edge (u, v) if i is the first index
in the random permutation such that at least one of u, v ∈ B(si, r). We say that index i cuts
edge (u, v) if exactly one of u, v ∈ B(si, r). Let Si be the event that i settles (u, v) and Xi

be the event that i cuts (u, v). Note that Si depends on the random permutation, while Xi is
independent of the random permutation. In order for (u, v) to be in the multiway cut, there
must be some index i that both settles and cuts (u, v); if this happens, then (u, v) ∈ δ(Ci).
Thus the probability that edge (u, v) is in the multiway cut is at most

∑k
i=1 Pr[Si ∧ Xi]. We

will now show that
∑k

i=1 Pr[Si ∧Xi] ≤ 3
4∥xu − xv∥1.

By Lemma 8.5,

Pr[Xi] = Pr[min(1− xiu, 1− xiv) ≤ r < max(1− xiu, 1− xiv)] = |xiu − xiv|.

Let ℓ be the index that minimizes mini(min(1 − xiu, 1 − xiv)); in other words, sℓ is the
distinguished vertex that is closest to one of the two endpoints of (u, v). We claim that index
i ̸= ℓ cannot settle edge (u, v) if ℓ is ordered before i in the random permutation π: by Lemma
8.5 and the definition of ℓ, if at least one of u, v ∈ B(ei, r), then at least one of u, v ∈ B(eℓ, r).
Note that the probability that ℓ occurs after i in the random permutation π is 1/2. Hence for
i ̸= ℓ,

Pr[Si ∧Xi] = Pr[Si ∧Xi|ℓ occurs after i in π] · Pr[ℓ occurs after i in π]

+ Pr[Si ∧Xi|ℓ occurs before i in π] · Pr[ℓ occurs before i in π]

≤ Pr[Xi|ℓ occurs after i in π] · 1
2
+ 0.

Since the eventXi is independent of the choice of random permutation, Pr[Xi|ℓ occurs after i in π] =
Pr[Xi], and therefore for i ̸= ℓ

Pr[Si ∧Xi] ≤ Pr[Xi] ·
1

2
=

1

2
|xiu − xiv|.

We also have that Pr[Sℓ∧Xℓ] ≤ Pr[Xℓ] ≤ |xℓu−xℓv|. Therefore, we have that the probability
that (u, v) is in the multiway cut is

k∑
i=1

Pr[Si ∧Xi] ≤ |xℓu − xℓv|+
1

2

∑
i̸=ℓ

|xiu − xiv|

=
1

2
|xℓu − xℓv|+

1

2
∥xu − xv∥1.

Using Lemma 8.4, 1
2 |x

ℓ
u − xℓv| ≤ 1

4∥xu − xv∥1, so that

k∑
i=1

Pr[Si ∧Xi] ≤
3

4
∥xu − xv∥1,

as desired.

With only slightly more work, the performance guarantee of the algorithm can be improved
to 3

2−
1
k ; this is left to Exercise 8.1. One can also obtain a 3

2 -approximation algorithm by choosing
between two fixed permutations; we explore this in Exercise 8.2. The idea of partitioning vertices
by taking balls of fixed radius in the order given by a random permutation is a useful one which
we will apply again in Section 8.5.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.3 The multicut problem 203

8.3 The multicut problem

In this section, we consider a slightly different cut problem, called the multicut problem. Rather
than having a set of distinguished vertices s1, . . . , sk, we now have a set of distinguished source-
sink pairs of vertices (s1, t1), . . . , (sk, tk). Given an undirected graph G = (V,E) with nonnega-
tive costs ce ≥ 0 for all e ∈ E, our goal is to find a minimum-cost set of edges F whose removal
disconnects all pairs; that is, for every i, 1 ≤ i ≤ k, there is no path connecting si and ti in
(V,E − F). Unlike the previous problem, there can be paths connecting si and sj or si and tj
for i ̸= j. We previously considered special case of the multicut problem in trees in Exercise
7.2.

Given a graph G, let Pi be the set of all paths P joining si and ti. Then an integer
programming formulation of the problem is:

minimize
∑
e∈E

cexe

subject to
∑
e∈P

xe ≥ 1, ∀P ∈ Pi, 1 ≤ i ≤ k,

xe ∈ {0, 1}, ∀e ∈ E.

The constraints ensure that for each i, for each path P ∈ Pi, some edge is selected from P .

To obtain a linear programming relaxation, we replace the constraints xe ∈ {0, 1} with
xe ≥ 0. Although the formulation is exponential in the size of the input (since there could be
an exponential number of paths P ∈ Pi), we can solve the linear program in polynomial time
by using the ellipsoid method described in Section 4.3. The separation oracle works as follows:
given a solution x, we consider the graph G in which the length of each edge e is xe. For each
i, 1 ≤ i ≤ k, we compute the length of the shortest path between si and ti. If for some i,
the length of the shortest path P is less than 1, we return it as a violated constraint, since we
have

∑
e∈P xe < 1 for P ∈ Pi. If for each i, the length of the shortest path between si and ti

is at least 1, then the length of every path P ∈ Pi is at least 1, and the solution is feasible.
Thus we have a polynomial-time separation oracle for the linear program. Alternatively, it is
possible to give an equivalent, polynomially-sized linear program that can be solved directly in
polynomial time, and whose solution can be transformed into a solution of this linear program
in polynomial time; we leave this as an exercise (Exercise 8.4).

As in the LP rounding algorithm for the multiway cut problem, we will build our solution
by taking balls around the vertex si for each i. In order to do this, we must define a notion
of distance. Given an optimal solution x to the LP, we will let xe denote the length of edge e
for the purposes of our algorithm. We then let dx(u, v) denote the length of the shortest path
from vertex u to v using xe as edge lengths. Observe that dx will obey the triangle inequality
by the definition of shortest paths. Also, in any feasible LP solution we have dx(si, ti) ≥ 1 for
all i. Let Bx(si, r) = {v ∈ V : dx(si, v) ≤ r} be the ball of radius r around vertex si using these
distances.

Additionally, it will be useful to think of each edge e ∈ E as being a pipe with length xe and
cross-sectional area ce. Then the product cexe gives the volume of edge e. The LP produces
the minimum-volume system of pipes such that dx(si, ti) ≥ 1 for all i. See Figure 8.4 for an
illustration of the pipe system, and Figure 8.5 for an illustration of a ball in the pipe system.
Given an optimal solution x to the LP, we let V ∗ =

∑
e∈E cexe be the total volume of the pipes.

We know that V ∗ ≤ OPT . Let Vx(si, r) be the volume of pipes within distance r of si plus an

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

204 Cuts and metrics

s1

s2

t1

t2

1/2

1/4 1/4

1/4

1/2

1/2
1/2

1/2

Figure 8.4: An illustration of a pipe system. The width of the pipe corresponds to
its cost ce, and the number next to it gives its length. The distance between each
source/sink pair is at least 1 along any path.

extra V ∗/k term; that is,

Vx(si, r) =
V ∗

k
+

∑
e=(u,v):u,v∈Bx(si,r)

cexe +
∑

e=(u,v):u∈Bx(si,r),v /∈Bx(si,r)

ce(r − dx(si, u)).

The first term ensures that Vx(si, 0) is nonzero, and that the sum of V (si, 0) over all si is V
∗;

it will later be clear why this is useful. The second term adds up the volume of all edges (u, v)
such that both u and v are inside the ball of distance r around si, while the third term adds
up the volume of pipes that fall partially within the ball. Let δ(S) be the set of all edges that
have exactly one endpoint in the set of vertices S.

For a given radius r, let c(δ(Bx(si, r))) be the cost of the edges in δ(Bx(si, r)); that is,
c(δ(Bx(si, r))) =

∑
e∈δ(Bx(si,r))

ce. We will first claim that it is always possible to find some
radius r < 1/2 such that the cost c(δ(Bx(si, r))) of the cut induced by the ball of radius r
around si is not much more than the volume of the ball; finding a ball of this sort is sometimes
called region growing.

Lemma 8.7: Given a feasible solution to the linear program x, for any si one can find in
polynomial time a radius r < 1/2 such that

c(δ(Bx(si, r))) ≤ (2 ln(k + 1))Vx(si, r).

This leads to the following algorithm, which is summarized in Algorithm 8.2. We start out
with an empty set of edges F , and we sequence through each i from 1 to k. If si and ti are not
already separated by the cut F , we invoke Lemma 8.7 to find an appropriate radius r < 1/2
around si. We then add the edges of δ(Bx(si, r)) to F . We remove all the vertices of Bx(si, r)
and all incident edges from the graph and continue. We note that in any iteration, the balls
Bx(si, r) and volumes Vx(si, r) are taken with respect to the edges and vertices remaining in
the current graph.

We first show that the algorithm produces a feasible solution.

Lemma 8.8: Algorithm 8.2 produces a feasible solution for the multicut problem.

Proof. The only possible way in which the solution might not be feasible is if we have some sj-tj
pair in the ball Bx(si, r) when the vertices in the ball get removed from the graph. However, if

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.3 The multicut problem 205

1/4

1/4

1/4

1/2

si

u v

dr

Figure 8.5: An illustration of a ball in pipe system. The ball has radius 3/8 around
si. Note that the volume of the ball will jump from radius r = 1/4− ϵ to r = 1/4 due
to the presence of edge (u, v). Observe also that if we consider a second ball of radius
r+ dr for sufficiently small dr, then the volume of the difference of the two balls is just
the cross-sectional area of the pipes with one endpoint inside the ball and one outside;
that is, it is c(δx(Bx(si, r)))dr.

Let x be an optimal solution to the LP
F ← ∅
for i← 1 to k do

if si and ti are connected in (V,E − F) then
Choose radius r < 1/2 around si as in Lemma 8.7
F ← F ∪ δ(Bx(si, r))
Remove Bx(si, r) and incident edges from graph

return F

Algorithm 8.2: Algorithm for the multicut problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

206 Cuts and metrics

sj , tj ∈ Bx(si, r) for r < 1/2, then dx(si, sj) < 1/2 and dx(si, tj) < 1/2 so that dx(sj , tj) < 1.
This contradicts the feasibility of the LP solution x. So it must be the case that whenever we
remove the vertices in a ball Bx(si, r) from the graph, it can contain at most one of the pair of
vertices sj , tj for all j.

Assuming Lemma 8.7, we can now prove that the algorithm is a good approximation algo-
rithm for the multicut problem.

Theorem 8.9: Algorithm 8.2 is a (4 ln(k+1))-approximation algorithm for the multicut prob-
lem.

Proof. Let Bi be the set of vertices in the ball Bx(si, r) chosen by the algorithm when the pair
si-ti are selected for separation; we set Bi = ∅ if no ball is chosen for i. Let Fi be the edges
in δ(Bi) when Bi and its incident edges are removed from the graph (where Fi = ∅ if Bi = ∅).
Then F =

∪k
i=1 Fi. Let Vi be the total volume of edges removed when the vertices of Bi and

its incident edges are removed from the graph. Note that Vi ≥ Vx(si, r)− V ∗

k since Vi contains
the full volume of edges in Fi, while Vx(si, r) only contains part of the volume of these edges,
but has an extra term of V ∗/k. Note that by the choice of r in Lemma 8.7, we have that
c(Fi) ≤ (2 ln(k + 1))Vx(si, r) ≤ (2 ln(k + 1))

(
Vi +

V ∗

k

)
. Further, observe that the volume of

each edge belongs to at most one Vi; once the edge is part of Vi it is removed from the graph
and cannot be part of the volume of a ball Bj removed in a later iteration. This observation

implies that
∑k

i=1 Vi ≤ V ∗.
Putting all of this together, we have that

∑
e∈F

ce =

k∑
i=1

∑
e∈Fi

ce ≤ (2 ln(k + 1))

k∑
i=1

(
Vi +

V ∗

k

)
≤ (4 ln(k + 1))V ∗ ≤ (4 ln(k + 1))OPT .

We finally turn to the proof of Lemma 8.7.

Proof of Lemma 8.7. For simplicity we write V (r) = Vx(si, r) and c(r) = c(δ(Bx(si, r)).
Our proof will show that for r chosen uniformly at random from [0, 1/2), the expected value
of c(r)/V (r) is no more than 2 ln(k + 1). This implies that for some value of r, we have
that c(r) ≤ (2 ln(k + 1))V (r). We will then show how we can quickly find such a value of r
deterministically.

To set up the computation of the expectation, we need the following observations. For any
value of r such that V (r) is differentiable, note that the derivative is exactly the cost of the
edges in the cut given by the ball of radius r around si; that is,

dV
dr = c(r) (see Figure 8.5). We

observe that the points at which V (r) is not differentiable are values of r such that Bx(si, r)
changes; that is, at values of r such that dx(si, v) = r for some vertex v. Furthermore, V (r)
may not even be continuous for these values: if there are two vertices u and v such that there is
an edge (u, v) of positive volume δ > 0 and dx(si, u) = dx(si, v) = r, then V (r)− V (r − ϵ) ≥ δ
as ϵ ↓ 0 (see Figure 8.5). Nevertheless, note that V (r) is nondecreasing in r.

Essentially we would now like to invoke the mean value theorem from calculus. Recall
that the mean value theorem states that for a function f continuous on an interval [a, b] and

differentiable on (a, b), there exists some c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a . If we set

f(r) = lnV (r), we note that

f ′(r) =
d
drV (r)

V (r)
=

c(r)

V (r)
.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.3 The multicut problem 207

Observe that V (1/2) ≤ V ∗+ V ∗

k since V (1/2) cannot be more than the entire volume plus V ∗/k,
and V (0) is exactly V ∗/k. Following the mean value theorem, we want to show that there is
some r ∈ (0, 1/2) such that

f ′(r) ≤ lnV (1/2)− lnV (0)

1/2− 0
= 2 ln

(
V (1/2)

V (0)

)
≤ 2 ln

(
V ∗ + V ∗

k

V ∗/k

)
= 2 ln(k + 1). (8.4)

However, the mean value theorem doesn’t apply since as we noticed earlier V (r) may not
be continuous and differentiable in (0,1/2). Nevertheless, we show a form of the mean value
theorem still holds in this case.

We now sort and label the vertices in Bx(si, 1/2) according to their distance from si; let
rj = dx(si, vj) be such that 0 = r0 ≤ r1 ≤ · · · ≤ rl−1 ≤ 1/2. Then the vertices are labelled si =
v0, v1, v2, . . . , vl−1. For notational simplicity define rl = 1/2. Let r−j be a value infinitesimally
smaller than rj .

The expected value of c(r)/V (r) for r chosen uniformly from [0, 1/2) is then

1

1/2

l−1∑
j=0

∫ r−j+1

rj

c(r)

V (r)
dr = 2

l−1∑
j=0

∫ r−j+1

rj

1

V (r)

dV

dr
dr

= 2

l−1∑
j=0

[lnV (r)]
r−j+1
rj

= 2
l−1∑
j=0

[
lnV (r−j+1)− lnV (rj)

]
Since V (r) is nondecreasing, this last sum is at most

2

l−1∑
j=0

[lnV (rj+1)− lnV (rj)] .

Then the sum telescopes so that

2

l−1∑
j=0

[lnV (rj+1)− lnV (rj)] = 2 (lnV (1/2)− lnV (0)) ,

and this can be bounded above by 2 ln(k + 1) as shown in (8.4).

Thus it must be the case that there exists r ∈ [0, 1/2) such that c(r) ≤ (2 ln(k + 1))V (r).
How can we find this value of r quickly? Observe that for r ∈ [rj , r

−
j+1], c(r) stays constant

(since Bx(si, r) is unchanged), while V (r) is nondecreasing. Thus if the inequality holds at any
point in this interval, it must also hold at r−j+1. Therefore, we need to check the inequality only

at r−j+1 for j = 0, . . . , l − 1; by the argument above, the inequality must hold for some value of
j.

While no better approximation algorithm for the multicut problem is known, given the
unique games conjecture, we cannot do significantly better.

Theorem 8.10: Assuming the unique games conjecture, for any constant α ≥ 1, there is no
α-approximation algorithm for the multicut problem unless P = NP.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

208 Cuts and metrics

We will prove this theorem in Section 16.5.

It will be useful in later sections to have a slight generalization of Lemma 8.7. We observe
that by modifying the proof of Lemma 8.7 one can get the following corollary.

Corollary 8.11: Given lengths xe on edges e ∈ E and a vertex u, one can find in polynomial
time a radius r ∈ [a, b) such that

c(δ(Bx(u, r))) ≤
1

b− a
ln

(
Vx(u, b)

Vx(u, a)

)
Vx(u, r).

8.4 Balanced cuts

We now turn to the graph cut problem that most commonly arises in practice. We say that a
set of vertices S is a b-balanced cut for b ∈ (0, 1/2] if ⌊bn⌋ ≤ |S| ≤ ⌈(1 − b)n⌉, where n = |V |.
Given an undirected graph G = (V,E) with nonnegative edge costs ce ≥ 0 for all edges e ∈ E,
and a b ∈ (0, 1/2], the goal is to find a b-balanced cut S that minimizes the cost of the edges
with exactly one endpoint in S. The case when b = 1/2 is sometimes called the minimum
bisection problem.

Finding b-balanced cuts arises in divide-and-conquer schemes used in a variety of applica-
tions: the cut S is found, some graph problem is solved on S and V − S, then the solution is
the result of combining the two solutions in S and V − S via the edges between them. If the
cut has low cost, then the combining step becomes easier. Furthermore, if S and V − S have
approximately the same size, then the algorithm can be applied recursively to each side, and
the total depth of the recursion will be O(log n).

In this section, we will not give an approximation algorithm for the balanced cut problem,
settling instead for a pseudo-approximation algorithm; by this we mean that our algorithm will
find a b-balanced cut whose cost is within a O(log n) factor of the cost of the optimal b′-balanced
cut for b′ ̸= b. Let OPT(b) denote the value of the minimum-cost b-balanced cut. In particular,
we will show how to find a 1

3 -balanced cut of value at most O(log n)OPT(1/2). Note first of
all that OPT(1/3) ≤ OPT(1/2), since any 1

2 -balanced cut is also a 1
3 -balanced cut. However,

OPT(1/2) could be substantially larger than OPT(1/3): in fact, if the graph consists of a clique
on 2

3n nodes connected by a single edge to a clique on 1
3n nodes, and all edges have weight

1, OPT(1/3) = 1 while OPT(1/2) = Ω(n2). Thus the algorithm is not a true approximation
algorithm since we compare the cost of the solution found by the algorithm with the optimum
OPT(1/2) for a problem that could be much larger than the optimum OPT(1/3) of the problem
for which the algorithm finds a solution. While we give an algorithm to find a 1

3 -balanced cut
of cost at most O(log n)OPT(1/2), the discussion that follows can be generalized to give a
b-balanced cut of cost at most O(1

b′−b logn)OPT(b′) for b ≤ 1/3 and b < b′.

Our approach to the problem follows that used for the multicut problem in the previous
section. We claim that the following is a linear programming relaxation of the minimum bisec-
tion problem; we will shortly prove that this is true. Given a graph G, let Puv be the set of all

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.4 Balanced cuts 209

paths between u and v in G. Consider the following linear program:

minimize
∑
e∈E

cexe

subject to duv ≤
∑
e∈P

xe, ∀u, v ∈ V, ∀P ∈ Puv,

∑
v∈S

duv ≥
(
2

3
− 1

2

)
n, ∀S ⊆ V : |S| ≥

⌈
2

3
n

⌉
+ 1,∀u ∈ S,

duv ≥ 0, ∀u, v ∈ V,

xe ≥ 0, ∀e ∈ E.

In this relaxation, we have a variable duv that is intended to denote the distance between u and
v using edge lengths xe; if we let dx(u, v) be the actual shortest path length between u and v
using edge lengths xe, then duv ≤ dx(u, v).

To solve the linear program in polynomial time, we once again apply the ellipsoid method as
described in Section 4.3. Given a solution (d, x), we can first check if the first set of constraints
is obeyed by computing the shortest path distance between u and v using edge lengths xe, and
ensuring that duv ≤ dx(u, v). For each vertex u, we find the closest ⌈23n⌉ + 1 vertices using
distances duv; this will include u itself since duu = 0. Let u = v0, v1, v2, . . . , v⌈ 2

3
n⌉ be the ⌈

2
3n⌉+1

vertices that minimize duv. If
∑⌈ 2

3
n⌉

j=0 duvj < (23 −
1
2)n, then clearly the constraint is violated for

S = {v0, . . . , v⌈ 2
3
n⌉} and this choice of u. Note that if

∑⌈ 2
3
n⌉

j=0 duvj ≥ (23 −
1
2)n, then there is no

other set S with |S| ≥ ⌈23n⌉ + 1 and u ∈ S such that the constraint is violated, since any S
containing v0, . . . , v⌈ 2

3
n⌉ can only give rise to a larger sum, and since these vertices were chosen

to make the sum as small as possible. Thus in polynomial time we can check whether (d, x) is
a feasible solution and find a violated constraint if it is not feasible.

We now argue that the linear program is a relaxation.

Lemma 8.12: The linear program above is a relaxation of the minimum bisection problem.

Proof. Given an optimal bisection S, we construct a solution (d̄, x̄) for the linear program by
setting x̄e = 1 if e ∈ δ(S) and x̄e = 0 otherwise. We then set d̄uv = 1 for all u ∈ S, v /∈ S,
and d̄uv = 0 otherwise. We argue that this solution is feasible, which is sufficient to prove the
lemma. Clearly the first set of constraints is obeyed, since any path P from u ∈ S to v /∈ S
must use an edge e ∈ δ(S).

Now consider any set S′ such that |S′| ≥ ⌈23n⌉+1. Notice that |S′−S| ≥ ⌈23n⌉+1−⌈12n⌉ ≥
(23 −

1
2)n and |S′ ∩ S| ≥ ⌈23n⌉ + 1 − ⌈12n⌉ ≥ (23 −

1
2)n; call S

′ − S and S′ ∩ S the two parts of
S′. See Figure 8.6. One part (namely, S′ ∩ S) is contained in S and the other (namely, S′ − S)
has no vertices of S, so for u and v in different parts, d̄uv = 1. Pick any u ∈ S′. Since u is in
one of the two parts of S′, there are at least (23 −

1
2)n vertices v in the other part of S′ which

does not contain u. Thus
∑

v∈S′ d̄uv ≥ (23 −
1
2)n.

Given an optimal solution (d, x) to the linear program, let Bx(u, r) be the set of vertices in
the ball of radius r around u; that is, Bx(u, r) = {v ∈ V : dx(u, v) ≤ r}. As with the multicut
problem, we let V ∗ =

∑
e∈E cexe, so that we know V ∗ ≤ OPT(1/2) by Lemma 8.12. We define

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

210 Cuts and metrics

S ′

S

u

v

Figure 8.6: An illustration of the proof of Lemma 8.12. At least (23 −
1
2)n vertices

must be both in S ∩ S′ and S′ − S, so for any u ∈ S′, there must be at least (23 −
1
2)n

vertices v which lie on the other side of the bisection S.

the volume of the ball of radius r around a vertex u as we did in the previous section:

Vx(u, r) =
V ∗

n
+

∑
e=(v,w):v,w∈Bx(u,r)

cexe +
∑

e=(v,w):v∈Bx(u,r),w/∈Bx(u,r)

ce(r − dx(u, v)).

As before, define c(δ(Bx(u, r))) to be the cost of the edges with exactly one endpoint in Bx(u, r).
We can then prove the following lemma, which is analogous to Lemma 8.7.

Lemma 8.13: Given a feasible solution to the linear program (d, x) and two vertices u and v
such that dx(u, v) ≥ 1/12, one can find in polynomial time a radius r < 1/12 such that

c(δ(Bx(u, r))) ≤ (12 ln(n+ 1))Vx(u, r).

Proof. We apply Corollary 8.11 to the interval [0, 1/12), and observe that

ln

(
Vx(u, 1/12)

Vx(u, 0)

)
≤ ln

(
V ∗ + V ∗/n

V ∗/n

)
= ln(n+ 1).

Our algorithm for the 1
3 -balanced cut problem is given in Algorithm 8.3. We let S be the set

of vertices that will be in the cut; S is initially empty. We let F be a superset of the edges in the
cut, and it is also initially empty. Our final solution requires that ⌊13n⌋ ≤ |S| ≤ ⌈

2
3n⌉. As long

as |S| < ⌊13n⌋, we will show that there must exist two vertices u, v /∈ S such that dx(u, v) ≥ 1
6 .

We apply Lemma 8.13 to find balls of radius less than 1/12 around both u and v. We take the
ball of smaller cardinality, add it to S, add the corresponding cut to F , and remove the ball
and its incident edges from the graph.

We now need to prove that the algorithm is correct, and returns a 1
3 -balanced cut.

Lemma 8.14: For any iteration of the algorithm in which |S| < ⌊13n⌋, there exist u, v /∈ S such
that dx(u, v) ≥ 1/6.

Proof. Consider S′ = V −S. Then |S′| ≥ ⌈23n⌉+1. Then by the linear programming constraint,
for any u ∈ S′,

∑
v∈S′ duv ≥ (23 −

1
2)n = 1

6n. Since there are at most n vertices in S′, it must
be the case that for some v ∈ S′, duv ≥ 1/6. Finally, we know that dx(u, v) ≥ duv.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.5 Probabilistic approximation of metrics by tree metrics 211

Let (d, x) be an optimal solution to the LP relaxation
F ← ∅; S ← ∅
while |S| < ⌊13n⌋ do

Choose some u, v /∈ S such that dx(u, v) ≥ 1/6
Choose radius r < 1/12 around u as in Lemma 8.13
Choose radius r′ < 1/12 around v as in Lemma 8.13
if |Bx(u, r)| ≤ |Bx(v, r

′)| then
S ← S ∪Bx(u, r)
F ← F ∪ δ(Bx(u, r))
Remove Bx(u, r) and incident edges from graph

else
S ← S ∪Bx(v, r

′)
F ← F ∪ δ(Bx(v, r

′))
Remove Bx(v, r

′) and incident edges from graph
return S

Algorithm 8.3: Algorithm for the 1
3 -balanced cut problem.

Lemma 8.15: The algorithm returns S such that ⌊13n⌋ ≤ |S| ≤ ⌈
2
3n⌉.

Proof. By construction of the algorithm, |S| ≥ ⌊13n⌋. Thus we only need to show that |S| ≤
⌈23n⌉. Let Ŝ be the contents of S at the beginning of the iteration before the algorithm ter-

minated. Then |Ŝ| < ⌊13n⌋ and we added the smaller of the two balls around u and v to

Ŝ to obtain the final solution S. Since we considered Bx(u, r) and Bx(v, r
′) for r < 1/12,

r′ < 1/12, and dx(u, v) ≥ 1/6, it must be the case that these two balls are disjoint; that is,
Bx(u, r) ∩Bx(v, r

′) = ∅. Since we chose the smaller ball to add to Ŝ, this implies that the size
of the ball added to Ŝ had no more than half the remaining vertices, or no more than 1

2(n−|Ŝ|)
vertices. Thus

|S| = |Ŝ|+min(|Bx(u, r)|, |Bx(v, r
′)|) ≤ |Ŝ|+ 1

2
(n− |Ŝ|) = 1

2
n+

1

2
|Ŝ| ≤

⌈
2

3
n

⌉
,

since |Ŝ| < ⌊13n⌋.

The proof of the performance guarantee is nearly the same as that for the multicut algorithm,
and so we omit it.

Theorem 8.16: Algorithm 8.3 returns a 1
3 -balanced cut of cost no more than (24 ln(n+1))V ∗ ≤

(24 ln(n+ 1))OPT(1/2).

As mentioned previously, the algorithm above can be generalized to give a b-balanced cut
of cost at most O(1

b′−b log n)OPT(b′) for b ≤ 1/3 and b < b′.
In Section 15.3, we will give an O(log n)-approximation algorithm for the minimum bisection

problem; this algorithm is not a pseudo-approximation algorithm, but is an algorithm that
produces a bisection of cost at most O(log n)OPT(1/2).

8.5 Probabilistic approximation of metrics by tree metrics

In this section, we introduce the idea of tree metrics, which we will consider for the remainder of
the chapter. Tree metrics have become an important tool for devising approximation algorithms

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

212 Cuts and metrics

for a wide variety of problems.

We use tree metrics to approximate a given distance metric d on a set of vertices V . A tree
metric (V ′, T) for a set of vertices V is a tree T defined on some set of vertices V ′ ⊇ V , together
with nonnegative lengths on each edge of T . The distance Tuv between vertices u, v ∈ V ′ is the
length of the unique shortest path between u and v in T . We would like to have a tree metric
(V ′, T) that approximates d on V in the sense that duv ≤ Tuv ≤ α · duv for all u, v ∈ V for some
value of α. The parameter α is called the distortion of the embedding of d into the tree metric
(V ′, T).

Given a low-distortion embedding, we can often reduce problems on general metric spaces
to problems on tree metrics with a loss of a factor of α in the performance guarantee. It is
often much easier to produce an algorithm for a tree metric than for a general metric. We will
see examples of this in the following two sections, in which we discuss the buy-at-bulk network
design problem and the linear arrangement problem. Further examples can be found in the
exercises.

Unfortunately, it can be shown that for a cycle on n vertices, no tree metric has distortion
less than (n − 1)/8 (see Exercise 8.7 for a restricted proof of this). However, we can give a
randomized algorithm for producing a tree T such that for each u, v ∈ V , duv ≤ Tuv and
E[Tuv] ≤ O(log n)duv; that is, the expected distortion is O(log n). Another way to view this is
that we can give a probability distribution on trees such that the expected distortion is O(log n).
We refer to this as the probabilistic approximation of the metric d by a tree metric.

Theorem 8.17: Given a distance metric (V, d), such that duv ≥ 1 for all u ̸= v, u, v ∈ V , there
is a randomized, polynomial-time algorithm that produces a tree metric (V ′, T), V ⊆ V ′, such
that for all u, v ∈ V , duv ≤ Tuv and E[Tuv] ≤ O(log n)duv.

It is known that there exist metrics such that any probabilistically approximation of the metric
by tree metrics must have distortion Ω(log n), so the result above is the best possible to within
constant factors.

We now begin to give the details of how the algorithm of Theorem 8.17 works. The tree is
constructed via a hierarchical cut decomposition of the metric d. Let ∆ be the smallest power of
2 greater than 2maxu,v duv. The hierarchical cut decomposition is a rooted tree with log2∆+1
levels. The nodes at each level of the tree correspond to some partitioning of the vertex set V :
the root node (at level log2∆) corresponds to V itself, while each leaf of the tree (at level 0)
corresponds to a single vertex of V . A given node at level i corresponds to some subset S of
vertices V ; the children of the node corresponding to S correspond to a partitioning of S. For
a given node at level i that corresponds to a set S, the vertices in S will be the vertices in a
ball of radius less than 2i and at least 2i−1 centered on some vertex. Notice that each leaf of
the tree at level 0 is in a ball of radius less than 20 = 1 centered on some vertex u, and so u is
in the ball by itself since duv ≥ 1 for all v ̸= u. Observe also that by the definition of ∆, the
set V is contained in a ball of radius ∆ centered on any vertex, since the radius of the ball at
level log2∆ is at least 1

2∆ ≥ maxu,v duv. The length of the tree edge joining the children at
level i − 1 to their parent at level i is 2i. See Figure 8.7 for an illustration of the hierarchical
cut decomposition.

Each node of the tree will be a vertex in V ′, so that the tree is a tree on the vertices in V ′.
We let each leaf correspond to the unique v ∈ V that it contains, so that the leaves are the
vertex set V , while the internal vertices are the remaining nodes in V ′, and V ⊆ V ′.

Before we state precisely how to obtain the decomposition, we observe the following prop-
erties of the tree obtained in this way.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.5 Probabilistic approximation of metrics by tree metrics 213

< ∆

< ∆/2

< ∆/4

VLevel log2 ∆

Level log2 ∆-1

Level log2 ∆-2

Level 0

∆ ∆ ∆ ∆

∆/2 ∆/2

2
2

2

Figure 8.7: A hierarchical cut decomposition of the metric space.

Lemma 8.18: Any tree T obtained via the hierarchical cut decomposition of metric d as above
has Tuv ≥ duv for all pairs of vertices u, v ∈ V . Furthermore, if the least common ancestor of
u, v ∈ V is at level i, then Tuv ≤ 2i+2.

Proof. The distance duv between any pair of vertices u and v in a set S corresponding to a node
at level i of the tree is less than 2i+1, since the radius of the ball containing S is less than 2i.
Thus vertices u and v cannot belong to the same node at level ⌊log2 duv⌋ − 1, since otherwise
the distance between them would be less than 2⌊log2 duv⌋ ≤ duv, a contradiction. The lowest
level at which u and v can belong to the same node is thus ⌊log2 duv⌋. Therefore, the distance

Tuv ≥ 2
∑⌊log2 duv⌋

j=1 2j ≥ duv since the length of the tree edge joining level j − 1 to j is 2j , and
the path from u to v in T starts at u at level 0, goes through a node of level at least ⌊log2 duv⌋
and back to v at level 0.

If the least common ancestor of u, v ∈ V is at level i, then Tuv = 2
∑i

j=1 2
j = 2i+2 − 4 ≤

2i+2.

The randomized algorithm for producing a tree metric begins by picking a random permu-
tation π of the vertices and setting a radius ri for all balls at level i. We pick r0 ∈ [1/2, 1)
uniformly at random, and set ri = 2ir0 for i, 1 ≤ i ≤ log2∆. We observe that this implies that
for any i, ri is distributed in [2i−1, 2i) uniformly.

In order to show how to produce the tree metric, we only need to specify how to obtain
the children of a node corresponding to a set S at level i in the hierarchical cut decomposition.
The partitioning of S into children on level i− 1 is performed as follows: we go through all the
vertices of V in the order given by the permutation, starting with π(1). For a vertex π(j) we

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

214 Cuts and metrics

S
1

2

3

4

5

6

7

8

9

10

11

Figure 8.8: An example of the partitioning of set S = {1, 3, 4, 5, 7, 8, 9, 10, 11} in the
hierarchical cut decomposition. Suppose that the random permutation is the identity.
The ball centered on 1 contains 1, 4, and 11, and {1, 4, 11} forms a child node. The
ball centered on 2 contains 7 and 10, and {7, 10} forms a child node. The ball centered
on 3 contains 3 and 5, and {3, 5} forms a child node. The ball centered on 4 contains
8 and {8} forms a child node; note that the ball centered on 4 also contains 4, 1, and
11, but these have already been put into the first child node. The ball centered on 5
contains no elements of S that are not already in child nodes. The ball centered on 6
contains 9, and {9} forms a child node, and all elements of S are accounted for. Thus
S is partitioned into sets {1, 4, 11}, {3, 5}, {7, 10}, {8}, and {9}.

consider the ball B(π(j), ri−1): if B(π(j), ri−1) ∩ S = ∅, we go on to vertex π(j + 1), otherwise
we make B(π(j), ri−1)∩S a child node of S, remove the vertices of B(π(j), ri−1) from S, and go
on to vertex π(j+1) with the remaining nodes of S (if there are any). An alternate perspective
of this procedure is that for each u ∈ S, we assign u to the first π(j) in the permutation such
that u ∈ B(π(j), ri−1); all the vertices of S assigned to the same π(j) are put in the same set of
the partition. Note that all vertices in S are accounted for by this procedure, since every vertex
in S is a member of the ball centered on itself. Observe also that a child node of S can have as
its center a vertex π(j) that is not in S, or a vertex π(j) that is in another, previously formed
part of the partition. See Figure 8.8 for an illustration of the partitioning, and see Algorithm
8.4 for a summary of the algorithm.

We now prove that the constructed tree probabilistically approximates the metric d. We
restate the theorem here for convenience.

Theorem 8.17: Given a distance metric (V, d), such that duv ≥ 1 for all u ̸= v, u, v ∈ V , there
is a randomized, polynomial-time algorithm that produces a tree metric (V ′, T), V ⊆ V ′, such
that for all u, v ∈ V , duv ≤ Tuv and E[Tuv] ≤ O(log n)duv.

Proof. Lemma 8.18 shows that for tree T , Tuv ≥ duv. Now to show the other inequality, pick a
particular pair of vertices u, v ∈ V . The lemma also shows that the length Tuv depends on the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.5 Probabilistic approximation of metrics by tree metrics 215

Pick a random permutation π of V
Set ∆ to the smallest power of 2 greater than 2maxu,v duv
Pick r0 ∈ [1/2, 1) uniformly at random; set ri = 2ir0 for all i : 1 ≤ i ≤ log2∆
// C(i) will be the sets corresponding to the nodes at level i; the sets

partition V
C(log2∆) = {V }
Create tree node corresponding to V
for i← log2∆ downto 1 do
C(i− 1)← ∅
for all C ∈ C(i) do

S ← C
for j ← 1 to n do

if B(π(j), ri−1) ∩ S ̸= ∅ then
Add B(π(j), ri−1) ∩ S to C(i− 1)
Remove B(π(j), ri−1) ∩ S from S

Create tree nodes corresponding to all sets in C(i− 1) that are subsets of C
Join these nodes to node corresponding to C by edge of length 2i

Algorithm 8.4: Algorithm to create a hierarchical tree decomposition.

level of the least common ancestor of u and v, and if this level is level i + 1, Tuv ≤ 2i+3. For
this least common ancestor to be at level i+ 1, u and v must be in different sets on level i. In
order for this to happen, there must be some vertex w such that exactly one of u and v is in
the set corresponding to the ball centered on w on level i. As in the proof of Theorem 8.6, we
say that w settles the pair u, v on level i if w is the first vertex in the random permutation of
vertices such that at least one of u, v is in the ball B(w, ri). We say that w cuts the pair u, v on
level i if exactly one of u and v is in B(w, ri). Let Xiw be the event that w cuts (u, v) on level
i, and let Siw be the event that w settles (u, v) on level i. Then if 1 is the indicator function,

Tuv ≤ max
i=0,...,log∆−1

1(∃w ∈ V : Xiw ∧ Siw) · 2i+3.

We can simplify slightly by replacing the maximum and the existential quantifier with sums,
so that

Tuv ≤
∑
w∈V

log∆−1∑
i=0

1(Xiw ∧ Siw) · 2i+3.

Taking the expectation, we obtain

E[Tuv] ≤
∑
w∈V

log∆−1∑
i=0

Pr[Xiw ∧ Siw] · 2i+3.

We will give an upper bound bw on Pr[Siw|Xiw] that depends only on w, and will show that

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

216 Cuts and metrics

∑log∆
i=1 Pr[Xiw] · 2i+3 ≤ 16duv. Then

E[Tuv] ≤
∑
w∈V

log∆−1∑
i=0

Pr[Xiw ∧ Siw] · 2i+3

=
∑
w∈V

log∆−1∑
i=0

Pr[Siw|Xiw] Pr[Xiw] · 2i+3

≤
∑
w∈V

bw

log∆−1∑
i=0

Pr[Xiw] · 2i+3

≤ 16duv
∑
w∈V

bw.

In particular, we will show that
∑

w∈V bw = O(log n), which will give the result.

First we show that
∑log∆−1

i=0 Pr[Xiw] · 2i+3 ≤ 16duv. Suppose without loss of generality
that duw ≤ dvw. Then the probability that w cuts (u, v) on level i is the probability that
u ∈ B(w, ri) and v /∈ B(w, ri), or that duw ≤ ri < dvw. Since ri ∈ [2i−1, 2i) uniformly at
random, this probability is simply 1/(2i − 2i−1) times the length of the intersection of the
intervals [2i−1, 2i) and [duw, dvw), so that

Pr[Xiw] =
|[2i−1, 2i) ∩ [duw, dvw)|

|[2i−1, 2i)|
=
|[2i−1, 2i) ∩ [duw, dvw)|

2i−1
.

Then

2i+3 Pr[Xiw] =
2i+3

2i−1
|[2i−1, 2i) ∩ [duw, dvw)| = 16|[2i−1, 2i) ∩ [duw, dvw)|.

Since the intervals [2i−1, 2i) for i = 0 to log2∆ − 1 partition the interval [1/2,∆/2), it follows
that

log2 ∆−1∑
i=0

Pr[Xiw] · 2i+3 ≤ 16|[duw, dvw)| = 16(dvw − duw) ≤ 16duv,

where the final inequality follows by the triangle inequality.
Now to bound Pr[Siw|Xiw]. We order the vertices w ∈ V in order of their distance to the

pair u, v; that is, we order the vertices w ∈ V by min(duw, dvw). Note that if event Xiw happens,
then one of u and v is in the ball B(w, ri). Thus any vertex z closer to the pair u, v than w
will also have at least one of u and v in the ball B(z, ri). So in order for w to settle the pair
u, v given that it cuts u, v on level i, it must come before all closer vertices z in the random
permutation of vertices. If w is the jth closest vertex to u, v, this happens with probability
at most 1/j. Thus Pr[Siw|Xiw] ≤ 1/j if w is the jth closest vertex to the pair u, v. We can
then define the bound bw on this probability as 1/j. Since for each j, 1 ≤ j ≤ n, there is some
vertex w that is the jth closest to the pair u, v, we have that

∑
w∈V bw =

∑n
j=1

1
j = O(log n),

as desired.

8.6 An application of tree metrics: Buy-at-bulk network design

To get a sense of the kinds of problems for which we can obtain approximation algorithms
using probabilistic approximation by tree metrics, we consider the buy-at-bulk network design

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.6 An application of tree metrics: Buy-at-bulk network design 217

Set Pi to be the unique si-ti path in T
Set ce =

∑
i:e∈Pi

di for all e ∈ T

Algorithm 8.5: Algorithm for the buy-at-bulk network design problem in a tree T .

problem. In this problem, we are given an undirected graph G = (V,E) with lengths ℓe ≥ 0 for
each e ∈ E. There are k source-sink pairs si-ti, with si, ti ∈ V , and each pair has an associated
demand di. We can purchase a capacity u on any edge at a cost of f(u) per unit distance. We
assume that f(0) = 0 and that f is nondecreasing; as we purchase more capacity, the total cost
does not go down. We further assume that the function f obeys economies of scale: the cost
per unit of capacity does not increase as the desired capacity increases. Note that this implies
that f is subadditive: f(u1 + u2) ≤ f(u1) + f(u2) (see Exercise 8.9 for an alternate assumption
about how capacity is purchased). The goal of the problem is to find a path Pi from si to ti for
each i and a minimum-cost set of capacities ce for all edges e ∈ E such that a multicommodity
flow can be routed in the graph of non-zero capacities; that is, such that we can send di units of
commodity i from si to ti on path Pi for all i using the capacities ce. The cost of the solution
is
∑

e∈E f(ce)ℓe.
Observe that the problem is easy to solve in a tree metric T ; let Tuv be the length of the

unique path in T between u and v. Because there is only one path Pi in T between any si and
ti, the desired capacity on a given edge in the tree is simply the sum of the demands of the
commodities whose unique path uses the edge. This algorithm is summarized in Algorithm 8.5.
Thus given the algorithm of the previous section which approximates general metrics d by tree
metrics, a straightforward idea presents itself. Let duv be the length of the shortest path in G
between u and v using lengths ℓe. Use the algorithm to probabilistically approximate d by a
tree metric T , then run the algorithm on the tree T . There is a slight problem in that since
the tree metric is over a set of vertices V ′ ⊇ V , it is not clear how we translate a result on the
tree metric (V ′, T) back into one on the original graph. To do this, we will use the following
theorem.

Theorem 8.19: For any tree metric (V ′, T) with V ⊆ V ′ defined by a hierarchical cut decom-
position, with the vertices in V as the leaves of T , we can find in polynomial time another tree
metric (V, T ′) such that Tuv ≤ T ′

uv ≤ 4Tuv.

Proof. Pick any v ∈ V such that the parent w of v in the tree T is not in V (that is, w ∈ V ′−V).
We contract the edge (v, w), merging the subtree at v into its parent w, and identify the newly
merged node as v. Repeat this process until every vertex in the tree is a vertex of V . Finally,
multiply the length of every remaining edge by four. Let T ′ denote the resulting tree.

Clearly T ′
uv ≤ 4Tuv since the distance between u and v could have only decreased during

the contraction of edges, and then increased by a factor of four when the edge lengths were
multiplied. Now suppose that the least common ancestor of u and v in the original tree T was
a node w at level i so that Tuv = 2i+2 − 4, as shown in the proof of Lemma 8.18. Then since
the contraction process only moves u and v upwards in T , and does not identify the nodes u
and v, the distance T ′

uv in T ′ must be at least four times the length of the edge from w to one
of its children, which is 4 · 2i = 2i+2. Thus T ′

uv ≥ Tuv.

We thus obtain the following corollary from Theorem 8.17.

Corollary 8.20: Given a distance metric (V, d), such that duv ≥ 1 for all u ̸= v, u, v ∈ V ,
there is a randomized, polynomial-time algorithm that produces a tree metric (V, T ′), such that

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

218 Cuts and metrics

Apply Corollary 8.20 to find tree metric (V, T ′) that approximates input metric d
Find shortest path Pxy in G for each (x, y) ∈ T ′

Let P ′
siti be unique si-ti path in T ′ for all i

Let Pi be concatenation of paths Pxy for all (x, y) ∈ P ′
siti for all i

Set ce =
∑

i:e∈Pi
di for all e ∈ E

Algorithm 8.6: Algorithm for the buy-at-bulk network design problem for general metrics d.

for all u, v ∈ V , duv ≤ T ′
uv and E[T ′

uv] ≤ O(log n)duv.

Proof. By the proof of Lemma 8.18, the least common ancestor of u and v in the tree T obtained
from a hierarchical cut decomposition must be on level ⌊log2 duv⌋ or higher. By the proof of
Theorem 8.19, the distance T ′

uv ≥ 2i+2 for vertices in u and v that have their least common
ancestor at level i in tree T . Thus T ′

uv ≥ duv. The other statements follow immediately.

Thus our algorithm now uses the algorithm of Corollary 8.20 to find a tree metric T ′, then
uses Algorithm 8.5 to solve the buy-at-bulk problem on T ′. For each edge (x, y) ∈ T ′, we find
a corresponding shortest path Pxy in our input graph G. Then our output path Pi from si to
ti in our input metric is the concatenation of the paths Pxy for all edges (x, y) ∈ T ′ on the path
from si to ti in the tree T ′. Given the paths Pi, we set the capacity of edge e to be the sum of
the demands routed on paths that use e, so that ce =

∑
i:e∈Pi

di. This algorithm is summarized
in Algorithm 8.6. Thus the cost of our solution is

∑
e∈E ℓef(ce).

We will now show in a sequence of lemmas that Algorithm 8.6 is an O(log n)-approximation
algorithm for the buy-at-bulk network design problem. We do this by relating both the cost
of our algorithm’s solution and the cost of an optimal solution to the cost of a solution in T ′.
First, we give a bit of notation. Let Puv denote the set of edges in a fixed shortest path from
u to v in G, and let P ′

xy denote the set of edges in the unique path from x to y in T ′. Let c′xy
for edges (x, y) ∈ T ′ be the capacity used by our algorithm on edge (x, y) of the tree T ′; that
is, c′xy =

∑
i:(x,y)∈P ′

siti

di.

Recall that our algorithm first finds a solution in T ′, then translates the solution into G.
We first show that the cost of the solution can only decrease with this translation.

Lemma 8.21: The cost of the solution given by the algorithm is at most
∑

(x,y)∈T ′ T ′
xyf(c

′
xy).

Proof. For each (x, y) ∈ T ′, our algorithm finds a shortest x-y path in G, Pxy. We know that
every demand i that uses (x, y) in T ′ will send its demand in G along this path, so that c′xy
demand is sent along this path at a cost of dxyf(c

′
xy) ≤ T ′

xyf(c
′
xy). Note that it is possible that

some edge e in G is contained in more than one shortest path corresponding to edges from T ′;
for example, e might be contained in Pxy and Pvw corresponding to two edges (x, y) and (v, w)
from T ′. Then we will route demand c′xy + c′vw across e. However, by the subadditivity of f ,
we know that routing multiple paths on e cannot increase the total cost of the solution since
f(c′xy + c′vw) ≤ f(c′xy) + f(c′vw). Thus we claim that the cost of the solution in T ′ does not
increase when mapped to G.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.6 An application of tree metrics: Buy-at-bulk network design 219

Arguing more precisely, we have that∑
(x,y)∈T ′

T ′
xyf(c

′
xy) ≥

∑
(x,y)∈T ′

dxyf(c
′
xy)

=
∑

(x,y)∈T ′

f(c′xy)
∑
e∈Pxy

ℓe

=
∑
e∈E

ℓe
∑

(x,y)∈T ′:e∈Pxy

f(c′xy)

≥
∑
e∈E

ℓef

 ∑
(x,y)∈T ′:e∈Pxy

c′xy


=

∑
e∈E

ℓef(ce),

as desired.

Now suppose that an optimal solution uses paths P ∗
i in G. Then the optimal solution uses

capacity c∗e =
∑

i:e∈P ∗
i
di on edge e, and has cost OPT =

∑
e∈E ℓef(c

∗
e). In order to compare

the cost of the optimal solution with the cost on our solution the tree T ′, we think about how
to translate the optimal solution in G to a solution on T ′. For each edge e = (u, v) ∈ E, we’ll
install c∗e units of capacity on all edges in the unique u-v path in T ′. We now show that the
cost of this translated optimal solution on T ′ must cost at least as much as our solution on T ′.

Lemma 8.22: The cost of the optimal solution in G translated to T ′ is at least
∑

(x,y)∈T ′ T ′
xyf(c

′
xy).

Proof. To see this, we observe that for any edge (x, y) ∈ T ′, our solution uses capacity c′xy,
which is exactly equal to the demands of all si-ti pairs that would be separated in T ′ if we
removed (x, y) from T ′. Any other solution in T ′ sending di units of demand from si to ti for
every i must use capacity at least this much; so the translation of the optimal solution must
use capacity at least c′xy on edge (x, y). Thus since f is nondecreasing, and the translation into
T ′ of the optimal solution uses capacity at least c′xy on edge (x, y) ∈ T ′ for all (x, y) ∈ T ′, the
cost of the optimal solution in G translated to T ′ must be at least

∑
(x,y)∈T ′ T ′

xyf(c
′
xy).

We can now prove the main theorem.

Theorem 8.23: The above randomized algorithm gives an O(log n)-approximation algorithm
for the buy-at-bulk network design problem.

Proof. By combining Lemmas 8.21 and 8.22, we see that the cost of the solution given by the
algorithm is at most the cost of the optimal solution in G translated to T ′. We now only need
to show that this cost, in expectation, is at most O(log n)OPT.

We first claim that the cost of the optimal solution in G translated to T ′ is at most∑
e=(u,v)∈E f(c∗e)T

′
uv. Given the claim, the theorem follows since then the expected cost of

the solution is at most

E

 ∑
e=(u,v)∈E

f(c∗e)T
′
uv

 ≤ O(log n)
∑

e=(u,v)∈E

f(c∗e)duv ≤ O(log n)
∑
e∈E

f(c∗e)ℓe = O(log n)OPT .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

220 Cuts and metrics

Now to show the claim. The capacity that the translated solution needs for any edge
(x, y) ∈ T ′ is

∑
e=(u,v)∈E:(x,y)∈P ′

uv
c∗e. Then by subadditivity, the cost of the optimal solution

translated to T ′ is

∑
(x,y)∈T ′

T ′
xy · f

 ∑
e=(u,v)∈E:(x,y)∈P ′

uv

c∗e

 ≤
∑

(x,y)∈T ′

T ′
xy

∑
e=(u,v)∈E:(x,y)∈P ′

uv

f(c∗e)

=
∑

e=(u,v)∈E

f(c∗e)
∑

(x,y)∈P ′
uv

T ′
xy

=
∑

e=(u,v)∈E

f(c∗e)T
′
uv.

8.7 Spreading metrics, tree metrics, and linear arrangement

We turn to one more problem that can be approximated using tree metrics. We consider the
linear arrangement problem. In the linear arrangement problem, we are given an undirected
graph G = (V,E) and nonnegative weights we ≥ 0 for all edges e ∈ E. A feasible solution
is a one-to-one mapping f of the vertices to the numbers {1, 2, . . . , n}, where n = |V |. The
goal is to find the mapping that minimizes the sum

∑
e=(u,v)∈E we|f(u)− f(v)|. Intuitively, we

are mapping a graph to points on the line so that we do not stretch the edges by too much;
an example of the problem is shown in Figure 8.9. To find a solution to the problem, we first
give an LP relaxation using a kind of metric called a spreading metric. Then we approximate
the spreading metric by a tree metric. Finally, since we will be trying to minimize a sum of
distances, we show that we can deterministically find a good tree metric.

We claim that the following linear program is a relaxation of the linear arrangement problem:

minimize
∑

e=(u,v)∈E

weduv

subject to
∑
v∈S

duv ≥
1

4
|S|2, ∀S ⊆ V, u /∈ S,

duv = dvu, ∀u, v ∈ V,

duv ≤ duw + dwv, ∀u, v, w ∈ V,

duv ≥ 1, ∀u, v ∈ V, u ̸= v,

duu = 0, ∀u ∈ V.

To see that this is a relaxation, given a one-to-one mapping f : V → {1, . . . , n}, let duv be the
distance between u and v under the mapping f , so that duv = |f(u)− f(v)|. Clearly the value
of the solution is the cost of the linear arrangement. It is easy to see that then duv = dvu,
duv ≤ duw + dwv, duv ≥ 1 if u ̸= v, and duu = 0. To see that the final set of constraints is
obeyed, note that for any set of vertices S and any u /∈ S, there can be at most two vertices in
S at distance 1 from f(u) (namely, the vertices mapped to f(u)+ 1 and f(u)− 1), at most two
at distance 2, and so on. Thus∑

v∈S
duv ≥

|S|
2
·
(
|S|
2

+ 1

)
≥ 1

4
|S|2.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.7 Spreading metrics, tree metrics, and linear arrangement 221

1

2

3

4

5

6

2 3 4 5 61

Figure 8.9: An example of the linear arrangement problem. We can map the vertices
of the graph on the top of the figure to {1, . . . , 6} as shown on the bottom of the
figure. Assuming the edges all have unit weight, this mapping gives a solution of cost
1 + 1 + 1 + 2 + 2 + 2 + 2 = 11.

The variables d arising from the solution to the LP are a metric (V, d) since they obey the three
properties of a metric as defined at the beginning of the chapter. This metric is sometimes
called a spreading metric, since the constraint on sets S ⊆ V enforces that for any set S and
any u /∈ S, there is a v ∈ S that is far from u. Indeed, for any S ⊆ V and any u /∈ S, let
z = maxv∈S duv. Then observe that z|S| ≥

∑
v∈S duv ≥ 1

4 |S|
2 implies that z ≥ 1

4 |S|. The
constraint

∑
v∈S duv ≥ 1

4 |S|
2 is sometimes called the spreading constraint.

Observation 8.24: For the spreading metric d defined as above, for any subset of vertices S
and vertex u /∈ S, there exists vertex v such that duv ≥ 1

4 |S|.

The linear program above can be solved in polynomial time by using the ellipsoid method
given in Section 4.3. There are a polynomial number of constraints excepting the spreading
constraints. The polynomial-time separation oracle for the spreading constraints is as follows.
For each u ∈ V we sort the remaining vertices in order of their distance from u, from smallest to
largest: let v1, . . . , vn−1 be such that duv1 ≤ duv2 ≤ · · · ≤ duvn−1 . We then check the constraint
for each of the sets {v1},{v1, v2}, . . ., {v1, . . . , vn−1}. We claim that if the constraint is not
violated for any of these sets for any u, then no constraint is violated. Suppose the constraint
is violated for some S and some u /∈ S. Then clearly the sum

∑
v∈S duv is at least as large as∑|S|

i=1 duvi , so if the constraint is violated for S and u /∈ S, it will also be violated for u and the
set
{
v1, . . . , v|S|

}
.

To get an approximation algorithm for the problem, we use a tree metric to approximate the
metric duv obtained by solving the LP. However, here we will show that we can deterministically
obtain a tree metric with the desired properties. In particular, we will show below that for any
metric d, and any set of nonnegative costs cuv ≥ 0 on pairs of vertices u, v ∈ V , one can find in

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

222 Cuts and metrics

polynomial time a tree metric (V ′, T) such that Tuv ≥ duv and∑
u,v∈V

cuvTuv ≤ O(log n)
∑

u,v∈V
cuvduv.

Observe that the results of Section 8.5 give a randomized algorithm such that

E[
∑

u,v∈V
cuvTuv] ≤ O(log n)

∑
u,v∈V

cuvduv.

Since this inequality holds over the random choices of the trees from the randomized algorithm,
there must exist some tree T generated by the algorithm such that the inequality holds. In fact,
we can easily give a randomized algorithm to find such a tree metric (see Exercise 8.12). How-
ever, in the rest of this section we will deterministically find a hierarchical cut decomposition,
leading to a tree metric, such that the inequality above holds.

We now show how finding a tree metric to approximate d applies to the linear arrangement
problem. We will need the tree metric T to have some additional properties: first, that T is
a rooted tree with all the vertices of V at the leaves of the tree; and second, if vertex z ∈ V
belongs to the smallest subtree containing vertices u, v ∈ V , then Tuv ≥ Tuz. Note that these
additional properties are satisfied by trees resulting from a hierarchical cut decomposition. We
claim that we can find such a tree efficiently.

Theorem 8.25: Given a metric duv on vertices V and nonnegative costs cuv for all u, v ∈ V ,
in polynomial time we can compute a tree metric (V ′, T) on a set of vertices V ′ ⊇ V such that
Tuv ≥ duv for all u, v ∈ V and

∑
u,v∈V cuvTuv ≤ O(log n)

∑
u,v∈V cuvduv. Furthermore, T is a

rooted tree with all vertices of V at its leaves, and if vertex z ∈ V belongs to the smallest subtree
containing vertices u, v ∈ V , then Tuv ≥ Tuz.

Our algorithm for linear arrangement is as follows. We solve the linear programming relax-
ation above to obtain the metric d, and use the theorem to obtain a tree metric (V ′, T); we do
so with costs cuv = we for e = (u, v) ∈ E and cuv = 0 otherwise. We then assign each leaf of
the tree T a number from 1 to n; intuitively, we number them consecutively from left to right.
Then each subtree in T has leaves that are numbered consecutively. Since each vertex of V is
a leaf of the tree, the process assigns each v ∈ V a number from 1 to n.

Theorem 8.26: The algorithm given above is an O(log n)-approximation algorithm for the
linear arrangement problem.

Proof. Let f be the one-to-one mapping produced by the algorithm. For any given edge e =
(u, v), consider the smallest subtree in the tree T that contains both u and v. This subtree is
assigned some range of integers [a, b]. Since the leaves of the subtree are numbered consecutively,
there are b−a+1 leaves in the subtree. At worst, we can have one endpoint of the edge assigned
to a and the other to b; hence |f(u) − f(v)| ≤ b − a. Let S be the set of leaves in the subtree
other than u; we have |S| = b − a. By Observation 8.24, we know there is some other vertex
z ∈ S such that duz ≥ 1

4(b− a). Therefore, by the property of the tree metric in Theorem 8.25,
Tuv ≥ Tuz ≥ duz ≥ 1

4(b− a), since z belongs to the smallest subtree containing u and v. Hence
we have |f(u)− f(v)| ≤ 4 · Tuv. By Theorem 8.25, we can then bound the cost of the solution
f as follows:∑

e=(u,v)∈E

we|f(u)− f(v)| ≤ 4
∑

e=(u,v)∈E

weTuv ≤ O(log n)
∑

e=(u,v)∈E

weduv ≤ O(log n)OPT,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.7 Spreading metrics, tree metrics, and linear arrangement 223

where the final inequality follows since
∑

e=(u,v)∈E weduv is the objective function of the linear
programming relaxation of the linear arrangement problem.

We now begin our proof of Theorem 8.25. As we have mentioned previously, we will construct
our tree via a hierarchical cut decomposition, as in Section 8.5. To give the decomposition, we
need to explain how to partition a set S corresponding to a node at level i of the tree so as to
obtain its children at level i− 1. As in the previous sections, we need to define the concept of a
ball and the volume of a ball. For a given metric d, let Bd(u, r) be the set of a vertices within
distance r of u, so that Bd(u, r) = {v ∈ V : duv ≤ r}. Let V ∗ =

∑
u,v∈V cuvduv. We define the

volume Vd(u, r) as in the previous sections, with

Vd(u, r) =
V ∗

n
+

∑
v,w∈Bd(u,r)

cvwdvw +
∑

v∈Bd(u,r),w/∈Bd(u,r)

cvw(r − duv).

We define c(δ(Bd(u, r))) to be the cost of the pairs of vertices with exactly one vertex in
Bd(u, r), so that c(δ(Bd(u, r))) =

∑
v∈Bd(u,r),w/∈Bd(u,r)

cvw. We let cd(u, r) be shorthand for
c(δ(Bd(u, r))).

Note that in Section 8.5, we made a random choice of the radii ri for the balls at level i.
Here we note that we can make good, deterministic choices via the region growing technique
that relates the cost cd(u, r) to the volume of the ball.

Lemma 8.27: In polynomial time it is possible to find a value r for any u ∈ V and i, 0 ≤ i ≤
log2∆, such that 2i−1 ≤ r < 2i and

cd(u, r) ≤ 21−i ln

(
Vd(u, 2

i)

Vd(u, 2i−1)

)
Vd(u, r).

Proof. This follows from Corollary 8.11 applied to the interval [2i−1, 2i).

The partitioning of a node corresponding to S at level i into children at level i − 1 is
performed as follows. Rather than using a random ordering on the vertices, we find a vertex
u ∈ S that maximizes the volume Vd(u, 2

i−2), and find a ball of radius r, 2i−2 ≤ r < 2i−1,
around u via Lemma 8.27. We make a child node of S corresponding to all the vertices of
Bd(u, r) in S, remove these vertices from S and repeat as long as S ̸= ∅. Note that the ball has
radius less than 2i−1 as required.

We can now prove the main theorem, which we restate here for convenience.

Theorem 8.25: Given a metric duv on vertices V and nonnegative costs cuv for all u, v ∈ V ,
in polynomial time we can compute a tree metric (V ′, T) on a set of vertices V ′ ⊇ V such that
Tuv ≥ duv for all u, v ∈ V and

∑
u,v∈V cuvTuv ≤ O(log n)

∑
u,v∈V cuvduv. Furthermore, T is a

rooted tree with all vertices of V at its leaves, and if vertex z ∈ V belongs to the smallest subtree
containing vertices u, v ∈ V , then Tuv ≥ Tuz.

Proof. It follows from the properties of a hierarchical cut decomposition that each leaf of T
corresponds to a single vertex v ∈ V . Furthermore, by Lemma 8.18, the distance between u
and v depends solely on the level of the least common ancestor containing u and v; namely, if
it is at level i, then Tuv = 2

∑i
j=1 2

j = 2i+2 − 4. Thus if z is in the smallest subtree containing
u and v, clearly the least common ancestor of u and z is at level at most i, so that Tuv ≥ Tuz.

We now need to argue that
∑

u,v∈V cuvTuv ≤ O(log n)
∑

u,v∈V cuvduv. For a given pair of
vertices u, v ∈ V , let i + 1 be the level of the least common ancestor in the tree T containing

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

224 Cuts and metrics

both u and v. As shown in Lemma 8.18, then Tuv ≤ 2i+3. Let Ei+1 be the pairs of vertices
(u, v) with u, v ∈ V whose least common ancestor in the tree T is at level i+ 1. Thus

∑
u,v∈V

cuvTuv ≤
log2 ∆−1∑

i=0

∑
(u,v)∈Ei+1

2i+3 · cuv.

Note that (u, v) ∈ Ei+1 implies that there is a node at level i of the tree T corresponding to a
ball such that exactly one of u and v is inside the ball. Thus

∑
(u,v)∈Ei+1

cuv is at most the sum
of the cuts created when we formed the children at level i, and by Lemma 8.27, we can relate
these cuts to the volume of these children.

Let Ci be the set of the centers of the balls corresponding to the nodes of level i of the tree
T , and for z ∈ Ci, let rzi be the radius of the ball around z we chose via Lemma 8.27. Then
for any level i,

∑
(u,v)∈Ei+1

cuv ≤
∑

z∈Ci
cd(z, rzi). By Lemma 8.27, we know that cd(z, rzi) ≤

21−i ln
(

Vd(z,2
i)

Vd(z,2i−1)

)
Vd(z, rzi). Thus

∑
u,v∈V

cuvTuv ≤
log2 ∆−1∑

i=0

∑
(u,v)∈Ei+1

2i+3 · cuv

≤
log2 ∆−1∑

i=0

∑
z∈Ci

2i+3 · cd(z, ri)

≤ 16

log2 ∆−1∑
i=0

∑
z∈Ci

ln

(
Vd(z, 2

i)

Vd(z, 2i−1)

)
Vd(z, riz).

To bound this final term, we need to somehow relate the sum to the overall volume. To
do this, let g(v) be the volume of all the edges incident on vertex v plus V ∗/n; that is, g(v) =
V ∗

n +
∑

u∈V cuvduv. Then certainly the volume of the set associated with any node in the tree
is at most the sum of the g(v) of all the vertices v in the set; that is, for a set S corresponding
to a node at level i generated by a ball around a center z of radius riz, Vd(z, riz) ≤

∑
v∈S g(v).

Pick any v ∈ S. Since riz < 2i, any edge or part of an edge contributing volume to the ball
of radius riz in S must also be in a ball of radius 2i+1 around v. Thus Vd(z, riz) ≤ Vd(v, 2

i+1).
By construction of the algorithm, if z is a center of a ball corresponding to a node of level i in
the tree, it must be the case that Vd(z, 2

i−1) ≥ Vd(v, 2
i−1) for any other v ∈ S since we chose

z ∈ S to maximize the volume Vd(z, 2
i−1). Putting all of these together, for any level i and set

S corresponding to a node on level i, with z as its corresponding center, we have that

ln

(
Vd(z, 2

i)

Vd(z, 2i−1)

)
Vd(z, rzi) ≤

∑
v∈S

ln

(
Vd(z, 2

i)

Vd(z, 2i−1)

)
g(v) ≤

∑
v∈S

ln

(
Vd(v, 2

i+1)

Vd(v, 2i−1)

)
g(v).

Substituting this into the inequality above and using the fact that the nodes at level i partition
V , we have

∑
u,v∈V

cuvTuv ≤ 16

log2 ∆−1∑
i=0

∑
v∈V

ln

(
Vd(v, 2

i+1)

Vd(v, 2i−1)

)
g(v)

= 16
∑
v∈V

log2 ∆−1∑
i=0

ln

(
Vd(v, 2

i+1)

Vd(v, 2i−1)

)
g(v).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.7 Spreading metrics, tree metrics, and linear arrangement 225

For each v ∈ V the sum telescopes to ln(Vd(v,∆))+ln(Vd(v,∆/2))−ln(Vd(v, 1))−ln(Vd(v, 1/2)),
which can be bounded above by 2(ln(Vd(v,∆))− ln(Vd(v, 0))). Thus this sum is at most

32
∑
v∈V

ln

(
Vd(v,∆)

Vd(v, 0)

)
g(v).

Then since Vd(v,∆) is at most V ∗, the entire volume, plus the extra V ∗/n term, while Vd(v, 0) =
V ∗/n,

32
∑
v∈V

ln

(
Vd(v,∆)

Vd(v, 0)

)
g(v) ≤ 32

∑
v∈V

ln

(
V ∗ + V ∗/n

V ∗/n

)
g(v) = 32 ln(n+ 1)

∑
v∈V

g(v).

Using the definition of g(v), we have that

32 ln(n+ 1)
∑
v∈V

g(v) = 32 ln(n+ 1)
∑
v∈V

(
V ∗

n
+
∑
u∈V

cuvduv

)
= 96 ln(n+ 1)

∑
u,v∈V

cuvduv,

so that ∑
u,v∈V

cuvTuv ≤ O(log n)
∑

u,v∈V
cuvduv,

as desired.

While we have gone to considerable lengths to give a deterministic algorithm to find a tree
metric T such that

∑
u,v∈V cuvTuv ≤ O(log n)

∑
u,v∈V cuvduv, we can quite simply obtain a ran-

domized algorithm that finds such a tree metric with high probability given a randomized algo-
rithm for probabilistically approximating a metric by a tree metric with distortion O(log n). We
give this as an exercise (Exercise 8.12). The reverse direction can also be shown; given any de-
terministic algorithm to find a tree metric T such that

∑
u,v∈V cuvTuv ≤ O(log n)

∑
u,v∈V cuvduv,

we can obtain a randomized algorithm that can probabilistically approximate d by a tree metric
with distortion O(log n). We give the latter problem as an exercise later on in the book, once
we have a bit more experience with the ellipsoid method (Exercise 15.9).

Exercises

8.1 Prove that the analysis of the performance guarantee of the multiway cut algorithm of
Section 8.2 can be improved to 3

2 −
1
k .

8.2 Consider the following two permutations π1 and π2, where π1(1) = 1, π1(2) = 2, . . . , π1(k) =
k, while π2(1) = k, π2(2) = k − 1, . . . , π2(k) = 1. Consider a modification of Algorithm
8.1 in which we do not choose a random permutation π, but rather choose π = π1 with
probability 1/2 and π = π2 with probability 1/2. Show that the modified algorithm is
still a 3

2 -approximation algorithm for the multiway cut problem.

8.3 In the Steiner k-cut problem, we are given an undirected graph G = (V,E), costs ce ≥ 0
for all e ∈ E, a set of terminals T ⊆ V , and a positive integer k ≤ |T |. The goal of the
problem is to partition the vertices into k sets S1, . . . , Sk such that each set contains at
least one terminal (that is, Si ∩ T ̸= ∅ for i = 1, . . . , k) and to minimize the weight of the
edges with endpoints in different parts. Given a partition P = {S1, . . . , Sk}, let c(P) be
the total cost of the edges that have endpoints in different parts of the partition.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

226 Cuts and metrics

Consider the following greedy algorithm for the Steiner k-cut problem: We start with
P = {V }. As long as P does not have k parts, we consider each set S ∈ P with
|S ∩ T | ≥ 2, consider each pair of terminals in S ∩ T , and compute the minimum-cost cut
between that pair of terminals. We then choose the minimum-cost cut found overall by
this procedure; note that this breaks some set S ∈ P into two parts. We replace S in P
with these two new parts, and continue.

(a) Let Pi be the contents of the partition found by the algorithm when it has i parts.
Let P̂ = {V1, V2, . . . , Vi} be any valid partition into i parts (that is, Vj ∩ T ̸= ∅ for
j = 1, . . . , i). Show that

c(Pi) ≤
i−1∑
j=1

∑
e∈δ(Vj)

ce.

(b) Use the above to show that this greedy algorithm is a
(
2− 2

k

)
-approximation algo-

rithm for the Steiner k-cut problem.

8.4 Give a linear programming relaxation for the minimum multicut problem of Section 8.3
whose number of variables and constraints can be bounded by a polynomial in the size
of the input graph G. Show that it is equivalent to the linear programming relaxation of
Section 8.3, and show that any optimal solution to your linear program can be transformed
to an optimal solution of the other linear program in polynomial time.

8.5 In the minimum cut linear arrangement problem, we are given an undirected graph G =
(V,E) and costs ce ≥ 0 for all e ∈ E. As in the linear arrangement problem, a feasible
solution is a one-to-one mapping f of the vertices to the numbers {1, 2, . . . , n}. In this
problem, however, the goal is to minimize the cost of the cut {f(1), . . . , f(i)} over all i;
that is, we wish to minimize

max
1≤i<n

∑
e=(u,v):f(u)≤i,f(v)>i

ce.

Show that by using the balanced cut pseudo-approximation algorithm of Section 8.4, one
can obtain an O(log2 n)-approximation algorithm for this problem.

8.6 In the sparsest cut problem, we are given an undirected graph G = (V,E), costs ce ≥ 0
for all e ∈ E, and k pairs of vertices si, ti, each pair with an associated positive integer
demand di. We want to find a set of vertices S that minimizes∑

e∈δ(S) ce∑
i:|S∩{si,ti}|=1 di

.

That is, the sparsest cut problem finds a cut that minimizes the ratio of the cost of the
edges in the cut to demands separated by the cut. Let Pi denote the set of all paths P
from si to ti.

(a) Prove that it is equivalent to find a minimum-cost set of edges F that minimizes∑
e∈F ce∑

i∈s(F) di
,

where s(F) is the set of indices i such that si and ti are not connected in the graph
(V,E − F).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.7 Spreading metrics, tree metrics, and linear arrangement 227

(b) Prove that the following LP is a linear programming relaxation of the sparsest cut
problem.

minimize
∑
e∈E

cexe

subject to
k∑

i=1

diyi = 1,∑
e∈P

xe ≥ yi, ∀P ∈ Pi, 1 ≤ i ≤ k,

yi ≥ 0, 1 ≤ i ≤ k,

xe ≥ 0.

(c) Prove that the linear program can be solved in polynomial time.

(d) Let (x∗, y∗) be an optimal solution to the linear program, and suppose that y∗1 ≥
y∗2 ≥ · · · ≥ y∗k. Let Di =

∑i
j=1 dj , and Hn = 1 + 1

2 + · · ·+ 1
n . Show that there exists

i, 1 ≤ i ≤ k, such that

y∗i ≥
1

Di ·HDk

.

(e) Use the preceding discussion to get an O(log k·HDk
)-approximation algorithm for the

sparsest cut problem. Since Hn = O(log n), this is a O(log k · logDk)-approximation
algorithm.

8.7 Let Cn = (V,E) be a cycle on n vertices, and let duv be the distance between u, v ∈ V on
Cn. Show that for any tree metric (V, T) on the same set of vertices V , there must exist
a pair of vertices u, v ∈ V such that duv = 1, but Tuv ≥ n− 1. To do this, suppose that of
all trees T with optimal distortion, T has the minimum total length. Show that T must
be a path of vertices of degree two, then conclude the statement above.

8.8 In the universal traveling salesman problem, we are given as input a metric space (V, d)
and must construct a tour π of the vertices. Let πS be the tour of the vertices S ⊆ V
given by visiting them in the order given by the tour π. Let OPTS be the value of an
optimal tour on the metric space induced by the vertices S ⊆ V . The goal of the problem
is to find a tour π that minimizes πS/OPTS over all S ⊆ V ; in other words, we’d like to
find a tour such that for any subset S ⊆ V , visiting the vertices of S in the order given
by the tour is close in value to the optimal tour of S.

Show that if (V, d) is a tree metric, then it is possible to find a tour π such that πS = OPTS

for all S ⊆ V .

8.9 A typical variant of the buy-at-bulk problem discussed in Section 8.6 is to assume that
cables come in different types: cable type i costs ci and has capacity ui. We must choose
the type and number of cables to install on each edge given the demand to be supported
on the edge. Show that given a demand d to be supported on an edge, installing enough
copies of a single cable type i (e.g., ⌈d/ui⌉ copies for some i) is a 2-approximation algorithm
for this problem.

8.10 Consider a slight variant of the k-median problem given in Section 7.7: we are given as
input a set of locations N in a metric space, and a parameter k. Let cij be the distance

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

228 Cuts and metrics

between i and j for i, j ∈ N . We wish to select a subset S ⊆ N of k centers to minimize
the sum of the distances of each location to the nearest center; that is, we wish to select
S ⊆ N with |S| = k to minimize

∑
j∈N mini∈S cij .

(a) Give a polynomial-time algorithm for the problem in the case that the metric cij
comes from a tree metric (N,T). You can assume you know the tree T . (Hint: use
dynamic programming on the structure of the tree. It might help to assume that
that the tree is a rooted binary tree such that each internal node has at most two
children; show that this assumption is without loss of generality).

(b) Give a randomized O(log |N |)-approximation algorithm for this variant of the k-
median problem.

8.11 In the capacitated dial-a-ride problem, we are given a metric (V, d), a vehicle of capacity
C, a starting point r ∈ V , and k source-sink pairs si-ti for i = 1, . . . , k, where si, ti ∈ V .
At each source si there is an item that must be delivered to the sink ti by the vehicle.
The vehicle can carry at most C items at a time. The goal is to find the shortest possible
tour for the vehicle that starts at r, delivers each item from its source to its destination
without exceeding the vehicle capacity, then returns to r; note that such a tour may visit
a node of V multiple times. We assume that the vehicle is allowed to temporarily leave
items at any node in V .

(a) Suppose that the metric (V, d) is a tree metric (V, T). Give a 2-approximation algo-
rithm for this case. (Hint: How many times must each edge (u, v) ∈ T be traversed
going from u to v, and going from v to u? Give an algorithm that traverses each
edge at most twice as many times as it needs to.)

(b) Give a randomized O(log |V |)-approximation algorithm for the capacitated dial-a-
ride problem in the general case.

8.12 Suppose we have a metric (V, d) and costs cuv for all u, v ∈ V . Suppose we are also given
a randomized algorithm that finds a tree metric (V ′, T) with V ′ ⊇ V such that duv ≤ Tuv

and E[Tuv] ≤ O(log n)duv for all u, v ∈ V . Obtain a randomized algorithm that with
high probability obtains a tree metric (V ′′, T ′) with V ′′ ⊇ V such that duv ≤ T ′

uv and∑
u,v∈V cuvT

′
uv ≤ O(log n)

∑
u,v∈V cuvduv.

Chapter Notes

Early work on approximation algorithms for NP-hard cut problems mostly used polynomial-
time algorithms for finding a minimum s-t cut as a subroutine. The isolating cut algorithm
for the multiway cut problem in Section 8.1 is an example of such an algorithm; this algorithm
is due to Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [86]. The application
mentioned of assigning objects to machines is due to Hogstedt, Kimelman, Rajan, Roth, and
Wegman [169]. Although it is of relatively recent vintage, the Steiner k-cut algorithm of Exercise
8.3 is another example of reducing a cut problem to repeated applications of a minimum s-t
cut algorithm. The Steiner k-cut problem was independently introduced by Chekuri, Guha,
and Naor [70] and Maeda, Nagamochi, and Ibaraki [221]. The algorithm given in the exercise is
due to Zhao, Nagamochi, and Ibaraki [295] based on earlier algorithms for other problems. The
analysis of the exercise is an unpublished result of Chekuri. The problem itself generalizes the
k-cut problem; in the k-cut problem, the goal is to remove edges of minimum total cost so that
the graph has at least k components. The k-cut problem is a special case of the Steiner k-cut

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.7 Spreading metrics, tree metrics, and linear arrangement 229

problem in which T = V ; a 2-approximation algorithm for the k-cut problem due to Saran and
Vazirani [259] was previously known.

Leighton and Rao [213, 214] wrote a highly influential paper that used solutions to linear
programming relaxations as metrics and rounded the LP solutions to obtain solutions to cut
problems. The idea of region growing appeared in this paper, in the context of obtaining
an O(log n)-approximation algorithm for a variant of the sparsest cut problem (discussed in
Exercise 8.6) called the uniform sparsest cut problem; in the uniform sparsest cut problem, each
pair of vertices u, v ∈ V is an si-ti pair with demand di = 1. The first pseudo-approximation
algorithm for the balanced cut problem (as discussed in Section 8.4) was given in this paper.
Several applications of these techniques to cut and arrangement problems also appeared in this
paper, including the result for the minimum cut linear arrangement problem given in Exercise
8.5.

Subsequent work on treating LP solutions as metrics includes the multicut algorithm of
Section 8.3 (due to Garg, Vazirani, and Yannakakis [126]), the pseudo-approximation algorithm
given in Section 8.4 for the balanced cut problem (due to Even, Naor, Rao, and Schieber
[102]), and the LP rounding algorithm for the multiway cut problem (due to Călinescu, Karloff,
and Rabani [60]). Karger, Klein, Stein, Thorup, and Young [185] give a more sophisticated
LP rounding algorithm for the same LP relaxation of the multiway cut problem and obtain
somewhat better performance guarantees.

Bartal [39] defined the notion of the probabilistic approximation of metrics by tree metrics
we use here, although his work was inspired by earlier unpublished work of Karp and work
of Alon, Karp, Peleg, and West [7]. Bartal [39, 40] also gave the first algorithms for finding
such tree metrics. Bartal [39] shows the existence of a metric for which any probabilistic
approximation by tree metrics must have distortion Ω(logn); the graph is one in which every
cycle in the graph has at least Ω(log n) vertices. The algorithm of Section 8.5 for the probabilistic
approximation of metrics by tree metrics is due to Fakcharoenphol, Rao, and Talwar [106]. The
tree metric algorithm from Section 8.7 is also from this paper. As mentioned in the section,
many approximation algorithms use probabilistic approximation of metrics by tree metrics
as a subroutine. The application of tree metrics to the buy-at-bulk network design problem
in Section 8.6 was made by Awerbuch and Azar [28]; Theorem 8.19 in that section is due
to Konjevod, Ravi, and Sibel Salman [202]. Even, Naor, Rao, and Schieber [103] introduce
spreading metrics and their application to the linear arrangement problem. The application
of tree metrics to this problem in Section 8.7 follows a survey of Fakcharoenphol, Rao, and
Talwar [105]. For some time, the k-median approximation algorithm of Exercise 8.10 was the
best approximation algorithm known for the problem; approximation algorithms with constant
performance guarantees are discussed in Sections 7.7 and 9.2. Polynomial-time algorithms for
the k-median problem in tree metrics are due to Kariv and Hakimi [186] and Tamir [278]. The
capacitated dial-a-ride algorithm of Exercise 8.11 is due to Charikar and Raghavachari [66].

Exercises 8.1 and 8.2 are due to Călinescu, Karloff, and Rabani [60]. The algorithm and
analysis for the sparsest cut problem given in Exercise 8.6 is due to Kahale [181]. Exercise 8.8
is due to Schalekamp and Shmoys [260]. Exercise 8.7 is due to Gupta [147]. Exercise 8.9 can
be found in Awerbuch and Azar [28].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

230 Cuts and metrics

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Part II

Further uses of the techniques

231

C h a p t e r 9

Further uses of greedy and local

search algorithms

We have now concluded our initial introduction to the various techniques for designing ap-
proximation algorithms. In this second part of the book, we revisit each of these techniques
and give additional applications of them. In some cases, these applications are recent or more
advanced, but in others they are just a bit more technically involved, or are in some other way
“non-introductory”. Hence this second part covers “further uses” of each technique, rather than
“advanced uses” or “recent uses”.

In this chapter, we look again at greedy and local search algorithms. We revisit the problem
of minimizing the maximum degree of a spanning tree, and show that a variant of the local
search algorithm described in Section 2.6 in which the local moves are carefully ordered results
in a spanning tree whose maximum degree is within 1 of the optimum. When we revisit the
technique of deterministic rounding in Chapter 11, we will show a similar result for a version
of the problem in which there are costs on the edges.

The bulk of the chapter is spent on greedy and local search algorithms for the uncapacitated
facility location problem and the k-median problem. Simple local search algorithms for these
problems have been known since the early 1960s. It is only relatively recently, however, that it
has been shown that these algorithms produce provably near optimal solutions. In Section 9.1,
we show that a local search algorithm for the uncapacitated facility location problem gives a
(3+ ϵ)-approximation algorithm for that problem. Then by using a technique called scaling, in
which we artificially scale the facility costs by a certain factor before running the local search
algorithm, we show that we can obtain a (1 +

√
2 + ϵ)-approximation algorithm for the same

problem, where 1 +
√
2 ≈ 2.414. In Section 9.2, we show that a simple local search algorithm

for the k-median problem gives a (5 + ϵ)-approximation algorithm for the problem. Finally,
in Section 9.4, we give a greedy algorithm for the uncapacitated facility location problem that
is analogous to the greedy algorithm for the set cover problem we discussed in Section 1.6.
By using a dual fitting analysis similar to the one for the set cover problem, we are able to
show that the greedy algorithm is a 2-approximation algorithm for the uncapacitated facility
location problem. Furthermore, the algorithm is Lagrangean multiplier preserving in the sense
mentioned at the end of Section 7.7, and thus leads to a 2(2 + ϵ)-approximation algorithm for
the k-median problem.

233

234 Further uses of greedy and local search algorithms

9.1 A local search algorithm for the uncapacitated facility lo-
cation problem

In this section, we turn to a local search algorithm for the uncapacitated facility location
problem that we have considered previously several times. We will show that we can obtain
a somewhat better performance guarantee by a local search algorithm than we did with the
primal-dual algorithm in Section 7.6. Recall that the input to the problem is a set of clients
D and a set of facilities F , with a facility cost fi for each facility i ∈ F , and an assignment
cost cij for each facility i ∈ F and each client j ∈ D. The goal is to select a subset of facilities
to open and an assignment of clients to open facilities so as to minimize the total cost of the
open facilities plus the assignment costs. As before, we will assume that the set of clients and
potential facility locations are in a metric space; that is, for each i, j ∈ F ∪D, we have a value
cij , and for each i, j, k ∈ F ∪D, we have that cij + cjk ≥ cik. Note that whenever we consider a
distance between i ∈ F and j ∈ D, we will maintain the convention that it is referred to as cij .

The local search algorithm for the problem will maintain a (non-empty) set of open facilities
S ⊆ F and an assignment σ of clients to facilities in S; that is, σ(j) = i if client j is assigned
to facility i ∈ S. The algorithm that we first consider is perhaps the most natural local search
algorithm, in that we permit three types of changes to the current solution: we can open one
additional facility (an “add” move), we can close one facility that is currently open (a “delete”
move), and we can do both of these simultaneously (a “swap” move). Of course, we must also
update the current assignment of clients to open facilities. The algorithm will always maintain
that each client is assigned to its nearest open facility. We repeatedly check if any of these
changes to the current solution reduces the total cost; if so, we make the change to the current
solution. Once no further change decreases the total cost, we stop; the current solution is said
to be a locally optimal solution.

We first analyze the quality of the solution found by this procedure. In fact, we will first
focus not on an algorithmic statement, but instead prove that any locally optimal solution is
near-optimal. In essence, we show that for any locally optimal solution, the absence of any
improving add move implies that the total assignment cost of the current solution is relatively
small. Then we show that the absence of improving swap and delete moves implies that the
total facility cost is relatively small. Together, this yields an upper bound on the cost of any
locally optimal solution. We focus on a particular optimal solution, and let S∗ be its open
facilities, and let σ∗ denote the corresponding optimal assignment of clients to open facilities.
To compare the cost of this optimal solution to the current, locally optimal solution of the
algorithm, we let F and F ∗ denote, respectively, the total facility cost of the current solution
and the optimal one, and similarly let C and C∗ denote their respective total assignment costs.
The optimal value OPT is clearly F ∗+C∗. Note that now F stands for both the set of facilities
and the facility cost of the current solution, but the meaning at any given point should be clear
from the context.

The strategy in proving this guarantee is to focus on a particular subset of possible moves;
each move consists of an update to S and an update to σ. We know that each such move can
generate an inequality based on the fact that the change in cost must be non-negative. In fact,
the update to the assignment σ need not be the optimal one relative to the new choice of open
facilities; since the corresponding change in cost is greater than or equal to the change if we
updated the assignment optimally, we are free to consider this sub-optimal assignment update,
and still conclude that the overall change in cost is non-negative.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.1 A local search algorithm for the uncapacitated facility location problem 235

Lemma 9.1: Let S and σ be a locally optimal solution. Then

C ≤ F ∗ + C∗ = OPT . (9.1)

Proof. Since S is a locally optimal solution, we know that adding any facility to S does not
improve the solution (with respect to the best possible updated assignment). In this way, we
will focus on a few potential changes to the current solution, and analyze their change in cost.
Note that we consider the changes only for the sake of analysis, and we do not actually change
the solution.

Consider some facility i∗ ∈ S∗−S, and suppose that we open the additional facility i∗, and
reassign to that facility all of the clients that were assigned to i∗ in the optimal solution: that
is, we reassign all clients j such that σ∗(j) = i∗. Since our current solution S and σ is locally
optimal, we know that the additional facility cost of i∗ is at least as much as the improvement in
cost that would result from reassigning each client optimally to its nearest open facility; hence,
fi∗ must also be more than the improvement resulting from our specific reassignment; that is,

fi∗ ≥
∑

j:σ∗(j)=i∗

(cσ(j)j − cσ∗(j)j). (9.2)

Consider also a facility i∗ that is in both S and S∗; although it might seem a bit odd, observe
that the same inequality (9.2) must hold for such a facility i∗, since the local optimality of S and
σ implies that each client j is currently assigned to its closest open facility, and so each term
in the summation on the right-hand side of the inequality must be non-positive. Consequently,
we can add inequality (9.2) for each i∗ ∈ S∗, to obtain∑

i∗∈S∗

fi∗ ≥
∑
i∗∈S∗

∑
j:σ∗(j)=i∗

(cσ(j)j − cσ∗(j)j).

The left-hand side of this inequality is clearly equal to F ∗. For the right-hand side, since each
client j is assigned to exactly one facility i∗ ∈ S∗ by σ∗, the double summation is the same as
summing over all possible clients j ∈ F . Hence, the first right-hand side terms (corresponding
to cσ(j)j) sum to C, whereas the second terms sum to C∗. It follows that F ∗ ≥ C − C∗, and
the lemma has been proved.

The argument to show that a local optimum has small total facility cost is somewhat more
complicated. As in the proof of the previous lemma, we will consider a set of changes to the
solution S, each of which will generate a corresponding inequality. For any move that deletes
a facility i ∈ S (either a delete move, or a swap move that “swaps out” facility i), we must
reassign each of the clients that are assigned to i. If we were simply deleting i, then each such
client must be reassigned to a facility in S − {i}. One natural way to determine this facility is
as follows: for each client j, it is assigned to a facility i∗ = σ∗(j) in our fixed optimal solution.
For each i∗ ∈ S∗, let ϕ(i∗) be the facility in S closest to i∗; for each client j, if i ̸= i′, where
i′ = ϕ(σ∗(j)), then it seems reasonable to reassign client j to i′ (see Figure 9.1). In fact, the
following lemma proves this intuition correct.

Lemma 9.2: Consider any client j for which σ(j) = i is not equal to i′ = ϕ(σ∗(j)). Then the
increase in cost of reassigning client j to i′ (instead of to i) is at most 2cσ∗(j)j.

Proof. Consider a client j currently being served by i, where its facility in S∗, i∗ = σ∗(j), is
such that i∗’s nearest facility in S, ϕ(i∗), is not the facility i. Let i′ = ϕ(i∗). What can we
conclude about the assignment cost ci′j? Consider Figure 9.1. By the triangle inequality,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

236 Further uses of greedy and local search algorithms

S

S∗

i = σ(j)

i∗ = σ∗
(j)

i′ = φ(σ∗
(j))

j

φ

Figure 9.1: The reassignment of a client j to i′ = ϕ(σ∗(j)) when facility i = σ(j) is
closed.

ci′j ≤ ci′i∗ + ci∗j .

By the choice of i′, we see that ci′i∗ ≤ cii∗ , from which we can conclude that

ci′j ≤ cii∗ + ci∗j .

But now we also know that cii∗ ≤ cij + ci∗j by the triangle inequality, and hence we have that

ci′j ≤ cij + 2ci∗j ; (9.3)

Note that by subtracting cij from both sides, we can reinterpret this inequality as saying that
the increase in the assignment cost of client j by this reassignment is at most 2cσ∗(j)j .

We will apply this lemma both when i is deleted, and when i is swapped out of the solution.

Lemma 9.3: Let S and σ be a locally optimal solution. Then

F ≤ F ∗ + 2C∗. (9.4)

Proof. As was true in the proof of Lemma 9.1, we will prove this by considering a set of changes
to the solution S, and by deriving an inequality based on each change. Because S is locally
optimal, we know that any delete, swap, or add move must result in a non-negative change in
total cost. Again, we consider these moves solely for the sake of analysis. In this construction,
we will give a set of moves that either deletes or swaps out every facility in S (once each) and
either adds or swaps in every facility in S∗ (again once each). Since the change in cost for each
of these local moves is non-negative, this will allow us to bound the facility cost F in terms of
the facility cost F ∗ and additional terms that we will bound by twice the optimal assignment
cost.

Suppose that we want to delete a facility i ∈ S. Each client j that is currently served by i
must be reassigned to one of the remaining open facilities in S−{i}. If we are to apply Lemma
9.2, then we need that for each client j such that σ(j) = i, we also have that ϕ(σ∗(j)) ̸= i. We
shall call a facility i safe if for every facility i∗ ∈ S∗, the facility ϕ(i∗) ∈ S closest to i∗ is different
from i. As this name suggests, for any safe facility i, we can consider the local move of closing
facility i, since we can safely reassign each of its clients j to ϕ(σ∗(j)), and apply Lemma 9.2 to
bound the resulting increase in the assignment cost for reassigned client j. Again, since S is

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.1 A local search algorithm for the uncapacitated facility location problem 237

locally optimal, we know that this local change cannot decrease the overall cost, and hence the
savings obtained by closing the safe facility i must be no more than the increase in assignment
costs incurred by reassigning all of the clients assigned to i. That is,

fi ≤
∑

j:σ(j)=i

2cσ∗(j)j ,

or equivalently,

−fi +
∑

j:σ(j)=i

2cσ∗(j)j ≥ 0. (9.5)

Consider a facility i that is not safe (or, in other words, is unsafe), and let R ⊆ S∗ be the
(non-empty) set of facilities i∗ ∈ S∗ such that ϕ(i∗) = i; among those facilities in R, let i′ be the
one closest to i. We will derive one inequality for each member of R, based on an add move for
each member of R − {i′}, plus one swap move closing the facility at i, while opening a facility
at i′.

First let us derive an inequality for each add move corresponding to i∗ ∈ R − {i′}. As in
the proof of Lemma 9.3, we open a facility at i∗, and for each client j that is assigned to i in
the locally optimal solution and is assigned to i∗ in the optimal solution, we reassign client j
to i∗. The change in cost caused by this move must also be non-negative, and we derive the
inequality

fi∗ +
∑

j:σ(j)=i & σ∗(j)=i∗

(cσ∗(j)j − cσ(j)j) ≥ 0. (9.6)

Next we derive an inequality based on the swap move that closes the facility at i but opens
a facility at i′. Of course, in order for this to make sense as a swap move, we need that i′ ̸= i.
However, we will see that the ultimate inequality derived from this move also holds if i′ = i, and
so this will turn out to be unimportant. To make this swap move precise, we will also specify a
(suboptimal) reassignment of the clients assigned to i by σ: each client j for which σ∗(j) ̸∈ R
is reassigned to ϕ(σ∗(j)), and the rest are reassigned to i′.

Let us consider the change in cost incurred by this swap move. Clearly, the change in cost
of the facilities is fi′−fi. To bound the reassignment cost for the clients, consider the two cases
of the reassignment rule. For any client j reassigned to ϕ(σ∗(j)), we are in the case governed by
Lemma 9.2, and hence the increase in the assignment cost is at most 2cσ∗(j)j . If j is assigned
to i′, then the change in the assignment cost is exactly ci′j − cij . Combining all of these pieces,
we obtain an upper bound on the total change in cost of this swap move (where it is an upper
bound both because we are focusing on a potentially suboptimal reassignment, and we are only
computing an upper bound on the increase in that reassignment cost). Again, we know that
the true change in cost is non-negative, and hence,

fi′ − fi +
∑

j:σ(j)=i & σ∗(j)̸∈R

2cσ∗(j)j +
∑

j:σ(j)=i & σ∗(j)∈R

(ci′j − cij) ≥ 0. (9.7)

Again, suppose that i′ = i; this inequality reduces to the essentially trivial inequality that∑
j:σ(j)=i & σ∗(j)̸∈R

2cσ∗(j)j ≥ 0.

For this unsafe facility i, let us consider the net effect of combining all of these inequalities
(that is, the one (9.7) derived from the swap move, and the remaining ones (9.6) from add

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

238 Further uses of greedy and local search algorithms

moves). Adding these, we get that

−fi +
∑
i∗∈R

fi∗ +
∑

j:σ(j)=i & σ∗(j)̸∈R

2cσ∗(j)j +
∑

j:σ(j)=i & σ∗(j)∈R

(ci′j − cij)

+
∑

j:σ(j)=i & σ∗(j)∈R−{i′}

(cσ∗(j)j − cσ(j)j) ≥ 0.

We will simplify this expression by combining the final two summations, and by showing that
for each client j that appears in either summation, we can upper bound its total contribution
by 2cσ∗(j)j . If σ∗(j) = i′, then this is quite simple, since in that case, the contribution for
client j is ci′j − cij which is no more than 2ci′j . Next consider any client j for which σ(j) = i
and σ∗(j) ∈ R − {i′}; its total contribution is ci′j + cσ∗(j)j − 2cij . By the triangle inequality,
ci′j ≤ ci′i + cij . Furthermore, by the choice of i′ among R, ci′i ≤ cσ∗(j)i. Finally, again by
the triangle inequality, cσ∗(j)i ≤ cσ∗(j)j + cij . Combining these three inequalities, we see that
ci′j ≤ cσ∗(j)j + 2cij , which proves our claim that the total contribution of j is at most 2cσ∗(j)j .
Consequently, we see that

−fi +
∑
i∗∈R

fi∗ +
∑

j:σ(j)=i

2cσ∗(j)j ≥ 0. (9.8)

Finally, suppose we add inequality (9.5) for each safe facility i ∈ S, and inequality (9.8) for
each unsafe facility i ∈ S; note that as we consider each of the unsafe facilities, each facility
i∗ ∈ S∗ occurs in exactly one corresponding set R. Hence we see that∑

i∗∈S∗

fi∗ −
∑
i∈S

fi +
∑
j∈D

2cσ∗(j)j ≥ 0. (9.9)

Thus, F ∗ − F + 2C∗ ≥ 0, and we have proved the lemma.

By adding the inequalities of these two lemmas, we obtain directly the following theorem.

Theorem 9.4: Let S and σ be a locally optimal solution for the uncapacitated facility location
problem. Then this solution has total cost that is at most 3OPT.

This theorem is not quite the ultimate result in two ways; first, we really proved a stronger
result, that the cost is at most 3C∗ + 2F ∗, and this will allow us to improve the guarantee
slightly, and second, we did not prove that the corresponding local search algorithm terminates
in polynomial time, and hence is not a 3-approximation algorithm. In the latter case, if the
cost of the solution only improves by 1 with each local move, then the algorithm could take
time exponential in the size of the input.

The first of these issues is the simpler of the two. Suppose that we rescaled the facility costs
by dividing each fi by a factor µ. For an input in which the optimal solution had assignment
cost C∗ and facility cost F ∗, there now must exist a solution of assignment cost C∗ and facility
cost F ∗/µ. By Lemmas 9.3 and 9.1, the resulting solution found by local search must therefore
have assignment cost at most C∗ +F ∗/µ, and (rescaled) facility cost at most 2C∗ +F ∗/µ. (To
be more careful, we should note that the proof of these lemmas did not actually use the fact
that the fixed optimal solution was optimal, merely that there was a feasible solution with the
particular facility and assignment costs.) Reinterpreting this solution in terms of the original
costs (that is, multiplying the facility costs by µ), we obtain a solution of total cost at most
(1+2µ)C∗+(1+1/µ)F ∗. If we set µ so that the maximum of these two coefficients is as small

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.2 A local search algorithm for the k-median problem 239

as possible (by setting them equal), we want that µ =
√
2/2, and the resulting performance

guarantee is 1 +
√
2 ≈ 2.414.

The idea behind ensuring that the local search algorithm runs in polynomial time is simple,
but the details in analyzing that the idea works involve some calculation. To speed up the
algorithm, rather than just requiring any decrease in cost, suppose that we insist that the cost
decreases in each iteration by some factor 1 − δ that is strictly less than 1. If the objective
function value is initially equal to M , and the input data is integral (and hence so is any feasible
objective function value), then if k is chosen such that (1 − δ)kM < 1, we can be sure that k
iterations suffice for the algorithm to terminate. Suppose that the algorithm stopped whenever
the current solution was nearly locally optimal, in the sense that each possible move did not
decrease the cost of the solution by a factor of 1− δ. Consider the proof of Lemma 9.1; in order
to derive equation (9.2), we use the fact that there are no improving moves. Now we must
rely only on the fact any move does not improve the solution too much, and so we may only
conclude that

fi −
∑

j:σ∗(j)=i

(cσ(j)j − cσ∗(j)j) ≥ −δ(C + F). (9.10)

As we trace through the rest of the proof of Lemma 9.1, we add at most |F | such inequalities.
Hence, if we let m = |F |, we can conclude that

F ∗ − C + C∗ ≥ −mδ(C + F).

Similarly, in the proof of Lemma 9.3, we derive the result by adding the inequalities (9.5), (9.7),
and (9.6). Again, there are at most m inequalities, and if we require that a move produces
a solution that is a factor of 1 − δ cheaper, this would result in each right-hand side being
−δ(C + F) rather than 0. Hence, we can still derive that

F ∗ − F + 2C∗ ≥ −mδ(C + F).

Adding these two inequalties, we obtain the inequality that

(1− 2mδ)(C + F) ≤ 3C∗ + 2F ∗ ≤ 3OPT .

Hence, the “bigger step” local search algorithm has a performance guarantee of 3
1−2mδ .

We will show that if we set δ = ϵ/(4m), then we both have a polynomial-time algorithm,
and achieve a performance guarantee of 3(1 + ϵ). For the first, (1− ϵ/(4m))4m/ϵ ≤ 1/e, and so
(4m lnM)/ϵ iterations suffice, where M could be

∑
i∈F fi +

∑
i∈F,j∈D cij (by starting with the

solution in which all facilities are open), and so this is a polynomial bound on the number of
iterations. A straightforward calculation shows that 1

1−ϵ/2 ≤ 1 + ϵ (provided ϵ ≤ 1). Hence, we
can convert the local search algorithm into a polynomial-time algorithm, losing an arbitrarily
small factor in the performance guarantee, by requiring these bigger steps. And finally, it is
easy to see that one could combine the rescaling idea with the big steps to yield the following
theorem.

Theorem 9.5: For any constant ρ > 1 +
√
2, the rescaled local search algorithm using bigger

steps yields a ρ-approximation algorithm for the uncapacitated facility location problem.

9.2 A local search algorithm for the k-median problem

In this section, we shall consider again the k-median problem originally considered in Section
7.7; however, we shall consider a slightly simpler variant in which we have a set of locations

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

240 Further uses of greedy and local search algorithms

N , each of which is both a client and a potential facility location. For each pair of locations
i and j, there is a cost cij of assigning location j to a facility at location i. We can select at
most k locations at which to open facilities, where k is part of the input. The goal is to find a
set of locations S at which to open a facility, where |S| ≤ k, such that the assignment cost is
minimized:

∑
j∈N mini∈S cij . Without loss of generality, we can assume that |S| = k. In other

words, this problem can be viewed as the min-sum analogue of the k-center problem, previously
considered in Section 2.2, which is a min-max problem. As in the k-center problem, we shall
assume that the distance matrix is symmetric, satisfies the triangle inequality, and has zeroes
on the diagonal (i.e. cii = 0 for each i ∈ N).

We will give a local search algorithm for the k-median problem. We will let S ⊆ N denote the
set of open facilities for the current solution, and let S∗ ⊆ N denote the set of open facilities
in a fixed optimal solution. For each of these two solutions, each client j is assigned to its
nearest open facility (breaking ties arbitrarily); we let this mapping be denoted σ(j) and σ∗(j),
respectively, for these two assignments. Analogously, we let C and C∗ denote, respectively, the
total cost of the current and optimal solutions.

The local search algorithm that we shall consider is the most natural one. Each current
solution is specified by a subset S ⊆ N of exactly k locations. To move from one feasible
solution to a neighboring one, we swap two locations; that is, we select one location i ∈ S to
delete from the current set, and choose one location i′ ∈ N − S to add to the current set of
facilities. Afterward, we reassign each client to its nearest open facility. In our local search
procedure, we repeatedly check to see if any swap move yields a solution of lower cost; if so,
the resulting solution is our new current solution. We repeat this step until, from the current
solution, no swap move decreases the cost. The current solution at this point is said to be
locally optimal.

We shall prove the following theorem.

Theorem 9.6: For any input to the k-median problem, any feasible solution S that is locally
optimal with respect to the pairwise swap move has a cost that is at most five times the optimal
value.

Proof. The proof will focus on first constructing a set of k special swaps, which we shall call
the crucial swaps. Since the current solution S is locally optimal, we know that each of these
swaps does not improve the objective function of the resulting solution. These swaps will all
be constructed by swapping into the solution one location i∗ in S∗ and swapping out of the
solution one location i in S. Each i∗ ∈ S∗ will participate in exactly one of these k swaps,
and each i ∈ S will participate in at most 2 of these k swaps. (We will allow the possibility
that i∗ = i, and hence the swap move is degenerate, but clearly such a “change” would also
not improve the objective function of the current solution, even if we change the corresponding
assignment.) Observe that the current solution provides a mapping from each facility i∗ ∈ S∗

to a facility σ(i∗) ∈ S.
As Figure 9.2 shows, this mapping allows us to categorize the facilities in S:

• let O ⊆ S consist of those facilities i ∈ S that have exactly one facility i∗ ∈ S∗ with
σ(i∗) = i;

• let Z ⊆ S consist of those facilities i ∈ S for which none of the facilities i∗ ∈ S∗ have
σ(i∗) = i;

• and let T ⊆ S consist of those facilities i ∈ S such that i has at least two locations in S∗

assigned to it in the current solution.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.2 A local search algorithm for the k-median problem 241

S

S∗

σ

OZ
T

O∗

R∗

Figure 9.2: The mapping of locations in S∗ to S used to construct the crucial swaps.

We make a few simple observations. The mapping σ provides a matching between a subset
O∗ ⊆ S∗ and the set O ⊆ S (by the definition of O). Hence, if ℓ denotes the number of locations
in R∗ = S∗ −O∗, then ℓ must also equal |Z ∪ T | (since |S∗| = |S| = k). Since each location in
T is the image of at least two locations in R∗, it follows that |T | ≤ ℓ/2. Hence |Z| ≥ ℓ/2.

We now construct the crucial swaps as follows: first, for each i∗ ∈ O∗, we swap i∗ with
σ(i∗); second, we build a collection of ℓ swaps, each of which swaps into the solution a distinct
location in R∗, and swaps out a location in Z, where each location in Z appears in at most
two swaps. For the swaps involving locations in R∗ and Z, we are free to choose any mapping
provided that each element of R∗ is swapped in exactly once, and each element of Z is swapped
out once or twice.

Consider one crucial swap, where i∗ ∈ S∗ and i ∈ S denote the swapped locations; we
analyze the change of cost incurred by no longer opening a facility at location i ∈ S, and using
i∗ instead. Let S′ denote the set of selected locations after this swap; that is, S′ = S−{i}∪{i∗}.
To complete the analysis, we also specify the assignment of each location in N to an open facility
in S′. For each location j such that σ∗(j) = i∗, we assign j to i∗ (since i∗ is in S′). For each
location j such that σ∗(j) ̸= i∗, but σ(j) = i, then we need a new facility to serve j, and we
now assign it to σ(σ∗(j)). All other locations j remain served by σ(j).

One must argue that σ(σ∗(j)) ̸= i when σ∗(j) ̸= i∗ (since we need that this location must
remain in S′). Assume, for a contradiction, that σ(σ∗(j)) = i; then i ∈ O (since each location
swapped out by a crucial swap is either in Z or O, and the former is clearly not possible by the
definition of Z). Since i ∈ O, it is σ’s image of exactly one element in O∗, and we build a crucial
swap by swapping i with that one element. Hence, σ∗(j) = i∗, but this is a contradiction.

We have now constructed a new set of facilities S′ and an assignment of each location in N
to one of the facilities in S′. There may be some location j that is not served by its closest point
in S′ by this assignment. However, since there are no improving swaps from the current solution
S, any swap combined with a sub-optimal assignment must also not decrease the overall cost;
hence, the change to S′ along with the specified assignment also must not improve over using
S with the assignment given by function σ.

What is the change of cost for this swap? By focusing only on the clients j for which

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

242 Further uses of greedy and local search algorithms

S

S∗

σ(j)

σ∗
(j)

σ(σ∗
(j))

j

σ

Figure 9.3: Bounding the length of the edge from j to σ(σ∗(j)).

σ∗(j) = i∗, or both σ∗(j) ̸= i∗ and σ(j) = i, we can compute the change in the cost to be∑
j:σ∗(j)=i∗

(cσ∗(j)j − cσ(j)j) +
∑

j:σ∗(j)̸=i∗ & σ(j)=i

(cσ(σ∗(j))j − cσ(j)j).

We can simplify the terms in the second summation by considering Figure 9.3. By the
triangle inequality, we have that

cσ(σ∗(j))j ≤ cσ(σ∗(j))σ∗(j) + cσ∗(j)j .

In the current solution S, σ∗(j) is assigned to σ(σ∗(j)) instead of to σ(j), and so we know that

cσ(σ∗(j))σ∗(j) ≤ cσ(j)σ∗(j),

Once again, we can apply the triangle inequality to get that

cσ(j)σ∗(j) ≤ cσ∗(j)j + cσ(j)j ,

and so, putting these pieces together, we have that

cσ(σ∗(j))j ≤ 2cσ∗(j)j + cσ(j)j ,

or equivalently,
cσ(σ∗(j))j − cσ(j)j ≤ 2cσ∗(j)j .

(In fact, a little reflection indicates that we had already proved this, in Lemma 9.2, where now
σ plays the same role as ϕ.) This yields a more compact upper bound on the change in the
cost, which we know must be non-negative; that is, for each crucial swap i∗ and i, we have that

0 ≤
∑

j:σ∗(j)=i∗

(cσ∗(j)j − cσ(j)j) +
∑

j:σ∗(j)̸=i∗ & σ(j)=i

2cσ∗(j)j . (9.11)

Now we add inequality (9.11) over all k crucial swaps. Consider the contribution for each
of the two terms in the first summation. Recall that each i∗ ∈ S∗ participates in exactly one
crucial swap. For the first term, we add cσ∗(j)j over all clients j for which σ∗(j) = i∗, and this
sum is then added for each choice of i∗ in S∗. Each client j has a unique facility σ∗(j) ∈ S∗

to which it is assigned by the fixed optimal solution, and so the net effect is to compute the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.3 Minimum-degree spanning trees 243

sum
∑

j∈N cσ∗(j)j = C∗. However, the same is true for the second term, the double summation
is merely the sum over all possible locations j, and so the second terms contribute a total of
−
∑

j∈N cσ(j)j = −C. Now consider the second summation in (9.11). We can upper bound this
expression by ∑

j:σ(j)=i

2cσ∗(j)j .

What is the effect of adding this summation over all crucial swaps? Each facility i ∈ S occurs
in 0, 1, or 2 crucial swaps; let ni be the number of swaps in which each i ∈ S occurs. Thus, we
can upper bound the double summation as follows:∑

i∈S

∑
j:σ(j)=i

2nicσ∗(j)j ≤ 4
∑
i∈S

∑
j:σ(j)=i

cσ∗(j)j .

But now we can apply the same reasoning as above; each location j is served in the current
solution by a unique facility location σ(j) ∈ S, and hence the effect of the double summation
is merely to sum over each j in N . That is, we have now deduced that this term is at most
4
∑

j∈N cσ∗(j)j = 4C∗. Furthermore, we have concluded that 0 ≤ 5C∗ − C, and hence C ≤
5C∗.

Finally, we observe that the same idea used in the previous section to obtain a polynomial-
time algorithm can be applied here. The central ingredients to that proof are that if we restrict
attention to moves (in this case swap moves) in which we improve the total cost by a factor
of 1− δ, then provided the analysis is based on a polynomial number of moves (each of which
generates an inequality that the change in cost from this move is non-negative), we can set δ
so that we can obtain a polynomial-time bound, while degrading the performance guarantee by
an arbitrarily small constant.

Theorem 9.7: For any constant ρ > 5, the local search algorithm for the k-median problem
that uses bigger improving swaps yields a ρ-approximation algorithm.

9.3 Minimum-degree spanning trees

In this section we return to the minimum-degree spanning tree problem introduced in Section
2.6. Recall that the problem is to find a spanning tree T in a graph G = (V,E) that minimizes
the maximum degree. If T ∗ is an optimal tree that minimizes the maximum degree, let OPT be
the maximum degree of T ∗. In Section 2.6, we showed that a particular local search algorithm
finds a locally optimal tree of maximum degree at most 2OPT+⌈log2 n⌉ in polynomial time.
In this section, we will show that another variation on the local search algorithm finds a locally
optimal tree of maximum degree at most OPT+1 in polynomial time. As we discussed in
Section 2.6, since it is NP-hard to minimize the maximum degree of a spanning tree, this is the
best result possible unless P = NP.

As in the algorithm of Section 2.6, we start with an arbitrary spanning tree T and we will
make local changes to it in order to decrease the degree of nodes in the tree. Let dT (u) be the
degree of u in T . We pick a node u and attempt to reduce its degree by adding an edge (v, w)
to T that creates a cycle C containing u, then removing an edge of the cycle C incident on u.
Let ∆(T) = maxv∈V dT (v) be the maximum degree of the current tree T . We will make local
changes in a way that is driven by the following lemma, which gives us a condition under which
the current tree T has ∆(T) ≤ OPT+1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

244 Further uses of greedy and local search algorithms

Dk ∪ Dk−1

components C

∈ F

Figure 9.4: Illustration of the terms used in the statement of Lemma 9.8. The edges
in F are shown in bold. Some edges in G that are not in the tree T are shown as dotted
lines; note that they are not all incident on nodes in Dk ∪Dk−1. The components C are
the components of the tree T remaining after the edges in F are removed.

Lemma 9.8: Let k = ∆(T), let Dk be any nonempty subset of nodes of tree T with degree k
and let Dk−1 be any subset of nodes of tree T with degree k−1. Let F be the edges of T incident
on nodes in Dk ∪Dk−1, and let C be the collection of |F |+ 1 connected components formed by
removing the edges of F from T . If each edge of graph G that connects two different components
in C has at least one endpoint in Dk ∪Dk−1, then ∆(T) ≤ OPT+1.

Proof. See Figure 9.4 for an illustration of the terms. We use the same idea as in the proof of
Theorem 2.19 to obtain a lower bound on OPT. Since any spanning tree in G will need |F |
edges of G to connect the components in C, the average degree of the nodes in Dk ∪ Dk−1 in
any spanning tree is at least |F |/|Dk ∪Dk−1|. Thus OPT ≥ ⌈|F |/|Dk ∪Dk−1|⌉.

We now bound |F | in order to prove the lemma. The sum of the degrees of the nodes in
Dk and Dk−1 must be |Dk|k + |Dk−1|(k − 1). However, this sum of degrees may double count
some edges of F which have both endpoints in Dk ∪Dk−1. Because T is acyclic, there can be
at most |Dk|+ |Dk−1|− 1 such edges. Hence, |F | ≥ |Dk|k+ |Dk−1|(k− 1)− (|Dk|+ |Dk−1|− 1).
Thus

OPT ≥
⌈
|Dk|k + |Dk−1|(k − 1)− (|Dk|+ |Dk−1| − 1)

|Dk|+ |Dk−1|

⌉
≥

⌈
k − 1− |Dk−1| − 1

|Dk|+ |Dk−1|

⌉
≥ k − 1,

implying that k = ∆(T) ≤ OPT+1.

The goal of the local search algorithm is to continue to reduce the degree of the nodes of
degree ∆(T) while trying to attain the conditions of Lemma 9.8. The algorithm works in a
sequence of phases, with each phase divided into subphases. At the beginning of the phase,
for the current tree T , let k = ∆(T). At the beginning of a subphase, we let Dk be all the
degree k vertices in T , let Dk−1 be all the degree k − 1 vertices in T , let F be the edges of
T incident to Dk ∪ Dk−1, and let C be the components of T formed if F is removed from T .
The goal of each phase is to make local moves to remove all nodes of degree k from the tree;

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.3 Minimum-degree spanning trees 245

the goal of each subphase is to make local moves to remove a single vertex of degree k. In the
process of executing a subphase, we discover nodes of degree k − 1 in Dk−1 for which we can
make a local move to reduce their degree. We do not yet execute these moves, but we mark
the nodes as reducible via the particular local move, remove them from Dk−1, and update F
and C accordingly by removing edges from F and merging components in C. The algorithm is
summarized in Algorithm 9.1, and we now discuss its details.

In a subphase, we consider all edges of G that connect any two components of C. If all such
edges have an endpoint in Dk ∪Dk−1, we meet the condition of Lemma 9.8, and the algorithm
terminates with a tree T such that ∆(T) ≤ OPT+1. If there is some such edge (v, w) without
an endpoint in Dk∪Dk−1, then consider the cycle formed by adding (v, w) to T . Because (v, w)
connects two different components of C, it must be the case that the cycle includes some node
u ∈ Dk ∪ Dk−1. Note that if we desire, we can make a local move to reduce the degree of u
by adding (v, w) to the tree T and removing a tree edge incident to u. If the cycle contains
nodes of Dk−1 only, then we do not yet make the local move, but we make a note that for any
of the nodes in Dk−1 on the cycle, we could do so if necessary. We label these nodes in Dk−1

on the cycle as reducible via the edge (v, w), then remove them from Dk−1, then update F to
be the tree edges incident on the current set of Dk ∪ Dk−1, and update C accordingly. Note
that since we removed all nodes on the cycle from Dk−1, this only removes edges from F and
merges components in C; in particular, the two components connected by (v, w) will be merged
in the updated C. If, on the other hand, the cycle includes a node of u ∈ Dk, we go ahead and
reduce its degree by adding (v, w) to the tree and removing an edge incident on u. Decreasing
the degree of u decreases the number of nodes of degree k in the tree, but we want to ensure
that we do not increase the degree of nodes v and w to k. Note that this could only happen if
the degree of v or w in the tree is k − 1 and at some previous point in the subphase the node
was removed from Dk−1 and labelled reducible. In this case, we carry out the local move that
allows us to reduce the degree of reducible node to k−2, then add (v, w) to the tree and remove
an edge incident to u from the tree. It is possible that carrying out the local move to reduce
the degree of the reducible node to k − 2 might cause a cascade of local moves; for instance, if
v has degree k − 1, and we can reduce its degree by adding edge (x, y), potentially x also has
degree k − 1 and is reducible, and so on; we will show that it is possible to carry out all these
moves, and reduce the degree of u to k− 1 without creating any new nodes of degree k. We say
that we are able to propagate the local move for u. Once we reduce the degree of u from k to
k− 1, we start a new subphase. If there are no further nodes of degree k, we start a new phase.

We can now prove that the algorithm is correct and runs in polynomial time.

Theorem 9.9: Algorithm 9.1 returns a spanning tree T with ∆(T) ≤ OPT+1 in polynomial
time.

Proof. Because the algorithm terminates only when it meets the conditions of Lemma 9.8,
it returns a tree T with ∆(T) ≤ OPT+1 if it does indeed terminate. We claim that in each
subphase, we can propagate local moves to reduce the degree of a reducible node in a component
in C without creating any new nodes of degree k. Then either the algorithm terminates or in
each subphase, we find some node u of degree k whose degree can be reduced to k−1 by making
a local move with an edge (v, w). Since v and w must be in separate components of C, either
their degree is less than k − 1 or they have degree k − 1 and are reducible, and by the claim
we can propagate local moves to reduce their degree. Thus we can reduce the degree of u from
k to k − 1 without creating any new nodes of degree k, and so each phase eliminates all nodes
of degree k. Since we cannot have a feasible spanning tree with ∆(T) = 1, the algorithm must

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

246 Further uses of greedy and local search algorithms

Let T be an arbitrary spanning tree of G = (V,E)
while true do

k ← ∆(T) // Start a new phase

while there are nodes of degree k in T do // Start a new subphase

Dk ← all nodes of degree k in T
Dk−1 ← all nodes of degree k − 1 in T
F ← all edges of T incident on nodes in Dk ∪Dk−1

C ← all components formed by removing F from T
All nodes u ∈ Dk−1 are unlabelled
if for all (v, w) ∈ E connecting two components in C: either v or w in Dk ∪Dk−1

then
return T

for all (v, w) ∈ E connecting two components in C: v, w /∈ Dk ∪Dk−1 do
Let C be cycle created by adding (v, w) to T
if C ∩Dk = ∅ then

Mark all u ∈ C ∩Dk−1 reducible via (v, w)
Remove C ∩Dk−1 from Dk−1

Update F and C
else

if u ∈ C ∩Dk then
if v or w marked reducible then

Reduce degree of v and/or w via local move and propagate local
moves if necessary

Reduce degree of u via local move with (v, w)
Break for loop // Start new subphase

Algorithm 9.1: Local search algorithm for the minimum-degree spanning tree problem.

eventually terminate. Clearly the algorithm runs in polynomial time.

We now prove the claim by showing that at any iteration of the subphase, we can propagate
local moves to reduce the degree of a reducible node in a component in C. We prove this by
induction on the number of iterations in the subphase. In the first iteration, no nodes are
marked reducible and the claim is trivially true. Now suppose we are at some iteration i > 1
of the subphase, and let u be labelled reducible in this iteration. The node u is currently
reducible because we have a local move with a non-tree edge (v, w) that will reduce the degree
of u from k − 1 to k − 2; furthermore, the components in C containing v and w are disjoint
in the current iteration. If v is reducible, it was labelled such in an iteration j < i, and by
induction we can carry out local moves to ensure that its degree is at most k − 2. The same is
true for w, and by induction we can carry out the local moves for both v and w because they
are in separate components in C. In the next iteration the components containing v and w are
merged into a single component that also contains u. Since the only changes that can happen
to components in C during a subphase is that components are merged, u, v, and w remain in
the same component of C through the rest of the subphase, and the local moves of adding (v, w)
and reducing the degree of u remain available.

In Section 11.2, we will consider a version of the problem in which there are costs on the
edges and specified bounds on the degrees of the nodes. If a tree with the given degree bounds

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.4 A greedy algorithm for the uncapacitated facility location problem 247

exists, we will show how to find a minimum-cost tree such that the degree bounds are only
exceeded by one.

9.4 A greedy algorithm for the uncapacitated facility location
problem

In this section, we give yet another approximation algorithm for the uncapacitated facility
location problem. We will give a greedy algorithm for the problem, then use dual fitting to
analyze it; this is similar to what we did in Theorem 1.12 for the set cover problem.

A very natural greedy algorithm is to repeatedly choose a facility and some clients to assign
to that facility. We open the facility, assign the clients to the facility, remove the facility and
clients from further consideration, and repeat. For a greedy algorithm, we would somehow like
to find a facility and set of clients that minimizes total cost for the amount of progress made.
To do this, we use the same criterion we used for the greedy set cover algorithm in Section
1.6: we maximize the “bang for the buck” by minimizing the ratio of the total cost per client
assigned. To be more precise, let X be the set of facilities opened so far, and let S be the set
of clients that are not connected to facilities in X so far. We pick some i ∈ F −X and Y ⊆ S
that minimizes the ratio

fi +
∑

j∈Y cij

|Y |
.

We then add i to X, and remove Y from S, and repeat. Note that to find the appropriate
set Y ⊆ S, for any given facility i, we can sort the clients in S by their distance from i, from
nearest to farthest, and the set Y minimizing the ratio for i will be some prefix of this ordering.

We now add two simple improvements to this proposed algorithm. The first is that once
we select facility i, rather than removing it from the set of facilities that can be chosen in the
future, we instead allow it to be chosen again and set its facility cost to zero. The intuition here
is that in future iterations it may be more cost-effective to assign some clients to i rather than
opening another facility to serve them, and since i has already been opened, we should treat its
facility cost as zero. The second idea is that rather than assigning clients to a facility and fixing
that assignment from then on, we consider switching assignments to other facilities we open
later on. We include the savings gained by switching assignments when trying to choose the
facility to open. Let c(j,X) = mini∈X cij , and let (a)+ = max(a, 0). Then if we have already
assigned the clients in D − S to some facilities in X, and we are considering opening facility
i, we can decrease assignment costs for all clients j /∈ S such that c(j,X) > cij by reassigning
them from X to i. The savings achieved is

∑
j /∈S(c(j,X) − cij)+. Thus in every step we pick

some i ∈ F and Y ⊆ S that minimizes the ratio

fi −
∑

j /∈S(c(j,X)− cij)+ +
∑

j∈Y cij

|Y |
.

Our revised greedy algorithm is now given in Algorithm 9.2.

To analyze this algorithm, we will use a dual fitting analysis: we will construct an infeasible
solution to the dual of the linear programming relaxation such that the cost of the primal
solution is equal to the value of the dual objective. Then we show that scaling the dual solution
by a factor of 2 makes it feasible. This implies that the cost of the primal solution is at most
twice the value of a solution to the dual of the linear programming relaxation, which implies
that the algorithm is an 2-approximation algorithm.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

248 Further uses of greedy and local search algorithms

S ← D
X ← ∅
while S ̸= ∅ do

Choose i ∈ F and Y ⊆ D − S minimizing (fi −
∑

j /∈S(c(j,X)− cij)+ +
∑

j∈Y cij)/|Y |
fi ← 0; S ← S − Y

Open all facilities in X, assign client j to closest facility in X

Algorithm 9.2: Greedy algorithm for the uncapacitated facility location problem.

First, recall the dual of the linear programming relaxation of the uncapacitated facility
location problem that we introduced in Section 4.5:

maximize
∑
j∈D

vj

subject to
∑
j∈D

wij ≤ fi, ∀i ∈ F,

vj − wij ≤ cij , ∀i ∈ F, j ∈ D,

wij ≥ 0, ∀i ∈ F, j ∈ D.

We claim that the greedy algorithm above can be restated in the following way. Each facility
will make a bid αj towards its share of the service and facility costs. We increase the bids of
clients uniformly until each client is connected to a facility whose cost is paid for by the bids. A
client j that is not connected to a facility i bids the difference of αj and the service cost towards
the cost of facility i; that is, it bids (αj − cij)+ towards the cost of facility i. When the total of
the bids on a facility i equals its facility cost fi, we open the facility i. We also allow connected
clients to bid the difference in service costs towards the facility cost of a closer facility; that is,
if client j is currently connected to a facility in X, it bids (c(j,X)− cij)+ towards the facility
cost of i. If facility i is opened, then client j connects itself to facility i instead, decreasing its
service cost by exactly (c(j,X) − cij)+. Once every client is connected to some open facility,
the algorithm terminates.

We summarize the algorithm in Algorithm 9.3. For ease of proofs, it turns out to be better
to have the algorithm use facility costs f̂i = 2fi. As in the statement of the greedy algorithm,
let the set S ⊆ D keep track of which clients have not yet been connected to an open facility,
and let X ⊆ F keep track of the currently open facilities.

We leave it as an exercise (Exercise 9.1) to prove that the two algorithms are equivalent.
The basic idea is that the value of client j’s bid αj is the value of the ratio (fi−

∑
j /∈S(c(j,X)−

cij)+ +
∑

j∈Y cij)/|Y | when j is first connected to a facility.
We observe in passing that there are some strong similarities between Algorithm 9.3 and the

primal-dual algorithm for the uncapacitated facility location problem in Section 7.6. Here we
are increasing a bid αj uniformly for all unconnected clients, while in the primal-dual algorithm,
we increase a dual variable vj for each client uniformly until the dual inequality associated with
a facility becomes tight, or until a client connects to a temporarily opened facility. However,
in that algorithm, we only open a subset of the temporarily opened facilities, and in order to
remain dual feasible we need that

∑
j(vj − cij)+ ≤ fi for facilities i, where the sum is over all

clients j. In this algorithm we allow
∑

j∈S(αj − cij)+ +
∑

j /∈S(c(j,X) − cij)+ ≤ fi. In this
algorithm, the clients j not in S only contribute (c(j,X)− cij)+ towards the sum, while in the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.4 A greedy algorithm for the uncapacitated facility location problem 249

α← 0
S ← D
X ← ∅
f̂i = 2fi for all i ∈ F
while S ̸= ∅ do // While not all clients neighbor a facility in X

Increase αj for all j ∈ S uniformly until [∃j ∈ S, i ∈ X such that αj = cij] or

[∃i ∈ F −X :
∑

j∈S(αj − cij)+ +
∑

j /∈S(c(j,X)− cij)+ = f̂i]

if ∃j ∈ S, i ∈ X such that αj = cij then
// j becomes a neighbor of an existing facility i in X
S ← S − {j}

else
// facility i is added to X
X ← X ∪ {i}
for all j ∈ S such that αj ≥ cij do

S ← S − {j}
Open all facilities in X, assign client j to closest facility in X

Algorithm 9.3: Dual fitting algorithm for the uncapacitated facility location problem.

primal-dual algorithm they contribute the potentially larger amount of (vj − cij)+. For this
reason, the bids α are not in general feasible for the dual linear program.

We will shortly prove the following two lemmas. Let α be the final set of bids from Algorithm
9.3, and let X be the set of facilities opened by the algorithm. The first lemma says that the
total bids of all clients equals the cost of the solution with facility costs f̂ . The second lemma
says that α/2 is dual feasible.

Lemma 9.10: For α and X given by the Algorithm 9.3,∑
j∈D

αj =
∑
j∈D

c(j,X) + 2
∑
i∈X

fi.

Lemma 9.11: Let vj = αj/2, and let wij = (vj − cij)+. Then (v, w) is a feasible solution to
the dual.

From these two lemmas, it is easy to show the following theorem.

Theorem 9.12: Algorithm 9.3 is a 2-approximation algorithm for the uncapacitated facility
location problem.

Proof. Combining Lemmas 9.10 and 9.11, we have that∑
j∈D

c(j,X) +
∑
i∈X

fi ≤
∑
j∈D

c(j,X) + 2
∑
i∈X

fi

=
∑
j∈D

αj

= 2
∑
j∈D

vj

≤ 2OPT,

where the final inequality follows since
∑

j∈D vj is the dual objective function, and by weak
duality is a lower bound on the cost of the optimal integer solution.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

250 Further uses of greedy and local search algorithms

Note that we actually prove that∑
j∈D

c(j,X) + 2
∑
i∈X

fi ≤ 2
∑
j∈D

vj

for the feasible dual solution (v, w). Thus the algorithm is Lagrangean multiplier preserving as
we defined it at the end of Section 7.7. As we argued there, plugging this algorithm into the
algorithm for the k-median problem given in that section results in a 2(2 + ϵ)-approximation
algorithm for the k-median problem for any ϵ > 0.

We now turn to the proofs of Lemmas 9.10 and 9.11.

Proof of Lemma 9.10. We will prove by induction on the algorithm that at the beginning of
each execution of the main while loop,∑

j∈D−S

αj =
∑

j∈D−S

c(j,X) + 2
∑
i∈X

fi.

Since at the end of the algorithm S = ∅, this implies the lemma.
The equality is initially true since initially S = D and X = ∅. In each execution of the while

loop, either we connect some j ∈ S to a facility i already in X or we open a new facility in X.
In the first case, we have that αj = c(j,X), and we remove j from S. Thus the left-hand side
of the equality increases by αj and the right-hand side by c(j,X), so the equality continues to

hold. In the second case, we have that
∑

j∈S(αj − cij)+ +
∑

j /∈S(c(j,X) − cij)+ = f̂i, and i is
added to X. The algorithm removes from S all j ∈ S such that αj − cij ≥ 0. Let S′ represent
this subset of S. Thus the left-hand side of the equality increases by

∑
j∈S′ αj . Let S′′ be the

set of all j /∈ S that make positive bids for facility i; that is, (c(j,X) − cij)+ > 0 for j ∈ S′′.
Note that all of the clients in S′′ are exactly those closer to i than any other facility in X, so
when i is added to X, c(j,X ∪{i}) = cij for all j ∈ S′′. Thus the change in the cost of the right
hand side is

2fi +
∑
j∈S′

cij +
∑
j∈S′′

(c(j,X ∪ {i})− c(j,X)) = 2fi +
∑

j∈S:αj≥cij

cij −
∑
j /∈S

(c(j,X)− cij)+.

Using the fact that 2fi = f̂i =
∑

j∈S(αj−cij)++
∑

j /∈S(c(j,X)−cij)+, and substituting this for
2fi in the above, we obtain that the change in cost of the right-hand side is

∑
j∈S:αj≥cij

αj =∑
j∈S′ αj , which is exactly the change in cost of the left-hand side. Thus the equality continues

to hold.

To prove Lemma 9.11, we first prove a sequence of lemmas. In proving these lemmas, we
use a notion of time in the algorithm. The algorithm starts at time 0, and uniformly increases
all αj with j ∈ S. At time t, any client j not yet connected to a facility (and thus j ∈ S) has
αj = t.

Lemma 9.13: Consider the time αj at which j first connects to some facility. Then the bid of
client k on facility i at that time, for any client k such that αk ≤ αj, is at least αj − cij − 2cik.

Proof. Either client k connects to a facility at the same time as j and αk = αj , or it connects
to a facility at an earlier time that j, and αk < αj .

If k connects to a facility at the same time as j, then αj = αk and at time αj its bid on
facility i is (αk − cik)+ = (αj − cik)+ ≥ αj − cij − 2cik.

Now suppose k connects to a facility at an earlier time than j. Let h be the facility that
client k is connected to at time αj . Then at time αj , the bid that k offers facility i is (chk−cik)+.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.4 A greedy algorithm for the uncapacitated facility location problem 251

By the triangle inequality, we know that chj ≤ cij+cik+chk. Furthermore, since j first connects
to a facility at a time later than αk, it must be the case that j did not earlier connect to h, and
so αj ≤ chj . Thus we have αj ≤ cij + cik + chk. So the bid of client k on facility i at time αj is
(chk − cik)+ ≥ chk − cik ≥ αj − cij − 2cik, as claimed.

Lemma 9.14: Let A ⊆ D be any subset of clients. Reindex the clients of A so that A =
{1, . . . , p} and α1 ≤ · · · ≤ αp. Then for any j ∈ A,

j−1∑
k=1

(αj − cij − 2cik) +

p∑
k=j

(αj − cik) ≤ f̂i.

Proof. We know that any time, the sum of the bids on facility i is at most the facility cost f̂i.
By Lemma 9.13 at time αj , for all clients k with k < j, the bid of k for facility i is at least
αj − cij − 2cik. For all clients k ≥ j, since αk ≥ αj , at any time just before αj , they have not
connected to a facility, so their bid on facility i at time αj is (αj − cik)+ ≥ αj − cik. Putting
these together gives the lemma statement.

Lemma 9.15: Let A ⊆ D be any subset of clients. Reindex the clients of A so that A =
{1, . . . , p} and α1 ≤ · · · ≤ αp. Then ∑

j∈A
(αj − 2cij) ≤ f̂i.

Proof. If we sum the inequality of Lemma 9.14 over all j ∈ A, we obtain

p∑
j=1

j−1∑
k=1

(αj − cij − 2cik) +

p∑
k=j

(αj − cik)

 ≤ pf̂i.

This is equivalent to

p

p∑
j=1

αj −
p∑

k=1

(k − 1)cik − p

p∑
k=1

cik −
p∑

k=1

(p− k)cik ≤ pf̂i,

which implies
p∑

j=1

(αj − 2cij) ≤ f̂i.

We can finally prove that vj = αj/2 gives a feasible dual solution.

Proof of Lemma 9.11. Let vj = αj/2, and let wij = (vj − cij)+. Then certainly vj −wij ≤ cij .
Now we must show that for all i ∈ F ,

∑
j∈D wij ≤ fi. To do this, pick an arbitrary i ∈ F , and

let A = {j ∈ D : wij > 0}, so that it is sufficient to prove that
∑

j∈Awij ≤ fi. We have from
Lemma 9.15 that ∑

j∈A
(αj − 2cij) ≤ f̂i.

Rewriting, we obtain ∑
j∈A

(2vj − 2cij) ≤ 2fi.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

252 Further uses of greedy and local search algorithms

1 2 3 n

n + 1 n + 2 n + 3 2n

2n + 1

Figure 9.5: Instance for Exercise 9.2 showing a bad locality gap for the local search
algorithm of Section 9.1.

Dividing both sides by 2, we get ∑
j∈A

(vj − cij) ≤ fi.

Finally, by the definition of A and w we have that wij = vj − cij for j ∈ A, and we are done.

A significantly more involved analysis of this algorithm shows that its performance guarantee
is 1.61; see the notes at the end of the chapter for more details.

Exercises

9.1 Prove that the uncapacitated facility location algorithms in Algorithm 9.2 and Algorithm
9.3 are equivalent.

9.2 The locality gap of a local search algorithm for an optimization problem is the worst-case
ratio of the cost of a locally optimal solution to the cost of an optimal solution, where
the ratio is taken over all instances of the problem and over all locally optimal solutions
to the instance. One can think of the locality gap as an analog of the integrality gap of a
linear programming relaxation.

We consider the locality gap of the local search algorithm for the uncapacitated facility
location problem in Section 9.1. Consider the instance shown in Figure 9.5, where the
facilities F = {1, . . . , n, 2n+ 1}, and the clients D = {n+ 1, . . . , 2n} . The cost of each
facility 1, . . . , n is 1, while the cost of facility 2n+1 is n− 1. The cost of each edge in the
figure is 1, and the assignment cost cij is the shortest path distance in the graph between
i ∈ F and j ∈ D. Use the instance to show that the locality gap is at least 3− ϵ for any
ϵ > 0.

9.3 Show that the local search algorithm of Section 9.3 can be adapted to find a Steiner tree
whose maximum degree is at most OPT+1, where OPT is the maximum degree of a
minimum-degree Steiner tree.

9.4 Recall the uniform labeling problem from Exercise 5.10: we are given a graph G = (V,E),
costs ce ≥ 0 for all e ∈ E, and a set of labels L that can be assigned to the vertices of V .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.4 A greedy algorithm for the uncapacitated facility location problem 253

There is a nonnegative cost civ ≥ 0 for assigning label i ∈ L to vertex v ∈ V , and an edge
e = (u, v) incurs cost ce if u and v are assigned different labels. The goal of the problem
is to assign each vertex in V a label so as to minimize the total cost. In Exercise 5.10, we
gave a randomized rounding 2-approximation algorithm for the problem; here we give a
local search algorithm with a performance guarantee of (2 + ϵ).

Our local search algorithm will use the following local move. Given a current assignment
of labels to vertices in V , it picks some label i ∈ L and considers the minimum-cost i-
expansion of the label i; that is, it considers the minimum-cost assignment of labels to
vertices in V in which each vertex either keeps its current label or is relabeled with label
i (note that all vertices currently with label i do not change their label). If the cost of
the labeling from the i-expansion is cheaper than the current labeling, then we switch to
the labeling from the i-expansion. We continue until we find a locally optimal solution;
that is, an assignment of labels to vertices such that the minimum-cost i-expansion for
each i ∈ L costs no less than the current assignment.

(a) Prove that for any given label i ∈ L, we can compute the minimum-cost i-expansion
in polynomial time (Hint: find a minimum s-t cut in a graph where s corresponds
to the label i and t corresponds to all other labels).

(b) Prove that any locally optimal assignment has cost at most twice the optimal cost.

(c) Show that for any constant ϵ > 0, we can obtain a (2 + ϵ)-approximation algorithm.

9.5 The online facility location problem is a variant of the uncapacitated facility location
problem in which clients arrive over time and we do not know in advance which clients
will want service. As before, let F be the set of facilities that can be opened, and let D
be a set of potential clients. Let fi be the cost of opening facility i ∈ F and cij the cost of
assigning a client j ∈ D to facility i ∈ F . We assume that the assignment costs obey the
triangle inequality. At each time step t, a new set Dt ⊆ D of clients arrive, and they must
be connected to open facilities. We are allowed to open new facilities in each time step;
once a client is assigned to a facility, it cannot be reassigned if a closer facility opens later
on. For each time step t, we wish to minimize the total cost (facility plus assignment)
incurred by all clients that have arrived up to and including time t. We compare this cost
with the optimal cost of the uncapacitated facility location problem on the total set of
clients that have arrived up to and including time t. The ratio of these two costs gives
the competitive ratio of the algorithm for the online problem.

Consider the following variation on Algorithm 9.3. As before, we let S be the set of clients
that have not yet been connected to some facility, and let X be the set of currently open
facilities. At each time step t, we sequence through the clients j in Dt. We increase the
client’s bid αj from zero until either it connects to some previously open facility (αj = cij
for some i ∈ X), or some facility receives enough bids to allow it to open. As in the greedy
algorithm, we allow previously connected clients j to bid toward facility i the difference
between the cost c(j,X) of connecting to the closest open facility and cost of connecting
to facility i; that is, j bids (c(j,X) − cij)+ towards facility i. Thus facility i is opened
when (αj − cij)+ +

∑
j /∈S(c(j,X)− cij)+ = fi. Note that even if facility i is opened and

is closer to some client j than previously opened facilities in X, we do not reassign j to i
(per the requirements of the problem).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

254 Further uses of greedy and local search algorithms

(a) Prove that at the end of each time step t, the cost of the current solution is at most
twice the sum of the client bids

∑
j∈D αj .

(b) Consider two clients j and k such that we increase the bid for j before that of k.
Let X be the set of facilities open when we increase αk. Prove that for any facility
i, c(X, j)− cij ≥ αk − cik − 2cij .

(c) For any time step t, pick any subset A of clients that have arrived so far and any
facility i. Let A = {1, . . . , p}, where we increase the bids for the clients in A in order
of the indices.

(i) Prove that for any ℓ ∈ A, ℓ(αℓ − ciℓ)− 2
∑

j<ℓ cij ≤ fi.

(ii) Use the above to prove that
∑p

ℓ=1(αℓ−2Hpciℓ) ≤ Hpfi, whereHp = 1+ 1
2+· · ·+

1
p .

(d) Prove that vj = αj/2Hn is a dual feasible solution for the uncapacitated facility
location problem at time t, where n is the number of clients that have arrived up to
and including time t.

(e) Use the above to conclude that the algorithm has a competitive ratio of 4Hn.

Chapter Notes

As was discussed in Chapter 2, local search algorithms are an extremely popular form of heuristic
and have been used for some time; for instance, a local search algorithm for the uncapacitated
facility location problem was proposed in 1963 by Kuehn and Hamburger [206]. However, not
many local-search based approximation algorithms were known until recently. A paper by
Korupolu, Plaxton, and Rajaraman [205] in 2000 touched off recent research on approximation
algorithms using local search. The paper gave the first performance guarantees for local search
algorithms for the uncapacitated facility location problem and the k-median problem, although
their k-median algorithm opened up to 2k facilities rather than only k. Charikar and Guha
[64] first proved a performance guarantee of 3 for a local search algorithm for the uncapacitated
facility location problem; they also introduced the idea of rescaling to show that the performance
guarantee could be improved to 1 + 2

√
2. The analysis we use here is due to Gupta and

Tangwongsan [151]. Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [24] first proved
a performance guarantee of 5 for a local search algorithm for the k-median problem. The result
in Section 9.2 is a modification of their analysis due to Gupta and Tangwongsan [151]. Exercise
9.2 is due to Arya et al.

Although not many local search approximation algorithms were known until the recent work
on location problems, the algorithm for finding a minimum-degree spanning tree of Section 9.3 is
an exception; this work appeared in 1994 and is due to Fürer and Raghavachari [119]. Exercise
9.3 is also from this paper.

The greedy/dual-fitting algorithm for the uncapacitated facility location problem given in
Section 9.4 is due to Jain, Mahdian, Markakis, Saberi, and Vazirani [176]. As was mentioned
at the end of the section, a much more careful analysis of this algorithm shows that it has a
performance guarantee of 1.61. This analysis involves the use of factor-revealing LPs: for any
given facility i ∈ F , we consider the bids αj of the clients as LP variables, and set up constraints
on the variables stating that the total bid on the facility can be at most the sum of the bids,
and other inequalities such as those resulting from Lemma 9.13. Subject to these constraints,
we then maximize the ratio of the sum of the bids over the cost of the facility i plus the cost
of connecting the clients to facility i. If we divide the αj by this ratio, we obtain a feasible
solution v for the dual of the LP relaxation for the uncapacitated facility location problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

9.4 A greedy algorithm for the uncapacitated facility location problem 255

Hence this LP “reveals” the performance guarantee of the algorithm. The technical difficulty of
the analysis is determining the value of the LP for any number of clients.

Exercise 9.4 is a result from Boykov, Veksler, and Zabih [57]. Exercise 9.5 gives an algorithm
for the online facility location problem due to Fotakis [116]. The analysis used is due to
Nagarajan and Williamson [229].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

256 Further uses of greedy and local search algorithms

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 10

Further uses of rounding data and

dynamic programming

In this chapter, we return to the technique of applying dynamic programming via rounding data.
We look at two, more technically difficult, applications of this technique to find polynomial-time
approximation schemes for two different problems.

First, we consider the traveling salesman problem, introduced in Section 2.4, for instances
in which the cities are points in the Euclidean plane and the cost of traveling between two cities
is the Euclidean distance between the corresponding points. In this case the dynamic program
works by recursively dividing the plane into squares. Starting with the smallest squares, we
compute the least-cost set of paths for visiting all the cities in the squares, then use these to
compute solutions for larger squares. We can show that the optimal tour can be modified at
low cost such that it doesn’t enter and exit any square too many times; this “rounding” of
the optimal tour makes it possible to solve the dynamic program in polynomial time. This
technique turns out to be widely applicable to problems in the Euclidean plane, including the
Steiner tree problem and the k-median problem for Euclidean instances.

Second, we consider the maximum independent set problem in planar graphs. We show that
the maximum independent set problem is easy to solve on trees, and can be solved in graphs
that are “tree-like”. We can measure how close a graph is to being a tree via a parameter called
its treewidth, and we give an algorithm to solve the maximum independent set problem in
time that is polynomial in the number of vertices and exponential in the treewidth of the input
graph. Planar graphs don’t necessarily have low treewidth, but we show a way to partition
the vertices of the planar graph into k parts such that removing any one of the parts from the
graph yields a low-treewidth graph. Then since at least one of the k parts must have at most a
1
k fraction of the weight of an optimal solution, we can from this get a

(
1− 1

k

)
-approximation

algorithm for the maximum independent set problem in planar graphs, and we can use this to
obtain a PTAS for the problem.

10.1 The Euclidean traveling salesman problem

To see a more sophisticated use of dynamic programming for approximation algorithms, we
return to the Traveling Salesman Problem (TSP) introduced in Section 2.4 and show how we

257

258 Further uses of rounding data and dynamic programming

can use dynamic programming to obtain a polynomial-time approximation scheme for a certain
class of TSP instances. In these TSP instances, each city i is defined by a point (xi, yi) in the
Euclidean plane, and the cost cij for traveling from city i to city j is simply the Euclidean
distance between (xi, yi) and (xj , yj) (namely, cij =

√
(xi − xj)2 + (yi − yj)2). We call such

instances of the TSP Euclidean TSP instances. Note that the input of the Euclidean TSP is
simply a list of the points (xi, yi) for each of the n cities; the distances cij are not part of the
input.

The basic idea of the algorithm is to recursively subdivide the plane into squares and show
that there is a tour that costs only slightly more than OPT such that it doesn’t cross the
boundary of any square too many times. Given that such a tour exists, we can apply dynamic
programming to find it: we start by finding the cheapest ways to visit the nodes inside the
smallest squares, then combine these partial solutions to find the cheapest ways to visit the
nodes inside next larger squares, and so on. In the end we find the cheapest overall tour with
this structure.

The overall proof strategy is then as follows. First, we show that it is sufficient to design a
PTAS for Euclidean instances that have certain nice properties. Second, we recursively divide
the plane into squares as mentioned above; we introduce some randomization in how we do
this. Third, we show that with probability at least 1

2 , a tour of cost at most (1 + ϵ)OPT exists
for the nice instances with respect to the random subdivision of the plane; this tour has the
property that it doesn’t cross the squares of the subdivision too many times. Last, we use
dynamic programming to find the least expensive tour with the given property. This results in
the PTAS.

We begin by showing that it is sufficient to obtain a PTAS for a subclass of Euclidean TSP
instances. We will say that a Euclidean TSP instance is nice for constant ϵ > 0 if the minimum
nonzero distance between points is at least 4, and all coordinates xi, yi are integers in [0, O(n)],
where n is the number of points.

Lemma 10.1: Given a polynomial-time approximation scheme for nice Euclidean TSP in-
stances, we obtain a polynomial-time approximation scheme for all Euclidean TSP instances.

Proof. We will show how to transform any instance into a nice instance such that the cost of
any tour in the transformed instance doesn’t differ by much from that of the original instance.
This will allow us to prove the lemma.

Let L be the length of a side of the smallest axis-aligned square containing all of the points
of the instance; thus L = max(maxi xi −mini xi,maxi yi −mini yi). Note that since there are
two points at least distance L apart it is the case that L ≤ OPT. Let ϵ > 0 be a constant
parameter that we specify later. To get a nice instance, we create a grid of horizontal and
vertical lines where the spacing between the lines is ϵL/2n; see Figure 10.1. We then move
each point of the original instance to the nearest grid point (that is, the nearest intersection of
a horizontal and a vertical grid line). Because we end up moving any point by a distance of
at most ϵL/2n, the distance between any two points changes by at most ±2ϵL/2n. Thus the
overall cost of any tour changes by at most ±ϵL.

We now increase the grid spacing by a factor of 8n/ϵL, so that the spacing between any
two grid lines is ϵL

2n ·
8n
ϵL = 4 and translate the bounding square so the lower left-hand corner

is on the origin. This enforces that each point in the modified instance is now at nonnegative
integer coordinates and that the minimum nonzero distance between any two points is at least 4.
Furthermore, the maximum distance between any two points before increasing the grid spacing
was at most 2L; after increasing grid spacing it is at most 2L · 8nϵL = O(n), so that each x, y

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.1 The Euclidean traveling salesman problem 259

L

L

εL
2n

Figure 10.1: An example of the smallest square containing all the points of the in-
stance, and the grid of lines spaced ϵL/2n apart.

coordinate is in the range [0, O(n)]. Thus for any tour in the original instance of cost C, its
cost in the nice instance is at least 8n

ϵL (C − ϵL) and at most 8n
ϵL (C + ϵL).

Let OPT be the cost of an optimal tour in the original instance, OPT′ the cost of an optimal
tour in the corresponding nice instance, C ′ the cost of the tour returned by the PTAS on the
nice instance, and C the cost of the corresponding tour in the original instance. We know
that C ′ ≤ (1 + ϵ)OPT′. Furthermore, it must be the case that OPT′ is no more than the
cost of the optimal tour of the original instance in the corresponding nice instance, so that
OPT′ ≤ 8n

ϵL (OPT+ϵL). Putting everything together, we have that

8n

ϵL
(C − ϵL) ≤ C ′ ≤ (1 + ϵ)OPT′ ≤ (1 + ϵ)

8n

ϵL
(OPT+ϵL),

or

C − ϵL ≤ (1 + ϵ)(OPT+ϵL).

Recalling that L ≤ OPT, we have that

C ≤ (1 + 3ϵ+ ϵ2)OPT .

Choosing ϵ suitably small will allow us to obtain a tour of cost at most (1 + ϵ′)OPT for any
choice of ϵ′.

From here on, we assume we have a nice Euclidean TSP instance, and we show how to
obtain a PTAS for such instances.

In order to perform dynamic programming on nice instances, we need to structure the
problem so that we can build up a solution from smaller subproblems. To do this, we are
going to recursively divide the plane into squares in a way that involves randomization. First,
we will describe the recursive division without randomization, and then we will introduce the
randomization.

As in the proof of Lemma 10.1, we let L be the length of a side of the smallest square
containing all the points of the instance. Let L′ be the smallest power of 2 that is at least 2L.
We will take a square of side length L′ around the points of the instance and divide it into

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

260 Further uses of rounding data and dynamic programming

Figure 10.2: An example of a dissection. The level 0 square is outlined in a thick
black line; the level 1 squares in thin black lines, and the level 2 squares in dashed lines.
The thin black lines are level 1 lines, and the dashed lines are level 2 lines.

four equally-sized squares, then recursively divide each of these squares into four equally-sized
squares, and so on; see Figure 10.2. We stop the process when each square has side length 1. We
call this division of the instance into squares a dissection. It will be useful to refer to the level
of a given square of the dissection; we say that the top-level square of side length L′ is at level
0, the four squares dividing the top-level square are at level 1, and so on. Since the maximum
distance between points in a nice instance is O(n), we know that L′ = O(n). Therefore, the
level of the smallest squares of the dissection (of side length 1) is O(log n). Since the minimum
nonzero distance between any two points is 4, we know that in the smallest squares of side
length 1, there can be at most one distinct point.

So far we have not completely specified how to create the dissection because there are many
squares of side length L′ that contain all the points of the instance. In fact, any translation
of the square which has its lower left-hand coordinates at (a, b) for a, b ∈ (−L′/2, 0] will work.
It will be useful for us to choose this translation randomly by choosing integers a and b from
(−L′/2, 0] uniformly at random. We will call such a dissection after a and b are chosen an
(a, b)-dissection. We will give an intuitive explanation for the randomization in a moment.

Now, to further help construct a dynamic program for the problem, we will consider tours
that enter and exit the squares of the dissection only in prespecified points called portals. For
each square of level i, we place portals at all four corners, then m−1 additional portals equally
spaced along each side, for m some power of two. We will call m the portal parameter. Note
that since m is a power of two, each portal on the sides of a level i− 1 square are at the same
location as a portal on the side of some level i square contained in the level i − 1 square. See
Figure 10.3 for an illustration of portals.

We now consider p-tours, which are tours that optionally include portals; as in the case
of the Steiner tree problem (from Exercise 2.5), the tour must include the points of the TSP
instance, but may include portals. We say that a p-tour is portal-respecting if for every square
of the dissection, the tour only enters and exits the square via a portal for that square. See
Figure 10.4 for an example of a portal-respecting p-tour. We’ll say that a portal-respecting
p-tour is r-light if for every square of the dissection it crosses each side of the square at most r

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.1 The Euclidean traveling salesman problem 261

Figure 10.3: Portals added to the squares of the dissection with portal parameter
m = 2. The black squares are portals for both the level 1 and level 2 squares; the white
squares are portals for the level 2 squares.

times.

We can now state two central theorems in obtaining an approximation scheme for Euclidean
TSP instances. The second builds on the first and is somewhat more complicated to prove.

Theorem 10.2: If we pick integers a and b from (−L′/2, 0] uniformly at random, then with
probability at least 1/2, the (a, b)-dissection has an r-light portal-respecting p-tour of cost at
most (1 + ϵ)OPT for portal parameter m = O(1ϵ logL

′) and r = 2m+ 4.

Theorem 10.3: If we pick integer a and b from (−L′/2, 0] uniformly at random, then with
probability at least 1/2, the (a, b)-dissection has an r-light portal-respecting p-tour of cost at
most (1 + ϵ)OPT for portal parameter m = O(1ϵ logL

′) and r = O(1ϵ).

We will give the proofs of these theorems in a moment; the essential idea is that we will be
able to modify an optimal tour to be a portal-respecting p-tour without increasing the cost by
too much. Any time the optimal tour crosses a square at a point that is not a portal for that
square, we move it to the nearest portal; the distance we need to move the crossing depends on
the level of the square, which given the randomized choice of the (a, b)-dissection will trade off
nicely with the probability that the square is of any given level. Similarly, if the tour crosses a
side of a square too many times, we will be able to modify it so that it crosses fewer times at a
cost proportional to the length of the side of the square; again, given the randomized choice of
the (a, b)-dissection, this cost trades off nicely with the probability that the square is of a given
level.

Before we show how this can be done, we first show that for a nice Euclidean instance, we
can find a tour of cost at most (1 + ϵ)OPT in polynomial time, given the theorems, where the
running time depends on the portal parameter and how many times the tour crosses each side
of each square in the dissection.

Theorem 10.4: With probability at least 1/2, we can find a tour of cost at most (1 + ϵ)OPT
in O(mO(r)n log n) time for nice Euclidean TSP instances.

Recalling that L′ = O(n), thatm = O(1ϵ logL
′) = O(1ϵ log n) and that (logn)logn = nlog logn,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

262 Further uses of rounding data and dynamic programming

Figure 10.4: A portal-respecting p-tour. Note that only black portals are used to
enter or exit the level 1 squares, while the portals on the level 2 squares are used to
enter or exit the level 2 squares.

we get the following corollaries.

Corollary 10.5: For the choice of m and r as in Theorem 10.2, the running time is O(nO(log log n))
for constant ϵ > 0.

Corollary 10.6: For the choice of m and r as in Theorem 10.3, the running time is O(n logO(1/ϵ) n)
for constant ϵ > 0.

Proof of Theorem 10.4. From both Theorems 10.2 and 10.3, we know that with probability
at least 1/2, with a, b chosen as in the theorem, there is an (a, b)-dissection with an r-light
portal-respecting p-tour of cost at most (1+ ϵ)OPT for m = O(1ϵ logL

′) = O(1ϵ log n); the only
distinction between the two theorems is the value of r. For a given (a, b)-dissection, we’ll show
that we can find the cheapest r-light portal-respecting p-tour in O(mO(r)n log n) time, given
the values of m and r. Note than any p-tour can be converted to a standard tour of no greater
cost by shortcutting the portals.

As we mentioned before, we will find the cheapest such p-tour by dynamic programming.
Consider any portal-respecting p-tour of the given instance. Then for any given square in the
(a, b)-dissection, the p-tour may enter the square, visit some of the points inside it, then exit,
visit points outside the square, then re-enter the square, and so on. We call the part of the
p-tour inside the square a partial p-tour; note that a partial p-tour visits all of the points of the
TSP instance inside the square; see Figure 10.5. Because the p-tour is r-light, we know that
the p-tour crosses each side of the square at most r times, and so it uses at most 4r portals on
the sides of the square. Furthermore, we can pair up the portals used by the p-tour into pairs,
where each pair represents a portal through which the p-tour entered the square, and a portal
through which the p-tour then left the square. The goal of our dynamic program will be to
compute for every square in the dissection, for every choice of up to r portals per side, and for
every pairing of the portals into entry/exit pairs, the cheapest partial p-tour that visits all the
points of the TSP instance inside the square. Clearly if we can do this, we can find the cheapest
overall r-light portal respecting p-tour by considering the entry in the dynamic programming
table for the level 0 square that does not use any of the portals on the boundary of the square.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.1 The Euclidean traveling salesman problem 263

Figure 10.5: Partial p-tour inside a square.

To begin discussion of the dynamic program, we start by computing the number of entries
in the table that we will need. Note that for any given level of squares in the dissection, there
are at most n that contain any points of the TSP instance. For any square that contains no
points of the instance, we need only consider one square of any given size. Since there are
O(logL′) = O(log n) levels of the dissection, there are at most O(n log n) squares that we must
consider. For each square of level i, there are 4m portals on the square and thus at most
(4m + 1)4r choices for the up to r portals on each side of the square (including not choosing
any portals) through which an r-light portal-respecting p-tour could cross. Finally, there are
at most (4r)! possible pairings of the selected portals into entry/exit pairs. With r = O(m),
the total number of entries in the table is

O(n logn)× (4m+ 1)4r × (4r)! = O(mO(r)n log n).

Now we discuss how to build up the entries in the table. For each distinct point, we find the
largest square in the dissection that contains only that point. The case for each such square is
straightforward; for each choice of portals and pairings of portals, we find the shortest paths that
enter/exit the square in the designated way and visit the one distinct point inside the square.
We now build up the solutions to other entries in the table from previous entries, working our
way up from smaller squares of the dissection to larger squares. We construct solutions for a
square S from the solutions for the four smaller squares s1, . . . , s4 that it contains. Note that
any partial p-tour for S might use portals on the four sides of the si that are not also on a side
of S. Let’s call these sides the internal sides of the si. To combine solutions from the si to get a
solution for the square S, we enumerate over all the portals on the internal sides that the partial
p-tour for S might have used, and the order in which the partial p-tour visited these portals,
and pick the best solution found. Notice that specifying a set of portals used on the internal
sides and an order in which they are used implies for each si a set of portals which are used, as
well as an entry/exit pairing on the portals, so we will be able to look up the best solution for
each square si in our table. Therefore, given a square S, a set of portals of S that are used, and
entry/exit pairings of the portals, we enumerate over all the portals on the internal sides that
a partial p-tour for this configuration might have used, and an ordering on the portals. We can
pick up to r portals from each of the four internal sides, each of which has m + 1 portals, so

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

264 Further uses of rounding data and dynamic programming

Figure 10.6: Illustration of shortcutting a portal.

that there are no more than (m + 2)4r possibilities (including not choosing any portal). Since
the partial p-tour inside S uses at most 4r portals on the sides of S, there can be at most 2r
paths entering and exiting S; thus we need to specify on which of these 2r paths the portals
on the internal sides lie. This gives another (2r)4r possibilities. Finally, there are at most (4r)!
ways to order the portals along the paths. Thus if we enumerate over the

(m+ 2)4r × (2r)4r × (4r)! = O(mO(r))

possibilities, we will find the best solution for the table entry consisting of the square S, the
chosen portals from S, and the entry/exit pairing of the portals. This takes O(mO(r)) time.
Since we do the computation for O(mO(r)n log n) dynamic programming table entries, the total
time taken is O(mO(r)n log n).

We now turn to the proof of Theorem 10.2. As we mentioned previously, the proof works by
showing that with reasonable probability, an optimal tour can be modified to a portal-respecting
p-tour without increasing the cost by too much. Notice that an r-light tour with r = 2m+2 is
implied by a tour that crosses the side of any square at most twice at any portal. If the tour
crosses three or more times at a portal, it can be shortcut to cross at most twice; see Figure
10.6. Thus we need only to show that modifying the tour to be portal-respecting does not
increase the cost by more than ϵOPT. To prove this, we first need some notation and a lemma.
We will use ℓ to denote either a vertical line x = i or a horizontal line y = i for some integer i.
Given an optimal tour, let t(ℓ) be the number of times that the optimal tour crosses the line ℓ.
Let T be the sum of t(ℓ) over all such horizontal and vertical lines ℓ.

Lemma 10.7: For nice Euclidean instances, T ≤ 2OPT.

Proof. Consider an edge in the optimal tour from point (x1, y1) to point (x2, y2). The edge
contributes at most |x1−x2|+ |y1−y2|+2 to T , and has a length s =

√
(x1 − x2)2 + (y1 − y2)2.

Recall that for a nice instance the minimum nonzero distance between points of the instance is
at least 4, so that s ≥ 4. If we let x = |x1 − x2| and y = |y1 − y2|, then since (x− y)2 ≥ 0, we

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.1 The Euclidean traveling salesman problem 265

have that x2 + y2 ≥ 2xy, or 2x2 + 2y2 ≥ x2 + 2xy + y2 = (x + y)2, or
√

2(x2 + y2) ≥ x + y.
Thus we can bound the contribution of the edge to T as follows:

x+ y + 2 = |x1 − x2|+ |y1 − y2|+ 2

≤
√

2[(x1 − x2)2 + (y1 − y2)2] + 2

≤
√
2s2 + 2

≤ 2s,

where the last inequality follows since s ≥ 4. Thus summing over all edges in the tour, we
obtain that T ≤ 2OPT .

Now we can give the proof of Theorem 10.2, which we restate here for convenience.

Theorem 10.2: If we pick integers a and b from (−L′/2, 0] uniformly at random, then with
probability at least 1/2, the (a, b)-dissection has an r-light portal-respecting p-tour of cost at
most (1 + ϵ)OPT for portal parameter m = O(1ϵ logL

′) and r = 2m+ 4.

Proof. As described earlier, the general idea of the proof is that we modify the optimal tour to
ensure that it crosses any square of the dissection at a portal for that square. When we move the
crossing of the optimal tour, we increase it by an amount that depends on the distance between
the portals for that square. As the level of a square gets smaller, this distance is greater, but
the probability that any given line ℓ belongs to a square of that level also gets smaller, so that
the overall expected distance we need to move the tour will simply depend on t(ℓ) and m, which
we can relate to the cost of the optimal tour by Lemma 10.7.

To show this formally, define the level of line ℓ to be the minimum level over all squares of
the (a, b)-dissection such that ℓ contains the side of the square. Observe that to split the level i
squares into level i+ 1 squares, we draw 2i horizontal and 2i vertical lines which are then level
i+1 lines; see Figure 10.2 for an illustration. Because we choose a and b uniformly at random,
this implies that

Pr[level of ℓ is i] ≤ 2i−1

L′/2
=

2i

L′ .

Thus, for instance, the probability that a vertical line ℓ is the single level 1 vertical line splitting
the bounding box in two is at most 1/(L′/2).

We modify the optimal tour so that the tour crosses any square of the dissection at a portal
for that square. Consider any line ℓ of level i. Since it contains the boundary of a level i square,
and the side length of a level i square is L′/2i, the distance between portals is at most L′/2im.
Observe also that by construction the portal for a level i square is also a portal for any smaller,
level j square for j > i. Thus if we move any crossing of a level i line ℓ at most L′/2im, any
square of the dissection whose side is contained in ℓ will have the tour crossing at some portal
for that square. Recall that we defined t(ℓ) to be the number of times that the optimal tour
crosses line ℓ. Thus the expected increase in cost for moving every crossing of line ℓ to the
nearest portal is at most

logL′∑
i=1

Pr[level of ℓ is i] · t(ℓ) · L′

2im
≤

logL′∑
i=1

2i

L′ · t(ℓ) ·
L′

2im

=
t(ℓ)

m
logL′.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

266 Further uses of rounding data and dynamic programming

We choose the portal parameter m to be the smallest power of two that is at least 4
ϵ logL

′.
Then the total expected increase is at most ϵ

4 t(ℓ).
Recall that we defined T to be the sum over all lines ℓ of t(ℓ). Thus the total expected cost

of what we have done in moving the crossings to portals as above is∑
lines ℓ

ϵ

4
t(ℓ) =

ϵ

4
T.

Lemma 10.7 shows that T ≤ 2OPT for nice Euclidean instances. Then we have that the ex-
pected increase in cost is at most ϵ

4T ≤
ϵ
2 OPT. If the random variableX represents the expected

increase in cost, then by Markov’s inequality (Lemma 5.25), Pr[X ≥ ϵOPT] ≤ E[X]/(ϵOPT) =
(ϵ2 OPT)/(ϵOPT) = 1/2. Thus, we obtain that the increase in cost is at most ϵOPT with prob-
ability at least 1/2.

To prove Theorem 10.3, we additionally need to show that if a tour crosses a given line too
many times, we can modify it at a small increase in cost to a tour that doesn’t cross the line
too many times. We will call the following lemma the Patching lemma.

Lemma 10.8 (Patching lemma): Given a line segment R of length l, if a tour crosses R
three or more times, we can increase the length of the tour by no more than 6l to get a closed
path that contains the previous tour and crosses R at most twice.

Proof. Suppose the tour crosses the line segment k times. We take the tour, and break it at
the k points at which it crosses line R. We add 2k new points by adding k new points on either
side of R where the tour crossed R; see Figure 10.7.

We now add a cycle and a matching to the new points on each side of the lines; if k is odd,
the matching matches the first k−1 points on each side. If k is odd, we add an edge connecting
the last pair of new points, while if k is even we add two edges connecting the last two pairs
of new points. This results in an Eulerian graph which contains the points of the tour and
crosses R at most twice. Each of the two cycles added has cost at most 2l, and each of the
two matchings has cost l, for an overall cost of 6l. A traversal of the Eulerian graph contains
all points of the tour. We can shortcut the traversal to obtain a closed path that contains all
points of the tour.

We can now prove Theorem 10.3, which we restate here for convenience

Theorem 10.3: If we pick integer a and b from (−L′/2, 0] uniformly at random, then with
probability at least 1/2, the (a, b)-dissection has an r-light portal-respecting p-tour of cost at
most (1 + ϵ)OPT for portal parameter m = O(1ϵ logL

′) and r = O(1ϵ).

Proof. The basic idea is to repeatedly apply the Patching lemma so that the side of each square
is not crossed more than r times. The cost of the patching depends on the side-length of the
square, which is larger for squares of smaller level; however, the probability that for any line ℓ
that it contains a side of a square of that level is smaller for smaller levels. Once again, these
quantities trade off so that the expected cost for patching a line ℓ is proportional to t(ℓ) and
inversely proportional to r, so that for a good choice of r, we can relate the patching cost to
the optimal cost via Lemma 10.7.

Now we begin the formal proof. Consider a level i line ℓ. We invoke the Patching lemma
(Lemma 10.8) to ensure that for every side of every square which ℓ contains, that side is not
crossed by the tour more than r times. However, we must apply the Patching lemma carefully.
We do the following: we start with the sides of the smallest squares whose sides are contained

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.1 The Euclidean traveling salesman problem 267

(a) (b)

(c) (d)

Figure 10.7: Illustration of the patching lemma: (a) The original tour; (b) Breaking
the tour at the points at which it crosses the line; (c) Adding a tour and a matching to
both sides of the line; (d) Shortcutting to a closed path.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

268 Further uses of rounding data and dynamic programming

in ℓ, and apply the lemma if the side of any square is crossed more than r times. Then we do
the same for the next smallest squares, and so on, until we finish with the level i squares; since
ℓ is a level i line, it contains no square side for any larger square. In other words, we perform a
loop, setting j to logL′ and decrementing j down to i. In each iteration of the loop, we consider
all level j squares that have a side contained in ℓ. If the side is crossed more than r times, we
apply the Patching lemma to that side.

To bound the cost of applying the Patching lemma, we let cj denote the number of times that
the Patching lemma is applied when considering squares of level j. Then

∑
j≥1 cj ≤ t(ℓ)/(r−1),

since each time the Patching lemma is invoked, it replaces at least r+1 crossings with at most
2. By the Patching lemma, the cost of replacing at least r crossings of the side of a level j
square with at most two crossings is at most 6 times the side length of a level j square; thus
the cost is at most 6L′/2j . Thus if ℓ is level i, the total cost of applying the Patching lemma as

given above is
∑logL′

j=i cj(6L
′/2j). Since the level of line ℓ depends on the random choices of a

and b at the beginning of the algorithm, we have that the expected increase in cost of applying
the Patching lemma as discussed above is at most

logL′∑
i=1

Pr[level of ℓ is i]

logL′∑
j=i

cj
6L′

2j
≤

logL′∑
i=1

2i

L′

logL′∑
j=i

cj
6L′

2j

= 6

logL′∑
j=1

cj
2j

j∑
i=1

2i

≤ 6

logL′∑
j=1

2cj

≤ 12t(ℓ)/(r − 1).

As in the proof of Theorem 10.2, we can modify the tour to cross the line ℓ only at portals
with an expected increase in cost of at most t(ℓ)

m logL′. Choosing m to be the smallest power of
two that is at least (r − 1) logL′, this expected increase becomes at most t(ℓ)/(r − 1). Recall
that we defined T to be the sum over all lines ℓ of t(ℓ). Thus the total expected increase in cost
of moving the crossings to portals as above is∑

lines ℓ

13t(ℓ)/(r − 1) =
13

r − 1
T.

Setting r = 52
ϵ +1 and recalling from Lemma 10.7 that T ≤ 2OPT for nice Euclidean instances,

we have that the expected increase in cost is at most ϵ
4T ≤

ϵ
2 OPT. As we argued at the end

of the proof of Theorem 10.2, this implies that we obtain that the increase in cost is at most
ϵOPT with probability at least 1/2.

To conclude, we need to argue that we have successfully made the tour into an r-light
portal-respecting p-tour. This becomes somewhat complicated, because it could be the case
that in reducing the number of crossings for a vertical line ℓ we may increase the number of
crossings for a horizontal line ℓ′ that intersects it. We note that the additional vertical crossings
of ℓ′ introduced by the Patching lemma in reducing the crossings of ℓ are immediately on either
side of ℓ, and thus go through the portal corresponding to the intersection of ℓ and ℓ′. We can
apply the Patching lemma again to ensure that the number of times ℓ′ is crossed at this point
is at most twice at no increase in cost (because the crossings all occur at a single geometric
point). Thus reducing the crossings of vertical lines ℓ may increase the number of crossings at

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.2 The maximum independent set problem in planar graphs 269

the corners of the squares of dissections by at most 4; we get 2 from each application of the
Patching lemma on each side of ℓ; this increases the number of crossings on a side of a square
by at most 8 (4 for each corner). Thus we get an (r + 8)-light portal-respecting p-tour, which
is sufficient for the purposes of the theorem.

The idea of this algorithm for the Euclidean TSP can be applied to many other standard
problems in a Euclidean setting, such as the Steiner tree problem, the k-median problem, and
others.

10.2 The maximum independent set problem in planar graphs

Given an undirected graph G = (V,E), an independent set of vertices S ⊆ V is one such that
no two vertices of S are joined by an edge; that is, for all i, j ∈ S, (i, j) /∈ E. If we are given
nonnegative weights wi ≥ 0 for all vertices i ∈ V , then the maximum independent set problem
is that of finding an independent set S of maximum weight w(S) =

∑
i∈S wi. Sometimes we

are interested in the unweighted version of the problem, in which wi = 1 for all vertices i ∈ V ;
then we are interested in finding an independent set of maximum cardinality.

The maximum independent set problem is essentially identical to another problem intro-
duced at the very beginning of the book: the maximum clique problem. A clique of vertices
S ⊆ V is one such that every pair i, j ∈ S has an edge connecting it; that is, for all i, j ∈ S,
(i, j) ∈ E. Given nonnegative weights wi ≥ 0 for all vertices i ∈ V , the maximum clique problem
is that of finding a clique of maximum weight. As in the case of the maximum independent set
problem, we can consider an unweighted version in which we are interested in finding a clique of
maximum cardinality. To see the connection between the maximum clique and maximum inde-
pendent set problems, let Ḡ = (V, Ē) be the complement of graph G = (V,E) where Ē is the set
of all pairs of vertices (i, j) that are not edges in E, so that Ē = {(i, j) : i, j ∈ V, i ̸= j, (i, j) /∈ E}.
Now notice that any clique S in G is an independent set in Ḡ of the same weight and vice versa.
Thus given any approximation algorithm for the maximum independent set problem, we can
convert it to an approximation algorithm of the same performance guarantee for the maximum
clique problem simply by running it on the complement graph, and similarly if we have an
approximation algorithm for the maximum clique problem.

We recall Theorem 1.4 from Chapter 1 which says that the unweighted version of the max-
imum clique problem is very hard to approximate.

Theorem 10.9 (Theorem 1.4): Let n denote the number of vertices in an input graph, and
consider any constant ϵ > 0. Then there does not exist an O(nϵ−1)-approximation algorithm
for the unweighted maximum clique problem, unless P = NP.

Thus the maximum independent set problem is very hard to approximate as well.

Nevertheless, for some special classes of graphs, it is possible to do better – in fact, much
better. We observe that it is relatively easy to find the maximum independent set in a tree
in polynomial time via a dynamic programming algorithm. We suppose that the tree T is
rooted at some node. The dynamic program will work in a bottom-up fashion, starting with
the leaves and working up to the root. Let Tu be the subtree of T rooted at a node u. The
dynamic programming table will have two entries for each node u in the tree, I(Tu, u) and
I(Tu, ∅): I(Tu, u) is the weight of a maximum independent set of Tu which includes u, and
I(Tu, ∅) is weight of the maximum independent set of Tu which excludes u. If u is a leaf, we
can easily compute the two entries for u. Now suppose that u is an internal node, with k
children v1, . . . , vk, and suppose we have already computed the entries for each child. We can

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

270 Further uses of rounding data and dynamic programming

Figure 10.8: Illustration of planar embeddings of planar graphs. Both graphs are
planar, but only the bottom graph is outerplanar.

then compute the two entries for u. Clearly if u is included in the independent set for Tu, then
v1, . . . , vk must be excluded, so the maximum independent set for Tu including u is u plus the
union of the maximum independent sets for the Tvi excluding vi; that is,

I(Tu, u) = wu +

k∑
i=1

I(Tvi , ∅).

If u is excluded from the independent set for Tu, then we have the choice for each child vi
about whether we should take the maximum independent set of Tvi including vi or excluding
vi. Since there are no edges from any Tvi to Tvj for i ̸= j, the decision for Tvi can be made
independently from that for Tvj and we can choose either possibility; we simply pick the set
of largest weight for each vi, and this gives the maximum independent set for Tu excluding
u. Thus I(Tu, ∅) =

∑k
i=1max(I(Tvi , vi), I(Tvi , ∅)). Once we have computed both entries for

the root vertex r, we take the entry that has largest weight, and this gives the maximum
independent set for the entire tree.

Trees are a very restricted class of graphs; we would like to be able to devise good algorithms
for larger classes of graphs. In this section, we will show that for planar graphs, it is possible
to get a polynomial-time approximation scheme for the maximum independent set problem.
Planar graphs are graphs which can be drawn in the Euclidean plane without crossing edges.
More precisely, we correspond each vertex of the graph to some Euclidean point in the plane,
and each edge (i, j) of the graph to a curve in the plane joining the points corresponding to i
and j. The graph is planar if it is possible to do this such that no two curves corresponding to
edges intersect. The mapping of the graph G to points and curves is called a planar embedding
for planar graphs G. A graph G is outerplanar if it has a planar embedding such that all the
vertices lie on the exterior face of the embedding; roughly speaking they are all on the “outside”
of the drawing of the graph. See Figure 10.8 for examples of planar and outerplanar graphs.

To obtain the PTAS for planar graphs, we will need to define the concept of a k-outerplanar

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.2 The maximum independent set problem in planar graphs 271

1

2
1

1
1

1

2

2

2

Figure 10.9: A 2-outerplanar graph and a 3-outerplanar graph. The levels of the
vertices in the 2-outerplanar graph are labelled.

graph. Given a planar embedding of a graph G, we say that all the vertices on the exterior
face are level 1 vertices of the graph. Then in general the level i vertices of the graph are all
the vertices on the exterior face of the same planar embedding of G after removing all level
1, . . . , i − 1 vertices and incident edges. A graph G is k-outerplanar if there exists a planar
embedding of G such that all the vertices of the graph are level k or less; see Figure 10.9 for
examples of k-outerplanar graphs. It is possible to determine whether a graphG is k-outerplanar
in time polynomial in k and n, but the proof of this is outside the scope of this book.

The central theorem we will need to prove the PTAS for planar graphs is the following.

Theorem 10.10: There is a dynamic programming algorithm for finding the maximum inde-
pendent set in k-outerplanar graphs with running time O(2O(k)n2).

The key to proving this theorem is to show that k-outerplanar graphs can be decomposed
into a tree-like structure, so that we can run a dynamic programming algorithm similar to the
one given above for trees.

Given the theorem, it is relatively simple to obtain the approximation scheme.

Theorem 10.11: There is a polynomial-time approximation scheme for the maximum inde-
pendent set problem in planar graphs running in time O(2O(1/ϵ)n2).

Proof. Given a planar graph G with a planar embedding of G, we let Li denote all the level i
vertices of G. Observe that by the definition of level, it cannot be the case that an edge has
endpoints that differ in level by two or more, since then in the embedding the curve correspond-
ing to the edge would intersect the curves corresponding to edges connecting intermediate level
vertices.

If we want a (1 − ϵ)-approximation algorithm, let k be the smallest positive integer such
that 1/k ≤ ϵ. Let Si be the set of all vertices whose level is i(mod k), for i = 0, . . . , k− 1. Now
consider the graphs Gi induced on all vertices except those in Si; that is, Gi = G[V − Si]. For
each i = 0, . . . , k − 1, by removing all the vertices in Si and edges incident on it, we obtain

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

272 Further uses of rounding data and dynamic programming

a graph Gi for which each connected component is a k-outerplanar graph. For instance, in
G0, we remove vertices from levels k, 2k, 3k, and so on. Thus the vertices in L1, . . . , Lk−1 are
disconnected from all other vertices in Gi, and these form a k-outerplanar graph. Similarly,
the vertices in Lk+1, . . . , L2k−1 are also disconnected from other vertices in Gi, and these also
form a k-outerplanar graph, and so on. We use the algorithm of Theorem 10.10 to find a
maximum independent set for each connected component of Gi separately, and the union of
these independent sets gives a maximum independent set Xi for Gi. The running time is
O(2O(1/ϵ)n2). Note that any independent set Xi for Gi is also independent for the original
graph G. Then we return as our solution the independent set Xi whose weight is the largest.

Let O be a maximum independent set for G, so that w(O) = OPT. We observe that since the
Si partition all the vertices in V into k sets, there exists some j such that w(O∩Sj) ≤ w(O)/k.
Since O − Sj is an independent set for Gj , the weight of the independent set Xj found by the
algorithm for Gj must be at least

w(O − Sj) = w(O)− w(O ∩ Sj) ≥
(
1− 1

k

)
w(O) ≥ (1− ϵ)OPT .

Thus the algorithm will return a solution of weight at least (1−ϵ)OPT in O(2O(1/ϵ)n2) time.

We now turn to the proof of Theorem 10.10. To do this, we shall introduce another concept,
called the treewidth of a graph. The treewidth of a graph in some sense measures how close the
graph is to being a tree. Our proof agenda then will be to show that any graph with treewidth t
has a dynamic programming algorithm to solve the maximum independent set problem in time
exponential in t but polynomial in n, and to show that k-outerplanar graphs have treewidth at
most 3k + 2.

Given an undirected graph G = (V,E), a tree decomposition of G is a spanning tree T on a
new set of nodes V ′, where each i ∈ V ′ corresponds to a subset Xi of vertices of V . The tree
decomposition has the following three properties:

1. For every vertex u ∈ V , there is some i ∈ V ′ such that u ∈ Xi;

2. For every edge (u, v) ∈ E, there is some i ∈ V ′ such that both u, v ∈ Xi; and

3. For i, j, k ∈ V ′, if j lies on the path in T from i to k, then Xi ∩Xk ⊆ Xj .

As an example, suppose that the original graph G is itself a tree. Then we can make a tree
decomposition of G by creating a node iu in V ′ for each node u ∈ V and a node ie for each edge
in e ∈ E. The tree T will have edges (iu, ie) for all u ∈ V and e ∈ E such that u is an endpoint
of e; note that this gives a tree since G itself is a tree. The node iu ∈ V ′ will have corresponding
subset Xiu = {u}, and the node ie ∈ V ′ for edge e = (u, v) ∈ E will have corresponding subset
Xie = {u, v}. It can then be seen that this decomposition obeys all three properties of a tree
decomposition. See Figure 10.10 for an example of a tree decomposition of a graph.

The treewidth of a tree decomposition of G is the maximum over all i ∈ V ′ of |Xi| − 1, and
the treewidth of a graph G is the minimum treewidth over all tree decompositions of G. One
might wonder about the −1 term in the definition, but note that given the tree decomposition
of a tree given above, this definition yields that trees have a treewidth of 1; since the second
property of tree decomposition requires that each edge of the graph have both endpoints in
some subset of the decomposition, no smaller treewidth is possible unless the graph has no
edges.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.2 The maximum independent set problem in planar graphs 273

1 2 3

45

6

7

8

3, 4, 5

2, 3, 5

1, 2, 5, 7

5, 6, 7

1, 7, 8

Figure 10.10: An example of a tree decomposition of a graph; the graph is on the left
and the tree decomposition on the right. The treewidth of this tree decomposition is 3.

We can now show that we can find the maximum independent set in a graph with low
treewidth in time exponential in the treewidth. The algorithm is simply a generalization of the
dynamic program for finding a maximum independent set in a tree.

Theorem 10.12: Given a tree decomposition of a graph G = (V,E) with nodes V ′ and treewidth
t, we can find a maximum independent set in G in time O(2O(t)|V ′|) via dynamic programming.

Proof. Given the tree decomposition T of graph G = (V,E) with nodes V ′ and sets Xi ⊆ V for
all i ∈ V ′, we root the tree T . As in the dynamic program for trees, our algorithm will work
bottom-up on the tree T . Now for each i ∈ V ′, let Ti be the subtree of T rooted at i. Let Vi

be the set of vertices given by taking the union of all the Xj for all j in Ti, and let Gi be the
subgraph of G induced by Vi. We will compute the maximum independent set of Gi for each
i ∈ V ′; when we reach the root vertex r of the rooted tree T , the graph Gr = G, and we will
have computed its maximum independent set. In our dynamic program, we have 2|Xi| entries
in the table for each i ∈ V ′; these correspond to the maximum independent set in Gi for all
possible subsets U ⊆ Xi where we require the intersection of the independent set and Xi to be
exactly U . Note that some of these possibilities might not correspond to a valid independent
set (for instance, if we include both endpoints of an edge of Gi), and these table entries will be
marked ‘Not valid’.

If i is a leaf vertex of T , then Vi = Xi. Then since each table entry for i dictates whether
each vertex of Xi is included or excluded, we only need to check whether the given inclu-
sions/exclusions yield a valid independent set to compute the entry.

Now suppose that i is an interior node of the tree. To handle this case, we must first
establish two claims: (1) for any two distinct children j, k of i, Vj ∩ Vk ⊆ Xi; (2) any edge of
Gi must either have both endpoints in Xi or both endpoints in Vj for some child j of i. To see
claim (1), suppose that there is some u ∈ Vj ∩ Vk. We have u ∈ Vj because u ∈ Xp for some
node p in the subtree Tj and u ∈ Vk since u ∈ Xq for some q in the subtree Tk. Now since i is
on the path from p to q in the tree T , by the third property of a tree decomposition, it must
be the case that u ∈ Xp ∩Xq ⊆ Xi. To see claim (2), pick any edge (u, v) in Gi. By the second
property of a tree decomposition, there is some node ℓ in the tree such that both u, v ∈ Xℓ. If
ℓ = i, then u, v ∈ Xi. If ℓ is in the subtree Ti, but ℓ ̸= i, then ℓ is in the subtree Tj for some
child j of i, and both u, v ∈ Vj . Now suppose ℓ is not in the subtree Ti. Since u and v are in
Gi, there must be nodes p and q in the subtree Ti such that u ∈ Xp and v ∈ Xq. The node i is

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

274 Further uses of rounding data and dynamic programming

on the path from p to ℓ in the decomposition tree T , and is also on the path from q to ℓ in T .
Therefore, by the third property of the tree, u ∈ Xp ∩Xℓ ⊆ Xi and v ∈ Xq ∩Xℓ ⊆ Xi so both
u, v ∈ Xi.

We can now show how to compute the table entries for i when i is an interior node of the
tree. For any given valid set U ⊆ Xi, and any child j of i, consider an entry W ⊆ Xj for j. We
say that the entry W for the child j is compatible with the entry U for i if U and W agree on
Xi ∩Xj (that is, U ∩Xi ∩Xj = W ∩Xi ∩Xj). Then to compute the entry for i for set U ⊆ Xi,
for each child j of i, we find the compatible entry of maximum weight; call this independent
set Sj . We claim that U together with the union of the Sj over all children j is the maximum
independent set for Gi whose intersection with Xi is exactly U ; call this set S = U ∪

∪
j Sj .

Note that by claim (1), Vj − Xi are disjoint over all children j of i, so S is well defined. By
induction, the Sj are maximum independent sets compatible with U , so if S is an independent
set, there cannot be one of larger weight. Also, S is an independent set since by claim (2) any
edge (u, v) in Gi must have either both endpoints in Xi or both endpoints in Vj for some child
j of i. It cannot be the case that both u and v are in the independent set, since then either
both of them were in U and U was not valid, or both of them were in Sj , and Sj is not a valid
independent set.

For each node in |V ′|, there are 2t+1 entries we must compute. We compute these by
checking for compatible entries at the child nodes; each of the 2t+1 entries of a child is checked
once by the parent node for each entry of the parent node. Hence the overall time taken is
O(2O(t)|V ′|).

We now turn to showing that k-outerplanar graphs have low treewidth. It will be useful
for us to consider k-outerplanar graphs with maximum degree at most three; we will show that
these have treewidth at most 3k + 1. We show below that this is in fact general since any
k-outerplanar graph G can be transformed into a k-outerplanar graph G′ of maximum degree
three, such that we can compute a tree decomposition of G from that of G′ and the treewidth
of G is bounded above by the treewidth of G′.

Lemma 10.13: For any k-outerplanar graph G there is a k-outerplanar graph G′ of maximum
degree three such that given a tree decomposition of G′ we can compute a tree decomposition of
G of no greater treewidth.

Proof. Given the k-outerplanar graph G with some vertex v of degree d greater than three, we
can create a new graph G′ by splitting v into two vertices v1 and v2 joined by an edge, of degree
three and degree d − 1, respectively. This can be done in such a way that the graph remains
k-outerplanar; see Figure 10.11. Given a tree decomposition T ′ of G′, we can create a new tree
decomposition T of G by taking any subset X ′

i containing either v1 or v2 and replacing them
with v; that is, set Xi = (X ′

i − {v1, v2})∪{v} if X ′
i contains v1 or v2, otherwise Xi = X ′

i. Then
T is a valid tree decomposition of G given that T ′ is a valid tree decomposition of G′, and
clearly the treewidth of the decomposition of G is no greater than that of G′.

Given any k-outerplanar graph G of maximum degree greater than three, we can use the
transformation above to create a sequence of new graphs G1, G2, . . . , Gz such that Gz has maxi-
mum degree at most three, and then from a tree decomposition of Gz, work backwards to create
a sequence of decompositions of Gz−1, . . . , G1, G such that the treewidth of the decomposition
of G is at most that of Gz.

Given a maximum spanning forest (V, F) of a graph G, consider any edge e ∈ E − F . The
fundamental cycle of e is the cycle closed in the forest by adding e to F . We say that the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.2 The maximum independent set problem in planar graphs 275

v v1
v2

Figure 10.11: Splitting vertex v into v1 and v2, and maintaining k-outerplanarity.

load of a vertex v ∈ V is the number of fundamental cycles in which it participates over all
e ∈ E − F . Similarly, the load of a tree edge e ∈ F is the number of fundamental cycles in
which it participates over all e ∈ E − F . The maximum load of a maximum spanning forest
(V, F) for a graph G is the maximum over all v ∈ V and e ∈ F of the loads of v and e.

Lemma 10.14: Every k-outerplanar graph with maximum degree 3 has a maximum spanning
forest (V, F) of maximum load 3k.

Proof. We show the result by induction on k. Suppose k = 1, and the graph G is outerplanar.
Let R be the set of edges on the exterior face of the embedding of G. Note that after removing
the edges of R the resulting graph must be acyclic since G is outerplanar; extend E − R to a
maximum spanning forest F of G by adding as many edges of R as possible. Then any edge of
E − F is on the exterior face; adding it to F creates a unique interior face of the embedding
of G. Since any edge of G bounds at most two interior faces of the embedding, and any vertex
bounds a number of interior faces at most its degree, each edge has load at most two and each
vertex has load at most three.

Now suppose we have a k-outerplanar graph for k > 1. Again, let R be all the edges on
the exterior face of the embedding of G. If we remove all the edges in R, then since the graph
has degree three, the vertices on the exterior face will have degree at most one, and so the
remaining graph will be at most (k − 1)-outerplanar. By induction, we know that we can find
a maximum spanning forest F ′ of the graph (V,E−R) such that the maximum load is at most
3(k − 1). We extend F ′ to a maximum spanning forest F of G by adding as many edges of R
as possible. As above, adding any edge of R−F closes a unique interior face of a planar graph
(V, F ∪R), and thus the additional load imposed on any edge of F by edges in R−F is at most
two, and the additional load imposed on any vertex v by edges in R− F is at most three. See
Figure 10.12 for an illustration. Hence the maximum load of the forest (V, F) for G is at most
3k.

Lemma 10.15: If a graph G of maximum degree 3 has a maximum spanning forest (V, F) such
that the maximum load of F is at most ℓ, then G has treewidth at most ℓ+ 1.

Proof. Given G = (V,E), we start by giving a tree decomposition of the forest F as shown

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

276 Further uses of rounding data and dynamic programming

Figure 10.12: Illustration of the proof of Lemma 10.14 for a 2-outerplanar graph. The
edges of the maximum spanning forest F , adding edges from R, are shown in thick lines.
The remaining edges of R are dotted.

previously in the discussion of tree decompositions: that is, we create a node iu for each u ∈ V ,
and a node ie for each edge e in the forest F . We start by setting Xiu = {u} and Xie = {u, v}
for e = (u, v), and the decomposition tree T has edges (iu, ie) whenever u is an endpoint of
an edge e in the forest F . This decomposition obeys the first and third properties of tree
decompositions, but not the second because there may be edges in E − F that do not have
both endpoints in the same subset of the decomposition. We now update the tree for each
(u, v) ∈ E − F to fix this problem. Given an edge e = (u, v) ∈ E − F we choose one of the
endpoints arbitrarily, say u. Consider the fundamental cycle of e. For every vertex w ̸= v in
this cycle, we add u to the set Xiw and for every edge e′ ̸= e in the cycle, we add u to the set
Xie′ .

We claim this gives a tree decomposition of G. The first property is satisfied, as is the
second for every edge e ∈ F . For any edge e = (u, v) ∈ E − F , consider the fundamental cycle
of e; there must be an edge (w, v) ∈ F in this cycle incident on v. We added u to X(w,v) and this
set already included v, so the second property is satisfied for all edges of E. The third property
is also satisfied: it was satisfied in the initial decomposition of the spanning tree F , and then
whenever we added a vertex u to subsets in the decomposition, we added it to all the subsets
along a path in the decomposition tree T . Thus for nodes i, j, k in the tree decomposition, if j
is on the path from i to k in the decomposition tree T , Xi ∩Xk ⊆ Xj .

Note that initially every set in the decomposition has size at most two, and we add to each
subset Xiu a number of vertices that is at most the load of u ∈ V , and we add to each subset Xie

a number of vertices that is at most the load of e ∈ E. Thus the treewidth of this decomposition
is at most ℓ+ 1.

We can finally summarize the discussion above in the following theorem.

Theorem 10.16: There is a dynamic programming algorithm to find a maximum independent
set in a k-outerplanar graph in O(2O(k)n2) time.

Proof. We will use the fact that a planar graph of n vertices has at most m ≤ 3n−6 edges. We
begin by noting that the arguments of Lemmas 10.13, 10.14, and 10.15 can be made algorithmic.
We can apply Lemma 10.13 to create a k-outerplanar graph of maximum degree at most 3; we
create from the original graph of n vertices and m edges a graph with n′ vertices and m′ edges,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.2 The maximum independent set problem in planar graphs 277

where n′ is at most the sum of the degrees of the original graph. Thus n′ ≤ 2m = O(n),
and m′ ≤ 3n′ − 6 = O(n). We then use Lemma 10.14 to compute the appropriate maximum
spanning forest of the degree 3 graph in O(m′) = O(n) time, and apply Lemma 10.15 to create
a tree decomposition in O(m′n′) = O(n2) time of size |V ′| = O(m′ + n′) = O(n). Then we
invoke Lemma 10.13 again in O(m′|V ′|) = O(n2) time to get the tree decomposition of the
original graph. Note that the tree decomposition of the original graph is still on the vertex set
V ′ with |V ′| = O(n). Using Theorem 10.12 then finds the maximum independent set.

Many hard combinatorial optimization problems on graphs have algorithms whose running
time is polynomial in the size of the graph and exponential in the treewidth of the graph. We
give some examples in the exercises below.

Exercises

10.1 In the Euclidean Steiner tree problem, we are given as input a set T of points in the
plane called terminals. We are allowed to choose any other set N of points in the plane;
we call these points nonterminals. For any pair of points i, j ∈ T ∪ N , the cost of an
edge connecting i and j is the Euclidean distance between the points. The goal is to find
a set N of nonterminals such that the cost of the minimum spanning tree on T ∪ N is
minimized.

Show that the polynomial-time approximation scheme for the Euclidean TSP can be
adapted to give a polynomial-time approximation scheme for the Euclidean Steiner tree
problem.

10.2 In this problem, we consider a Euclidean variant of the k-median problem from Section
9.2. We are given a set N of points in the plane that are clients and potential locations
for facilities. We must find a subset S ⊆ N with |S| ≤ k of facilities to open so as to
minimize

∑
j∈N mini∈S cij , where cij is the Euclidean distance between i, j ∈ N . Using the

techniques of Section 10.1, give a polynomial-time approximation scheme for the Euclidean
k-median problem. (Extended hint: Several aspects of the proof must be adapted. For
the Euclidean TSP, the side length L of the smallest square containing all points of the
instance is a lower bound on the cost of an optimal solution, and then can be used in
modifying the instance to be a nice instance. For the Euclidean k-median problem, L
isn’t necessarily a lower bound on the cost of an optimal solution. What can be used
instead? In the dynamic program, for each square of side length s, it will be useful to
keep track of the number of facilities opened in the square. Also for each portal of the
square we may wish to keep track of two estimates: first, the distance from the portal to
the nearest open facility inside the square (if any) in increments of s/m (where m is the
number of portals on a side); and second, the distance of the portal to the nearest open
facility outside the square, also in increments of s/m. Note that for two adjacent portals,
both estimates should differ by at most one increment of s/m.)

10.3 Recall the vertex cover problem defined in Section 1.2. In the problem we are given an
undirected graph G = (V,E) and a nonnegative weight wi for each vertex i ∈ V . The goal
is to find a minimum-weight subset of vertices C ⊆ V such that for each edge (i, j) ∈ E,
either i ∈ C or j ∈ C.

Show that the polynomial-time approximation scheme for the maximum independent set
problem in planar graphs can be adapted to give a polynomial-time approximation scheme
for the vertex cover problem in planar graphs.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

278 Further uses of rounding data and dynamic programming

10.4 Recall from Section 5.12 that we say a graph G = (V,E) is k-colorable if we can assign
each vertex one of k colors such that for any edge (i, j) ∈ E, i and j are assigned different
colors. Suppose that G has a tree decomposition T of treewidth t, for constant t. Prove
that for any k, one can decide in polynomial time whether the graph is k-colorable.

10.5 In the graphical traveling salesman problem, we are given a graph G = (V,E) with edge
costs ce ≥ 0 for all e ∈ E. The goal is to find a minimum-cost multiset of edges F such
that (V, F) is Eulerian. One can view this as a variant of the traveling salesman problem
in which cities can be visited multiple times, but it is not possible to travel directly from
city i to city j when (i, j) /∈ E. In this problem, we will show that we can compute the
optimal solution to the graphical TSP when the graph G has low branchwidth, a concept
related to treewidth.

Given an undirected graph G = (V,E), a branch decomposition of G is a spanning tree T
on a new set of nodes V ′ such that the degree of each internal node of T is exactly three,
and T has exactly |E| leaves; each edge e of G maps to a unique leaf of T . Removing an
edge of the tree T therefore partitions the edges of G into two parts A and B corresponding
to the leaves in the two connected components of T after the edge has been removed. The
width of the separation is the number of vertices of G that have edges from both A and
B incident on them. The width of the branch decomposition is the maximum width of
the separation over all edges in the tree T . The branchwidth of G is the smallest width of
a branch decomposition over all branch decompositions of G.

Suppose we are given an instance of the graphical traveling salesman problem, and a
branch decomposition T of the input graph G = (V,E) of branchwidth t. We can root
the tree T by removing an arbitrary edge (a, b) and replacing it with two edges (a, r) and
(r, b). Show that by using dynamic programming, there is a polynomial-time algorithm
for the graphical TSP when the branchwidth t is a constant.

Chapter Notes

Approximation schemes for Euclidean instances of the traveling salesman problem and some
other geometric problems were discovered independently by Arora [11] and Mitchell [225].
Arora’s scheme also generalizes to Euclidean problems in higher dimensions, as long as the
dimension d is o(log log n). The algorithm and presentation given in Section 10.1 is due to
Arora [11], following somewhat a survey of Arora [12]. As mentioned in the introduction, this
technique turns out to be widely applicable to optimization problems in the Euclidean plane,
including the Steiner tree problem (discussed in both [11] and [225]), given in Exercise 10.1,
and the k-median problem (due to Arora, Raghavan, and Rao [20]), given in Exercise 10.2.

The approximation scheme of Section 10.2 for the maximum independent set in planar
graphs is due to Baker [30], although we give a different presentation here. The result for
vertex cover in Exercise 10.3 is also from Baker [30]. The concept of the treewidth of a graph
was introduced by Robertson and Seymour [252]; other equivalent concepts were introduced
independently in the literature. For one such concept, partial k-trees, Arnborg and Proskurowski
[10] give a“linear time”dynamic program for finding the maximum independent set. Bodlaender
[52] shows that k-outerplanar graphs have treewidth at most 3k − 1; we adapt (and weaken
slightly) his presentation. The concept of branchwidth in Exercise 10.5 was introduced by
Robertson and Seymour [253]; they showed that a graph of branchwidth t has treewidth at
most 3t/2, and a graph with treewidth k has branchwidth at most k + 1. The graphical

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

10.2 The maximum independent set problem in planar graphs 279

traveling salesman problem was introduced by Cornuéjols, Fonlupt, and Naddef [84], and the
dynamic programming algorithm of Exercise 10.5 is due to Cook and Seymour [80].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

280 Further uses of rounding data and dynamic programming

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 11

Further uses of deterministic

rounding of linear programs

In this chapter, we return to the technique of deterministically rounding linear programs. We
begin with a generalization of the problem of scheduling jobs on identical machines which we
introduced in Section 2.3. In this general case, not only does a job j take different amounts of
processing time depending on which machine i it is assigned to, but also a job j incurs a cost
cij when assigned to machine i. If there is any feasible schedule of cost C in which the jobs
are completed by time T , we show that by rounding a linear programming relaxation we can
in polynomial time produce a schedule of cost at most C in which all jobs finish by time 2T .

For the remaining applications, we use the fact that there is always a basic optimal solution
to a linear program, and that algorithms for solving linear programs return such a solution.
Suppose we have a linear program with n variables xj in which there is a constraint xj ≥ 0 for
each variable xj . Then the number of constraints m ≥ n, since there is at least one constraint
per variable. Let the ai be a vector and bi be a scalar giving the ith constraint, aTi x ≥ bi. A
feasible solution x̄ is a basic feasible solution if there are n linearly independent vectors ai such
that the corresponding constraints are met with equality; that is, aTi x̄ = bi. Observe that this
linear system uniquely defines x̄. Basic feasible solutions are equivalent to extreme points of
the geometric region of feasible solutions defined by the linear program; recall that an extreme
point is a feasible solution that cannot be expressed as the convex combination of two other
feasible solutions (see, for example, Exercise 1.5). There is always an optimal solution to the
linear program that is a basic feasible solution, and we call such a solution a basic optimal
solution.

The structure of basic solutions is very useful in designing approximation algorithms. In
Section 11.2, we consider a version of the minimum-degree spanning tree problem introduced in
Section 2.6: here we have costs on the edges and bounds bv on the degree of each vertex v ∈ V .
We show that if there exists a spanning tree of cost at most C such that the degree of each
vertex is at most bv, we can in polynomial time find a spanning tree of cost at most C in which
each vertex v has degree at most bv + 1. The algorithm uses the properties of basic optimal
solutions to generate a sequence of linear programming relaxations of the problem, where each
LP in the sequence is defined on a smaller graph and has fewer constraints than the previous
LPs. The final LP in the sequence returns a spanning tree with the desired properties.

In Section 11.3, we consider a generalization of the generalized Steiner tree problem intro-

281

282 Further uses of deterministic rounding of linear programs

duced in Section 7.4 in which we must find a minimum-cost subgraph with several edge-disjoint
paths between certain pairs of vertices. We show a remarkable theorem that any basic feasible
solution to the linear programming relaxation of this problem must have some variable of value
at least 1/2. We round this variable up to 1, then iterate on the remaining problem; this tech-
nique is called iterated rounding and it gives a 2-approximation algorithm for the problem. This
theorem can be viewed as a weakening of a statement we proved about a linear programming
relaxation for the vertex cover problem in Exercise 1.5, in which all variables in a basic feasible
solution have value either 0, 1, or 1/2. Here we only show that some variable will have value
at least 1/2, but this is sufficient to give a good approximation algorithm.

11.1 The generalized assignment problem

In the generalized assignment problem, we are given a collection of n jobs to be assigned to m
machines. Each job j = 1, . . . , n is to be assigned to exactly one machine; if it is assigned to
machine i, then it requires pij time units of processing, and incurs a cost of cij . Furthermore,
we are given a time bound T that limits the total processing of each machine i = 1, . . . ,m. The
aim is to find a feasible assignment of minimum total cost.

If we write this problem as an integer program, and introduce a 0-1 variable xij , i = 1, . . . ,m,
j = 1, . . . , n, to indicate whether job j is assigned to machine i, then we obtain

minimize

m∑
i=1

n∑
j=1

cijxij (11.1)

subject to

m∑
i=1

xij = 1, j = 1, . . . , n, (11.2)

n∑
j=1

pijxij ≤ T, i = 1, . . . ,m, (11.3)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n. (11.4)

It is not hard to see that just deciding whether there is a feasible solution to the integer
program is strongly NP-hard; for instance, checking whether there is a feasible solution to
the integer program captures the problem of minimizing the makespan on identical parallel
machines (the case in which pij = pj , i = 1, . . . ,m for each job j = 1, . . . , n). Nonetheless,
we shall see that a rather strong approximation result is possible: for a given input, we either
prove that no feasible solution exists, or else output a solution of total cost no greater than the
optimum, but violate feasibility by allowing each machine to process jobs for a total time no
greater than 2T .

We shall give an LP rounding algorithm to find the near-optimal schedule. However, the
linear programming relaxation of the integer program (11.1)–(11.4) in which the constraints
(11.4) are replaced by

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n, (11.5)

does not provide a sufficiently strong bound on which to base the algorithm. Instead, we will
strengthen this linear program in a seemingly trivial way; we add the constraints that

xij = 0 if pij > T, (11.6)

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.1 The generalized assignment problem 283

which clearly hold for any feasible integer solution.
In carrying out the rounding of the fractional solution x, we shall rely heavily on a beautiful

well-known result from matching theory (or more generally, from the theory of network flows).
Suppose we are given a bipartite graph with two disjoint sets of nodes V and W , and an edge
set F where each edge has one endpoint in each of V and W ; let B = (V,W,F) denote such
a graph. We say that M ⊆ F is a complete matching for V in this graph if (a) for each node
v ∈ V there is exactly one edge of M incident to v, and (b) for each node w ∈ W , there is at
most one edge of M incident to w. (We shall assume that |V | ≤ |W |, since otherwise, no such
matching is possible.)

Deciding whether a given bipartite graph B = (V,W,F) has a complete matching is equiv-
alent to deciding whether the following integer program has a feasible solution, where the 0-1
variable yvw indicates that edge (v, w) is in the matching:∑

v:(v,w)∈F

yvw ≤ 1, ∀w ∈W, (11.7)

∑
w:(v,w)∈F

yvw = 1, ∀v ∈ V, (11.8)

yvw ∈ {0, 1}, ∀(v, w) ∈ F. (11.9)

If we relax the binary constraints (11.9) to be non-negativity constraints

yvw ≥ 0, ∀(v, w) ∈ F, (11.10)

then we get a linear program; a feasible solution is called a fractional complete matching. In
Exercise 4.6 we showed that this linear program has the special property that each extreme
point is integer. The exercise shows the following theorem.

Theorem 11.1 (Exercise 4.6): For any bipartite graph B = (V,W,F), each extreme point of
the feasible region of (11.7), (11.8), and (11.10) has integer coordinates. Furthermore, given
edge costs cvw, (v, w) ∈ F , and a feasible fractional solution yvw, (v, w) ∈ F , we can find, in
polynomial time, a feasible integer solution ŷvw such that∑

(v,w)∈F

cvwŷvw ≤
∑

(v,w)∈F

cvwyvw.

We next show how this result can be applied to obtain the main result of this section, which
is as follows.

Theorem 11.2: If the linear program (11.1)–(11.3), (11.5), and (11.6) has a feasible (frac-
tional) solution x of total cost C, then we can round it to an (integer) assignment of total cost
at most C in which each machine is assigned total processing at most 2T .

Proof. We will prove this theorem by providing an algorithm that converts a feasible LP solution
x to the required (integer) assignment. This fractional solution x assigns, in total,

∑n
j=1 xij

jobs to machine i; the integer assignment that we construct will be similar to this, and so we
allocate ki = ⌈

∑n
j=1 xij⌉ “slots” for machine i to be assigned jobs. Furthermore, the algorithm

will assign job j to machine i only if xij > 0.
We can model this restriction by constructing a bipartite graph B = (J, S,E), where one

side of the bipartite graph consists of job nodes J = {1, . . . , n}, and the other side consists of
machine slots

S = {(i, s) : i = 1, . . . ,m, s = 1, . . . , ki}.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

284 Further uses of deterministic rounding of linear programs

y1,(i,1) = 3/4

y2,(i,1) = 1/4

y2,(i,2) = 1/4

y3,(i,2) = 1/2

y4,(i,2) = 1/4

y4,(i,3) = 1/12

(i, 1)

(i, 2)

(i, 3)

Slots

Jobs

1

2

3

4

xi1 = 3/4

xi2 = 1/2

xi3 = 1/2

xi4 = 1/3

Figure 11.1: An example of how the fractional matching for B is created given xij .

(Note that |S| ≥ |J |.) One natural idea is to simply include an edge ((i, s), j) in E whenever
xij > 0; although this is a good start, we will need to refine this later.

We shall focus on assignments of the jobs that correspond to complete matchings in this
graph B. Since an edge e that connects machine slot node (i, s) to job node j has the inter-
pretation that job j is assigned to machine i, it is natural to set the cost of edge e equal to cij .
Ideally, the graph B would have the following two properties:

1. B contains a fractional complete matching for J of cost C;

2. any (integer) complete matching for J in B corresponds to an assignment in which each
machine is required to complete at most 2T time units of processing.

If we succeed in constructing such a bipartite graph B, then we can compute the desired
assignment by finding the minimum-cost (integer) complete matching in B (for example, by
the polynomial-time algorithm of Theorem 11.1). This matching must have cost at most C
(by property (1) and Theorem 11.1), and assign each machine total processing at most 2T (by
property (2)).

Let us understand in detail why our graph B has the first property. Focus on any machine
i. We can convert our LP solution x into a fractional complete matching y in B. Consider the
slot nodes (i, s), s = 1, . . . , ki as bins of capacity 1, and the values xij , j = 1, . . . , n as pieces of
the n jobs to be packed in these bins. We can place the pieces in the bin corresponding to slot
(i, 1) until the next piece j would cause the bin to be packed with pieces of total size greater
than 1. Suppose this piece j is of size xij and there is only capacity z remaining in the bin
(where z < xij). Then we pack z of this job piece j (of size xij) into slot (i, 1), and pack the
remaining xij − z in the next bin (or equivalently, slot (i, 2).) Whenever we pack a positive
fraction of job j in slot (i, s), we set yj,(i,s) equal to that fraction; all other components of y are
set to 0. It is easy to see that repeating this for each machine i yields a fractional complete
matching in B of total cost

∑
i,j cijxij . See Figure 11.1 for an illustration.

However, as stated thus far, we do not have the second property. We will need to refine
the construction of B = (J, S,E). First, suppose that we include an edge (j, (i, s)) ∈ E only

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.1 The generalized assignment problem 285

if the corresponding value yj,(i,s) > 0. Clearly, this does not affect the existence of a fractional
complete matching y. Furthermore, let us refine our“bin-packing”procedure that constructs the
solution y. Suppose that in packing the n pieces xij , j = 1, . . . , n, into the ki slots (or bins), we
first sort the jobs so that their corresponding processing requirements pij are in nonincreasing
order. For ease of notation, suppose without loss of generality that

pi1 ≥ pi2 ≥ · · · ≥ pin. (11.11)

We shall consider the graph B formed by including an edge (j, (i, s)) in E exactly when this
bin-packing procedure places a positive fraction from xij into slot (i, s) (and hence makes the
corresponding component of y positive).

Consider the slot (i, s), and focus on those jobs j for which some positive fraction is packed
in the bin corresponding to this slot; let max(i, s) denote the maximum processing requirement
pij among these jobs. The total load assigned to machine i by any complete matching in B is
at most

ki∑
s=1

max(i, s).

Since (11.6) holds, we know that max(i, 1) ≤ T . We shall show that

ki∑
s=2

max(i, s) ≤ T,

and hence the total load on machine i for any complete matching in B is at most 2T . Observe
that for each s = 1, . . . , ki−1, we have that

∑
j yj,(i,s) = 1, since we only start the next bin when

we have completely filled the previous one. Thus, we can think of
∑

j yj,(i,s)pij as a weighted
average of the relevant pij values; that is, those jobs for which a positive fraction is assigned
to slot (i, s). By our ordering assumption (11.11), for each s = 1, . . . , ki − 1, we have that
max(i, s+ 1) ≤

∑
j yj,(i,s)pij , and hence,

ki−1∑
s=1

max(i, s+ 1) ≤
ki−1∑
s=1

∑
j

yj,(i,s)pij ≤
ki∑
s=1

∑
j

yj,(i,s)pij .

However, since xij =
∑

s yj,(i,s), by interchanging the order of the summations in the final
expression, we see that

∑
s yj,(i,s)pij =

∑
j pijxij , and hence,

∑
j

ki−1∑
s=1

max(i, s+ 1) ≤
∑
j

pijxij .

Since x is a feasible solution for our original LP, it satisfies (11.3), and hence,

ki−1∑
s=1

max(i, s+ 1) ≤ T,

which completes the proof of the theorem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

286 Further uses of deterministic rounding of linear programs

11.2 Minimum-cost bounded-degree spanning trees

In this section, we consider the weighted case of a problem we considered in Sections 2.6 and
9.3. In those sections, we considered the problem of finding a spanning tree of a graph such
that we minimized the maximum degree of the tree. Here, we consider the problem of finding
a spanning tree of minimum cost such that the degree of node v is no more than some specified
bound. We refer to this problem as the minimum-cost bounded-degree spanning tree problem.
More formally, we are given as input an undirected graph G = (V,E), costs ce ≥ 0 for all e ∈ E,
a set W ⊆ V , and integer bounds bv ≥ 1 for all v ∈ W . Let OPT be the cost of the minimum
spanning tree such that the degree of each node v ∈W is no more than bv (if such a tree exists).
In the first part of this section, we give an algorithm that finds a spanning tree of cost at most
OPT such that each node v ∈ W has degree at most bv + 2. In the latter part of this section,
we show that we can find a spanning tree of cost at most OPT such that each node v ∈W has
degree at most bv + 1. As we argued at the end of Section 2.6 for unweighted spanning trees,
no better result is possible unless P = NP.

We begin by giving an integer programming formulation of the problem for a graph G =
(V,E). Given a vertex set S ⊆ V , let E(S) be the subset of edges in E that have both endpoints
in S, and let δ(S) be the subset of edges that have exactly one endpoint in S. We will denote
δ({v}) by δ(v). We let xe ∈ {0, 1} indicate whether an edge e is in the spanning tree or not.
Every spanning tree has exactly |V | − 1 edges, so we have∑

e∈E
xe = |V | − 1.

Furthermore, since for any set S ⊆ V with |S| ≥ 2, a spanning tree does not have a cycle in
E(S), we have ∑

e∈E(S)

xe ≤ |S| − 1.

Finally, we want the spanning tree to respect the degree bounds for all v ∈W , so that we have∑
e∈δ(v)

xe ≤ bv.

Relaxing the integrality constraints to xe ≥ 0 gives us the following linear programming
relaxation of the problem:

minimize
∑
e∈E

cexe (11.12)

subject to
∑
e∈E

xe = |V | − 1, (11.13)∑
e∈E(S)

xe ≤ |S| − 1, ∀S ⊆ V, |S| ≥ 2, (11.14)

∑
e∈δ(v)

xe ≤ bv, ∀v ∈W, (11.15)

xe ≥ 0, ∀e ∈ E. (11.16)

We can use the ellipsoid method introduced in Section 4.3 to solve the linear program by
giving a polynomial-time separation oracle. It is easy to check that the constraints (11.13),

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.2 Minimum-cost bounded-degree spanning trees 287

(11.15), and (11.16) are satisfied. To check that the constraints (11.14) are satisfied, we need to
set up a sequence of maximum flow problems. We first explain the general max-flow construc-
tion, and then we modify it to check the constraints (11.14). We create a new graph G′ where
we add source and sink vertices s and t, edges (s, v) from the source to every vertex v ∈ V , and
edges (v, t) from every vertex v ∈ V . The capacity of every edge e from G is 1

2xe, the capacity
of every edge (s, v) is 1

2

∑
e∈δ(v) xe, and the capacity of every edge (v, t) is 1. Then consider the

capacity of any s-t cut S ∪{s} for S ⊆ V . It contains edges (v, t) for all v ∈ S, all e ∈ δ(S)∩E
and (s, v) for all v /∈ S. So its total capacity is

|S|+ 1

2

∑
e∈δ(S)

xe +
1

2

∑
v/∈S

∑
e∈δ(v)

xe = |S|+
∑

e∈δ(S)

xe +
∑

e∈E(V−S)

xe,

since adding up 1
2xe for each e ∈ δ(v) where v /∈ S gives xe for all edges e with both endpoints

not in S plus 1
2xe for all edges e with exactly one endpoint not in S. Using the fact that∑

e∈E xe = |V | − 1, this is equal to

|S|+ |V | − 1−
∑

e∈E(S)

xe = |V |+ (|S| − 1)−
∑

e∈E(S)

xe.

Thus the capacity of this cut is at least |V | if and only if
∑

e∈E(S) xe ≤ |S| − 1. We want to
make sure |S| ≥ 2, so for each pair x, y ∈ V , we construct the max-flow instance as above, but
alter the capacity of the edges (s, x) and (s, y) to be infinite. This ensures that any minimum
s-t cut S ∪ {s} has x, y ∈ S. Then by the reasoning above, the value of the maximum flow for
this instance will be at least |V | if and only if constraints (11.14) are satisfied for all S ⊇ {x, y}.
If the flow is at least |V | for all pairs x, y ∈ V , then all constraints (11.14) are satisfied. If the
flow value is less than |V |, then the corresponding minimum s-t cut S ∪{s} will give a violated
constraint.

We assume from here on that there is a feasible solution to this linear program. If there is
no feasible solution, then obviously there is no tree in the graph G that has the given degree
bounds.

As a warmup to the algorithm and its approach, we first show that if we have no degree
bounds (that is, W = ∅), then we can find a spanning tree of cost no more than the value of
the linear program (11.12); this gives us a minimum spanning tree. Given an LP solution x,
define E(x) to be the support of x; that is, E(x) = {e ∈ E : xe > 0}. The algorithm for finding
a minimum spanning tree depends on the following lemma. We defer the proof of the lemma
for the moment.

Lemma 11.3: For any basic feasible solution x to the linear program (11.12) with W = ∅, there
is some v ∈ V such that there is at most one edge of E(x) incident on v.

Our algorithm then works as follows. We maintain a set of edges F for our solution, which
is initially empty. While there is more than one vertex in the current graph, we solve the linear
program (11.12) for the current graph G = (V,E), and obtain a basic optimal solution x. We
remove from the edge set E all edges e for which xe = 0. By Lemma 11.3, there exists some
vertex v ∈ V such that there is at most one edge of E(x) incident on it; suppose the edge
is (u, v). Then we add (u, v) to our solution set F , remove v and (u, v) from the graph, and
repeat. Intuitively, each iteration finds a leaf v of the spanning tree, then recursively finds the
rest of it. The algorithm is summarized in Algorithm 11.1.

Theorem 11.4: Algorithm 11.1 yields a spanning tree of cost no more than the value of the
linear program (11.12).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

288 Further uses of deterministic rounding of linear programs

F ← ∅
while |V | > 1 do

Solve LP (11.12) on (V,E), get basic optimal solution x
E ← E(x)
Find v ∈ V such that there is one edge (u, v) in E(x) incident on v
F ← F ∪ {(u, v)}
V ← V − {v}
E ← E − {(u, v)}

return F

Algorithm 11.1: Deterministic rounding algorithm for finding a minimum-cost spanning tree.

Proof. We begin by showing that if the edge e∗ is chosen to add to F in some iteration of the
algorithm, then xe∗ = 1 in that iteration. To prove this, we first claim that

∑
e∈δ(w) xe ≥ 1 for

any vertex w ∈ V . Then for the edge e∗ = (u, v) chosen by the algorithm, we know that there is
one edge in E(x) incident on v, and therefore xe∗ ≥ 1. To see that

∑
e∈δ(v) xe ≥ 1, note that for

S = V −{v}, the LP constraint (11.14) enforces that
∑

e∈E(S) xe ≤ |S|−1 = (|V |−1)−1 = |V |−
2. But

∑
e∈E xe = |V | − 1 by constraint (11.13) and also

∑
e∈δ(v) xe =

∑
e∈E xe −

∑
e∈E(S) xe.

Therefore
∑

e∈δ(v) xe ≥ (|V | − 1) − (|V | − 2) = 1. Now consider the constraint (11.14) for
S = {u, v}. This enforces xe∗ ≤ 1, so it must be the case that xe∗ = 1.

We now prove by induction on the size of the graph that the algorithm produces a spanning
tree of cost no more than the value of the linear program. In the base case, we have a graph
with two vertices, and the algorithm returns a single edge e. By the above, we have xe = 1, so
that the value of the LP is at least cexe = ce, and the statement holds. Now suppose that the
statement holds for every graph with at most k > 2 vertices, and our graph has k + 1 vertices.
We solve the LP, get a solution x, and find a vertex v such that there is only one edge e∗ = (u, v)
in E(x) incident on v. Let V ′ = V − {v}, and E′ = E(x)− {e∗}. By the inductive hypothesis,
we will find a spanning tree F ′ on (V ′, E′) of cost at most the value of the LP on (V ′, E′); let x′

be an optimal solution to this LP. Obviously F ′ ∪ {e∗} is a spanning tree of (V,E), so that the
algorithm returns a spanning tree. To show that its cost is at most

∑
e∈E cexe, we shall show

that xe for e ∈ E′ is a feasible solution to the LP on (V ′, E′). It then follows that the cost of
the spanning tree returned is∑

e∈F ′

ce + ce∗ ≤
∑
e∈E′

cex
′
e + ce∗xe∗ ≤

∑
e∈E′

cexe + ce∗xe∗ =
∑
e∈E

cexe,

as desired.

We now must show that xe for e ∈ E′ is a feasible solution to the LP on (V ′, E′). Since the LP
constraints (11.14) for (V ′, E′) are a subset of the constraints for (V,E), x is feasible for them.
Thus we only need to show that the first constraint holds, namely

∑
e∈E′ xe = |V ′|−1 = |V |−2.

This follows since the only edges in E − E′ are e∗, which has xe∗ = 1, and edges such that
xe = 0. Thus

∑
e∈E′ xe =

∑
e∈E xe−xe∗ = (|V | − 1)− 1 = |V ′| − 1, and xe for e ∈ E′ is feasible

for the LP on (V ′, E′).

Now we return to the minimum-cost bounded-degree spanning tree problem. Recall that we
have a subset of vertices W such that we wish to find a tree with the degree of v at most bv for
all v ∈W . We cannot hope for a result as strong as that of Lemma 11.3 for this problem, since
we would be able to translate this into an algorithm to find an optimal tree. Instead, we will

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.2 Minimum-cost bounded-degree spanning trees 289

F ← ∅
while |V | > 1 do

Solve LP (11.12) on (V,E) and W , get basic optimal solution x
E ← E(x)
if ∃ a v ∈ V such that there is one edge (u, v) in E(x) incident on v then

F ← F ∪ {(u, v)}
V ← V − {v}
E ← E − {(u, v)}
if u ∈W then

bu ← bu − 1
else
∃ a v ∈W such that there are at most three edges in E(x) incident on v
W ←W − {v}

return F

Algorithm 11.2: Deterministic rounding algorithm for finding a minimum-cost bounded-degree spanning tree.

be able to show the following. This will lead to a result in which degree bounds are exceeded
by at most two.

Lemma 11.5: For any basic feasible solution x to the linear program (11.12), either there is
some v ∈ V such that there is at most one edge of E(x) incident on v, or there is some v ∈W
such that there are at most three edges of E(x) incident on v.

Note that Lemma 11.3 is a special case of this lemma; the second possibility cannot occur
when W = ∅. We again defer the proof of this lemma, and instead show how it leads to the
desired algorithm. As before, we maintain a solution set F , which is initially empty. We solve
the linear program for the current graph (V,E) and current bound set W , and obtain a basic
optimal solution x. We remove all edges e with xe = 0 from the edge set. If, as before, there
is some v ∈ V such that there is at most one edge (u, v) in E(x) incident on v, we add (u, v)
to F , remove v from V , and remove (u, v) from E. If u ∈ W , we also decrease bu by one. We
then iterate. If instead, there is some v ∈ W such that there are at most three edges of E(x)
incident on v, we remove v from W and repeat. The algorithm is summarized in Algorithm
11.2.

We can now prove the following.

Theorem 11.6: Algorithm 11.2 produces a spanning tree F such that the degree of v in F is
at most bv +2 for v ∈W , and such that the cost of F is at most the value of the linear program
(11.12).

Proof. In each step of the algorithm, we either add a spanning tree edge to F , or we remove a
vertex from W . Thus the algorithm will terminate in at most (n− 1) + n = 2n− 1 iterations.

Observe that the proof that the algorithm returns a spanning tree whose cost is at most
the value of the linear program is almost identical to that of Theorem 11.4. In that proof
we considered the graph (V ′, E′) resulting from adding an edge (u, v) to our solution F , then
removing v and (u, v) from the graph. We showed that the LP solution x for the graph (V,E)
is feasible for the new graph (V ′, E′) when restricted to the edges in E′. Here we also need to
consider the set of degree bounds W , and show that x is feasible for the new graph (V ′, E′) and
the new degree bounds after bu has been decreased by one. If x was feasible for the constraints
(11.15) before, then

∑
e∈δ(u) xe ≤ bu. Thus after edge e = (u, v) with xe = 1 is removed from

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

290 Further uses of deterministic rounding of linear programs

Figure 11.2: Top: two intersecting sets. Bottom: A laminar collection of sets.

the graph, the solution x restricted to the remaining edges in E′ will be feasible for the same
constraint on the new graph (V ′, E′) with the degree bound bu − 1.

Now consider any vertex v initially in W . We show by induction on the algorithm that
the degree of v in the solution F is at most bv + 2. In each iteration, one of three things can
happen. First, we can choose an edge incident on v and decrease bv by 1, in which case the
statement follows by induction. Second, we can choose an edge incident on v and remove v
from the graph; in this case, we must have had bv ≥ 1 in order to have a feasible solution to
the LP, so the statement holds. Third, we can remove v from W . In this case, we must have
bv ≥ 1 in order for there to be any edges in E(x) incident on v; yet there are at most 3 edges
in E(x) incident on v. Thus, in all future iterations we can add at most three edges incident
on v, since all edges not in E(x) are removed from the graph for all future iterations. Thus, v
will have degree at most bv + 2.

We can now turn to the proof of Lemma 11.5. In order to do this, we will need to introduce
some definitions and notation. From here on, for the given solution x, we assume that all edges
e such that xe = 0 have been removed from the edge set; that is, E = E(x).

Definition 11.7: For x ∈ ℜ|E| and a subset of edges F , we define x(F) =
∑

e∈F xe.

Definition 11.8: For a solution x to LP (11.12), we say that a constraint (11.14) corresponding
a set S ⊆ V , |S| ≥ 2, is tight if x(E(S)) = |S| − 1. A constraint (11.15) corresponding to a
vertex v ∈W is tight if x(δ(v)) = bv.

We may also say that the set S ⊆ V is tight if x(E(S)) = |S| − 1 or that the vertex v is
tight if x(δ(v)) = bv.

Definition 11.9: We say two sets A and B are intersecting if A ∩ B, A − B, and B − A are
all nonempty.

Definition 11.10: We say a collection of sets S is laminar if no pair of sets A,B ∈ S are
intersecting.

See Figure 11.2 for an example of intersecting sets and laminar set collections.

Definition 11.11: For a subset of edges F ⊆ E, the characteristic vector of F is χF ∈ {0, 1}|E|,
where χF (e) = 1 if e ∈ F and 0 otherwise.

We are now able to state the following theorem, which we will need to prove Lemma 11.5.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.2 Minimum-cost bounded-degree spanning trees 291

Theorem 11.12: For any basic feasible solution x to the linear program (11.12), there is a set
Z ⊆W and a collection L of subsets of vertices with the following properties:

1. For all S ∈ L, |S| ≥ 2 and S is tight, and for all v ∈ Z, v is tight.

2. The vectors χE(S) for S ∈ L and χδ(v) for v ∈ Z are linearly independent.

3. |L|+ |Z| = |E|.

4. The collection L is laminar.

We will defer the proof of this theorem for a moment, and will next show how Lemma 11.5
can be derived from the theorem. First, however, we observe that for any basic feasible solution
x to the LP, there is a collection of sets S and set Y ⊆ W such that the first three properties
hold for S and Y ; the key statement of the theorem is the last property which states that for any
basic feasible solution, there is a laminar collection of such sets. A basic solution is formed by
taking |E| linearly independent constraints from the linear program, setting them at equality,
and solving the resulting linear system. This is precisely what the first two properties state.
The third property states that the number of constraints set to equality is equal to the number
of nonzero variables (recall that we have assumed that E = E(x)).

We first need the following short lemma.

Lemma 11.13: Let L be a laminar collection of subsets of V , where each S ∈ L has |S| ≥ 2.
Then |L| ≤ |V | − 1.

Proof. We can prove this by induction on the size of |V |. For the base case |V | = 2, obviously
L can contain only one set of cardinality 2. For |V | > 2, pick a minimum cardinality set R in
L. Let V ′ be V with all but one vertex of R removed, and let L′ be the sets in L restricted to
the elements of V ′, with the set R removed. Note that L′ fulfills the conditions of the lemma; it
is still laminar, and any set must contain at least two elements. So |L′| ≤ |V ′|− 1 by induction,
and since |L′| = |L| − 1 and |V ′| ≤ |V | − 1, the lemma statement follows.

Now we recall the statement of Lemma 11.5, and give its proof.

Lemma 11.5: For any basic feasible solution x to the linear program (11.12), either there is
some v ∈ V such that there is at most one edge of E(x) incident on v, or there is some v ∈W
such that there are at most three edges of E(x) incident on v.

Proof. We prove the statement by contradiction. If the statement is not true, then for every
vertex v ∈ V , there are at least two edges of E(x) incident on it, and for every v ∈ W , there
are at least four edges of E(x) incident on it. Then it must be the case that

|E(x)| ≥ 1

2
(2(|V | − |W |) + 4|W |) = |V |+ |W |.

However, by Theorem 11.12, we know that |E(x)| = |L|+|Z| ≤ |L|+|W | for laminar L. Since
each set S ∈ L has cardinality at least two, by Lemma 11.13, we get that |E(x)| ≤ |V |−1+ |W |,
which is a contradiction.

Finally, we can turn to the proof of Theorem 11.12. The basic idea of the proof is simple, and
has proven enormously useful in a number of different contexts. We start out with a collection
of sets S that may not be laminar, and as long as we have two intersecting sets S, T ∈ S, we
show that we can “uncross” them and replace them with two non-intersecting sets. A first step
in this proof is to show the following.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

292 Further uses of deterministic rounding of linear programs

Lemma 11.14: If S and T are tight sets such that S and T are intersecting, then S ∪ T and
S ∩ T are also tight sets. Furthermore,

χE(S) + χE(T) = χE(S∪T) + χE(S∩T).

Proof. We begin by showing that x(E(S)) is supermodular; namely,

x(E(S)) + x(E(T)) ≤ x(E(S ∩ T)) + x(E(S ∪ T)).

This follows by a simple counting argument: any edge in E(S) or in E(T) is in E(S ∪T), while
any edge in both E(S) and E(T) appear both in E(S ∩ T) and E(S ∪ T). The right-hand side
may be greater than the left-hand side since edges with one endpoint in S−T and the other in
T − S appear in E(S ∪ T) but not in E(S) or E(T).

Since S and T are intersecting, S ∩ T ̸= ∅. Thus by the feasibility of x

(|S| − 1) + (|T | − 1) = (|S ∩ T | − 1) + (|S ∪ T | − 1) ≥ x(E(S ∩ T)) + x(E(S ∪ T)).

By supermodularity,

x(E(S ∩ T)) + x(E(S ∪ T)) ≥ x(E(S)) + x(E(T)).

Finally, since S and T are tight sets,

x(E(S)) + x(E(T)) = (|S| − 1) + (|T | − 1).

Thus all of these inequalities must be met with equality, and S ∩ T and S ∪ T are tight sets.
Furthermore, as x(E(S ∩ T)) + x(E(S ∪ T)) = x(E(S)) + x(E(T)), it must be the case that
χE(S) + χE(T) = χE(S∪T) + χE(S∩T), since we have assumed that the only edges in E have
xe > 0.

Let T be the collection of all tight sets for the LP solution x; that is, T = {S ⊆ V :
x(E(S)) = |S| − 1, |S| ≥ 2}. Let span(T) be the span of the set of vectors {χE(S) : S ∈ T }.
We now show that we can find a laminar collection of sets with span at least that of T .

Lemma 11.15: There exists a laminar collection of sets L such that span(L) ⊇ span(T), where
each S ∈ L is tight and has |S| ≥ 2, and the vectors χE(S) for S ∈ L are linearly independent.

Proof. Let L be a laminar collection of sets such that each S ∈ L is tight and has |S| ≥ 2,
and the vectors χE(S) for S ∈ L are linearly independent. We assume that L is the maximal
such collection; that is, we cannot add any additional sets to L such that all of these properties
continue to hold. We will give a proof by contradiction that span(L) ⊇ span(T); assume
otherwise. Then there must be a tight set S with |S| ≥ 2 such that χE(S) ∈ span(T) and
χE(S) /∈ span(L); we choose an S such that there is no other such set intersecting fewer sets
in L. Note that such an S must be intersecting with at least one set in L, otherwise L is not
maximal.

Now pick a set T ∈ L such that S and T intersect. By Lemma 11.14, χE(S) + χE(T) =
χE(S∩T) + χE(S∪T) and both S ∩ T and S ∪ T are tight. We will argue that it cannot be the
case that both χE(S∩T) ∈ span(L) and χE(S∪T) ∈ span(L). We know that T ∈ L so that
χE(T) ∈ span(L), and we know that χE(S) = χE(S∩T) +χE(S∪T)−χE(T). Thus if both χE(S∪T)

and χE(S∩T) are in span(L), this implies χE(S) ∈ span(L), which contradicts our assumption
that χE(S) /∈ span(L). Hence at least one of χE(S∩T) and χE(S∪T) is not in span(L).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.2 Minimum-cost bounded-degree spanning trees 293

S
T

Figure 11.3: Proof of Lemma 11.15. The only sets from the laminar collection L, with
T ∈ L, that can intersect S ∩ T must also intersect S.

Without loss of generality, suppose that χE(S∩T) /∈ span(L); note that this implies that
χE(S∩T) ̸= 0, so that |S ∩ T | ≥ 2. We claim that S ∩ T must intersect fewer sets in L than
S, and with this claim, we contradict the choice of S, since S ∩ T is tight, |S ∩ T | ≥ 2, and
χE(S∩T) /∈ span(L). To prove the claim, we observe that any set in the laminar collection L
intersecting S ∩ T must also intersect S; see Figure 11.3. However, S intersects T , while S ∩ T
does not intersect T , so S ∩ T must intersect fewer sets in L than S.

We can now give the proof of Theorem 11.12, which we restate here.

Theorem 11.12: For any basic feasible solution x to the linear program (11.12), there is a set
Z ⊆W and a collection L of subsets of vertices with the following properties:

1. For all S ∈ L, |S| ≥ 2 and S is tight, and for all v ∈ Z, v is tight.

2. The vectors χE(S) for S ∈ L and χδ(v) for v ∈ Z are linearly independent.

3. |L|+ |Z| = |E|.

4. The collection L is laminar.

Proof. As we said previously, we know that there exists a collection S and set Y ⊆ W that
have the first three properties of the theorem. Let span(S, Y) be the span of the set of vectors
{χE(S) : S ∈ S} ∪ {χδ(v) : v ∈ Y }. Since there are |E| linearly independent vectors in this

set and the vectors have |E| coordinates, clearly span(S, Y) = ℜ|E|. By Lemma 11.15, if
T is the set of all tight sets, then there exists a laminar collection of tight sets L such that
span(L) ⊇ span(T). Since S ⊆ T , then ℜ|E| = span(S, Y) ⊆ span(T , Y) ⊆ span(L, Y) ⊆ ℜ|E|,
so that span(S, Y) = span(L, Y) = ℜ|E|. From the proof of Lemma 11.15 the vectors χE(S) for
all S ∈ L are linearly independent. We now let Z = Y , and as long as there exists some v ∈ Z
such that χδ(v) ∈ span(L, Z − v), we remove v from Z. Note that span(L, Z) never decreases,

and so the span is always ℜ|E|. When this process terminates, the vectors χE(S) for S ∈ L and

χδ(v) for v ∈ Z must be linearly independent, and furthermore since their span is ℜ|E|, we must
have |E| = |L|+ |Z|.

To summarize, we have been able to show that we can find a spanning tree of cost at most
OPT such that each node v ∈W has degree at most bv +2. To do this, we used the properties

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

294 Further uses of deterministic rounding of linear programs

while W ̸= ∅ do
Solve LP (11.12) on (V,E), W , get basic optimal solution x
E ← E(x)
Select v ∈W such that there are at most bv + 1 edges in E incident on v
W ←W − {v}

Compute minimum-cost spanning tree F on (V,E)
return F

Algorithm 11.3: Deterministic rounding algorithm for finding a minimum-cost bounded-degree spanning tree.

of a basic feasible solution; we showed that the basic optimal solution has structure in terms
of a laminar collection of tight sets. This structure allows us to prove Lemma 11.5, which,
informally speaking, states that either we can find a leaf of the tree or some node v ∈ W that
will have degree at most bv + 2. The lemma leads naturally to an algorithm for finding the
desired tree.

We now give an algorithm that finds a spanning tree of cost at most OPT such that each
node v ∈W has degree at most bv +1. As with the previous algorithm, we find a basic optimal
solution of a linear programming relaxation of the problem. The key to the algorithm is proving
a stronger version of Lemma 11.5: we show that if W ̸= ∅, we can find some v ∈ W such that
there are at most bv + 1 edges of E(x) incident on v. Thus in our new algorithm, we will
show that we will be able to remove degree bounds from the linear programming relaxation
until none are left, in such a way that the cost of the solution to the corresponding relaxation
does not increase. When all the degree bounds are removed, we will have a solution to the
linear programming relaxation of the minimum spanning tree problem, and we previously saw
in Theorem 11.4 that we can find a minimum spanning tree of cost at most the value of the
linear programming relaxation.

As before, we define E(x) = {e ∈ E : xe > 0}. Our algorithm will depend on the following
lemma, whose proof we defer for a moment.

Lemma 11.16: For any basic feasible solution x to the linear program (11.12) in which W ̸= ∅,
there is some v ∈W such that there are at most bv + 1 edges incident on v in E(x).

Given the lemma, the algorithm is relatively straightforward. We solve the LP relaxation
to obtain a basic optimal solution. All edges e ∈ E such that xe = 0 are removed from E. If
W ̸= ∅, the lemma states that there must exist some v ∈W such that there are at most bv + 1
edges in E(x). We remove v from W , since we know that when we obtain the minimum-cost
spanning tree F , there can be at most bv + 1 edges of F incident on v. If W = ∅, then by
Theorem 11.4, we can compute a minimum spanning tree of cost at most the value of the linear
programming relaxation. The algorithm is summarized in Algorithm 11.3. The following proof
of the correctness of the algorithm is then not difficult.

Theorem 11.17: Algorithm 11.3 produces a spanning tree F such that the degree of v in F is
at most bv +1 for v ∈W , and such that the cost of F is at most the value of the linear program
(11.12).

Proof. As in the proofs of Theorems 11.4 and 11.6, we show by induction that in each iteration,
the LP solution xe on (V,E) and W is feasible for the input (V,E′) and W ′ for the next
iteration. It is easy to see this since any time we remove an edge e from E, xe = 0, which does
not affect the feasibility of the solution. Also, we only remove vertices from W , imposing fewer

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.2 Minimum-cost bounded-degree spanning trees 295

constraints. Thus the cost of the optimal LP solution on the input (V,E′) and W ′ is no greater
than that on the input (V,E) and W .

Since we remove a vertex v from W in each iteration, eventually W = ∅, and the algorithm
computes a minimum spanning tree F on the final set of edges. By Theorem 11.4, this cost is
at most the cost of the final linear programming solution. Since the value of the linear program
never increases as we modify E and W , the cost of the minimum spanning tree is at most the
value of initial linear program (11.12).

Furthermore, we removed v from W only if there were at most bv +1 edges remaining in E
incident on v. Thus the computed spanning tree can have at most degree bv +1 for each vertex
v in the initial set W .

We now turn to the proof of Lemma 11.16. As before, for the basic feasible solution x, we
use the existence of a laminar collection L and a set of vertices Z as given in Theorem 11.12.
We also need the following lemma.

Lemma 11.18: For any e ∈ E such that xe = 1, χe ∈ span(L).

Proof. By the proof of Theorem 11.12, the laminar collection L is such that span(L) ⊇ span(T),
where T is the collection of all tight sets. Notice that if xe = 1 for e = (u, v), then the set S =
{u, v} is tight, since xe = x(E(S)) = |S| − 1 = 1. Thus χe = χE(S) ∈ span(T) ⊆ span(L).

We now restate Lemma 11.16 and give its proof.

Lemma 11.16: For any basic feasible solution x to the linear program (11.12) in which W ̸= ∅,
there is some v ∈W such that there are at most bv + 1 edges incident on v in E(x).

Proof. Assume the statement of the lemma is false, so that there are at least bv + 2 edges in E
incident on every v ∈ Z, with W ̸= ∅. We derive the contradiction via a charging scheme, in
which we assign each v ∈ Z and each S ∈ L a certain nonnegative charge, possibly fractional.
We will then show by the falsity of the lemma statement, each v ∈ Z and each S ∈ L receives a
charge of at least one. This will imply that the total charge is at least |Z|+ |L| = |E|. However,
we will also show that the total charge assigned must have been strictly less than |E|, giving
the contradiction. Thus there must exist some v ∈ W ̸= ∅ such that there are at most bv + 1
edges of E incident on v.

To carry out our charging scheme, for each e ∈ E we assign a charge of 1
2(1 − xe) to each

endpoint of e that is in Z, and we assign a charge of xe to the smallest S ∈ L that contains
both endpoints of e, if such an S exists. Note then that have assigned a total charge of at most
(1− xe) + xe = 1 per edge e ∈ E.

Now we show that each v ∈ Z and each S ∈ L receives a charge of at least one. Each v ∈ Z
receives a charge of 1

2(1 − xe) from each edge of E incident on it. By hypothesis, there are at
least bv + 2 edges incident on v. Since v ∈ Z implies v is tight, we know that

∑
e∈δ(v) xe = bv.

Thus the total charge received by v is at least one, since

∑
e∈δ(v)

1

2
(1− xe) =

1

2

|δ(v)| − ∑
e∈δ(v)

xe


≥ 1

2
[(bv + 2)− bv]

= 1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

296 Further uses of deterministic rounding of linear programs

Now consider a set S ∈ L. If S contains no other set C ∈ L, then since S is a tight set,∑
e∈E(S) xe = |S| − 1, and the total charge assigned to S is |S| − 1. Since |S| ≥ 2, the total

charge assigned to S is at least one. Now suppose that S contains some C ∈ L. We call a set
C ∈ L a child of S if it is strictly contained in S, and no other set C ′ ∈ L that contains C is
also strictly contained in S. Let C1, . . . , Ck be the children of S. Recalling that the sets S and
C1, . . . , Ck are tight, we have that x(E(S)) = |S| − 1 and x(E(Ci)) = |Ci| − 1 and thus are
integral. Furthermore, the E(Ci) are disjoint and are contained in E(S) by the laminarity of
L. Hence the total charge assigned to S is

x(E(S))−
k∑

i=1

x(E(Ci)) ≥ 0.

However, it cannot be the case that E(S) =
∪k

i=1E(Ci) since then χE(S) =
∑k

i=1 χE(Ci),
which violates the second property of Theorem 11.12, which says that these vectors are linearly
independent. Thus it must be the case that the total charge assigned to S is

x(E(S))−
k∑

i=1

x(E(Ci)) > 0,

and since

x(E(S))−
k∑

i=1

x(E(Ci)) = (|S| − 1)−
k∑

i=1

(|Ci| − 1)

is integral, the difference must be at least one. Therefore at least one unit of charge is assigned
to S.

Finally we show that the total charge is strictly less than |E| via a three-case argument.
First, if V /∈ L, then there must exist some edge e such that e /∈ E(S) for all S ∈ L. The charge
xe > 0 is not made to any set, so that the total charge is strictly less than |E|. Second, if there
exists some e = (u, v) ∈ E with xe < 1 such that one of its two endpoints is not in Z (say
u /∈ Z), then the charge of 1

2(1−xe) > 0 is not made to u, and again the total charge is strictly
less than |E|. Finally, suppose that V ∈ L and for any e ∈ E with xe < 1, both endpoints of
e are in Z. We will show that this case gives rise to a contradiction, so one of the first two
cases must occur. We observe that

∑
v∈Z χδ(v) = 2χE(Z) + χδ(Z) and by hypothesis, each edge

e ∈ δ(Z)∪E(V −Z) has xe = 1. Now we show that we can express 2χE(Z) + χδ(Z) by the sum
of vectors χE(S) for S ∈ L, which will contradict the linear independence of the vectors χE(S)

for S ∈ L and χδ(v) for v ∈ Z. By Lemma 11.18, for any e ∈ δ(Z) ∪ E(V − Z), χe ∈ span(L)
since xe = 1. Thus

∑
v∈Z χδ(v) = 2χE(Z)+χδ(Z) = 2χE(V)− 2

∑
e∈E(V−Z) χe−

∑
e∈δ(Z) χe, and

every term on the right-hand side is in span(L); this proves that χδ(v) for v ∈ Z and χE(S) for
S ∈ L are linearly dependent, which is a contradiction.

In summary, we have been able to show the we can find a spanning tree of cost at most
OPT with degree at most bv + 1 for v ∈ W . We did this by proving a lemma showing that a
basic feasible solution x to the linear programming relaxation of the problem must have some
v ∈W such that at most bv+1 edges of E(x) are incident on v. The proof of this lemma, given
above, uses the structure of the basic feasible solution as a laminar collection of tight sets, as
well a charging scheme that uses fractional charges. In the next section we will use many of
these same ideas in giving an approximation algorithm for another network design problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.3 Survivable network design and iterated rounding 297

11.3 Survivable network design and iterated rounding

In this section, we turn to a generalization of the generalized Steiner tree problem which was
introduced in Section 7.4. This problem is called the survivable network design problem. In
this problem, we are given as input an undirected graph G = (V,E), costs ce ≥ 0 for all
e ∈ E, and connectivity requirements rij for all pairs of vertices i, j ∈ V , where i ̸= j. The
connectivity requirements are nonnegative integers. The goal is to find a minimum-cost set of
edges F ⊆ E such that for all pairs of vertices i, j with i ̸= j, there are at least rij edge-disjoint
paths connecting i and j in (V, F). The generalized Steiner tree problem is a special case of the
survivable network design problem in which all rij ∈ {0, 1}.

The survivable network design problem is motivated by the telecommunications industry.
We wish to design low-cost networks that can survive failures of the edges. In the case of rij−1
edge failures, vertices i and j will still be connected in the resulting set of edges. We may
wish to have certain pairs of vertices to be highly connected, with others with connectivity
requirement 1 if it is not as crucial that they be connected in case of failures.

The problem can be modelled by the following integer program:

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe ≥ max
i∈S,j /∈S

rij , ∀S ⊆ V,

xe ∈ {0, 1} , ∀e ∈ E.

Consider any pair of vertices i, j with i ̸= j, and a set of edges F . By the maxflow/mincut
theorem, there are at least rij edge-disjoint paths connecting i and j in (V, F) if and only if
every cut S separating i and j contains at least rij edges of F ; that is, |δ(S)∩F | ≥ rij . Hence,
a set of edges F is feasible if and only if |δ(S) ∩ F | ≥ maxi∈S,j /∈S rij for all S ⊆ V , which is
exactly the constraint imposed by the integer program.

Note that this insight can be used to solve the following linear programming relaxation in
polynomial time:

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe ≥ max
i∈S,j /∈S

rij , ∀S ⊆ V,

0 ≤ xe ≤ 1, ∀e ∈ E.

We use the ellipsoid method introduced in Section 4.3 with the following separation oracle.
Given a solution x, we first check that 0 ≤ xe ≤ 1 for all edges e ∈ E. We then create a max-
flow instance for each pair of vertices i, j, i ̸= j, with the capacity of each edge set to xe. If the
maximum flow that can be sent from i to j is at least rij for each i, j ∈ V , then by the argument
above, we know that all the constraints are satisfied. If for some i, j, the maximum flow is less
than rij , then there must be some cut S with i ∈ S, j /∈ S, such that

∑
e∈δ(S) xe < rij , giving

a violated constraint.

It will be useful to consider a more general form of the linear program above. We will
consider the following linear program with functions f on the vertex set such that f(S) is an

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

298 Further uses of deterministic rounding of linear programs

integer for all S ⊆ V :

minimize
∑
e∈E

cexe (11.17)

subject to
∑

e∈δ(S)

xe ≥ f(S), ∀S ⊆ V,

0 ≤ xe ≤ 1 ∀e ∈ E.

Clearly the linear programming relaxation of the survivable network design problem corresponds
to the case f(S) = maxi∈S,j /∈S rij .

We will consider functions f that are weakly supermodular.

Definition 11.19: A function f : 2V → Z is weakly supermodular if f(∅) = f(V) = 0, and
for each two sets A,B ⊆ V , one of the following two statements holds:

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B), (11.18)

f(A) + f(B) ≤ f(A−B) + f(B −A). (11.19)

The function f that we use for the survivable network design problem falls into this class.

Lemma 11.20: The function f(S) = maxi∈S,j /∈S rij is weakly supermodular.

Proof. Trivially f(∅) = f(V) = 0. We observe that f(S) = f(V − S) for any S ⊆ V . Also, for
any disjoint A,B, f(A∪B) ≤ max(f(A), f(B)): choose i ∈ A∪B and j /∈ A∪B attaining the
maximum maxi∈A∪B,j /∈A∪B rij that defines f(A∪B). Then either i ∈ A and j /∈ A or i ∈ B and
j /∈ B, so that max(f(A), f(B)) ≥ rij = f(A∪B). We then observe that f obeys the following
four inequalities:

f(A) ≤ max(f(A−B), f(A ∩B));

f(A) = f(V −A) ≤ max(f(B −A), f(V − (A ∪B))) = max(f(B −A), f(A ∪B));

f(B) ≤ max(f(B −A), f(A ∩B));

f(B) = f(V −B) ≤ max(f(A−B), f(V − (A ∪B)) = max(f(A−B), f(A ∪B)).

Then summing together the two inequalities involving the minimum of f(A − B), f(B − A),
f(A ∪ B), and f(A ∩ B) gives the desired result; so, for instance, if f(A − B) achieves the
minimum of the four values, then we sum the first and last inequalities, which then implies
f(A) + f(B) ≤ f(A ∪B) + f(A ∩B).

We now state a remarkable theorem that will allow us to obtain a 2-approximation algorithm
for the survivable network design problem. We will first show how the theorem gives the
approximation algorithm, then turn to the proof of the theorem.

Theorem 11.21: For any basic feasible solution x to the linear program (11.17) such that f is
a weakly supermodular function, there exists some edge e ∈ E such that xe ≥ 1/2.

Given the theorem, we have the following rather simple idea for an approximation algorithm
for the survivable network design problem: we solve the linear programming relaxation, find
all edges whose LP value is at least 1/2, and include them in our solution. We fix the value of
these variables to 1, resolve the linear program, and repeat the process until we have a feasible
solution to the problem. Intuitively, we are always rounding variables up by at most a factor

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.3 Survivable network design and iterated rounding 299

F ← ∅
i← 1
while F is not a feasible solution do

Solve LP (11.17) on edge set E − F with function fi, where
fi(S) = f(S)− |δ(S) ∩ F |, to obtain basic optimal solution x

Fi ← {e ∈ E − F : xe ≥ 1/2}
F ← F ∪ Fi

i← i+ 1
return F

Algorithm 11.4: Deterministic rounding algorithm for the survivable network design problem.

of 2, which will lead to the performance guarantee of 2. There are a number of details to be
taken care of, but this is the main idea.

We state the algorithm more formally in Algorithm 11.4. We let F be the set of edges in the
solution; F is initially empty. In the ith iteration of the algorithm, we solve the linear program
(11.17) on edge set E −F with the function fi, where fi(S) = f(S)− |δ(S)∩F |. Given a basic
optimal solution to this linear program, we set Fi = {e ∈ E − F : xe ≥ 1/2}, and add Fi to
F . Because we iteratively round up the LP solution to create the final feasible solution, this
technique is called iterated rounding.

To show that the algorithm works, we must show that each function fi is again weakly
supermodular, so that Theorem 11.21 applies; this will imply that Fi ̸= ∅ in each iteration,
and thus there are at most |E| iterations before the algorithm terminates. We will also need
to show that we can solve the linear program in each iteration. We start with the following
lemma, which will be useful in showing that the fi are weakly supermodular.

Lemma 11.22: Pick any ze ≥ 0 for all e ∈ E, and let z(E′) =
∑

e∈E′ ze for any E′ ⊆ E. Then
for any subsets A,B ⊆ V ,

z(δ(A)) + z(δ(B)) ≥ z(δ(A ∪B)) + z(δ(A ∩B))

and
z(δ(A)) + z(δ(B)) ≥ z(δ(A−B)) + z(δ(B −A)).

Proof. The proof is a simple counting argument; to prove each inequality, we show that an edge
included in the sums on the right-hand side of the inequalities appears at least as many times
on the left-hand side. See Figure 11.4 for an illustration. For instance, any edge whose two
endpoints are in A − B and V − (A ∪ B) appears in δ(A ∪ B), δ(A − B), and δ(A), but not
δ(A ∩ B), δ(B − A), or δ(B). Thus it is included once in the right-hand side and left-hand
side of the first inequality, and once in the right-hand side and left-hand side of the second
inequality. We simply need to check all possible cases for the four different places in which the
two different endpoints of an edge can be. We note that an edge whose two endpoints are in
A−B and B−A appears twice on the left-hand side of the first inequality, but not at all on the
right-hand side; similarly, an edge whose two endpoints are in A ∩B and V − (A ∪B) appears
twice on the left-hand side of the second inequality, but not on the right-hand side; thus the
inequalities can be strict.

Lemma 11.23: For any F ⊆ E, the function fi(S) = f(S)−|δ(S)∩F | is weakly supermodular
if f is weakly supermodular.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

300 Further uses of deterministic rounding of linear programs

A B

Figure 11.4: Proof of Lemma 11.22.

Proof. Set ze = 1 if e ∈ F and ze = 0 otherwise. Then it is equivalent to show that fi is
weakly supermodular when fi(S) = f(S) − z(δ(S)). It is clear that fi(∅) = fi(V) = 0. Now
pick any two subsets A,B ⊆ V . We note that for the function f , it is the case that either
f(A) + f(B) ≤ f(A ∪ B) + f(A ∩ B) or f(A) + f(B) ≤ f(A − B) + f(B − A). Suppose the
former holds. Then

fi(A) + fi(B) = f(A) + f(B)− z(δ(A))− z(δ(B))

≤ f(A ∪B) + f(A ∩B)− z(δ(A ∪B))− z(δ(A ∩B))

= fi(A ∪B) + fi(A ∩B),

where the inequality follows by hypothesis and by Lemma 11.22. The other case is identical.

Lemma 11.24: For any F ⊆ E, we can solve the linear program (11.17) in polynomial time
with edge set E − F and function g(S) = f(S)− |δ(S) ∩ F | when f(S) = maxi∈S,j /∈S rij.

Proof. We use the ellipsoid method with a separation oracle similar to the one given to solve
the LP with the original function f . For a solution x, we first check that 0 ≤ xe ≤ 1 for all
e ∈ E − F . Then for each pair of vertices i, j, with i ̸= j, we create a maximum flow instance
with the capacity of each edge e ∈ E−F set to xe and the capacity of each edge e ∈ F set to 1.
We then check that the flow between i and j is at least rij . If it is, then for any i, j ∈ V and any
cut S with i ∈ S and j /∈ S, it must be the case that the capacity is at least rij , which implies
that x(δ(S)) + |δ(S) ∩ F | ≥ rij , which implies x(δ(S)) ≥ rij − |δ(S) ∩ F |. Since this holds for
all pairs i, j ∈ V , then x(δ(S)) ≥ g(S). Similarly, if for some pair i, j ∈ V , the maximum flow
is less than rij , then the capacity of the minimum cut S with i ∈ S and j /∈ S is less than rij .
Then x(δ(S)) + |δ(S) ∩ F | < rij , or x(δ(S)) < rij − |δ(S) ∩ F | ≤ g(S), and this is a violated
constraint.

We can now prove that Theorem 11.21 implies that the algorithm is a 2-approximation
algorithm.

Theorem 11.25: Given Theorem 11.21, Algorithm 11.4 is a 2-approximation algorithm for the
survivable network design problem.

Proof. We prove a slightly stronger statement by induction on the number of iterations of the
algorithm; in particular, we will show that the algorithm has a performance guarantee of 2 for

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.3 Survivable network design and iterated rounding 301

any weakly supermodular function f . We only need that the function f is for the survivable
network design problem in order to solve the linear programming relaxations in polynomial
time.

Let x be the solution to the original linear programming relaxation with function f1 = f for
any weakly supermodular function f . For any subset E′ ⊆ E of edges, let c(E′) =

∑
e∈E′ ce.

The base case is straightforward: if after one iteration, F = F1 is a feasible solution, then since
F1 = {e ∈ E : xe ≥ 1/2}, it is clear that c(F) ≤ 2

∑
e∈E cexe ≤ 2OPT .

Now suppose that the statement holds if the algorithm takes k iterations; we show that it
holds if the algorithm takes k+1 iterations. By induction, the cost of all the edges added from
the second iteration onwards is no more than twice the value of the LP solution for the weakly
supermodular function f2; that is, if x′ is the solution found in the second iteration for the
LP with function f2, then c(F − F1) ≤ 2

∑
e∈E−F1

cex
′
e since the algorithm finds a solution for

function f2 in k iterations. For e ∈ F1, we know that c(F1) ≤ 2
∑

e∈F1
cexe, since xe ≥ 1/2 for

all e ∈ F1. To complete the proof, we will show that x is a feasible solution on the edges E−F1

for the function f2. Thus ∑
e∈E−F1

cex
′
e ≤

∑
e∈E−F1

cexe,

so that

c(F) = c(F − F1) + c(F1) ≤ 2
∑

e∈E−F1

cex
′
e + 2

∑
e∈F1

cexe

≤ 2
∑

e∈E−F1

cexe + 2
∑
e∈F1

cexe

= 2
∑
e∈E

cexe ≤ 2OPT .

To see that x is feasible for the LP for the function f2 on edges E − F1, we note that for
any S ⊆ V , x(δ(S)) ≥ f1(S) implies that

x(δ(S)∩(E−F1)) = x(δ(S))−x(δ(S)∩F1) ≥ f1(S)−x(δ(S)∩F1) ≥ f1(S)−|δ(S)∩F1| = f2(S),

where for the second inequality we use that xe ≤ 1.

We now turn to the proof of Theorem 11.21, and show that for any basic feasible solution
x, xe ≥ 1/2 for some edge e ∈ E. We assume without loss of generality that 0 < xe < 1 for all
e ∈ E; we can do this since if xe = 1, then we are done, while if for some edge e ∈ E, xe = 0,
we can simply remove it from the graph. We will now need a definition.

Definition 11.26: For the given solution x to LP (11.17), we say that a set S ⊆ V is tight if
x(δ(S)) = f(S).

We are now able to state the following theorem, which we will need to prove Theorem 11.21.

Theorem 11.27: For any basic feasible solution x to the linear program (11.17) with f a weakly
supermodular function, there is a collection L of subsets of vertices with the following properties:

1. For all S ∈ L, S is tight.

2. The vectors χδ(S) for S ∈ L are linearly independent.

3. |L| = |E|.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

302 Further uses of deterministic rounding of linear programs

4. The collection L is laminar.

The proof of this theorem is almost identical to the proof of Theorem 11.12 in Section 11.2,
and so we leave it as an exercise (Exercise 11.2).

We now turn to our proof of Theorem 11.21. We restate the theorem here for convenience.
The proof is similar to the fractional charging argument used for the minimum-cost bounded-
degree spanning tree problem in Lemma 11.16.

Theorem 11.21: For any basic feasible solution x to the linear program (11.17) such that f is
a weakly supermodular function, there exists some edge e ∈ E such that xe ≥ 1/2.

Proof. We give a proof by contradiction. Suppose that for all e ∈ E, 0 < xe < 1
2 . Given this

hypothesis, we will give a charging scheme in which we distribute charge to the sets S ∈ L
whose total is strictly less than |E|. However, we will also show that each S ∈ L receives a
charge of at least one, for a total charge of at least |L| = |E|. This will give our contradiction.

For each edge e ∈ E we will distribute a charge of 1−2xe > 0 to the smallest set S ∈ L that
contains both endpoints of e, if such a set exists, and for each endpoint v of e we distribute a
charge of xe > 0 to the smallest set S ∈ L containing v, if such a set exists. Both 1− 2xe and
xe are positive since we assume that 0 < xe < 1/2. Thus the total charge distributed is at most
1− 2xe + 2xe = 1 per edge. However, notice that for any set S ∈ L not contained in any other
set of L, there must be edges e ∈ δ(S). These edges will not have both endpoints contained in
some set S ∈ L and for these edges we distribute charge strictly less than 1 since the charge
1 − 2xe > 0 for the edge is not distributed. Thus the total charge distributed is strictly less
than |E|.

Now we show that each S ∈ L receives a charge of at least one. We say a set C ∈ L is a
child of S if it is strictly contained in S, and no other set C ′ ∈ L that contains C is also strictly
contained in S. Let C1, . . . , Ck be the children of S (if any exist). Since S and the Ci are in L,
they are all tight sets so that x(δ(S)) = f(S) and x(δ(Ci)) = f(Ci) for all i. Let C =

∪
iCi. We

now divide the edges in ES = δ(S)∪
∪

i δ(Ci) into four sets (see Figure 11.5 for an illustration):

• Ecc is the set of edges e ∈ ES that have one endpoint in some Ci and the other in Cj

for j ̸= i (“child-child edges”). By the charging scheme such edges contribute a charge of
1− 2xe to S since S is the smallest set to contain both endpoints.

• Ecp is the set of edges e ∈ ES that have one endpoint in Ci and the other in S − C
(“child-parent edges”). By the charging scheme such edges contribute a charge of xe to S
for the one endpoint in S−C, and a charge of 1−2xe since S is the smallest set containing
both endpoints of S. So the total charge given to S is 1− xe for each edge e ∈ Ecp.

• Epo is the set of edges e ∈ ES that have one endpoint in S − C and the other outside S
(“parent-out edges”). By the charging scheme such edges contribute a charge of xe to S
for the one endpoint in S − C.

• Eco is the set of edges of ES in both δ(S) and δ(Ci) for some i (“child-out edges”). Such
edges contribute no charge to S.

We claim that it cannot be the case that all edges of ES are in Eco. If this were the case,
then an edge is in δ(S) if and only if it is in δ(Ci) for some i, which implies χδ(S) =

∑k
i=1 χδ(Ci).

This contradicts Theorem 11.27, which states that the χδ(T) are linearly independent for T ∈ L.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.3 Survivable network design and iterated rounding 303

S

C1 C2
Ck

∈ Ecc

∈ Ecp

∈ Epo

∈ Eco

Figure 11.5: Illustration of the edge sets in the proof of Theorem 11.21.

Thus at least one edge must be in Ecc, Ecp, or Epo; S receives a positive charge for each
such edge, and the total charge received is |Ecc| − 2x(Ecc) + |Ecp| − x(Ecp) + x(Epo) > 0. By
the definitions of the edge sets above, we note that

x(δ(S))−
k∑

i=1

x(δ(Ci)) = x(Epo)− x(Ecp)− 2x(Ecc).

Then we have that the total charge received by S is

|Ecc| − 2x(Ecc) + |Ecp| − x(Ecp) + x(Epo) = |Ecc|+ |Ecp|+

(
x(δ(S))−

k∑
i=1

x(δ(Ci))

)
.

Since all sets are tight, this total charge is equal to

|Ecc|+ |Ecp|+

(
f(S)−

k∑
i=1

f(Ci)

)
.

Since this last expression is a sum of integers, and we know the total charge is positive, the
total charge must be at least one.

Thus each S ∈ L gets a charge of at least one, for a total charge of at least |L| = |E|, but
we distributed a total charge of strictly less than |E|, which gives the contradiction.

As we observed at the end of Section 7.4, the linear programming relaxation for the gen-
eralized Steiner tree problem has an integrality gap that is essentially 2. Since the generalized
Steiner tree problem is a special case of the survivable network design problem, and the linear
program used for the generalized Steiner tree problem is a special case of the linear program
(11.17) we use for the survivable network design problem, the integrality gap of (11.17) is also
essentially 2. Thus we cannot obtain any better performance guarantee by comparing the value
of the algorithm’s solution to the value of the LP relaxation as we do in the deterministic
rounding argument above.

As was mentioned at the beginning of the chapter, the motivation for studying the survivable
network design problem comes from wanting to design low-cost networks that can survive
failures in the edges of the network. Suppose we wish to design networks that can also survive
failures in the vertices? In that case, we may wish for there to be rij vertex-disjoint paths

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

304 Further uses of deterministic rounding of linear programs

between i and j for all i, j ∈ V . In Section 16.4, we show that this variant of the survivable
network design problem is substantially harder to approximate that the edge-disjoint version
we have considered above.

Exercises

11.1 We consider a variant of the generalized assignment problem without costs. Suppose we
are given a set of n jobs to be assigned to m machines. Each job j is to be scheduled
on exactly one machine. If job j is scheduled on machine i, then it requires pij units of
processing time. The goal is to find a schedule of minimum length, which is equivalent to
finding an assignment of jobs to machines that minimizes the maximum total processing
time required by a machine. This problem is sometimes called scheduling unrelated parallel
machines so as to minimize the makespan. We show that deterministic rounding of a linear
program can be used to develop a polynomial-time 2-relaxed decision procedure (recall
the definition of a relaxed decision procedure from Exercise 2.4).

Consider the following set of linear inequalities for a parameter T :

m∑
i=1

xij = 1, j = 1, . . . , n,

n∑
j=1

pijxij ≤ T, i = 1, . . . ,m,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n

xij = 0, if pij > T.

If a feasible solution exists, let x be a basic feasible solution for this set of linear in-
equalities. Consider the bipartite graph G on machine nodes M1, . . . ,Mm and job nodes
N1, . . . , Nn with edges (Mi, Nj) for each variable xij > 0.

(a) Prove that the linear inequalities are a relaxation of the problem, in the sense that if
the length of the optimal schedule is T , then there is a feasible solution to the linear
inequalities.

(b) Prove that each connected component of G of k nodes has exactly k edges, and so is
a tree plus one additional edge.

(c) If xij = 1, assign job j to machine i. Once all of these jobs are assigned, use the
structure of the previous part to show that it is possible to assign at most one
additional job to any machine. Argue that this results in a schedule of length at
most 2T .

(d) Use the previous parts to give a polynomial-time 2-relaxed decision procedure, and
conclude that there is a polynomial-time 2-approximation algorithm for scheduling
unrelated parallel machines to minimize the makespan.

11.2 In this exercise, we prove Theorem 11.27.

(a) First, prove the following. Given two tight sets A and B, one of the following two
statements must hold:

• A ∪B and A ∩B are tight, and χδ(A) + χδ(B) = χδ(A∩B) + χδ(A∪B); or

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.3 Survivable network design and iterated rounding 305

• A−B and B −A are tight, and χδ(A) + χδ(B) = χδ(A−B) + χδ(B−A).

(b) Use the above to prove Theorem 11.27.

11.3 Consider the following LP relaxation for the traveling salesman problem:

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe ≥ 2, ∀S ⊂ V, S ̸= ∅,

0 ≤ xe ≤ 1, ∀e ∈ E.

Show that for any basic feasible solution x to the linear program, there must exist some
e ∈ E such that xe = 1.

11.4 Recall the definition of a branching from Exercise 7.5: We are given a directed graph
G = (V,A), and a designated root vertex r ∈ V . A branching is a subset F ⊆ A of arcs
such that for every v ∈ V , there is exactly one directed path from r to v. Note that this
implies that in F the indegree of any node (except the root) is 1.

In the bounded-degree branching problem, we are given degree bounds bv, and the goal
is to find a branching such that the outdegree of v is at most bv for all v ∈ V . In the
following, we will give a polynomial-time algorithm to compute a branching in which the
outdegree of v is at most bv+2 for all v ∈ V , given that a branching exists with outdegree
bv for all v ∈ V .

Given the input graph G = (V,A) and any subset F ⊆ A, let δ+(S) be the set of all arcs
in A with their tails in S and heads not in S, and δ−(S) be the set of all arcs in A with
their heads in S and their tails not in S, δ+F (S) = δ+(S) ∩ F , and δ−F (S) = δ−(S) ∩ F .
Then consider the following linear programming relaxation, defined for a given set of arcs
A, F ⊆ A and W ⊆ V :

minimize
∑
a∈A

xa

subject to
∑

a∈δ−(S)

xa ≥ 1− |δ−F (S)|, ∀S ⊆ V − r,

∑
a∈δ+(v)

xa ≤ bv − |δ+F (v)|, ∀v ∈W,

0 ≤ xa ≤ 1 ∀a ∈ A− F.

Consider the following algorithm for the problem. Initially, F = ∅ and W = V . While
A−F ̸= ∅, find a solution to the linear programming relaxation for A, F , and W . Remove
from A any arc a ∈ A − F such that xa = 0. Add to F any arc a ∈ A − F such that
xa = 1. Then for any v ∈W such that there are at most bv − |δ+F (v)|+2 arcs coming out
of v in A− F , remove v from W and add to F all outgoing arcs from v in A− F . When
A− F = ∅, then output any branching rooted at r in F .

(a) Prove that the linear programming relaxation is a relaxation to the problem in the
sense that if there is a feasible solution to the problem given the degree bounds, then
there is a feasible solution to the linear programming relaxation.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

306 Further uses of deterministic rounding of linear programs

(b) Prove that the following is true for any basic feasible solution x to the linear pro-
gramming relaxation, for any A, F ⊆ A, and W ⊆ V : If 0 < xa < 1 for all a ∈ A−F ,
then there exists a set Z ⊆W and a collection L of subsets of V such that:

1. x(δ−(S)) = 1 for all S ∈ L and x(δ+(v)) = bv − |δ+F (v)| for all v ∈ Z;

2. The characteristic vectors χδ−(S) over all S ∈ L and χδ+(v) over all v ∈ Z are
linearly independent;

3. |A− F | = |L|+ |Z|;
4. L is laminar.

(c) Show that at the start of any iteration of the algorithm, every arc a ∈ A−F has its
tail in W .

(d) Prove that in each iteration, there must exist some v ∈ W such that there are
at most bv − |δ+F (v)| + 2 arcs coming out of v in A − F . (Hint: first show that
if |L| <

∑
a∈A−F xa + 2|W |, then such a vertex in W must exist. Then design a

charging argument that charges a total strictly less than
∑

a∈A−F xa + 2|W | such
that each S ∈ L gets at least one unit of charge.)

(e) Prove that the algorithm runs in polynomial time and produces the desired output.

11.5 The minimum k-edge-connected subgraph problem takes as input an undirected graph
G = (V,E) and a positive integer k. The goal is to find the smallest set of edges F ⊆ E
such that there are at least k edge-disjoint paths between each pair of vertices.

Consider the following linear programming relaxation of the problem:

minimize
∑
e∈E

xe

subject to
∑

e∈δ(S)

xe ≥ k, ∀S ⊆ V,

0 ≤ xe ≤ 1 e ∈ E.

(a) Prove that the linear program is indeed a relaxation of the problem.

(b) Prove that the linear program can be solved in polynomial time.

(c) Suppose we obtain a basic optimal solution to the LP relaxation and round up every
fractional variable to 1. Prove that this gives a (1 + 4

k)-approximation algorithm for
the problem.

11.6 In this problem, we revisit the generalized assignment problem from Section 11.1 and give
an iterated rounding algorithm for it. We consider a slight generalization of the problem
in which for each machine i there can be at most Ti units of processing assigned to i.

We now modify the linear programming relaxation of the problem given in Section 11.1.
We let E denote a set of possible (i, j) pairs for which we can assign job j to machine
i. Let M = {1, . . . ,m} be the set of machines and J = {1, . . . , n} be the set of jobs.
Initially, E consists of all (i, j) such that i ∈ M , j ∈ J and pij ≤ Ti. We also have a
subset M ′ ⊆ M , where initially M ′ = M , and a subset J ′ ⊆ J , where initially J ′ = J .
We also have a total amount of processing T ′

i that can be assigned to machine i ∈ M ′,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

11.3 Survivable network design and iterated rounding 307

where T ′
i is initially Ti. Then the relaxation is as follows:

minimize
∑

(i,j)∈E

cijxij

subject to
∑

i∈M :(i,j)∈E

xij = 1, ∀j ∈ J ′,

∑
j∈J :(i,j)∈E

pijxij ≤ T ′
i , ∀i ∈M ′,

xij ≥ 0, ∀(i, j) ∈ E.

Consider the following algorithm: While J ′ ̸= ∅, we find a basic optimal solution to the
LP relaxation. We remove from E any pair (i, j) such that xij = 0. If there is a variable
xij = 1, then we assign job j to machine i; remove j from J ′ and reduce T ′

i by pij . Let
Ji be the jobs fractionally assigned to machine i ∈ M ′, so that Ji = {j ∈ J : xij > 0}. If
there is a machine i such that either |Ji| = 1, or |Ji| = 2 and

∑
j∈Ji xij ≥ 1, then remove

i from M ′.

(a) Show that for any basic feasible solution x to the linear program, the following
is true: there exist subsets J ′′ ⊆ J ′ and M ′′ ⊆ M ′ such that the LP constraint∑

j∈J :(i,j)∈E pijxij = T ′
i for all i ∈ M ′′, the vectors corresponding to the LP con-

straints for J ′′ and M ′′ are linearly independent, and |J ′′| + |M ′′| is equal to the
number of variables xij > 0.

(b) Prove that for any basic feasible solution x to the LP, either there is some (i, j) ∈ E
such that xij ∈ {0, 1}, or there exists some i ∈M ′ with |Ji| = 1, or there exists some
i ∈M ′ with |Ji| = 2 and

∑
j∈Ji xij ≥ 1.

(c) Prove that the algorithm above returns a solution with total cost at most OPT, and
such that machine i is assigned total processing time 2Ti for all i ∈M .

Chapter Notes

We have seen in earlier sections some examples of the use of the structure of basic feasible
solutions in approximation algorithms. As mentioned in the introduction, in Exercise 1.5, we
saw that for a linear programming relaxation of the vertex cover problem, for any basic feasible
solution x, each variable xi is either 0, 1, or 1/2. Also, in the algorithm for the bin packing
problem in Section 4.6, we used the fact that for any basic feasible solution to the linear
programming relaxation, the number of nonzero variables is at most the number of distinct
piece sizes.

The first more sophisticated use of the structure of a basic feasible solution in an approx-
imation algorithm is due to Lenstra, Shmoys, and Tardos [215]. They give a 2-approximation
algorithm for scheduling unrelated parallel machines. Their algorithm is given as Exercise 11.1.
This work led to the result of Section 11.1 on the generalized assignment problem; the result
we give there is due to Shmoys and Tardos [263]. This result does not use the properties of
a basic feasible solution; it only uses feasibility. The alternate result in Exercise 11.6 for the
generalized assignment problem that does use the properties of a basic feasible solution is due
to Singh [268].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

308 Further uses of deterministic rounding of linear programs

The idea of iterated rounding for obtaining approximation algorithms is due to Jain [175];
he introduced the algorithm for the survivable network design problem in Section 11.3. He
also introduced the use of a charging scheme to prove Theorem 11.21. The proof we give is a
simplification due to Nagarajan, Ravi, and Singh [230].

The first algorithm to achieve an additive factor of 2 for the minimum-cost bounded degree
spanning tree problem is due to Goemans [134]. Iterated rounding was then applied by Singh
and Lau [269] to the problem; they obtain the approximation algorithm of Section 11.2 with
the additive factor of 2. Singh and Lau also have the first algorithm bounding the degrees to
within an additive factor of 1. We present a somewhat simplified version of this algorithm and
analysis in Section 11.2 due to Lau and Singh [209] (see also Lau, Ravi, and Singh [208]) that
draws upon work of Bansal, Khandekar, and Nagarajan [32] for a more general problem. Bansal
et al. introduced the idea of a fractional charging scheme. The separation oracle we give for
solving the linear program (11.12) is from Cunningham [85].

Exercise 11.2 is due to Jain [175]. The result of Exercise 11.3 was shown by Boyd and Pul-
leyblank [56] prior to all of the work on iterated rounding. Exercise 11.4 is due to Bansal, Khan-
dekar, and Nagarajan [32]. Exercise 11.5 is due to Gabow, Goemans, Tardos, and Williamson
[120].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 12

Further uses of random sampling

and randomized rounding of linear

programs

In this chapter, we revisit – for the final time – the uncapacitated facility location problem,
and consider a randomized rounding algorithm for it. As we observed in Section 5.8, a natural
randomized rounding algorithm is to open each facility i independently with probability equal
to its associated variable in an optimal solution to the linear programming relaxation. As we
will show, the difficulty with this algorithm is that it is possible that a client will not be near an
open facility. However, we overcome this difficulty by using a combination of this randomized
rounding algorithm and our previous randomized algorithm that uses clustering to ensure that
each client is not too far away from an open facility. This will result in an approximation
algorithm with a performance guarantee of 1 + 2

e ≈ 1.736.

We also introduce a new problem, the single-source rent-or-buy problem, in which we must
either rent or buy edges to connect a set of terminals to a root vertex. Here we make use
once again of random sampling by using a sample-and-augment technique: we draw a random
sample of the terminals, buy edges connecting them to the root, then augment the solution to
a feasible solution by renting whatever edges are needed to make the solution feasible.

We then turn to the Steiner tree problem introduced in Exercise 2.5; recall that the goal
is to find a minimum-cost set of edges that connects a set of terminals. The Steiner tree
problem is a special case of the prize-collecting Steiner tree problem, the generalized Steiner
tree problem, and the survivable network design problem that we have considered in previous
chapters; we introduced various LP rounding and primal-dual algorithms for these problems.
For the Steiner tree problem, we introduce a new linear programming relaxation, and then
combine both iterated and randomized rounding to obtain a good approximation algorithm.

Finally, we consider the maximum cut problem in dense graphs, and we obtain a polynomial-
time approximation scheme for the problem by using a combination of most of our tools in
randomization: random sampling, randomized rounding, and Chernoff bounds.

309

310 Further uses of random sampling and randomized rounding of linear programs

12.1 The uncapacitated facility location problem

In this section, we turn to another randomized rounding algorithm for the uncapacitated facility
location problem. This algorithm will give us the best overall performance guarantee for this
problem of all the discussions in this book. Recall that the input to the problem is a set of
clients D and a set of facilities F , with facility costs fi for all facilities i ∈ F , and assignment
costs cij for all facilities i ∈ F and clients j ∈ D. We assume that the clients and facilities are
in a metric space and that the assignment cost cij is the distance between client j and facility i.
The goal is to select a subset of facilities to open and an assignment of clients to open facilities
so as to minimize the total cost of the open facilities plus the assignment costs.

Recall the following linear programming relaxation of the problem:

minimize
∑
i∈F

fiyi +
∑

i∈F,j∈D
cijxij

subject to
∑
i∈F

xij = 1, ∀j ∈ D, (12.1)

xij ≤ yi, ∀i ∈ F, j ∈ D, (12.2)

xij ≥ 0, ∀i ∈ F, j ∈ D,

yi ≥ 0, ∀i ∈ F.

Recall also the dual of this LP relaxation:

maximize
∑
j∈D

vj

subject to
∑
j∈D

wij ≤ fi, ∀i ∈ F,

vj − wij ≤ cij , ∀i ∈ F, j ∈ D,

wij ≥ 0, ∀i ∈ F, j ∈ D.

In Sections 4.5 and 5.8, we said that given an optimal LP solution (x∗, y∗), a client j
neighbors a facility i if x∗ij > 0, and we set N(j) = {i ∈ F : x∗ij > 0}. We set N2(j) = {k ∈
D : k neighbors some i ∈ N(j)}. We also showed the following lemma that relates the dual
variable of a client to the cost of assigning the client to a neighboring facility.

Lemma 12.1 (Lemma 4.11): If (x∗, y∗) is an optimal solution to the facility location LP and
(v∗, w∗) is an optimal solution to its dual, then x∗ij > 0 implies cij ≤ v∗j .

In Section 5.8, we considered a randomized rounding algorithm for the problem that clus-
tered the clients and facilities as in the algorithm of Section 4.5, but then used randomized
rounding to decide which facility in the cluster to open. In this section, we consider applying
randomized rounding directly to decide which facilities to open. In particular, suppose we de-
cide to open each facility i with probability y∗i . Then the expected facility cost is

∑
i∈F fiy

∗
i ,

which is at most OPT, and if a neighbor of a given client j is open, then the service cost for
j is at most v∗j by the lemma above. If all clients have a neighbor open, then the total cost is∑

i∈F fiy
∗
i +

∑
j∈D v∗j ≤ 2 ·OPT . However, it is possible that for a given client j, no neighbor

of j is opened. Using 1− x ≤ e−x, the probability that no neighbor of j is opened is

Pr[no neighbor of j open] =
∏

i∈N(j)

(1− y∗i) ≤
∏

i∈N(j)

e−y∗i .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.1 The uncapacitated facility location problem 311

Solve LP, get optimal, complete primal solution (x∗, y∗) and dual solution (v∗, w∗)
C ← D
T ← F
k ← 0
while C ̸= ∅ do

k ← k + 1
Choose jk ∈ C that minimizes v∗j over all j ∈ C

Choose exactly one ik ∈ N(jk) with probability x∗ikjk = y∗ik
Open ik
C ← C − {jk} −N2(jk)
T ← T −N(jk)

foreach i ∈ T do open i with probability y∗i
Assign each client j to nearest open facility

Algorithm 12.1: Randomized rounding algorithm for the uncapacitated facility location problem.

By LP constraint (12.2), x∗ij ≤ y∗i , and by LP constraint (12.1),
∑

i∈N(j) x
∗
ij = 1, so that this

probability is at most ∏
i∈N(j)

e−y∗i ≤
∏

i∈N(j)

e−x∗
ij = e−

∑
i∈N(j) x

∗
ij = e−1.

It is possible that this upper bound on the probability can be achieved, and in this case we do
not have a good way of bounding the cost of assigning the client to the nearest open facility.
Thus we need a more sophisticated approach.

The main idea of the algorithm in this section is to combine this randomized rounding with
the clustering ideas of earlier chapters. This way, if a client j has no neighboring facility open
via randomized rounding, then we know that there is some facility open that is not too far
away.

Before we give the algorithm, we need a primal solution to the linear program that has a
particular form. We say that a solution is complete if whenever x∗ij > 0, then x∗ij = y∗i . It is
possible to take any optimal solution to the linear program and create an equivalent complete
solution with the same objective function value by making additional copies of each facility
(where the facility costs and service costs of the copy are identical to the original). We leave
this as an exercise (Exercise 12.1) and from here on assume that we have a complete solution.

We give the algorithm in Algorithm 12.1. As in the algorithm in Section 5.8, we choose
cluster centers jk via some criterion (here minimizing v∗j among the remaining clients), then
randomly choose a neighboring facility ik to open according to the probabilities x∗ikjk . Note
that by completeness x∗ikjk = y∗ik . After all clients end up in some cluster, for all facilities i not
in some cluster, we open them independently with probability y∗i .

Note that this algorithm is now not the same as opening each facility i with probability
y∗i independently: if a client j is chosen in some iteration, then exactly one of its neighboring
facilities will be opened. Thus the probability of a facility being opened is now dependent on
the probability of other facilities being opened. The following lemma shows that this does not
affect the bound on the probability that some neighbor of a given client is opened.

Lemma 12.2: Given an arbitrary client j ∈ D, the probability that no neighbor of j is opened
is at most 1

e .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

312 Further uses of random sampling and randomized rounding of linear programs

Proof. We partition the facilities neighboring j into sets Xp as follows. Let Xk be the facilities
in N(j) in the cluster formed in the kth iteration, and let each facility i remaining at the end of
the algorithm be put in its own set Xp. Let Ok be the event that some facility in Xk is opened.
Note that by the structure of the algorithm, the events Ok are now independent.

Let Y ∗
k be the probability that event Ok occurs. Then Y ∗

k = Pr[Ok] =
∑

i∈Xk
y∗i . Further-

more, by the completeness of the solution,∑
k

Y ∗
k =

∑
k

∑
i∈Xk

y∗i =
∑
k

∑
i∈Xk

x∗ij .

Then since the Xk partition N(j) and by LP constraint (12.1),∑
k

Y ∗
k =

∑
k

∑
i∈Xk

x∗ij =
∑
i∈F

x∗ij = 1.

By following the reasoning as given earlier, we have that

Pr[no neighbor of j open] =
∏
k

(1− Y ∗
k) ≤

∏
k

e−Y ∗
k = e−

∑
k Y ∗

k = e−1.

We can now prove the following theorem.

Theorem 12.3: Algorithm 12.1 is a (1 + 3
e)-approximation algorithm for the uncapacitated

facility location problem, where 1 + 3
e ≈ 2.104.

Proof. We follow the proof of Theorem 5.19. In iteration k, the expected cost of the facility
opened is ∑

i∈N(jk)

fix
∗
ijk
≤

∑
i∈N(jk)

fiy
∗
i ,

using the LP constraint x∗ijk ≤ y∗i , so that the expected cost of facilities opened in this way is∑
k

∑
i∈N(jk)

fiy
∗
i .

We open each remaining facility i ∈ F−
∪

k N(jk) with probability y∗i , so that the total expected
cost of opening facilities is

∑
i∈F fiy

∗
i .

Given an arbitrary client j ∈ D, if some neighbor of j is not opened, then as argued in the
proof of Theorem 4.13, we can assign j to some open facility in its cluster at cost at most 3v∗j .
Note that for any given facility i ∈ N(j), the probability that i is opened is y∗i , so that although
the probabilities that different i ∈ N(j) are opened are dependent, the expected assignment cost
for j given that some i ∈ N(j) is opened is

∑
i∈N(j) cijy

∗
i =

∑
i∈N(j) cijx

∗
ij , with the equality

following by the completeness of the solution. Thus the expected assignment cost for j is

Pr[some neighbor of j is open] · E[assignment cost|some neighbor of j is open]

+ Pr[no neighbor of j is open] · E[assignment cost|no neighbor of j is open]

≤ 1 ·
∑

i∈N(j)

cijx
∗
ij +

1

e
· (3v∗j).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.2 The single-source rent-or-buy problem 313

Therefore, the overall expected assignment cost is at most∑
j∈D

∑
i∈F

cijx
∗
ij +

3

e

∑
j∈D

v∗j ,

and the overall expected cost is∑
i∈F

fiy
∗
i +

∑
j∈D

∑
i∈F

cijx
∗
ij +

3

e

∑
j∈D

v∗j ≤ OPT+
3

e
·OPT =

(
1 +

3

e

)
OPT .

We can improve the algorithm to a (1 + 2
e)-approximation algorithm by making a small

change to how client jk is selected in the kth iteration, and by tightening the analysis. Following
our notation in Section 5.8, we let C∗

j be the assignment cost incurred by j in the LP solution,
so that C∗

j =
∑

i∈F cijx
∗
ij . As in our algorithm in that section, in the kth iteration, we choose

the client j that minimizes v∗j + C∗
j instead of choosing the client that minimizes v∗j .

Let pj denote the probability that no neighbor of client j is opened by the algorithm; we
know pj ≤ 1

e . The analysis in the theorem above is slightly loose in the sense that in analyzing
the expected assignment cost, we bounded the probability that some neighbor of j is opened
by 1. We can use the following lemma to make this part of the analysis slightly tighter. The
proof of the lemma is quite technical, and so we omit it.

Lemma 12.4: Let Aj be the expected assignment cost for j given that no neighbor of j is
opened. Then the expected assignment cost of client j ∈ D is at most (1− pj)C

∗
j + pjAj.

In the algorithm of Figure 12.1, we chose client jk in the kth iteration to minimize v∗j , which
gave us a bound Aj ≤ 3v∗j . By choosing jk to minimize v∗j + C∗

j , we have that Aj ≤ 2v∗j + C∗
j

(as in the analysis in Theorem 5.19). Thus we get that the expected assignment cost of the
modified algorithm is

(1− pj)C
∗
j + pj(2v

∗
j + C∗

j) = C∗
j + 2pjv

∗
j ≤ C∗

j +
2

e
v∗j .

Given that the expected facility cost is at most
∑

i∈F fiy
∗
i , we get that the overall expected cost

is at most ∑
i∈F

fiy
∗
i +

∑
j∈D

C∗
j +

2

e

∑
j∈D

v∗j ≤ OPT+
2

e
OPT .

This yields the following theorem.

Theorem 12.5: Algorithm 12.1, modified to choose jk to minimize v∗j + C∗
j , is a (1 + 2

e)-

approximation algorithm for the uncapacitated facility location problem, where 1 + 2
e ≈ 1.736.

12.2 The single-source rent-or-buy problem

In this section, we consider the single-source rent-or-buy problem. The input for the problem
is an undirected graph G = (V,E) with edge costs ce ≥ 0 for all e ∈ E, a root vertex r ∈ V ,
a set of terminals X ⊆ V , and a parameter M > 1. We need to design a network connecting
all terminals to the root; for each terminal we specify a path of edges from the terminal to the
root. We say that a terminal uses an edge if the edge is on the terminal’s path to the root. To

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

314 Further uses of random sampling and randomized rounding of linear programs

build the paths, we can both buy and rent edges. We can buy edges at cost Mce, and once
bought, any terminal can use the edge. We can also rent edges at cost ce, but then we need to
pay the rental cost for each terminal using the edge. The goal is to find a feasible network that
minimizes the total cost. We can formalize this by letting B ⊆ E be the set of edges that are
bought, and letting Rt be the set of edges that are rented by terminal t ∈ X. Then for each
t ∈ X, the set of edges B ∪ Rt must contain a path from t to the root r. Let c(F) =

∑
e∈F ce

for any F ⊆ E. Then the total cost of the solution is Mc(B)+
∑

t∈X c(Rt). We must find edges
B to buy and Rt to rent that minimizes this overall cost.

We will give a randomized approximation algorithm for the problem that cleverly trades
off the cost of buying versus renting. The sample-and-augment algorithm draws a sample of
terminals by marking each terminal t with probability 1/M independently. LetD be the random
set of marked terminals. We then find a Steiner tree T on the set of terminals D plus the root,
and buy the edges of T . To find a Steiner tree, we use the 2-approximation algorithm of Exercise
2.5 that computes a minimum spanning tree on the metric completion of the graph. We then
augment the solution by renting paths from the unmarked terminals to the tree T . To do this,
we find the shortest path from each unmarked t to the closest vertex in T , and rent these edges.

The analysis of the sample-and-augment algorithm begins by observing that the expected
cost of buying the edges in the tree T is at most twice the cost of an optimal solution to the
rent-or-buy problem.

Lemma 12.6:

E[Mc(T)] ≤ 2OPT .

Proof. To prove the lemma, we demonstrate a Steiner tree T ∗ on the set of marked terminals
such that the expected cost of buying the edges of T ∗ is at most OPT. Since we are using a
2-approximation algorithm to find T , the lemma statement then follows.

We consider an optimal solution to the problem: let B∗ be the set of bought edges, and let
R∗

t be the edges rented by terminal t. Consider the edges from B∗ together with the union of
edges of R∗

t over the marked terminals t. Note that this set of edges certainly contains some
Steiner tree T ∗ on the set of marked terminals plus the root. We now want to analyze the cost
of buying this set of edges. The essential idea of the analysis is that although we now have
to pay M times the cost of the rented edges in each R∗

t for marked t, since we marked t with
probability 1/M , the expected cost of these edges will be the same as the renting cost of the
optimal solution. To see this formally, if D is the random set of marked terminals, then

E[Mc(T ∗)] ≤ Mc(B∗) + E[M
∑
t∈D

c(R∗
t)]

= Mc(B∗) +M
∑
t∈X

c(R∗
t) Pr[t ∈ D]

= Mc(B∗) +
∑
t∈X

c(R∗
t)

= OPT .

To complete the analysis, we show that the expected renting cost is no more than the
expected buying cost.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.2 The single-source rent-or-buy problem 315

Lemma 12.7:

E

[∑
t∈X

c(Rt)

]
≤ E[Mc(T)].

Proof. To prove this, let us be a bit more precise about the algorithm; then we will alter the
algorithm to give an equivalent algorithm, and prove the statement for the equivalent algorithm.

Let D be the (random) set of marked terminals. We run Prim’s minimum spanning tree
algorithm on the metric completion of the graph, starting with the root r (see Section 2.4 for
a discussion of Prim’s algorithm). Prim’s algorithm maintains a set S ⊆ D ∪ {r} of vertices in
the spanning tree, and chooses the cheapest edge e that has one endpoint in S and the other
in D − S to add next to the spanning tree; the endpoint of e in D − S is then added to S.

We now alter the algorithm by not choosing D in advance. Rather, we choose the cheapest
edge e with one endpoint in S and the other from the set of all terminals whose marking status
has not been determined. Let t be the endpoint of e whose marking status is not determined.
At this point, we decide, with probability 1/M whether to mark t. If t is marked, then we add
t to D and to S, and add the edge e to the tree. If t is not marked, then we do not add t to
D or S, and edge e is not added to the tree. Note that we get the same tree T on D via this
process as in the case that the random set D was drawn before running the algorithm.

We let βt for a terminal t be a random variable associated with the cost of connecting t to
the tree via bought edges; we call it the buying cost. We let βt of a marked terminal t be M
times the cost of the edge that first connects it to the tree, and we let βt be zero if t is not
marked. In our modified algorithm above, βt is the cost of the edge that connects t to S when
t is marked. The total cost of the tree is then the sum of the buying costs of all the marked
terminals in the tree, so that

∑
t∈D βt = Mc(T). In a similar way, we let ρt for a terminal t be

a random variable giving the cost of renting edges to connect t to the tree.
Now consider a given terminal t at the time we decide whether to mark t or not. Let S be

the set of vertices already selected by Prim’s algorithm at this point in time, and let e be the
edge chosen by Prim’s algorithm with t as one endpoint and with the other endpoint in S. If we
mark t, we buy edge e at cost Mce. If we do not mark t, then we could rent edge e at cost ce,
and since all the vertices in S are marked, this will connect t to the root; thus ρt ≤ ce. Hence
the expected buying cost of t is E[βt] =

1
M ·Mce = ce, whereas its expected cost of renting

edges to connect t to the root is E[ρt] ≤ (1− 1
M) · ce ≤ ce. Observe that this is true no matter

what point in the algorithm t is considered. Thus

E

[∑
t∈X

c(Rt)

]
= E

[∑
t∈X

ρt

]
≤ E

[∑
t∈X

βt

]
= E

[∑
t∈D

βt

]
= E[Mc(T)].

The following theorem is then immediate.

Theorem 12.8: The sample-and-augment algorithm described above is a randomized 4-approximation
algorithm for the single-source rent-or-buy problem.

Proof. For the solution B = T and Rt computed by the randomized algorithm, we have that

E

[
Mc(T) +

∑
t∈X

c(Rt)

]
≤ 2 · E[Mc(T)] ≤ 4OPT .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

316 Further uses of random sampling and randomized rounding of linear programs

In Exercise 12.2, we consider the multicommodity rent-or-buy problem, which is an extension
of the single-source rent-or-buy problem to multiple source-sink pairs. We see that the sample-
and-augment algorithm also leads to a good approximation algorithm for this problem.

12.3 The Steiner tree problem

The Steiner tree problem provides an excellent example of a problem for which our understand-
ing of its combinatorial structure has worked hand-in-hand with the design and analysis of a
linear programming-based approach to approximation algorithm design. Furthermore, we will
combine two techniques already discussed for rounding LP solutions, by relying on an iterative
use of randomized rounding. The Steiner tree problem, as discussed in Exercise 2.5, is as follows:
given an undirected graph G = (V,E), and a subset of nodes R ⊆ V , along with a nonnegative
edge cost ce ≥ 0 for each edge e ∈ E, find a minimum-cost subset of edges F ⊆ E, such that
G = (V, F) contains a path between each pair of nodes in R. As discussed in that exercise, by
considering the metric completion of the graph, we may assume without loss of generality that
the input graph G is complete, and that the costs satisfy the triangle inequality. In Section 7.4,
we showed that the primal-dual method, based on a relatively weak LP formulation, provides
a 2-approximation algorithm for a more general problem in which the connectivity requirement
must be satisfied for only specified pairs of nodes. The nodes in R for which there is a con-
nectivity requirement are traditionally called terminals, whereas the remaining nodes are called
Steiner nodes.

For the Steiner tree problem, a (minimal) feasible solution corresponds to a tree (a Steiner
tree) in which all leaves are nodes in R; furthermore, there is a decomposition of each such
Steiner tree into its full components, which will play a critical role in this discussion. A full
component of a Steiner tree is a maximal subgraph in which no non-leaf node is a terminal. A
Steiner tree and its decomposition into full components is shown in Figure 12.1. It is easy to
see that if we start with the optimal Steiner tree, and this decomposition yields full components
with node sets V1, V2, . . . , Vs, then the full component on Vi must be an optimal Steiner tree
for the input on the subgraph induced by Vi, i = 1, . . . , s. Furthermore, it is also easy to see
that if we contract the nodes in Vi in this optimal Steiner tree, then the tree resulting from
this contraction must also be an optimal Steiner tree for the induced subproblem. Finally, an
optimal Steiner tree for G that spans the set of nodes V ′ ⊆ V must be a minimum spanning
tree for the input induced by the subset V ′. This suggests a very natural approach to designing
an approximation algorithm (or even an optimization algorithm!): identify a full component to
contract, contract that component, and iterate. Indeed, all known approximation algorithms
for the Steiner tree problem with constant performance guarantee better than 2 are based on
variants of this idea.

One natural approach to providing a stronger LP relaxation for the Steiner tree problem, as
compared to the one discussed in Section 7.4, is to select one of the terminal nodes (arbitrarily)
as a root node r, and to view each undirected edge connecting nodes u and v as two directed
edges (u, v) and (v, u), both of cost equal to the cost of the original undirected edge. We then
consider a directed network design problem in which we wish to select a subset F of these
directed edges such that, for each non-root node v ∈ R, there is a path from v to r using just
edges in F . This gives rise to an integer programming formulation, known as the bidirected cut
formulation, in which we require that, for each non-empty subset S ⊆ V −{r} with S ∩R ̸= ∅,
there exists an edge (u, v) ∈ F that crosses this cut, that is, u ∈ S and v ̸∈ S. Let δ+(S) be
the set of arcs in which (u, v) ∈ S when u ∈ S and v /∈ S. Let A be the set of arcs. Then the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.3 The Steiner tree problem 317

r

Figure 12.1: A Steiner tree. The terminals are squares, and the Steiner nodes are
circles. The dashed ovals indicate the full components of the Steiner tree.

linear programming relaxation of this integer program is

minimize
∑
e∈A

ceye

subject to
∑

e∈δ+(S)

ye ≥ 1, ∀S ⊆ V − {r}, S ∩R ̸= ∅,

ye ≥ 0, ∀e ∈ A.

Although not the most direct proof, one consequence of Exercise 7.5 is that if we consider an
input for which V = R, i.e., there are no Steiner nodes, and hence this is really a minimum
spanning tree instance, then this LP relaxation of this bidirected cut formulation has integer
extreme points, and hence the LP relaxation is the initial integer program.

We shall present algorithms for the Steiner tree problem that combine this idea with the
notion of the full component decomposition. Again, we select one of the terminals as the root
node r. Then, for any Steiner tree, we orient its edges towards the root, and decompose this
tree into its full components. Each full component is now a directed graph (as shown in Figure
12.2). Furthermore, if we label each node in the graph with its distance (in terms of the number
of edges in the (unique) path) to the root r, for each full component C, we shall call the node
with minimum distance label the sink(C) – of course, this sink must be a terminal node, and
the induced directed Steiner tree on C is directed toward sink(C), in much the same way that
the entire Steiner tree is directed toward the root r. Such directed full components, with their
specified sink nodes, will be the building blocks of our new integer programming formulation.
Abusing notation slightly, let C now denote a directed full component with specified sink node;
we let R(C) denote the terminals of C (which includes sink(C)). Let C denote the set of all
such directed full components.

We introduce a 0-1 decision variable xC for each such directed full component C ∈ C. Note
that c(C) denotes the total cost of the edges in the directed full component C. To specify a
Steiner tree, we merely list its directed full components. Of course, we need to formulate a set
of constraints that enforces that a given set of directed full components is, in fact, a feasible
Steiner tree. We can do this again by cut constraints: for each subset S ⊆ R− {r}, we require
that there is a directed full component C included such that sink(C) ̸∈ S, but there exists some
other terminal node v ∈ R(C) − {sink(C)} such that v ∈ S. Extending the usual notation in

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

318 Further uses of random sampling and randomized rounding of linear programs

r

Figure 12.2: The Steiner tree of Figure 12.1, in which each full component is directed.
The sink of each full component is indicated by a black square.

which δ(S) denotes the set of edges that cross the cut S, we introduce the notation that ∆(S)
is the set of directed full components that satisfy this cut-crossing condition.

Thus, we obtain the following linear programming relaxation of the Steiner tree problem:

minimize
∑
C∈C

c(C)xC (12.3)

subject to
∑

C∈C:C∈∆(S)

xC ≥ 1, ∀S ⊆ R− {r}, S ̸= ∅, (12.4)

xC ≥ 0, ∀C ∈ C.

This LP reflects the beauty of mathematical notation: at a glance, it seems like a perfectly
innocuous linear program. But encoded in this notation, we see that there are an exponential
number of variables, and an exponential number of constraints. This means that we cannot
make direct use of the ellipsoid method in order to solve this linear program in polynomial time.
Fortunately, we can limit our attention to a weaker LP, without too great a loss in the quality
of the bound that it provides: simply restrict attention to those full components with at most
k terminals, where k is some fixed constant. If we do this for integer solutions, we obtain a
formulation of the so-called k-restricted Steiner tree problem and it has been shown that the
optimal solution to this problem has the following strong property.

Theorem 12.9: For each input to the Steiner tree problem, and for each fixed integer k, the
optimal value of the k-restricted Steiner tree problem is within a factor of 1 + 1

⌊log2 k⌋
of the

optimal value for the Steiner tree problem.

We give a special case of this theorem as Exercise 12.6.

This suggests that we consider a relaxed version of the linear program (12.3), in which we
replace C by the set of directed full components with at most k terminals. In fact, without
loss of generality, we can be even more restrictive in setting up this linear program. Recall
that in an optimal (integer) solution, we know that each full component must be an optimal
Steiner tree on the given set of terminals. Similarly, in any optimal fractional solution, we can
restrict attention to those variables xC for which the directed full component C is an optimal
Steiner tree on that set of terminals (with the specified sink node). Furthermore, since we
have instances obeying the triangle inequality, we can assume without loss of generality that no

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.3 The Steiner tree problem 319

Steiner node has degree 2, since that node can be shortcut from the solution to yield a Steiner
tree with one fewer node of no greater cost. Since the average degree of a node in a tree is
less than 2 (in fact, exactly 2− 2/n in an n-node graph), we see that in a full component with
k terminals (each of degree 1), there can be at most k − 2 Steiner nodes (each of degree at
least 3). Once we specify the terminals and the Steiner nodes for a full component, then an
optimal Steiner tree is a minimum spanning tree on this combined set of nodes, and so, with a
specified sink, we know that there are at most kn2k−2 directed full components that need to be
considered for the k-restricted component linear programming relaxation. Let Ck denote this
restricted set of directed full components, and let M = |Ck|.

By applying Theorem 12.9 to each full component in the support of the optimal fractional
solution, it is straightforward to obtain the following corollary: if we consider the k-restricted
LP to be variant of the LP (12.3) in which each occurrence of the set C is replaced by the set
Ck, then the two optimal LP values are within a factor of 1 + 1

⌊log2 k⌋
of each other. Thus, if we

can round the optimal solution of the k-restricted component LP to yield a Steiner tree, while
losing a factor of α, then the resulting approximation algorithm is “nearly” an α-approximation
algorithm, in that, for any fixed ϵ > 0, we can obtain an (α + ϵ)-approximation algorithm by
setting k to a sufficiently large constant. Of course, we must still argue that the k-restricted
component linear program is polynomial-time solvable, since there are still an exponential
number of constraints. There are a number of approaches that suffice; once again, simple
minimum-cut computations show that either the inequalities corresponding to (12.4) are all
satisfied, or else identify a violated inequality. We leave the proof that the linear program is
polynomial-time solvable to Exercise 12.5.

We can solve this LP relaxation, but how do we make use of the optimal fractional solution?
We shall combine randomized rounding with an iterative rounding approach. We start with
the minimum spanning tree on the graph induced by the set of terminals (which we call the
minimum terminal spanning tree), and in each iteration, we randomly select a directed full
component in proportion to its fractional value in the optimal fractional solution, contract that
component by identifying its terminals, and then iterate. This process continues for a fixed
number of iterations, at which point, we settle for the final minimum terminal spanning tree
to connect the remaining terminals. Since the set of terminals evolves over the execution of
the algorithm, we shall let mst(R′) denote the cost of the minimum terminal spanning tree
when R′ ⊆ R is the terminal set. In a given iteration, we start with a minimum terminal
spanning tree T and perform a “contraction” defined by a directed full component C to yield
a remaining set of terminals R′; the contraction reflects the commitment to include the edges
in C in the solution, incurring a cost equal to c(C), whereas it also “simplifies” the residual
problem providing a savings of

dropT (C) = c(T)−mst(R′).

The analysis of the algorithm is based on the following lemma that links the value of the
fractional solution to these incremental improvements.

Lemma 12.10: Let T be a terminal spanning tree and let x be a feasible solution to the directed
component cut-covering relaxation (12.3); then

c(T) ≤
∑
C∈C

dropT (C)xC . (12.5)

Before proving this lemma, we first show how it provides the key to the analysis of our
iterative approximation algorithm. Focus on one iteration of the algorithm; let T denote the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

320 Further uses of random sampling and randomized rounding of linear programs

minimum terminal spanning tree at the start of the iteration, let x denote the optimal fractional
solution to the directed component relaxation, and let Σ =

∑
C xC . Let C denote the directed

full component selected in this iteration (which occurred with probability xC/Σ), and let T ′

denote the resulting minimum terminal spanning tree. Then, by taking into account the random
selection of the component C, we see that

E[c(T ′)] = c(T)− E[dropT (C)]

= c(T)−
∑
C

(xC/Σ)dropT (C)

≤
(
1− 1

Σ

)
c(T)

≤
(
1− 1

Σ

)
· 2OPT,

where OPT denotes the optimal value for the given Steiner tree input. In fact, we can strengthen
this final inequality by the following lemma, which relates the cost of the minimum terminal
spanning tree to the optimal value of the directed component linear programming relaxation.

Lemma 12.11: For any input to the Steiner tree problem, the cost of the minimum terminal
spanning tree T is at most twice the cost of the optimal fractional solution x for the directed
component linear programming relaxation (12.3).

Proof. We first transform x into a feasible fractional solution y to the bidirected cut relaxation
for the input induced on the terminals R. The cost of y will be at most twice the cost of x,
and by the integrality of the bidirected cut relaxation in this case (since then all nodes are
terminals), we may conclude that the minimum terminal spanning tree costs no more than y.
This completes the proof of the lemma.

To construct y, we initially set y = 0, then, in turn, consider each directed component C
for which xC > 0. Consider the “doubling” of each edge in the Steiner tree for this component
C (ignoring edge directions), to yield an Eulerian graph. This Eulerian tour can then be
shortcut to yield a cycle on the terminals of C, R(C). We delete one edge of the cycle (chosen
arbitrarily), and then orient the edges of this terminal spanning tree on R(C) towards the root
of the component, sink(C). For each of the edges in this directed spanning tree, we increment
its current value ye by xC . If we view each component C as providing capacity for xC to flow
from each terminal in R(C) to the node sink(C), then we see that we have provided exactly
the same additional capacity from each terminal to sink(C) in the shortcut solution that uses
only terminal nodes. Since the feasibility of x ensures that for each node there is at least total
capacity 1 from that node to the root, so must the modified construction for y. But this means
that y is a feasible fractional solution for the bidirected cut relaxation, and this completes the
proof of the lemma.

Intuitively, if in each iteration we decrease the cost of a minimum terminal spanning tree by
a factor of (1− 1/Σ), then if we apply the same technique for Σ iterations, we decrease the cost
of the minimum terminal spanning tree by a factor that is at most 1/e. Therefore, if consider
ℓΣ iterations, we decrease the resulting cost by a factor of (1/e)ℓ. By Lemma 12.11, we know in
fact that, if we start with the minimum terminal spanning tree, the end result has expected cost
at most 2(1/e)ℓ times the optimal value of the directed component relaxation. However, in each
iteration, this decrease is paid for by the connection cost c(C) of the selected component C.
Due to the random selection rule, the expected cost incurred is equal to

∑
C(xC/Σ)c(C), which

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.3 The Steiner tree problem 321

is 1/Σ times the cost of the optimal fractional solution x for the current directed component
relaxation. One technical convenience of bounding this cost by the optimal fractional value is
that this value is nonincreasing over the course of the algorithm (by again taking the capacity
installation view of the directed component relaxation as in the proof of Lemma 12.11). Hence
after ℓΣ iterations, we incur a total cost that is at most ℓ times the cost of the initial optimal
solution to the directed component relaxation. In total, the result after ℓΣ iterations has cost
at most (2e−ℓ + ℓ) times this LP value; if we set ℓ so as to minimize this quantity, then ℓ = ln),
and we obtain a performance guarantee (and an integrality gap) of 1 + ln 2 ≤ 1.694.

This intuition oversimplifies one further technical issue – there is no reason that the variables
of the relaxation need sum to Σ in each iteration. This can be avoided by the following simple
workaround. We know that Σ ≤M , the number of variables in the k-restricted component LP
in which we only have directed full components for the optimal Steiner tree on each set of at
most k terminals. We add a dummy full component, corresponding to just the root node, and
then can add the constraint that the variables must sum to M , and so we run the algorithm for
(ln 2)M iterations, which is a polynomial bound. (It is significant to note that by stating the
algorithm in this way, we have made it much less efficient, since an overwhelming fraction of
the time, we will sample the dummy full component, which results in no contraction but incurs
no additional cost.)

We turn next to gaining a greater structural understanding of dropT (C), which we will use
to prove Lemma 12.10.

Let T be a minimum terminal spanning tree, and consider the contraction corresponding to
some full component C, and hence we identify the nodes R(C); what happens to the minimum
terminal spanning tree? Since |R(C)| nodes are replaced by 1 node, we need |R(C)| − 1 fewer
edges to connect the resulting terminals. Suppose we first just identify two terminal nodes
u and v. This is equivalent to having an edge connecting them of cost 0, and so the effect
on the minimum terminal spanning tree is to delete from T the maximum cost edge on the
(unique) path between u and v in T . More generally, in identifying all of the vertices in R(C),
we can again consider the effect of adding an edge of cost 0 between each pair of vertices in
R(C). It is easy to see that a new minimum terminal spanning tree T ′ can be formed from a
spanning tree on R(C) (of cost 0) plus a subset of the edges in T : if this is not the case and
there is a new edge e used in T ′ but not in T (other than the dummy edges of cost 0), then
we could do an interchange and replace e by a cheapest edge in T that crosses the cut defined
by deleting e from T ′. Thus, we can define DropT (C) as the set of |R(C)| − 1 edges in T that
are deleted from the minimum terminal spanning tree by contracting the nodes in R(C), and
dropT (C) is the total cost of these edges. Notice also that we could find the set DropT (C) by
building an auxiliary complete graph with node set corresponding to R(C), where the weight
for each edge (u, v) is the maximum cost edge in the path from u to v in T , and then finding
a maximum-weight spanning tree in this auxiliary graph. One interpretation is that there is
a correspondence between the edges of T in DropT (C) and edges in selected maximum-weight
spanning tree in this auxiliary graph.

We now turn to the proof of Lemma 12.10.

Proof of 12.10. At the core of this proof is the integrality of the bidirected cut formulation for
the minimum spanning tree problem. The basic steps of this proof are as follows: we construct
an undirected multigraph H = (R,F) with (new) edge costs, and devise a feasible fractional
solution y to the bidirected cut formulation of cost equal to the right-hand side of (12.5); on
the other hand, we show that any spanning tree of H has cost at least c(T). The integrality of
the formulation implies the lemma.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

322 Further uses of random sampling and randomized rounding of linear programs

Consider in turn each directed full component C; each component C will cause us to include
certain edges in H, and to adjust the fractional solution y, which is initially equal to 0. For
the directed component C, consider the auxiliary (undirected) graph built on R(C) in the
construction above. Take the maximum-weight spanning tree on R(C) (whose edges correspond
to DropT (C)), and include each of these edges in H with cost equal to its weight in the auxiliary
graph. Now direct this tree towards the node sink(C) and for each edge e in this directed tree,
increment ye by xC . It is clear that this process generates a fractional solution of total cost
exactly equal to

∑
C xCdropT (C).

We need to establish that y is a feasible fractional solution for the bidirected cut formulation
for the multigraph H. The solution x is a feasible fractional solution to the directed component
formulation and we can view this as installing, for each component C, capacity xC from each
non-sink node in R(C) to the node sink(C); by the max-flow min-cut theorem, the feasibility
of x means that in total, these installations support a flow of 1 from each node in R to the root
node r. However, the solution y does this as well; for each component C, we increment y so as
to install an additional capacity of xC (through a directed spanning tree) from each non-sink
node in R(C) to the node sink(C). Hence, in total, we have installed sufficient capacity so that
a flow of 1 can be sent from each terminal to the root. Hence, y is a feasible solution to the
bidirected cut formulation.

Finally, we show that the cost of any spanning tree in H is at least c(T). It suffices to show
that if we consider G′ which is the union of H and T , then T is a minimum spanning tree in
G′. A sufficient condition for a spanning tree T to be minimum-cost is that the cost of each
edge (u, v) not in T is at least the maximum cost in the path in T connecting u and v. But
note that by our construction, each edge inserted in H has cost exactly equal to that maximum
cost, and so T is a minimum spanning tree in G′.

Putting the pieces together, we have now proved the following theorem.

Theorem 12.12: The iterated randomized rounding algorithm yields a 1.694-approximation
algorithm for the Steiner tree problem, and furthermore, the integrality gap of the directed
component relaxation is at most 1.694.

In fact, a similar framework can be used to prove a significantly stronger performance
guarantee of 1.5. The key observation is that when one selects a directed full component C
and identifies its endpoints, not only does the minimum terminal spanning tree cost decrease,
but the cost of the optimal Steiner tree decreases as well, albeit by a factor of (1 − 1/(2M))
instead. Nonetheless, this allows for a somewhat different balancing of terms, and yields the
stronger performance guarantee. Interestingly, this technique does not prove a stronger upper
bound on the integrality gap of the directed component LP.

12.4 Everything at once: finding a large cut in a dense graph

We now turn to a result which will require most of the tools we developed in Chapter 5:
randomized rounding, Chernoff bounds, and random sampling. We will apply these to the
maximum cut problem (MAX CUT) introduced in Section 5.1. Recall that in the maximum
cut problem, the input is an undirected graph G = (V,E), and nonnegative weights wij ≥ 0 for
each edge (i, j) ∈ E, and the goal is to partition the vertex set into two parts, U andW = V −U ,
so as to maximize the weight of the edges whose two endpoints are in different parts, one in U
and one in W . In the case wij = 1 for all edges (i, j) ∈ E, we have an unweighted maximum
cut problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.4 Everything at once: finding a large cut in a dense graph 323

In this section, we will show that we can obtain a PTAS for the unweighted maximum cut
problem in dense graphs by using a sophisticated combination of the randomization techniques
introduced in the Chapter 5. Recall that a graph is dense if it has at least α

(
n
2

)
edges for some

constant α > 0. In Theorem 5.3 of Section 5.1, we gave a simple 1
2 -approximation algorithm for

the maximum cut problem. The analysis shows that the algorithm finds a cut whose expected
value is at least 1

2

∑
(i,j)∈E wij . Thus it must be the case that OPT ≥ 1

2

∑
(i,j)∈E wij . It follows

that in an unweighted dense graph, we know that OPT ≥ α
2

(
n
2

)
.

Recall that in Section 5.12 we introduced a sampling technique for coloring dense 3-colorable
graphs. We would like to use the same sampling technique for the maximum cut problem on
unweighted dense graphs. That is, suppose we can draw a sample of the vertices of the graph
and assume that we know whether each vertex of the sample is in U or W for an optimal cut.
If the sample size is O(log n) we can enumerate all the possible placements of these vertices in
U and W , including the one corresponding to an optimal cut. In the case of trying to color a
3-colorable graph, a knowledge of the correct coloring of the sample was enough to infer the
coloring of the rest of the graph. What can we do in this case? In the case of coloring, we
showed that with high probability, each vertex in the graph had some neighbor in the sample
S. Here we will show that by using the sample we can get an estimate for each vertex of how
many neighbors are in U in an optimal solution that is accurate to within ±ϵn. Once we have
such estimates we can use randomized rounding of a linear program in order to determine which
of the remaining vertices should be placed in U . Finally, we use Chernoff bounds to show that
the solution obtained by randomized rounding is close to the optimal solution.

We draw our sample in a slightly different fashion than we did for the 3-coloring algorithm.
Given a constant c > 0 and a constant ϵ, 0 < ϵ < 1, we draw a multiset S of exactly (c log n)/ϵ2

vertices by choosing vertices at random with replacement. As in the case of 3-coloring a graph
we can now in polynomial time enumerate all possible ways of splitting the sample set S into
two parts. Let us say that xi = 0 if we assign vertex i to U and xi = 1 if we assign vertex i to
W . Let x∗ be an optimal solution to the maximum cut problem. Let ui(x) be the number of
neighbors of vertex i in U given an assignment x of vertices. Observe that

∑n
i=1 ui(x)xi gives

the value of cut for the assignment x: when xi = 1 and i ∈ W , there are ui(x) edges from i
to vertices in U , so that this sum counts exactly the set of edges in the cut. We can give a
reasonably good estimate of ui(x) for all vertices i by calculating the number of neighbors of i
that are in S and assigned to U , then scaling by n/|S|. In other words, if ûi(x) is our estimate
of the neighbors of i in U , then

ûi(x) =
n

|S|
∑

j∈S:(i,j)∈E

(1− xj).

Note that we can calculate this estimate given only the values of the xj for j ∈ S.
To prove that these estimates are good, we will need the following inequality, known as

Hoeffding’s inequality.

Fact 12.13 (Hoeffding’s inequality): Let X1, X2, . . . , Xℓ be ℓ independent 0-1 random vari-
ables, not necessarily identically distributed. Then for X =

∑ℓ
i=1Xi and µ = E[X], and b > 0,

then
Pr[|X − µ| ≥ b] ≤ e−2b2/ℓ.

We can now prove bounds on the quality of the estimates.

Lemma 12.14: With probability 1− 2n−2c,

ui(x)− ϵn ≤ ûi(x) ≤ ui(x) + ϵn

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

324 Further uses of random sampling and randomized rounding of linear programs

for any given i ∈ V .

Proof. Let N(i) be the neighbors of i in G; that is, N(i) = {j ∈ V : (i, j) ∈ E} . Let Yj be
a random variable for the jth vertex in S. If the jth vertex in S is some k ∈ N(i), we let
Yj = 1− xk and let Yj = 0 otherwise. Note that the probability that k ∈ N(i) is |N(i)|/n since
we chose the jth vertex of S randomly with replacement. Then the expected value of Yj given
that j ∈ N(i) is 1

|N(i)|
∑

k∈N(i)(1− xk), so that the unconditional expected value of Yj is

E[Yj] =
|N(i)|
n
· 1

|N(i)|
∑

k∈N(i)

(1− xk) =
1

n
ui(x).

Thus if Y =
∑|S|

j=1 Yj , we have µ = E[Y] = |S|
n ui(x). Note that ûi(x) =

n
|S|Y . If we now apply

the Hoeffding inequality with b = ϵ|S|, we have that

Pr

[∣∣∣∣Y − |S|n ui(x)

∣∣∣∣ ≥ ϵ|S|
]
≤ 2e−2(ϵ|S|)2/|S| = 2e−2ϵ2|S| = 2e−2c lnn = 2n−2c,

so that |S|
n ui(x) − ϵ|S| ≤ Y ≤ |S|

n ui(x) + ϵ|S| with probability at least 1 − 2n−2c. Multiplying
the inequalities by n/|S|, we get the desired result.

Since |S| is sufficiently small, we can enumerate all the possible settings of the xi for i ∈ S;
one of these will correspond to an optimal solution x∗, and thus we will have good estimates
ûi(x

∗) for this particular setting. We will now turn to showing how to use these estimates to
obtain a good cut. Note that in enumerating all possible settings of xi for i ∈ S, we will not
know which one corresponds to x∗. However, we will show that for the setting that corresponds
to x∗, we will produce a cut of size at least (1 − ϵ′)OPT, for a specified ϵ′ > 0. Thus if we
return the largest cut produced, we are guaranteed to produce a cut of size at least this large.

From now on, we assume that we have estimates ûi(x
∗) for all i such that ui(x

∗) − ϵn ≤
ûi(x

∗) ≤ ui(x
∗)+ϵn. To produce a good cut given these estimates, we use randomized rounding.

Consider the following linear program:

maximize
n∑

i=1

ûi(x
∗)yi

subject to
∑

j:(i,j)∈E

(1− yj) ≥ ûi(x
∗)− ϵn, i = 1, . . . , n, (12.6)

∑
j:(i,j)∈E

(1− yj) ≤ ûi(x
∗) + ϵn, i = 1, . . . , n,

0 ≤ yi ≤ 1 i = 1, . . . , n.

Suppose that the variables yi are integer. Then since ui(y) =
∑

j:(i,j)∈E(1− yj), the constraints
enforce that ûi(x

∗) − ϵn ≤ ui(y) ≤ ûi(x
∗) + ϵn. Note then that y = x∗ is a feasible solution

for the linear program. Furthermore, if the objective function were
∑n

i=1 ui(x
∗)yi (rather than

using the estimates ûi(x
∗)), then the value of the LP solution with y = x∗ would be OPT, since

we earlier observed that
∑n

i=1 ui(x
∗)x∗i counts the number of edges in the cut of the assignment

x∗.

We show below that by using the known estimates ûi(x
∗) in the objective function instead of

the unknown values ui(x
∗) the value of this linear program is still nearly OPT. Our algorithm

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.4 Everything at once: finding a large cut in a dense graph 325

then will be to apply randomized rounding to the solution to the linear program. Using Chernoff
bounds, we can then show that the solution obtained is only slightly smaller than that of the
LP, and hence almost OPT.

Lemma 12.15: The value of the linear programming relaxation (12.6) is at least (1− 4ϵ
α)OPT.

Proof. As observed above, the solution y = x∗ is a feasible solution to the linear program. Since
the objective function is

∑n
i=1 ûi(x

∗)yi the solution y = x∗ has value

n∑
i=1

ûi(x
∗)x∗i ≥

n∑
i=1

(ui(x
∗)− ϵn)x∗i

≥ OPT−ϵn
n∑

i=1

x∗i .

Since we assume there is at least one node in U in an optimal cut, we know that
∑n

i=1 x
∗
i ≤ n−1.

Then since we know that OPT ≥ α
2

(
n
2

)
, we have

n∑
i=1

ûi(x
∗)x∗i ≥ OPT−ϵn(n− 1)

≥
(
1− 4ϵ

α

)
OPT .

We now show that randomized rounding of the linear programming relaxation gives a good
solution. Let y∗ be an optimal solution to the linear program, and let ȳ be the integer solution
obtained from y∗ by randomized rounding. We prove the following theorem.

Lemma 12.16: For n sufficiently large, the randomized rounding of the linear program produces
a solution of value at least

(
1− 13ϵ

α

)
OPT with probability at least 1− 2n−c+1.

Proof. From the discussion, we know that the value of the integral solution ȳ is
∑n

i=1 ui(ȳ)ȳi.
We know from Lemma 12.15 that

∑n
i=1 ûi(x

∗)y∗i is close in value to OPT. We’ll first show that
ui(ȳ) is close in value to ûi(x

∗), and then that
∑n

i=1 ûi(x
∗)ȳi is close in value to

∑n
i=1 ûi(x

∗)y∗i ,
so that we prove that the solution ȳ has value that is close to OPT.

First, we show that ui(ȳ) =
∑

j:(i,j)∈E(1− ȳj) is close in value to ûi(x
∗). To do this, observe

that

E[ui(ȳ)] = E

 ∑
j:(i,j)∈E

(1− ȳj)


=

∑
j:(i,j)∈E

(1− E[ȳj])

=
∑

j:(i,j)∈E

(1− y∗j) = ui(y
∗)

We now want to show that ui(ȳ) ≥ (ui(y
∗) −

√
(2c lnn)ui(y∗)) with high probability via a

Chernoff bound. To do this, set δi =
√

2c lnn
ui(y∗)

> 0, let Yj = (1− ȳj), and let Y =
∑

j:(i,j)∈E Yj =

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

326 Further uses of random sampling and randomized rounding of linear programs

ui(ȳ), so that µi = E[Y] = ui(y
∗). By applying Corollary 5.28, we obtain that ui(ȳ) ≥ (1 −

δi)ui(y
∗) with probability at least

1− e−µiδ
2
i /2 ≥ 1− e

−ui(y
∗) c lnn

ui(y
∗) = 1− n−c.

Thus with probability at least 1 − n−c+1, ui(ȳ) is close to ui(y
∗) for all i ∈ V . Then we have

that the value of the cut obtained by randomized rounding is

n∑
i=1

ui(ȳ)ȳi ≥
n∑

i=1

(1− δi)ui(y
∗)ȳi

≥
n∑

i=1

(
ui(y

∗)−
√

(2c lnn)ui(y∗)
)
ȳi

≥
n∑

i=1

(
ûi(x

∗)− ϵn−
√
2cn lnn

)
ȳi,

where the last inequality follows by the linear programming constraints of (12.6), since ui(y
∗) =∑

j:(i,j)∈E(1− y∗j) ≥ ûi(x
∗)− ϵn. Then since

∑n
i=1 ȳi ≤ n, we have that

n∑
i=1

ui(ȳ)ȳi ≥
n∑

i=1

ûi(x
∗)ȳi − ϵn2 − n

√
2cn lnn. (12.7)

We would now like to bound the value of the term
∑n

i=1 ûi(x
∗)ȳi and show that it is close to

OPT. Note that its expected value is
∑n

i=1 ûi(x
∗)y∗i , which is just the objective function value

of the linear program, and hence close to OPT by Lemma 12.15. Let Z = maxi ûi(x
∗). We will

show via a Chernoff bound that with high probability,

n∑
i=1

ûi(x
∗)ȳi ≥

n∑
i=1

ûi(x
∗)y∗i −

√√√√2cZ lnn

n∑
i=1

ûi(x∗)y∗i .

Let δ =
√

2cZ lnn∑n
i=1 ui(x∗)y∗i

> 0, let Xi = ûi(x
∗)ȳi/Z, and let X =

∑n
i=1Xi, so that µ = E[X] =

1
Z

∑n
i=1 ûi(x

∗)y∗i . Note that since we have scaled by Z, either Xi = 0 or some value no greater
than 1. Then by Corollary 5.28,

Pr

[
1

Z

n∑
i=1

ûi(x
∗)ȳi ≥ (1− δ)

1

Z

n∑
i=1

ûi(x
∗)y∗i

]
≥ 1− e−δ2

∑n
i=1 ûi(x

∗)y∗i /2Z

= 1− n−c.

Thus with high probability we have that

n∑
i=1

ûi(x
∗)ȳi ≥ (1− δ)

n∑
i=1

ûi(x
∗)y∗i

=

(
1−

√
2cZ lnn∑n
i=1 ûi(x

∗)y∗i

)
n∑

i=1

ûi(x
∗)y∗i

=
n∑

i=1

ûi(x
∗)y∗i −

√√√√2cZ lnn
n∑

i=1

ûi(x∗)y∗i .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.4 Everything at once: finding a large cut in a dense graph 327

Using Z ≤ n and
∑n

i=1 ûi(x
∗)y∗i ≤ n2, we have that

n∑
i=1

ûi(x
∗)ȳi ≥

n∑
i=1

ûi(x
∗)y∗i − n

√
2cn lnn.

Plugging this into inequality (12.7), we obtain

n∑
i=1

ui(ȳ)ȳi ≥
n∑

i=1

ûi(x
∗)y∗i − 2n

√
2cn lnn− ϵn2.

Recall that
∑n

i=1 ûi(x
∗)y∗i is the objective function of the linear program, and its value is at

least (1 − 4ϵ
α)OPT by Lemma 12.15. Thus the value of the randomized rounding solution,∑n

i=1 ui(ȳ)ȳi, is
n∑

i=1

ui(ȳ)ȳi ≥
(
1− 4ϵ

α

)
OPT−2n

√
2cn lnn− ϵn2.

For n sufficiently large 2n
√
2cn lnn ≤ ϵn(n − 1)/4 and ϵn2 ≤ 4ϵ

(
n
2

)
. Recall also that OPT ≥

α
2

(
n
2

)
. Thus the value of the solution is at least(

1− 4ϵ

α

)
OPT− ϵ

α
OPT−8ϵ

α
OPT,

or at least (
1− 13ϵ

α

)
OPT .

To recap, our algorithm draws a multiset S of exactly (c log n)/ϵ2 vertices by choosing
vertices randomly with replacement. We then enumerate all 2|S| possible placements of the
vertices in S on each side of the cut (in U and W) by setting xj to either 0 or 1 for each j ∈ S.
For each setting x, we get estimates ûi(x), which we use in the linear program (12.6), and
apply randomized rounding to the solution of the linear program to obtain the cut. Since one
of the settings of the x variables corresponds to an optimal cut x∗, during this iteration of the
algorithm, the lemmas above will apply, and we will obtain a near optimal cut. This gives the
following theorem.

Theorem 12.17: For n sufficiently large, the algorithm above obtains a cut of value at least
(1− 13ϵ

α)OPT with probability at least 1− 4n−c+1.

Proof. From Lemma 12.14, we have that ui(x
∗)− ϵn ≤ ûi(x

∗) ≤ ui(x
∗) + ϵn for all i ∈ V with

probability at least 1− 2n−2c+1 ≥ 1− 2n−c+1 when we consider the solution x∗ for our sample
S. Given that the estimates hold, we have from Lemma 12.16 that with probability at least
1 − 2n−c+1 that the randomized rounding of the linear program produces a solution of value
at least (1− 13ϵ

α)OPT. Thus the algorithm produces a solution of value at least (1− 13ϵ
α)OPT

with probability at least 1− 4n−c+1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

328 Further uses of random sampling and randomized rounding of linear programs

Exercises

12.1 Show how to transform any solution to the linear programming relaxation of the unca-
pacitated facility location problem into a complete solution as defined on page 311, so
that whenever x∗ij > 0 then x∗ij = y∗i .

12.2 In the multicommodity rent-or-buy problem, we are given an undirected graph G = (V,E)
with edge costs ce ≥ 0 for all e ∈ E, a set of k source-sink pairs si-ti for i = 1, . . . , k,
and a parameter M > 1. For each source-sink pair, we need a path Pi in the solution
connecting si to ti. As in the single-source rent-or-buy problem, we can either buy edges
e at cost Mce, which then any pair can use, or we can rent edges e at cost ce, but every
pair using edge e must pay the rental cost. If we let B be the set of bought edges, and
Ri the set of rented edges for pair i, then there must be a path from si to ti in the set of
edges B ∪Ri for each i, and the cost of this solution is Mc(B) +

∑k
i=1 c(Ri).

Consider a sample-and-augment algorithm that samples every source-sink pair with prob-
ability 1/M . Let D be the set of sampled pairs. We run the generalized Steiner tree
algorithm of Section 7.4 on the demand pairs in D and buy the edges given by the algo-
rithm; let these edges be B. Then for any si-ti pair not in D we rent edges on the shortest
path from si to ti in which the edges in B are given cost 0.

(a) Show that the expected cost of the bought edges B is at most 2OPT.

To analyze the cost of the rented edges, we use a notion of α-strict cost shares for the
generalized Steiner tree problem. Suppose we have an instance of the generalized Steiner
tree problem with si-ti pairs for i ∈ R. We say we have an algorithm returning α-strict
cost shares χi for all i ∈ R, if two conditions are met: first, the sum of the cost shares,∑

i∈R χi, is at most the optimum cost of the generalized Steiner tree on the pairs in R;
and second, for any i ∈ R, the algorithm running on the instances with source-sink pairs
from R − {i} returns a solution F such that the cost of the shortest path from si to ti,
treating edges in F as having cost 0, is at most αχi.

(b) Use the idea of cost shares to show that the expected cost of the rented edges is at
most αOPT. (Hint: define a random variable βi to be Mχi if i ∈ D and 0 otherwise,
and a random variable ρi to be the renting cost of the pair i if i /∈ D and 0 otherwise.
Show that conditioned on the set D − {i}, the expected value of ρi is at most αβi).

It is known that the primal-dual generalized Steiner tree algorithm of Section 7.4 can
produce 3-strict cost shares.

(c) Show that the sample-and-augment algorithm given above is a randomized 5-approximation
algorithm for the multicommodity rent-or-buy problem.

12.3 In the unweighted maximum directed cut problem we are given as input a directed graph
G = (V,A), and the goal is to partition V into two sets U and W = V − U so as to
maximize the total weight of the arcs going from U to W (that is, arcs (i, j) with i ∈ U
and j ∈ W). Suppose that the graph (V,A) is dense; that is, for some constant α > 0,
the total number of arcs is at least αn2. Give a polynomial-time approximation scheme
for the unweighted maximum directed cut problem in dense graphs.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.4 Everything at once: finding a large cut in a dense graph 329

12.4 In this exercise, we revisit the metric asymmetric traveling salesman problem introduced
in Exercise 1.3. Recall that we are given as input a complete directed graph G = (V,A)
with costs cij ≥ 0 for all arcs (i, j) ∈ A, such that the arc costs obey the triangle inequality:
for all i, j, k ∈ V , we have that cij + cjk ≥ cik. The goal is to find a tour of minimum
cost; that is, a directed cycle that contains each vertex exactly once, such that the sum of
the cost of the arcs in the cycle is minimized. As in Exercise 1.3, we will find a low-cost,
strongly connected Eulerian graph and shortcut this to a tour. Recall that a directed
graph is strongly connected if for any pair of vertices i, j ∈ V there is a path from i to j
and a path from j to i. A directed graph is Eulerian if it is strongly connected and the
indegree of each vertex equals its outdegree.

We will show that we can obtain an O(log n)-approximation algorithm for the problem via
randomized rounding. We start by giving a linear programming relaxation of the problem.
For each arc (i, j) in the input graph, we introduce a variable xij . For a subset of vertices,
S ⊆ V , let δ+(S) be all arcs that have their tail in S and their head not in S, and let
δ−(S) be all arcs that have their head in S and their tail not in S. For simplicity, we let
δ+(v) = δ+({v}) and δ−(v) = δ−({v}). Then consider the following linear program:

minimize
∑

(i,j)∈A

cijxij

subject to
∑

(i,j)∈δ+(v)

xij = 1, ∀v ∈ V,

∑
(i,j)∈δ−(v)

xij = 1, ∀v ∈ V,

∑
(i,j)∈δ+(S)

xij ≥ 1, ∀S ⊂ V, S ̸= ∅,

xij ≥ 0, ∀(i, j) ∈ A.

For notational simplicity, given a solution x to the LP and a set F ⊆ A, we will sometimes
write x(F) to denote

∑
(i,j)∈F xij .

Our algorithm is as follows. We obtain a solution x∗ to the linear program. For an
appropriate choice of constant C, we make K = C lnn copies of each arc (i, j), and then
we apply randomized rounding to the resulting graph, including arc (i, j) with probability
x∗ij . Let zij be the number of copies of arc (i, j) in the resulting solution; note that z is a
random variable. We note that z may not correspond to an Eulerian graph, so we must
include additional arcs to make it Eulerian. Let bv = z(δ+(v))− z(δ−(v)) be the number
of additional arcs coming in to vertex v needed to make the graph Eulerian (note that if
bv is negative we need to add |bv| arcs coming out of vertex v); we call bv the demand of
vertex v. We use a minimum-cost flow algorithm to find an integral vector w ≥ 0 with
w(δ−(v))− w(δ+(v)) = bv for all v ∈ V that minimizes

∑
(i,j)∈V cijwij .

(a) Show that the linear program above is a linear programming relaxation of the asym-
metric traveling salesman problem.

(b) Show that by choosing C and ϵ properly, with high probability

(1− ϵ)x∗(δ+(S)) ≤ z(δ+(S)) ≤ (1 + ϵ)x∗(δ+(S)),

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

330 Further uses of random sampling and randomized rounding of linear programs

for all S ⊂ V , S ̸= ∅, and use this to show that with high probability

z(δ+(S)) ≤ 2z(δ−(S))

for all S ⊂ V , S ̸= ∅. (Hint: in an undirected graph with capacities on the edges, if
λ is the capacity of the minimum cut, then there are at most n2α cuts of capacity at
most αλ, where n = |V |. To apply this result, you will need to argue that in some
sense the solution x∗ is like a capacitated undirected graph).

(c) It is known that in a directed graph with capacities uij for all (i, j) ∈ A and demands
bv, there is a feasible flow satisfying all demands if u(δ−(S)) ≥

∑
v∈S bv for all S ⊂ V ,

S ̸= ∅. Prove that z(δ−(S)) ≥
∑

v∈S bv for all S ⊂ V , S ̸= ∅, and thus that for the
minimum-cost flow w,

∑
(i,j)∈A cijwij ≤

∑
(i,j)∈A cijzij .

(d) Show that the algorithm is a randomized O(log n)-approximation algorithm for the
metric asymmetric traveling salesman problem.

12.5 Give a polynomial-time separation oracle for the directed component linear programming
relaxation of the k-restricted Steiner tree problem (and hence a polynomial-time procedure
to solve this linear program).

12.6 Consider the special case of Theorem 12.9 when the optimal Steiner tree is a complete
binary tree, in which all terminals are leaves, and k = 2p for some integer p (in fact,
k = 4 provides a good starting point); in this case, one can prove that the additional cost
for small components is at most a factor of 1 + 1/p. One approach is to produce many
k-restricted Steiner trees from the unrestricted Steiner tree, and prove that the average
cost among them has cost within the same factor 1 + 1/p of the original.

Chapter Notes

The approximation algorithms for the uncapacitated facility location problem in Section 12.1
are due to Chudak and Shmoys [77]. As of this writing, the best known approximation algorithm
for this problem is a 1.5-approximation algorithm due to Byrka and Aardal [58].

The algorithm for the single-source rent-or-buy problem in Section 12.2 is due to Gupta,
Kumar, and Roughgarden [149] (see also [148]). Williamson and van Zuylen [289] have given a
derandomization of this algorithm. An algorithm that marks vertices with a slightly different
probability can be shown to given an improved performance guarantee; this result is due to
Eisenbrand, Grandoni, Rothvoß, and Schäfer [98]. The sample-and-augment algorithm for
the multicommodity rent-or-buy problem in Exercise 12.2 is due to Gupta, Kumar, Pál, and
Roughgarden [148]. The fact that the primal-dual algorithm for the generalized Steiner tree
problem gives 3-strict cost shares is due to Fleischer, Könemann, Leonardi, and Schäfer [115].

The result of Section 12.3 that gives a 1.694-approximation algorithm for the Steiner tree
is due to Byrka, Grandoni, Rothvoß, and Sanità [59]. The first approximation algorithm for
the Steiner tree, giving a performance guarantee of 2, is attributed to Moore and described in
the 1968 paper of Gilbert and Pollak [130]. Zelikovsky [294] gave the first α-approximation
algorithm for the Steiner tree problem with constant α < 2. In many ways, it is completely
analogous to the LP-based result discussed in this section. It focuses on the 3-restricted Steiner
tree problem, and gives a greedy-based improvement approximation algorithm for that problem
by starting with the minimum terminal spanning tree; it attempts to find the 3-node subgraph
for which adding a Steiner node causes the greatest drop in net cost, and consequently introduces

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

12.4 Everything at once: finding a large cut in a dense graph 331

that full component (if there is a net drop at all). This yields an 11/6-approximation algorithm.
Since that result, there were many improvements, first by generalizing to k-restricted Steiner
tree, and using that as the basis for the approximation; Theorem 12.9 is due to Borchers and
Du [53]. The best performance guarantee for a combinatorial algorithm is a 1.55-approximation
algorithm due to Robins and Zelikovsky [254], which is a greedy algorithm. The monograph by
Prömel and Steger [242] provides an excellent overview of the full range of work done on the
Steiner tree as of its writing. Beyond the result presented here, Byrka et al. also prove a number
of stronger results, most notably a ln 4-approximation algorithm (where ln 4 is less than 1.39).
Our presentation was also strongly influenced by a more recent 1.55-approximation algorithm
based on the same LP due to Chakrabarty, Könemann, and Pritchard [63], which matches the
currently strongest integrality gap result known in this domain.

The result of Section 12.4 giving a polynomial-time approximation scheme for the maximum
cut problem in unweighted dense graphs is due to Arora, Karger, and Karpinski [16]; Fernandez
de la Vega [110] independently developed a different PTAS for the same case of the maximum
cut problem. The Hoeffding inequality of Fact 12.13 is due to Hoeffding [166]. Arora, Karger,
and Karpinski show that their techniques work for several other problems, such as the maximum
directed cut problem in unweighted dense graphs, as given in Exercise 12.3. Since these results,
several other approximation schemes have been developed for these problems and more general
variants. Mathieu and Schudy [223] give a particularly simple algorithm for the maximum cut
problem in unweighted dense graphs that draws a random sample, enumerates all possible cuts
of the sample, and uses a greedy algorithm to augment it to a full solution.

Exercise 12.4 is due to Goemans, Harvey, Jain, and Singh [136]; an improvement of this
result due to Asadpour, Goemans, M ↪adry, Oveis Gharan, and Saberi [25] gives a performance
guarantee of O(log n/ log log n). The bound on the number of cuts of capacity at most α times
the minimum is due to Karger [183, 184]. The condition on the feasibility of a flow is known as
Hoffman’s circulation theorem and is due to Hoffman [167].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

332 Further uses of random sampling and randomized rounding of linear programs

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 13

Further uses of randomized rounding

of semidefinite programs

We introduced the use of semidefinite programming for approximation algorithms in Chapter 6.
The algorithms of that chapter solve a vector programming relaxation, then choose a random
hyperplane (or possibly many hyperplanes) to partition the vectors in some way. The central
component of the analysis of these algorithms is Lemma 6.7, which says that the probability
of two vectors being separated by a random hyperplane is proportional to the angle between
them. In this chapter, we look at ways in which we can broaden both the analysis of algorithms
using semidefinite programming, and the algorithms themselves.

To broaden our analytical techniques, we revisit two of the problems we discussed initially in
Chapter 6. In particular, we consider the problem of approximating integer quadratic programs,
which was introduced in Section 6.3, and the problem of coloring a 3-colorable graph, which was
introduced in Section 6.5. In our algorithms in this chapter, we again solve vector programming
relaxations of the problems, and choose a random hyperplane by drawing its components from
the normal distribution. Here, however, our analysis of the algorithms will rely on several more
properties of the normal distribution than we used in the previous chapter; in particular, it will
be helpful for us to use bounds on the tail of the normal distribution.

We will also consider the application of semidefinite programming to the unique games prob-
lem. We have mentioned previously that several problems are hard to approximate assuming
the unique games conjecture. In Section 13.3, we will define the unique games problem and give
the unique games conjecture. The unique games problem is a type of constraint satisfaction
problem, and the unique games conjecture states that it is NP-hard to satisfy a small fraction of
the constraints even when it is known that the optimal solution satisfies almost all constraints.
The unique games conjecture underlies various results on the hardness of approximation. We
will give an approximation algorithm for the problem, though its performance guarantee does
not refute the unique games conjecture. Interestingly, the algorithm for unique games does not
use a random hyperplane, but instead relies on the geometric properties of vector programs.

333

334 Further uses of randomized rounding of semidefinite programs

13.1 Approximating quadratic programs

We begin the chapter by returning to the quadratic programming problem introduced in Section
6.3; recall the quadratic program (6.5):

maximize
∑

1≤i,j≤n

aijxixj (13.1)

subject to xi ∈ {−1,+1} , i = 1, . . . , n.

In Section 6.3, we restricted the objective function matrix A = (aij) to be positive semidefinite
in order to guarantee that the optimal value is nonnegative. We were then able to obtain
a 2

π -approximation algorithm for that case. In this section, we instead restrict ourselves to
any matrix A in which aii = 0 for all i, and obtain a much weaker approximation algorithm
with performance guarantee Ω(1/ log n). In any solution to the quadratic program above,∑n

i=1 aiix
2
i =

∑n
i=1 aii, so these terms are simply a constant that is added to any solution to

the problem.

We begin by showing that the optimal value for this case must be nonnegative, and thus it
makes sense to talk about an approximation algorithm for this problem.

Lemma 13.1: If aii = 0 for all i, then

OPT ≥ 1

n2

∑
1≤i<j≤n

|aij + aji|.

Proof. We will construct a solution x̄ via randomization such that

E

 ∑
1≤i,j≤n

aij x̄ix̄j

 ≥ 1

n2

∑
1≤i<j≤n

|aij + aji|.

This will prove the lemma.

Consider a complete undirected graph on n vertices, where each edge (i, j) for i < j has
weight (aij + aji). We construct a random matching M on the graph as follows: we pick an
edge (i, j) of the graph at random, add it to the matching M , remove both of its endpoints i
and j from the graph, and repeat until there is at most one vertex remaining. Since there are
n(n− 1)/2 edges in the graph, the probability that we choose any given edge for the matching
in the first step is 2/n(n − 1). Thus the probability that any edge ends up in the matching is
at least 1/n2; this is a very loose lower bound, but it is sufficient for our purposes.

We now construct the solution x̄. Given the matching M , for each (i, j) ∈ M with i < j,
we set x̄i = 1 with probability 1

2 and x̄i = −1 with probability 1
2 . We then set x̄j = x̄i if

aij + aji ≥ 0 and x̄j = −x̄i otherwise. Finally, for vertex i not in the matching (if n is odd),
then we set x̄i = 1 with probability 1

2 and x̄i = −1 with probability 1
2 . The crucial observation is

that if (i, j) ∈M , E[(aij+aji)x̄ix̄j] = |aij+aji|, while if (i, j) /∈M , then E[(aij+aji)x̄ix̄j] = 0.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.1 Approximating quadratic programs 335

Hence we obtain that

E

 ∑
1≤i,j≤n

aij x̄ix̄j

 = E

 ∑
1≤i<j≤n

(aij + aji)x̄ix̄j


=

∑
1≤i<j≤n:(i,j)∈M

Pr[(i, j) ∈M]E[(aij + aji)x̄ix̄j |(i, j) ∈M]

+
∑

1≤i<j≤n:(i,j)/∈M

Pr[(i, j) /∈M]E[(aij + aji)x̄ix̄j |(i, j) /∈M]

≥ 1

n2

∑
1≤i<j≤n

|aij + aji|,

and the proof is complete.

As a first step towards an algorithm, we show that the quadratic programming problem
with integer constraints, in which we must have xi ∈ {−1, 1}, is actually equivalent, in terms
of approximability, to a quadratic programming problem with linear constraints, in which we
have −1 ≤ xi ≤ 1. We will then provide an approximation algorithm for the case of linear
constraints. In particular, consider the following program:

maximize
∑

1≤i,j≤n

aijyiyj (13.2)

subject to −1 ≤ yi ≤ 1, i = 1, . . . , n.

We can show the following.

Lemma 13.2: Assume that aii = 0 for all i. Then given any α-approximation algorithm for the
program (13.2) with linear constraints, we can obtain a randomized α-approximation algorithm
for the program (13.1) with integer constraints.

Proof. We prove the lemma by showing that any solution ȳ to the program (13.2) with linear
constraints can be converted via randomized rounding to a solution x̄ to the program (13.1)
with integer constraints of the same expected value. To see this, set x̄i = −1 with probability
1
2(1− ȳi) and x̄i = 1 with probability 1

2(1 + ȳi). Then for i ̸= j

E[x̄ix̄j] = Pr[x̄i = x̄j]− Pr[x̄i ̸= x̄j]

=
1

4
((1− ȳi)(1− ȳj) + (1 + ȳi)(1 + ȳj))−

1

4
((1− ȳi)(1 + ȳj) + (1 + ȳi)(1− ȳj))

=
1

4
(2 + 2ȳiȳj)−

1

4
(2− 2ȳiȳj)

= ȳiȳj ,

so that

E

 ∑
1≤i,j≤n

aij x̄ix̄j

 =
∑

1≤i,j≤n

aij ȳiȳj ,

given that aii = 0 for all i.

Let OPTlin be the value of the optimal solution to the program (13.2) with linear constraints,
and let OPT be the value of the optimal solution to the original program (13.1) with integer

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

336 Further uses of randomized rounding of semidefinite programs

Solve vector programming (13.3), obtain vectors vi
Draw random vector r
Set zi = (vi · r)/T
if |zi| ≤ 1 then

yi ← zi
else if zi < −1 then

yi ← −1
else

yi ← 1
return y

Algorithm 13.1: Approximation algorithm for the quadratic programming problem.

constraints. Note that OPTlin ≥ OPT, since every integer solution is feasible for the program
with linear constraints. However, it is also true that OPT ≥ OPTlin, since given an optimal
solution ȳ to the program with linear constraints, the argument above implies there exists an
integer solution of value at least as much. Hence OPT = OPTlin.

Thus given any solution ȳ to the program (13.2) with linear constraints of value at least
αOPTlin, we can convert it in randomized polynomial time to an integer solution x̄ to the
program (13.1) of the same expected value, and thus of value at least αOPTlin = αOPT.
Therefore, given an α-approximation algorithm for the program (13.2), we can obtain a ran-
domized α-approximation algorithm for the program (13.1).

We now give an Ω(1/ log n)-approximation algorithm for the program (13.2), which, by
Lemma 13.2, will imply an Ω(1/ log n)-approximation algorithm for the original problem. We
now let OPT stand for the optimal value of the program (13.2) with linear constraints (the proof
of the lemma shows that the two values are identical). We use the same vector programming
relaxation as we used in Section 6.3:

maximize
∑

1≤i,j≤n

aij(vi · vj) (13.3)

subject to vi · vi = 1, i = 1, . . . , n,

vi ∈ ℜn, i = 1, . . . , n.

Let ZV P be the optimal value of the vector program. As we argued before, this program
is a relaxation of the original program (13.1) with integer constraints, so that ZV P ≥ OPT.
Our algorithm finds an optimal solution to the vector program (13.3) in polynomial time and
obtains the vectors vi. We find a random vector r, as usual, by drawing each component of r
from N (0, 1), the normal distribution of mean 0 and variance 1. For a value of T ≥ 1 to be
chosen later, we let zi = (vi · r)/T . Possibly z is infeasible if zi > 1 or zi < −1, so we create a
solution y in which we clamp yi to 1 (or −1) if that happens; in other words, we set

yi =


zi if |zi| ≤ 1
−1 if zi < −1
1 if zi > 1.

We return y as our solution. This algorithm is summarized in Algorithm 13.1.

We will be able to show that the expected value of the product zizj is the same as the inner
product vi · vj scaled down by T 2. If it were the case that |zi| ≤ 1 for all i, then we could show

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.1 Approximating quadratic programs 337

that the expected value of the solution y would be ZV P /T
2. However, possibly |zi| > 1. By

increasing T , we decrease the probability that this happens; we can show that the expected
error incurred by the possibility that |zi| > 1 is O(n2e−T 2

OPT). By setting T = Θ(
√
lnn), we

get a solution of expected value at least ZV P /Θ(lnn) ≥ OPT /Θ(lnn) minus an error term of
O(OPT /n), which gives the desired performance guarantee for sufficiently large n.

We now prove the main lemmas we will need to obtain the result.

Lemma 13.3:

E[zizj] =
1

T 2
(vi · vj).

Proof. We want to calculate E[zizj] =
1
T 2E[(vi · r)(vj · r)]. The value of the vector program is

not changed under a rotation of the vectors and r is spherically symmetric (by Fact 6.4), so we
can rotate the vectors so that vi = (1, 0, . . .) and vj = (a, b, 0, . . .). Then for r = (r1, r2, . . . , rn),
where each ri is drawn from N (0, 1), we have that vi · r = r1 and vj · r = ar1 + br2. Therefore

E[zizj] =
1

T 2
E[r1(ar1 + br2)] =

1

T 2

(
aE[r21] + bE[r1r2]

)
.

Because r1 is drawn from N (0, 1), E[r21] is the variance of r1 and is 1. Because r1 and r2 are
drawn independently from N (0, 1), E[r1r2] = E[r1]E[r2] = 0. Thus

E[zizj] =
a

T 2
=

1

T 2
(vi · vj).

The expected value of the algorithm is

E

 ∑
1≤i,j≤n

aijyiyj

 =
∑

1≤i,j≤n

aijE[yiyj],

whereas the lemma above shows us that∑
1≤i,j≤n

aijE[zizj] =
1

T 2

∑
1≤i,j≤n

aij(vi · vj) =
1

T 2
ZV P .

In order to relate the expected value of the algorithm to the value of the semidefinite program,
we consider the difference between zizj and yiyj for each i, j. Let us denote this difference
∆ij = zizj − yiyj . In the next lemma, we see that this difference is exponentially small in −T 2.

Lemma 13.4:

|E[∆ij]| ≤ 8e−T 2
.

We defer the proof of this lemma for a moment. Given the lemma, we are able to obtain
the proof of the performance guarantee of the algorithm.

Theorem 13.5: For n sufficiently large, Algorithm 13.1 is a randomized Ω(1/ log n)-approximation
algorithm for approximating the quadratic program (13.2) if aii = 0 for all i.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

338 Further uses of randomized rounding of semidefinite programs

Proof. Via Lemma 13.3, we have that E[zizj] =
1
T 2 (vi · vj). Then the expected value of the

algorithm is

E

 ∑
1≤i,j≤n

aijyiyj

 =
∑

1≤i,j≤n

aijE[yiyj]

=
∑

1≤i,j≤n

aijE[zizj]−
∑

1≤i,j≤n

aijE[∆ij]

=
1

T 2

∑
1≤i,j≤n

aij(vi · vj)−
∑

1≤i,j≤n

aijE[∆ij]

=
1

T 2
ZV P −

∑
1≤i,j≤n

aijE[∆ij]

≥ 1

T 2
ZV P −

∣∣∣∣∣∣
∑

1≤i,j≤n

aijE[∆ij]

∣∣∣∣∣∣
≥ 1

T 2
ZV P −

∑
1≤i<j≤n

|aij + aji| · |E[∆ij]|

≥ 1

T 2
ZV P − 8e−T 2

∑
1≤i<j≤n

|aij + aji|,

where the last inequality follows from Lemma 13.4. Using Lemma 13.1, we know that
∑

1≤i<j≤n |aij+
aji| ≤ n2 ·OPT, so that the expected value of the algorithm is at least

1

T 2
ZV P − 8n2e−T 2

OPT ≥
(

1

T 2
− 8n2e−T 2

)
OPT .

Then if we set T =
√
3 lnn, the expected value of the algorithm is at least(

1

3 lnn
− 8

n

)
OPT .

For n larger than e8 ≥ 128, we have that 1/4 lnn ≥ 8/n, so that the expected value of the
algorithm is at least (13 −

1
4)

OPT
lnn = OPT

12 lnn . This proves that the algorithm is an Ω(1/ log n)-
approximation algorithm for n sufficiently large.

Finally, we turn to the proof of Lemma 13.4.

Proof of Lemma 13.4. Let Xi be the event that yi = zi and Xj be the event that yj = zj .
For notational simplicity, we will write expectations conditioned on Xi as Ei, expectations
conditioned on X̄i as E¬i, expectations conditioned on Xi ∧Xj as Ei,j , and so on. Then

|E[∆ij]| ≤ |Ei,j [∆ij] Pr[Xi ∧Xj]|+ E¬i,j [|∆ij |] Pr[X̄i ∧Xj]

+ Ei,¬j [|∆ij |] Pr[Xi ∧ X̄j] + E¬i,¬j [|∆ij |] Pr[X̄i ∧ X̄j]. (13.4)

Observe that

E¬i[|∆ij |] Pr[X̄i] = E¬i,j [|∆ij |] Pr[X̄i ∧Xj] + E¬i,¬j [|∆ij |] Pr[X̄i ∧ X̄j]

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.1 Approximating quadratic programs 339

and
E¬j [∆ij |] Pr[X̄j] = Ei,¬j [|∆ij |] Pr[Xi ∧ X̄j] + E¬i,¬j [|∆ij |] Pr[X̄i ∧ X̄j].

Thus since E¬i,¬j [|∆ij |] Pr[X̄i ∧ X̄j] is nonnegative, the right-hand side of (13.4) is at most

|Ei,j [∆ij] Pr[Xi ∧Xj]|+E¬i[|∆ij |] Pr[X̄i] + E¬j [|∆ij |] Pr[X̄j].

We now bound these various terms. Given Xi ∧Xj (that is, yi = zi and yj = zj), ∆ij = 0,
so Ei,j [∆ij] = 0. By symmetry, E¬i[|∆ij |] Pr[X̄i] = E¬j [|∆ij |] Pr[X̄j], so we only need to
bound E¬i[|∆ij |] Pr[X̄i]. To do this, we recall that the density function p(x) of the normal
distribution N (0, 1) is

p(x) =
1√
2π

e−x2/2,

and its cumulative distribution function is Φ(x) =
∫ x
−∞ p(s)ds. We will let Φ(x) = 1− Φ(x) =∫∞

x p(s)ds. We also recall from the proof of Lemma 13.3 that we can assume that vi = (1, 0, . . .),
vj = (a, b, 0, . . .), where |a| ≤ 1 and |b| ≤ 1 since vj is a unit vector. Further, r = (r1, r2, . . . , rn)
where each ri is drawn independently from N (0, 1). Since the event X̄i occurs when |zi| > 1,
or |vi · r| > T , we have

Pr[X̄i] = 2Φ(T).

Also, using |yiyj | ≤ 1,

E¬i[|∆ij |] Pr[X̄i] ≤ E¬i[|yiyj |+ |zizj |] Pr[X̄i] ≤ 2Φ(T) + E¬i[|zizj |].

Since zizj =
1
T 2 (vi · r)(vj · r) = r1(ar1 + br2), and X̄i implies |vi · r| > T , we have that

E¬i[|zizj |] =
1

T 2

∫ −T

−∞

∫ ∞

−∞
|r1(ar1 + br2)|p(r1)p(r2)dr2dr1

+
1

T 2

∫ ∞

T

∫ ∞

−∞
|r1(ar1 + br2)|p(r1)p(r2)dr2dr1

=
2

T 2

∫ ∞

T

∫ ∞

−∞
|ar21 + br1r2|p(r1)p(r2)dr2dr1

≤ 2

T 2

∫ ∞

T
|a|r21p(r1)dr1 +

2

T 2

(∫ ∞

T
|br1|p(r1)dr1

)(∫ ∞

−∞
|r2|p(r2)dr2

)
.

We now bound each of these terms. Using integration by parts, and |a| ≤ 1 we obtain∫ ∞

T
|a|r2p(r)dr ≤ 1√

2π

∫ ∞

T
r2e−r2/2dr

=
1√
2π

(
−re−r2/2

]∞
T

+

∫ ∞

T
e−r2/2dr

)
=

1√
2π

Te−T 2/2 +Φ(T).

Also, since |b| ≤ 1,∫ ∞

T
|br|p(r)dr ≤ 1√

2π

∫ ∞

T
re−r2/2dr = − 1√

2π
e−r2/2

]∞
T

=
1√
2π

e−T 2/2,

and ∫ ∞

−∞
|r|p(r)dr = 2

∫ ∞

0
rp(r)dr = − 2√

2π
e−r2/2

]∞
0

=
2√
2π

.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

340 Further uses of randomized rounding of semidefinite programs

Putting these pieces together, and using T ≥ 1, we get

E¬i[|∆ij |] Pr[X̄i] ≤ 2Φ(T) +
2

T
√
2π

e−T 2/2 +
2

T 2
Φ(T) +

2

T 2π
e−T 2/2

≤ 4Φ(T) +
2

T
e−T 2/2.

We can bound Φ(T) for T ≥ 1 with

Φ(T) =

∫ ∞

T
p(x)dx ≤

∫ ∞

T
xp(x)dx =

1√
2π

∫ ∞

T
xe−x2/2 = − 1√

2π
e−x2/2

]∞
T

≤ 1

2
e−T 2/2.

Now we can put everything together. We have that

|E[∆ij]| ≤ 2E¬i[|∆ij |] Pr[X̄i] ≤ 4e−T 2/2 +
4

T
e−T 2/2 ≤ 8e−T 2/2,

and we are done.

Before we move on, it is worth pausing for a moment to reflect on why the analysis above
is necessary. Consider an alternative: suppose we solve the vector program and pick a random
hyperplane r; if zi = (vi · r)/T is such that |zi| ≤ 1 for all i, return zi as a solution, otherwise
return any nonnegative solution as given in Lemma 13.1. The probability that for a given i,
|zi| > 1 is the probability that |vi · r| > T , which is 2Φ(T) ≤ e−T 2/2. If we set T = O(

√
log n),

then with high probability, for all i, |zi| ≤ 1. We already know that the expected value
E[zizj] = (vi · vj)/T 2 by Lemma 13.3, so the expected value is within Ω(1/ log n) of ZV P . Why
isn’t this easier? The problem with this analysis is that it does not consider the expected value
of E[zizj] conditioned on |zi| ≤ 1 for all i; that is, the expected value of the solutions we actually
return. Perhaps the value of solutions for which |zi| > 1 is particularly high, and this is what
makes the overall expectation large. It is this possibility that the analysis above of the error
term ∆ij considers.

13.2 Coloring 3-colorable graphs

In this section, we return to the problem discussed in Section 6.5 of coloring 3-colorable graphs
with as few colors as possible. Our coloring algorithm in this section will work by repeatedly
finding a large independent set in the graph. Recall from Section 10.2 that an independent
set of vertices S ⊆ V is one such that for all pairs i, j of vertices in S, there is no edge (i, j).
Given an independent set in the graph, we can color all of its vertices the same color. We
then remove the independent set from the graph, find another large independent set in the
remaining graph, color all its vertices with a new color, and repeat. Clearly this process results
in a feasible coloring of the graph. Now we bound the number of colors used. If in each iteration
we find an independent set of size at least γ fraction of the remaining vertices, then after one
iteration at most (1− γ)n vertices remain. After k iterations, (1− γ)kn vertices remain. Since
(1− γ)k ≤ e−γk, using 1− x ≤ e−x, after k = 1

γ lnn rounds, at most

(1− γ)kn ≤ e−γkn = e− lnnn = 1

vertex remains, which we can color with its own color. Thus if in each iteration we can find an
independent set of size at least a γ fraction of the remaining number of vertices, then we can
color the graph with O(1γ lnn) colors overall. Let ∆ be the maximum degree of the graph. We

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.2 Coloring 3-colorable graphs 341

will modify the algorithm somewhat so that if ∆ ever becomes smaller than a constant in the
remaining graph, we simply use the greedy ∆ + 1 coloring algorithm of Exercise 6.4 to color
the remaining graph; we state the constant below. This modification still yields a O(1γ lnn)
coloring algorithm.

To make matters slightly more complicated, the algorithm we give below for finding an
independent set is a randomized algorithm that returns an independent set whose expected
size is γn. We will argue below that we can simply run this algorithm O(1γ lnn) times to get
an independent set of size at least γn/2 with high probability. If we let the random variable
X denote the number of vertices not in the independent set, then if the expected size of the
independent set is at least γn, it follows that E[X] ≤ n(1 − γ). Then by applying Markov’s
inequality (Lemma 5.25),

Pr
[
X ≥ n

(
1− γ

2

)]
≤ E[X]

n
(
1− γ

2

) ≤ n(1− γ)

n
(
1− γ

2

) ≤ 1− γ

2
.

Thus the probability that the independent set has size smaller than γn/2 is at most 1− γ
2 , and

the probability that the independent set has size at least γn/2 is at least γ
2 . Thus if we run the

algorithm at least 2c
γ lnn times for some constant c, the probability that the algorithm does not

return an independent set of size at least γn/2 is at most(
1− γ

2

) 2c
γ

lnn
≤ e−c lnn ≤ 1

nc
.

To find a large independent set, we will use a feasible solution to the following vector
program:

minimize 0 (13.5)

subject to vi · vj = −1/2, ∀(i, j) ∈ E,

vi · vi = 1, ∀i ∈ V,

vi ∈ ℜn, ∀i ∈ V.

We use the objective function “minimize 0” since we are only interested in a feasible solution to
the vector program. In Corollary 6.22, we showed that for any 3-colorable graph, there exists
a feasible solution to this vector program. Given a feasible solution to the vector program, we
choose a random vector r = (r1, r2, . . . , rn) by drawing each ri independently from the standard
normal distribution N (0, 1). For a value of ϵ we specify momentarily, we find S(ϵ) = {i ∈ V :
vi · r ≥ ϵ}. The set S(ϵ) may not be independent, so we let S′(ϵ) ⊆ S(ϵ) be all the i ∈ S(ϵ)
that have no neighbors in S(ϵ). The set S′(ϵ) is independent, and we return it as our solution.
We summarize this algorithm in Algorithm 13.2. We will show below that this algorithm
produces an independent set of expected size at least Ω(n∆−1/3(ln∆)−1/2). In particular, we

will choose ϵ =
√

2
3 ln∆ for reasons explained later, and we would like ϵ ≥ 1, so we use the

greedy coloring algorithm when ∆ ≤ e3/2 ≤ 5. Together with the previous discussion, this
will yield an algorithm that colors any 3-colorable graph with O(∆1/3

√
ln∆ log n) colors. In

Exercise 13.1, this is shown to lead to a coloring algorithm that uses Õ(n1/4) colors.
For our proofs we will need the following notation. As in the previous section, let the density

function p(x) of the normal distribution N (0, 1) be

p(x) =
1√
2π

e−x2/2,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

342 Further uses of randomized rounding of semidefinite programs

Solve vector program (13.5), get vectors vi
Draw random vector r

ϵ←
√

2
3 ln∆

S(ϵ)← {i ∈ V : vi · r ≥ ϵ}
S′(ϵ)← {i ∈ S(ϵ) : ∀(i, j) ∈ E, j /∈ S(ϵ)}
return S′(ϵ)

Algorithm 13.2: Algorithm for finding a large independent set in a 3-colorable graph.

its cumulative distribution function be Φ(x) =
∫ x
−∞ p(s)ds, and let Φ(x) = 1 − Φ(x) =∫∞

x p(s)ds. We can now start with a simple lemma.

Lemma 13.6: For any i ∈ V , the probability that i ∈ S(ϵ) is Φ(ϵ), so that E[|S(ϵ)|] = nΦ(ϵ).

Proof. The probability that any i ∈ V is in S(ϵ) is equal to the probability that vi · r ≥ ϵ. By
Fact 6.5, vi · r is normally distributed. By the definition of Φ, the probability that vi · r is at
least ϵ is Φ(ϵ).

Now we bound the probability that any vertex is not in S′(ϵ) given that it is in S(ϵ).

Lemma 13.7: The probability that i /∈ S′(ϵ) given that i ∈ S(ϵ) is at most ∆Φ(
√
3ϵ).

Proof. If i ∈ S(ϵ), then the only reason that i would not be in S′(ϵ) is because some neighbor
j of i is also in S(ϵ). Thus

Pr[i /∈ S′(ϵ)|i ∈ S(ϵ)] = Pr[∃(i, j) ∈ E : vj · r ≥ ϵ|vi · r ≥ ϵ].

Because i and j are neighbors, there is an edge (i, j) ∈ E. Thus by the vector program (13.5),

vi · vj = −1/2. We can write that vj = −1
2vi +

√
3
2 u for a unit vector u orthogonal to vi in

the vi-vj plane (see Figure 13.1). Rewriting in terms of u, we have u = 2√
3
(12vi + vj). Then

if vi · r ≥ ϵ and vj · r ≥ ϵ, this implies that u · r ≥ 2√
3
(ϵ + 1

2ϵ) =
√
3ϵ. Since u is orthogonal

to vi, by Fact 6.5, u · r is normally distributed and independent of vi · r. Thus given that
vi · r ≥ ϵ, the probability that vj · r ≥ ϵ is at most the probability that the independent,
normally distributed random variable u · r ≥

√
3ϵ, which happens with probability Φ(

√
3ϵ).

Thus Pr[vj · r ≥ ϵ|vi · r ≥ ϵ] ≤ Φ(
√
3ϵ). Since i has at most ∆ neighbors, we have that

Pr[∃(i, j) ∈ E : vj · r ≥ ϵ|vi · r ≥ ϵ] ≤
∑

j:(i,j)∈E

Pr[vj · r ≥ ϵ|vi · r ≥ ϵ] ≤ ∆Φ(
√
3ϵ),

and we are done.

Now if we can set ϵ so that Φ(
√
3ϵ) is at most 1

2∆ , then the probability that i /∈ S′(ϵ) given
that i ∈ S(ϵ) is at most 1/2, which implies that the expected size of S′(ϵ) will be at least half
the expected size of S(ϵ), or at least n

2Φ(ϵ). To determine an ϵ that gives this probability and
a large independent set, we use the following bounds on Φ.

Lemma 13.8: For x > 0,
x

1 + x2
p(x) ≤ Φ(x) ≤ 1

x
p(x).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.2 Coloring 3-colorable graphs 343

vi

vj

u

Figure 13.1: Figure for proof of Lemma 13.7.

Proof. Note that p′(s) = −sp(s), so that
(
−1

sp(s)
)′
=
(
1 + 1

s2

)
p(s). To obtain the lower bound

on Φ, observe that (
1 +

1

x2

)
Φ(x) =

∫ ∞

x

(
1 +

1

x2

)
p(s)ds

≥
∫ ∞

x

(
1 +

1

s2

)
p(s)ds

= −1

s
p(s)

]∞
x

=
1

x
p(x).

Dividing both sides of the inequality by 1 + 1
x2 gives the lower bound on Φ(x). To obtain the

upper bound, observe

Φ(x) =

∫ ∞

x
p(s)ds

≤
∫ ∞

x

(
1 +

1

s2

)
p(s)ds =

1

x
p(x)

as above.

We can now give the following theorem.

Theorem 13.9: Algorithm 13.2 produces an independent set of expected size at least Ω(n∆−1/3(ln∆)−1/2).

Proof. We set ϵ =
√

2
3 ln∆. Recall from the discussion that we only run the algorithm on

graphs such that ϵ ≥ 1.

By Lemma 13.8, we see that

Φ(
√
3ϵ) ≤ 1√

3ϵ

1√
2π

e−3ϵ2/2

=
1√

2 ln∆

1√
2π

e− ln∆

≤ 1

2∆
.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

344 Further uses of randomized rounding of semidefinite programs

As argued above, by Lemma 13.7, this implies that the probability that i /∈ S′(ϵ) given that
i ∈ S(ϵ) is at most 1/2. Thus the expected size of S′(ϵ) is

E[|S′(ϵ)|] =
∑
i∈V

Pr[i ∈ S′(ϵ)|i ∈ S(ϵ)] Pr[i ∈ S(ϵ)] ≥ n

2
Φ(ϵ),

using Lemma 13.6. Using Lemma 13.8 and the fact that ϵ ≥ 1, we know that

Φ(ϵ) ≥ ϵ

1 + ϵ2
1√
2π

e−ϵ2/2 ≥ 1

2ϵ

1√
2π

e−(ln∆)/3 = Ω((ln∆)−1/2∆−1/3).

Thus the expected size of the independent set returned is Ω(n∆−1/3(ln∆)−1/2).

A somewhat improved algorithm is possible using the same semidefinite programming re-
laxation, and a slightly more improved algorithm is possible using a stronger semidefinite pro-
gramming relaxation; see the notes at the end of the chapter for a discussion. However, the
algorithms still use O(nc) colors to color a 3-colorable graph, for a constant c. Whether or not
it is possible to obtain significantly better results (such as O(logc n) colors) remains a large
open question.

13.3 Unique games

In this section, we introduce the unique games problem. The unique games problem is a type of
constraint satisfaction problem. In a constraint satisfaction problem, we are given n variables
x1, . . . , xn and a finite universe U of values for the variables. Furthermore, we are given m
constraints that are given as functions mapping some subset of the variables to either 0 or 1.
Typically, these constraints are drawn from a particular class of k-ary functions f : Uk → {0, 1}.
The goal is to find a setting of the variables to values in U such that we maximize the number of
constraints that are satisfied; we say that a constraint is satisfied if the corresponding function
evaluates to 1 given the setting of the variables. We can also consider weighted versions of this
problem in which a nonnegative weight wj ≥ 0 is given as input for the jth constraint, and
the goal is to find a setting of the variables that maximizes the total weight of the satisfied
constraints.

Several problems that we have seen thus far are kinds of constraint satisfaction problems.
The maximum cut problem, studied in Sections 5.1, 6.2 and 12.4, is a weighted constraint
satisfaction problem. Given the input graph G = (V,E) with weights wij ≥ 0 for all (i, j) ∈
E, the maximum cut problem corresponds to the weighted constraint satisfaction problem in
which U = {0, 1}, there is a variable xi for each vertex i ∈ V , and there is a constraint
f(xi, xj) = xi ⊕ xj for each edge (i, j) with weight wij , where ⊕ is the exclusive-or function
(which is 1 precisely when xi ̸= xj). The maximum satisfiability problem, discussed in several
sections in Chapter 5 starting in Section 5.1, is also a constraint satisfaction problem in which
U = {true, false} and each constraint corresponds to a clause of the input, and is a Boolean
function evaluating to 1 exactly when the clause is satisfied.

The unique games problem is a type of binary constraint satisfaction problem; that is, each
constraint corresponds to a function on two variables. Furthermore, each function has the
property that given the value of one of the two variables, there is exactly one value of the other
variable for which the constraint is satisfied. For example, the constraint satisfaction problem
given by the maximum cut problem above is a unique games problem on a universe of two
elements because for any constraint on variables i and j (corresponding to an edge (i, j)), given

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.3 Unique games 345

the value of xi ∈ {0, 1}, there is only one value of xj for which the constraint is satisfied, and
similarly given the value of xj . In general, we will be interested in the unique games problem
for universes U of various sizes.

In previous sections, we have mentioned that various theorems on the hardness of approx-
imating particular problems depend on a conjecture involving the unique games problem. We
are now in a position to state formally what this means. Informally, it means that it is NP-
hard to distinguish between instances of the unique games problem in which almost all of the
constraints can be satisfied and almost none of the constraints can be satisfied.

Conjecture 13.10 (Unique Games Conjecture): Given any ϵ, δ > 0, there exists some
k > 0 depending on ϵ and δ, such that for the unique games problem with a universe of size k, it
is NP-hard to distinguish between instances in which at least a 1− ϵ fraction of the constraints
can be satisfied, and instances in which at most a δ fraction of the constraints can be satisfied.

Because the unique games problem deals with binary constraints, it is typical to view it as
a kind of undirected graph problem. In what follows, we will index the nodes of the graph by
u, v, w, . . . and the values of the universe U by i, j, . . ., with U = [k] = {1, . . . , k}. We introduce
a vertex u for each variable xu and an undirected edge (u, v) for each constraint f(xu, xv). For
each edge (u, v), we introduce a permutation πuv : U → U , such that πuv(i) = j exactly when
f(i, j) = 1. Such a permutation exists by the definition of the unique games problem, since
each label for u maps to a unique label for v that satisfies the constraint and vice versa. The
problem becomes one of finding labels for the vertices from the universe U such that as many
of the edges are satisfied as possible; that is, if vertex u is labelled with i ∈ U and vertex v is
labelled with j ∈ U , edge (u, v) is satisfied if πuv(i) = j, since this corresponds to the original
constraint being satisfied.

Interestingly, it is easy to tell when all the edges (or constraints) are satisfiable or not.
Given the graph of constraints, consider a connected component of the graph and choose an
arbitrary vertex v of the component. Given a label i for v, the labels for all the neighbors of
v are uniquely determined if we satisfy all of the edges from v to its neighbors; in particular,
we must label a neighbor w of v with πvw(i). We say that we propagate the label i for v to the
neighbors of v. Similarly, we can propagate the labels of the neighbors of v to the labels of the
neighbors of the neighbors of v, and so on, until we have labels for all vertices in the connected
component. We then check whether all the edges of the component are satisfied. We do this for
all possible labels of v; if there is some labelling that satisfies all the edges of the component,
one of the choices of a label for v will be correct, and will lead to the correct labelling of all
vertices in the component. Thus in polynomial time we can check whether all the edges of the
graph are satisfiable. This shows that a crucial part of the unique games conjecture is checking
whether almost all of the constraints are satisfiable, as opposed to checking whether all of the
constraints are satisfiable.

At this point in time we do not know whether or not there exists an approximation algorithm
for the unique games problem with a performance guarantee that would refute the unique games
conjecture. In what follows, we give an algorithm which, given an instance of the unique games
problem such that at least a 1− ϵ fraction of the constraints are satisfiable, outputs a solution
satisfying at least a 1 − O(

√
ϵ log n) fraction of the constraints. If ϵ = O(1/ log n), then the

algorithm satisfies a constant fraction of the constraints.

We begin by giving an integer quadratic program which models the unique games problem.
For each node u ∈ V and each label i ∈ [k], we create a variable ui ∈ {0, 1}, where we set
ui = 1 if the node u is assigned the label i and 0 otherwise. Then since each node is assigned
exactly one label, we have that

∑k
i=1 u

2
i = 1 and that uiuj = 0 for i ̸= j. Finally, since the edge

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

346 Further uses of randomized rounding of semidefinite programs

(u, v) is satisfied exactly when u is assigned some label i and v is assigned the label πuv(i), we
have that

∑k
i=1 uivπuv(i) = 1 exactly when edge (u, v) is satisfied, and is 0 otherwise. Hence the

following program models the unique games problem:

maximize
∑

(u,v)∈E

k∑
i=1

uivπuv(i) (13.6)

subject to

k∑
i=1

u2i = 1, ∀u ∈ V,

uiuj = 0, ∀u ∈ V, i ∈ [k], j ∈ [k], i ̸= j,

ui ∈ {0, 1}, ∀u ∈ V, i ∈ [k].

We can add some additional constraints that are redundant for this integer quadratic program,
but will be useful when we consider a vector programming relaxation of the problem. We
can assume that (vj − ui)

2 ≥ v2j − u2i , since the inequality holds for all possible assignments
of 0 and 1 to vj and ui. Finally, for any u, v, w ∈ V and h, i, j ∈ [k], it is the case that
(wh − ui)

2 ≤ (wh − vj)
2 + (vj − ui)

2, again by checking all possible assignments of 0 and 1 to
ui, vj , and wh. We can view this inequality as a type of triangle inequality. These additional
inequalities yield the following integer quadratic program which also models the unique games
problem:

maximize
∑

(u,v)∈E

k∑
i=1

uivπuv(i) (13.7)

subject to

k∑
i=1

u2i = 1, ∀u ∈ V,

uiuj = 0, ∀u ∈ V, i ∈ [k], j ∈ [k], i ̸= j,

(vj − ui)
2 ≥ v2j − u2i , ∀u, v ∈ V, i, j ∈ [k],

(wh − ui)
2 ≤ (wh − vj)

2 + (vj − ui)
2, ∀u, v, w ∈ V, h, i, j ∈ [k],

ui ∈ {0, 1}, ∀u ∈ V, i ∈ [k].

We relax the program (13.7) to a vector program by replacing all the scalar variables ui with
vectors ui and multiplication with inner products. Since ui ·ui = ∥ui∥2 and (vj−ui) ·(vj−ui) =

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.3 Unique games 347

∥vj − ui∥2, we obtain

maximize
∑

(u,v)∈E

k∑
i=1

ui · vπuv(i) (13.8)

subject to

k∑
i=1

∥ui∥2 = 1, ∀u ∈ V, (13.9)

ui · uj = 0, ∀u ∈ V, i ∈ [k], j ∈ [k], i ̸= j,
(13.10)

∥vj − ui∥2 ≥ ∥vj∥2 − ∥ui∥2, ∀u, v ∈ V, i, j ∈ [k], (13.11)

∥wh − ui∥2 ≤ ∥wh − vj∥2 + ∥vj − ui∥2, ∀u, v, w ∈ V, h, i, j ∈ [k],
(13.12)

ui ∈ ℜkn, ∀u ∈ V, i ∈ [k].

It is clear that this vector program is a relaxation of the integer quadratic program, and thus
gives an upper bound on the number of constraints satisfiable in the unique games instance.

At a high level, our algorithm will work as follows. We solve the vector programming
relaxation (13.8). We use this information to discard some number of constraints; for the
remainder of the algorithm we will not care if we satisfy these constraints or not. The discarded
edges will be of two types. First, we discard edges that contribute relatively little to the
objective function. Second, we will remove edges so as to break the graph into low-radius balls
via the region-growing technique introduced in Section 8.3. For the center w of each ball, we
will randomly assign a label i to w with probability ∥wi∥2; we can do this since

∑k
i=1 ∥wi∥2 = 1

by constraint (13.9). Given that the center w is assigned the label i, then for every other vertex
v in the ball, we assign v the label j that is closest to wi in the sense that ∥wi−vj∥2 is minimized
over all choices of label j. The fact that the ball is of low radius will imply that it is very likely,
given an edge (u, v) with both endpoints in the ball, that the labels assigned to u and v satisfy
the constraint (u, v).

Before we dive into the details of the algorithm, we need some notation. Suppose we
are given a unique games instance that satisfies at least a 1 − ϵ fraction of the constraints.
Let δ =

√
ϵ ln(n+ 1). Let ui denote the optimal vectors from the vector program, and let

Z∗ =
∑

(u,v)∈E
∑k

i=1 ui · vπuv(i) denote the value of the optimal solution to the vector program.
If m is the number of constraints, then Z∗ ≥ OPT ≥ (1 − ϵ)m. For each edge (u, v) in the
unique games instance, we define a length ℓ(u, v) = 1

2

∑k
i=1 ∥ui − vπuv(i)∥2. The length of (u, v)

captures how close the vectors for u are to the vectors for v that have labellings satisying edge
(u, v); in particular the length ℓ(u, v) is zero when ui = vπuv(i) for all i ∈ [k]. Note that

ℓ(u, v) =
1

2

k∑
i=1

∥ui − vπuv(i)∥
2

=
1

2

k∑
i=1

(
∥ui∥2 + ∥vπuv(i)∥

2 − 2ui · vπuv(i)

)
.

Using constraint (13.9) and that πuv is a permutation, this implies

ℓ(u, v) =
1

2

(
2− 2

k∑
i=1

ui · vπuv(i)

)
= 1−

k∑
i=1

ui · vπuv(i),

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

348 Further uses of randomized rounding of semidefinite programs

so that the length ℓ(u, v) is exactly one minus the contribution of (u, v) to the vector program
objective function. Let L∗ be the total length of all edges. Therefore,

L∗ =
∑

(u,v)∈E

ℓ(u, v) = m− Z∗ ≤ m− (1− ϵ)m = ϵm.

We can now fill in some of the details of the algorithm. Again, the main intuition is that
given a random assignment of a label to a node w, we will very likely be able to satisfy any
edge whose endpoints are close to w in terms of the length ℓ. To that end, we want to break
the graph up into components of low radius in terms of length ℓ. We first discard any edge
(u, v) whose length ℓ(u, v) ≥ δ/4; recall δ =

√
ϵ ln(n+ 1). Note that since the total length

of all edges is at most ϵm, we discard at most 4ϵm/δ = 4δm/ ln(n + 1) edges this way. We
can then invoke the following lemma to remove at most another O(δm) edges and break the
graph into balls of low radius according to the edge lengths ℓ. As mentioned previously, we
will do this via the region-growing technique. Let dℓ(u, v) be the distance between u and v
in the graph given edge lengths ℓ. Let Bℓ(u, r) be a ball of radius r around vertex u, so that
Bℓ(u, r) = {v ∈ V : dℓ(u, v) ≤ r}.

Lemma 13.11: There is a polynomial-time algorithm to remove at most 8δm edges from the
graph so that the vertices of the graph is partitioned into t balls B1, . . . , Bt, where each ball B
is centered at some vertex w ∈ V and has radius at most δ/4.

Proof. Let the volume V ∗
ℓ (w, r) of a ball of radius r around w be the usual notion as in Sections

8.3 and 8.4; that is, for B = Bℓ(w, r) we set

V ∗
ℓ (w, r) =

L∗

n
+

∑
e=(u,v):u,v∈B

ℓ(u, v) +
∑

e=(u,v):u∈B,v/∈B

(r − dℓ(w, u)).

Note then that V ∗
ℓ (w, r) ≤ L∗ + L∗/n for any w ∈ V and any radius r. Then by Corollary

8.11, we can in polynomial time find a radius r ≤ δ/4 around any vertex w ∈ V such that the
number of edges with exactly one endpoint in Bℓ(w, r) is at most

4

δ
ln

(
V ∗
ℓ (w, δ/4)

V ∗
ℓ (w, 0)

)
V ∗
ℓ (w, r) ≤

4

δ
ln

(
L∗ + L∗/n

L∗/n

)
V ∗
ℓ (w, r) =

4

δ
ln(n+ 1)V ∗

ℓ (w, r).

Following the proof of Theorem 8.9 for the multicut problem, we select a vertex w in the
graph. If there is another vertex v at distance more than δ/4, we find a ball around w of radius
r ≤ δ/4 and remove at most 4

δ ln(n + 1)V ∗
ℓ (w, r) edges from the graph; we add this ball to

our collection, and remove the vertices in the ball (and all adjacent edges) from the graph. We
repeat until we select a vertex w in the remaining graph such that all vertices v in the remaining
graph are no further than δ/4 away; the remaining graph then is the final ball in the collection,
with w as its center. The total volume V ∗

ℓ (w, r) over all balls Bℓ(w, r) in the collection except
the final ball is at most 2L∗, so the total number of edges removed is at most

8

δ
ln(n+ 1)L∗ ≤ 8ϵm

δ
ln(n+ 1) = 8δm,

using L∗ ≤ ϵm and δ =
√

ϵ ln(n+ 1).

We now consider each ball B in the collection separately. We show in the following lemma
that if we label the center w with label i with probability ∥wi∥2, and label every other vertex

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.3 Unique games 349

v ∈ B with the label j minimizing ∥wi − vj∥2, then the probability that any edge (u, v) with
both u, v ∈ B is satisfied is at least 1− 3δ. Observe that the algorithm is easy to derandomize:
we try all k labels for the center w. For each labelling of w, label the other v ∈ B as above
and see which label for w satisfies the most edges that have both endpoints in the ball. By the
lemma, some choice of label for w will satisfy at least a 1− 3δ fraction of these edges.

The central idea of the lemma is as follows. Consider a path from w to v, and suppose we
assign label i to w with probability ∥wi∥2. Then consider two potential labels for v: the label
for v that we get by propagating the label i from w to v along its path, and the label we get
for v by assigning it the label j that minimizes ∥wi − vj∥2. We show that these labels disagree
with probability at most 4 times the length of the path. Thus for any edge (u, v) with both
endpoints in the ball, since the ball has low radius and the length of (u, v) is short, it is likely
that u and v are both assigned labels that satisfy (u, v).

Lemma 13.12: For any ball B with center w and any edge (u, v) such that u, v ∈ B, the
probability that the algorithm assigns labels such that (u, v) is satisfied is at least 1− 3δ.

Proof. Consider edge (u, v). Since u is in a ball of radius at most δ/4 around w, we know there
is a path of length at most δ/4 from w to u. Let w = u0, u1, . . . , uq = u be this path. Since
we discarded every edge of length greater than δ/4 we know that adding the edge (u, v) to this
path makes a path from w of v of length at most δ/2.

We want to be able to compute the label propagated to vertex ut along this path if w is
labelled with label i. Let πt be the composition of the permutations πwu1 , . . . , πut−1ut along the
path from w to ut, so that πt(i) = πut−1ut(πt−1(i)). Let πu = πq (that is, the composition of
all permutations along the path from w to u) and let πv be the composition of πu with πuv,
so that πv(i) = πuv(πu(i)). Thus if we label w with i, then πt(i) is the label propagated to ut,
πu(i) is the label propagated to u, and πv(i) is the label propagated to v.

For any vertex z ∈ B, let A(z) be a random variable denoting the label assigned to vertex z
by the algorithm. Let P be the event that the label A(u) given to u by the algorithm is equal
to the label obtained by taking the label A(w) assigned to w by the algorithm and propagating
it to u along the path; that is, P is the event that A(u) = πu(A(w)). We will show that the
probability that this event does not occur is at most 4 times the length of the path from w to
u, and so is at most δ. Thus the probability that these labels are the same is at least 1 − δ.
Similarly, we can show that the probability that the label A(v) assigned to v by the algorithm
is equal to the label propagated to v, πv(A(v)), is at least 1 − 4(δ/2) = 1 − 2δ. Thus with
probability at least 1− 3δ, A(v) = πv(A(w)) and A(u) = πu(A(w)) so that A(v) = πuv(A(u)),
and the edge (u, v) is satisfied.

Note that for any t,

ℓ(ut, ut+1) =
1

2

k∑
i=1

∥uti − ut+1
πutut+1 (i)

∥2 = 1

2

k∑
i=1

∥utπt(i)
− ut+1

πt+1(i)
∥2

by our definitions and since πt is a permutation. Then by using the triangle inequality constraint

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

350 Further uses of randomized rounding of semidefinite programs

(13.12), we see that

1

2

k∑
i=1

∥wi − uπu(i)∥
2

≤ 1

2

k∑
i=1

(
∥wi − u1π1(i)

∥2 + ∥u1π1(i)
− u2π2(i)

∥2 + · · ·+ ∥uq−1
πq−1(i)

− uqπu(i)
∥2
)

=
1

2

k∑
i=1

∥wi − u1π1(i)
∥2 + 1

2

k∑
i=1

∥u1π1(i)
− u2π2(i)

∥2 + · · ·+ 1

2

k∑
i=1

∥uq−1
πq−1(i)

− uqπu(i)
∥2

= ℓ(w, u1) + ℓ(u1, u2) + · · ·+ ℓ(uq−1, uq)

≤ δ/4, (13.13)

since the path length is at most δ/4. Let I be the set of labels i such that if we assign i to
w then u is assigned a label different than its propagated value πu(i); that is, some j ̸= πu(i)
minimizes ∥wi − uj∥2. Then since we assign i to w with probability ∥wi∥2, we have that

Pr[A(u) ̸= πu(A(w))] =
∑
i∈I
∥wi∥2.

We claim that for every i ∈ I, ∥wi − uπu(i)∥2 ≥
1
2∥wi∥2. Given the claim, we then have

Pr[A(u) ̸= πu(A(w))] =
∑
i∈I
∥wi∥2

≤ 2
∑
i∈I
∥wi − uπu(i)∥

2

≤ 2
k∑

i=1

∥wi − uπu(i)∥
2

≤ 4 · (δ/4) = δ,

where the last inequality follows from inequality (13.13). Since the length of the path from w
to v is at most δ/2, by a similar argument,

Pr[A(v) ̸= πv(A(w))] ≤ 4 · (δ/2) = 2δ.

As we argued previously, this implies that edge (u, v) is satisfied with probability at least 1−3δ.

Now to prove the claim. We consider three cases. Assume that w is assigned the label i,
and that j is the label for u that minimizes ∥wi − uj∥2. For simplicity of notation, let h be the
propagated value πu(i); since i ∈ I, we know that πu(i) = h ̸= j. If ∥uh∥2 ≤ 1

2∥wi∥2, then the
inequality follows from the constraint (13.11), since

∥wi − uh∥2 ≥ ∥wi∥2 − ∥uh∥2 ≥
1

2
∥wi∥2.

Now suppose ∥uj∥2 ≤ 1
2∥wi∥2. Then since j is the label that minimizes ∥wi − uj∥2, we have

that

∥wi − uh∥2 ≥ ∥wi − uj∥2 ≥ ∥wi∥2 − ∥uj∥2 ≥
1

2
∥wi∥2,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.3 Unique games 351

by constraint (13.11) and by hypothesis. Now suppose that neither condition holds, and both
∥uh∥2 ≥ 1

2∥wi∥2 and ∥uj∥2 ≥ 1
2∥wi∥2. By the triangle inequality constraint (13.12) and the fact

that j is the label minimizing ∥wi − uj∥2, we have that

∥uh − uj∥2 ≤ ∥wi − uh∥2 + ∥wi − uj∥2 ≤ 2∥wi − uh∥2.

By constraint (13.10) and the fact j ̸= h, it follows that uj · uh = 0 so that

∥uh − uj∥2 = ∥uh∥2 + ∥uj∥2 − 2uh · uj = ∥uh∥2 + ∥uj∥2.

Thus

∥wi − uh∥2 ≥
1

2
∥uh − uj∥2 =

1

2

(
∥uh∥2 + ∥uj∥2

)
≥ 1

2
∥wi∥2,

by hypothesis, and the claim holds.

We can now prove the following theorem.

Theorem 13.13: Given an instance of the unique games problem satisfying a 1− ϵ fraction of
the constraints, the algorithm above satisfies at least a 1− 15δ = 1−O(

√
ϵ log n) fraction of the

constraints.

Proof. When we remove all long edges, we remove at most 4δm/ ln(n + 1) ≤ 4δm edges, and
when we divide the graph up into balls, we remove at most 8δm edges. In each ball, we fail to
satisfy at most a 3δ fraction of the edges with both endpoints in the balls, and so over all balls,
we fail to satisfy at most 3δm edges. Thus we fail to satisfy at most (4 + 8 + 3)δm = 15δm
edges, which gives the result.

Somewhat better algorithms are known; these use the same vector programming relaxation
of the unique games problem. One such algorithm shows the following.

Theorem 13.14: Given a unique games instance in which at least a 1 − ϵ fraction of the
constraints are satisfiable, there is a polynomial-time algorithm that satisfies at least a 1 −
O(
√
ϵ log k) fraction of the constraints.

The following theorem shows that this result is essentially the best possible assuming that
the unique games conjecture is true.

Theorem 13.15: Assuming that the unique games conjecture is true, for any ϵ > 0 there exists
a k depending on ϵ such that for the unique games problem with universe size k, it is NP-hard
to distinguish between instances in which a 1 − ϵ fraction of constraints are satisfiable, and
instances in which a 1−

√
2/π
√
ϵ log k + o(1) fraction of constraints are satisfiable.

Exercises

13.1 Show that the graph coloring algorithm of Section 13.2 can be used to color a 3-colorable
graph with Õ(n1/4) colors.

13.2 In this problem, we consider an unweighted version of the minimum multicut problem
from Section 8.3. We are given a graph G = (V,E) and k pairs of source-sink vertices,
si, ti ∈ V for i = 1, . . . , k. We wish to find a subset of edges F ⊆ E that minimizes |F |
such that for each i = 1, . . . , k, there is no si-ti path in (V,E − F).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

352 Further uses of randomized rounding of semidefinite programs

Consider the following vector program:

minimize
∑

(i,j)∈E

(1− vi · vj)

subject to vsi · vti = 0, i = 1, . . . , k,

vj · vj = 1, ∀j ∈ V,

vj ∈ ℜn, ∀j ∈ V.

Consider the demand graph H = (V,E′), where E′ = {(si, ti) : i = 1, . . . , k}. Let ∆ be
the maximum degree of a vertex in the demand graph. Suppose that that the optimal
value of the vector programming relaxation is ϵ|E|. Consider the following algorithm
which is similar to the algorithm in Section 6.5 for coloring 3-colorable graphs. We
draw t = ⌈log2(∆/ϵ)⌉ random vectors r1, . . . , rt. The t random vectors define 2t different
regions into which the vectors vi can fall: one region for each distinct possibility of whether
rj · vi ≥ 0 or rj · vi < 0 for all j = 1, . . . , t. Remove all edges (i, j) from the graph such
that vi and vj are in different regions. If for any si-ti pair, there still exists an si-ti path,
remove all edges incident on si. We now analyze this algorithm.

(a) Prove that the vector program is a relaxation of the unweighted minimum multicut
problem.

(b) For any (i, j) ∈ E, prove that the probability that i and j are in different regions is
at most t ·

√
1− vi · vj .

(c) Prove that for any i = 1, . . . , k, the probability that we end up removing all the
edges incident on i is at most ∆2−t.

(d) Show that the expected number of edges removed is at most O(
√
ϵ log(∆/ϵ))|E|.

For the final item, it may be useful to use Jensen’s inequality, which states that for any
convex function f (that is, f ′′(x) ≥ 0) and any positive pi,

f

(∑
i pixi∑
i pi

)
≤ 1∑

i pi

∑
i

pif(xi).

The arithmetic-geometric mean inequality given in Fact 5.8 is a special case of Jensen’s
inequality with f(x) = − log x and all the pi = 1.

13.3 In this problem, we consider another algorithm for the unweighted minimum multicut
problem from the previous exercise, using the same vector programming relaxation as
above. As before, assume that the optimal value of the vector programming relaxation is
ϵ|E|, and that ∆ is the maximum degree of a vertex in the demand graph. We set a thresh-
old α = C

√
ln(∆/ϵ) for some constant C. Suppose we draw a random vector r. Consider

the set S(α) = {i ∈ V : vi · r ≥ α}, and S′(α) = S(α) −
∪k

i=1 {si, ti : si, ti ∈ S(α)}; that
is, S′(α) is all elements in S(α) except for the si,ti pairs that both end up in S(α).

The following inequality will be useful for the analysis of the algorithm. Let vi and vj
be unit vectors, and let r be a random vector. Let α be a quantity such that α > 1 and
Φ(α) < 1/3. Then

Pr[vi · r ≥ α and vj · r < α] = O(
√
vi · vjΦ(α)

√
log(1/Φ(α))).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

13.3 Unique games 353

(a) Give a randomized algorithm that works by repeatedly drawing random vectors r
and considering the set S′(α) as defined above. Show that the expected size of the
multicut returned by the algorithm is at most∑

(i,j)∈E

Pr[(i, j) ∈ δ(S′(α))]

Pr[i ∈ S′(α) or j ∈ S′(α)]
.

(b) Prove that for any (i, j) ∈ E,

Pr[(i, j) ∈ δ(S′(α))]

Pr[i ∈ S′(α) or j ∈ S′(α)]
≤ O(

√
vi · vj)α+ ϵ.

(c) Show that the randomized algorithm returns a multicut of size O(
√

ϵ log(∆/ϵ))|E|
edges in expectation.

Chapter Notes

The approximation algorithm for quadratic programs given in Section 13.1 was rediscovered
several times. To our knowledge, it first appeared in a paper of Nemirovski, Roos, and Terlaky
[234], then later in papers of Megretski [224] and Charikar and Wirth [67]. Our presentation
here follows that of Charikar and Wirth.

The approximation algorithm for coloring 3-colorable graphs of Section 13.2 is due to Karger,
Motwani, and Sudan [182], but the analysis we present follows that of Arora, Chlamtac, and
Charikar [15]. Exercise 13.1 is due to Karger et al. Through an improved algorithm and
analysis, Arora et al. are able to color 3-colorable graphs with O(n0.211) colors.

The unique games conjecture was first formulated in a paper of Khot [192]. Since then it
has prompted a significant amount of research in algorithms and complexity theory, and has
been used to show the conditional hardness of a quite significant number of results; we will say
more about the conjecture in Chapter 16. The approximation algorithm for the unique games
problem given here is due to Trevisan [282] with a slightly improved analysis due to Gupta and
Talwar [150]. Charikar, Makarychev, and Makarychev [65] give the improved result mentioned
in Theorem 13.14. The hardness result of Theorem 13.15 is due to Khot, Kindler, Mossel, and
O’Donnell [193] together with a result of Mossel, O’Donnell, and Oleszkiewicz [227].

Exercises 13.2 and 13.3 are due to Steurer and Vishnoi [272]. The bound given in Exercise
13.3 is from Chlamtac, Makarychev, and Makarychev [72, Lemma A.2].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

354 Further uses of randomized rounding of semidefinite programs

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 14

Further uses of the primal-dual

method

In this chapter, we give two somewhat more sophisticated applications of the standard primal-
dual algorithm and analysis introduced in Chapter 7. We revisit the prize-collecting Steiner tree
problem discussed in Sections 4.4 and 5.7, and give a primal-dual 2-approximation algorithm for
it. We also revisit the feedback vertex set problem in undirected graphs introduced in Section
7.2, and give a primal-dual 2-approximation algorithm for this problem, as well. In this case,
we must give an alternate integer programming formulation for the problem since the previous
formulation has an integrality gap that implies that the O(log n)-approximation algorithm of
Section 7.2 is the best possible (within constant factors) using the formulation of that section.

14.1 The prize-collecting Steiner tree problem

In this section, we revisit the prize-collecting Steiner tree problem introduced in Section 4.4
and further discussed in Section 5.7. We show that a primal-dual algorithm can be used to
give a 2-approximation algorithm for the problem; this improves on the performance guarantee
of the previously given algorithms, and the primal-dual algorithm does not require solving a
linear programming relaxation. Recall that in this problem we are given an undirected graph
G = (V,E), edge costs ce ≥ 0 for all e ∈ E, a selected root vertex r ∈ V , and penalties πi ≥ 0 for
all i ∈ V . The goal is to find a tree T that contains the root vertex r so as to minimize the cost
of the edges in T plus the penalties of the vertices not in T ; that is,

∑
e∈T ce +

∑
i∈V−V (T) πi,

where V (T) is the set of vertices in the tree.

We start by giving a different integer programming formulation of the problem. We have
decision variables xe ∈ {0, 1} indicating if an edge e ∈ E is part of the tree. We also have
variables zX ∈ {0, 1} for all X ⊆ V − r, where zX = 1 if X is the set of vertices not spanned by
the tree and zX = 0 otherwise. Then we need a constraint enforcing that for any subset S ⊆ V ,
either S is a subset of the set of vertices not spanned by the tree or some of S is being spanned
by the tree. We do this with the constraint∑

e∈δ(S)

xe +
∑

X:X⊇S

zX ≥ 1,

355

356 Further uses of the primal-dual method

since if xe = 1 for some e ∈ δ(S), then at least some vertex in S is spanned by the tree. Let
π(X) =

∑
i∈X πi. Then we have the following integer programming formulation:

minimize
∑
e∈E

cexe +
∑

X⊆V−r

π(X)zX

subject to
∑

e∈δ(S)

xe +
∑

X:X⊇S

zX ≥ 1, ∀S ⊆ V − r,

xe ∈ {0, 1} , ∀e ∈ E,

zX ∈ {0, 1} , ∀X ⊆ V − r.

As in the case of the shortest s-t path problem and the generalized Steiner tree problem in
Sections 7.3 and 7.4, it can be shown via the max-flow/min-cut theorem that in any feasible
solution there is a tree connecting the root r to every vertex i that is not in some set X for
which zX = 1.

If we replace the integrality conditions xe ∈ {0, 1} and zX ∈ {0, 1} with xe ≥ 0 and zX ≥ 0,
and take the dual of this linear program, we obtain the following:

maximize
∑

S⊆V−r

yS

subject to
∑

S:e∈δ(S)

yS ≤ ce, ∀e ∈ E,

∑
S:S⊆X

yS ≤ π(X), ∀X ⊆ V − r,

yS ≥ 0, ∀S ⊆ V − r.

Note that the dual LP has two types of constraints: one type associated with edges, and the
other associated with sets of vertices. It will be convenient to introduce some notation regarding
the constraint on sets.

Definition 14.1: For a given set of vertices X such that r /∈ X and a dual feasible solution y,
we say that p(X, y, π) = π(X)−

∑
S:S⊆X yS is the remaining potential of the set X.

We now give our primal-dual algorithm in Algorithm 14.1. As in the case of the generalized
Steiner tree algorithm, we maintain a feasible dual solution y (initially all zero) and an infeasible
primal solution F (initially the empty set). We divide the connected components of F into two
types: active and inactive. The connected component containing the root is always inactive.
Any component C such that its potential p(C, y, π) is zero is also inactive. Note that this
corresponds to a tight dual constraint in which

∑
S:S⊆C yS = π(C), so we cannot increase the

dual variable yC without making the dual solution infeasible. We increase the dual variables
associated with all active components uniformly until one of the two types of dual constraints
becomes tight. If a constraint associated with an edge e becomes tight for some e ∈ δ(C) for
some active set C, we add e to F and continue. If a constraint associated with a set C becomes
tight for some active set C (and its potential becomes zero), we make C inactive and continue.
We end the main loop when all connected components of F are inactive.

As with the generalized Steiner tree algorithm, we have a final clean-up step in which we
consider all the edges added to F in the reverse of the order in which they were added. We
begin by letting F ′ be the connected component of F that contains the root vertex r. Then
we iterate through the edges of F ′ in the reverse of the order in which they were added to F .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

14.1 The prize-collecting Steiner tree problem 357

y ← 0
F ← ∅
ℓ← 1
while not all connected components of (V, F) are inactive do

Let C be the set of all active connected components C of (V, F) (p(C, y, π) > 0 and
r /∈ C)

Increase yC for all C in C uniformly until either for some eℓ ∈ δ(C ′), C ′ ∈ C,
ceℓ =

∑
S:eℓ∈δ(S) yS or for some C ∈ C, p(C, y, π) = 0

if for some C ∈ C, p(C, y, π) = 0 then
Make C inactive and remove C from C

else
F ← F ∪ {eℓ}
ℓ← ℓ+ 1

Let F ′ be the connected component of (V, F) containing r
for k ← ℓ− 1 downto 1 do

if ek ∈ F ′ then
Let C be vertices connected to r by ek
if p(C, y, π) = 0 then

Remove ek from F ′ and remove all edges of F ′ with both endpoints in C
return F ′

Algorithm 14.1: Primal-dual algorithm for the prize-collecting Steiner tree problem.

Suppose we consider removing edge e. Removing e will disconnect some set of vertices C from
the root. We check whether p(C, y, π) = 0. If it is, we remove from F ′ the edge e and all the
edges of F ′ connecting vertices of C (so that F ′ remains a tree containing the root). Otherwise
we keep edge e.

We show that this algorithm gives us a performance guarantee of 2. As in the case of the
generalized Steiner tree algorithm, this result follows from a lemma whose proof we will defer
for a few moments.

Lemma 14.2: Let F ′ be the tree returned by the algorithm, and let X be the vertices not spanned
by F ′. In any given iteration in which C is the set of active components,∑

C∈C
|δ(C) ∩ F ′|+ | {C ∈ C : C ⊆ X} | ≤ 2|C|.

From this lemma we can prove the performance guarantee.

Theorem 14.3: Algorithm 14.1 is a 2-approximation algorithm for the prize-collecting Steiner
tree problem.

Proof. Let F ′ be the final tree containing the root, and let X be the vertices not spanned
by F ′. We first claim that X can be partitioned into sets X1, . . . , Xk such that the potential
p(Xj , y, π) = 0 for each set Xj . To see this, note that for any vertex in X either it was connected
to the root before the edge deletion process or it was not. If it was not connected to the root,
then it was in some inactive component I not containing the root, and I was inactive since
the potential p(I, y, π) = 0. If the vertex was connected to the root before the edge deletion
process, then it must have been disconnected in some step in which an edge was removed and

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

358 Further uses of the primal-dual method

a set of vertices I was disconnected from the root. But for this set, it must have been the case
that the potential p(I, y, π) = 0. Hence the claim follows.

Observe that the potential p(I, y, π) = 0 implies that π(I) =
∑

S⊆I yS .We now rewrite the
cost of the primal solution in terms of dual variables:

∑
e∈F ′

ce +
∑
i∈X

πi =
∑
e∈F ′

∑
S:e∈δ(S)

yS +
k∑

j=1

π(Xj)

=
∑
S

|δ(S) ∩ F ′|yS +

k∑
j=1

∑
S⊆Xj

yS .

We would like to show that this cost is less than twice the dual objective function; that is, we
would like to show that

∑
S

|δ(S) ∩ F ′|yS +

k∑
j=1

∑
S⊆Xj

yS ≤ 2
∑

S⊆V−r

yS . (14.1)

As in the proof of Lemma 7.7, we do this by induction on the algorithm. Initially all dual
variables are zero, and the inequality holds. Suppose that the inequality holds at the beginning
of any given iteration. Let C be the active components in this iteration. Then in this iteration
we increase each yS for S ∈ C by the same amount (call it ϵ). This increases the left-hand side
of (14.1) by

ϵ
∑
C∈C
|F ′ ∩ δ(C)|+ ϵ

k∑
j=1

| {C ∈ C : C ⊆ Xj} |

and the right-hand side by
2ϵ|C|.

However, by the inequality of Lemma 14.2, this means that the increase in the left-hand side
is no greater than the increase in the right-hand side. Thus if the inequality held before the
increase of the dual variables in this iteration, it will also hold afterwards.

We now conclude with the proof of the lemma.

Proof of Lemma 14.2. Given an iteration, let C be the set of active components, and let I
be the set of connected components which are inactive. Note that the sets in C and I partition
the set of vertices.

We begin by simplifying the inequality we must prove. Observe that if for some C ∈ C, no
vertex in C is spanned by the tree F ′, then δ(C)∩F ′ = ∅. Hence if C ⊆ X, then δ(C)∩F ′ = ∅.
Let C′ = {C ∈ C : C ̸⊆ X}. Thus the desired inequality is implied by showing∑

C∈C′

|δ(C) ∩ F ′| ≤ 2|C′|.

As in the proof of Lemma 7.7 for the generalized Steiner tree, we consider the graph obtained
by contracting each component in C′ and I to a single node, ignoring components in C − C′; let
V ′ be the resulting vertex set. Let T be the set of edges on V ′ from F ′ once the components in
C′ and I are collapsed; the edges in T form a tree as shown in Observation 7.9 and Lemma 7.7.
We let deg(v) for v ∈ V ′ represent the degree of vertex v in this tree. We also color the vertices
in V ′ with two different colors, red and blue: red vertices correspond to components from C′

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

14.1 The prize-collecting Steiner tree problem 359

and blue vertices correspond to components from I. Let R denote the set of red vertices in V ′

and B the set of blue vertices v that have deg(v) > 0. We can rewrite the desired inequality∑
C∈C′

|δ(C) ∩ F ′| ≤ 2|C′|

in terms of this tree by showing
∑

v∈R deg(v) ≤ 2|R|.
To prove this inequality, we claim that at most one blue vertex can have degree exactly one.

If this is true, then we have that∑
v∈R

deg(v) =
∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v).

Since the total degree of a forest is no more than twice the number of vertices in it minus one,
and since all but one of the blue vertices in B have degree at least two by the claim, we have
that this quantity is∑

v∈R∪B
deg(v)−

∑
v∈B

deg(v) ≤ 2(|R|+ |B| − 1)− 2(|B| − 1)− 1 ≤ 2|R|,

as desired.

Now to show the claim. At most one blue vertex corresponds to a component in the un-
contracted graph containing the root. We show that all other blue vertices cannot have degree
one. Suppose not, and there is a blue vertex v of degree one. Let e ∈ F ′ be the edge incident
on this vertex, and let I ∈ I be the corresponding component in the uncontracted graph, with
r /∈ I. First observe that because e ∈ δ(I), it is the case that e was added after the current
iteration, otherwise I would be part of a larger connected component containing e in the cur-
rent iteration. Now when we considered e for removal, it joined some component C to the root.
Since I remains connected to the root by e in the current iteration, it must be the case that
I ⊆ C. Let Q1, . . . , Qk be the parts of C that were removed by later steps of the edge deletion
process, from the point that e is considered down to the current iteration, so that I and the
Qj partition C (see Figure 14.1). Because the Qj were removed, we know that p(Qj , y, π) = 0.
Because I is inactive and does not contain the root, it is also the case that p(I, y, π) = 0. By
dual feasibility we know that

π(C) ≥
∑
S⊆C

yS ≥
∑
S⊆I

yS +

k∑
j=1

∑
S⊆Qj

yS .

Because the potentials of I and the Qj are zero, the right-hand side is

π(I) +

k∑
j=1

π(Qj) = π(C).

Thus it must be the case that
∑

S⊆C yS = π(C), and that p(C, y, π) = 0. Hence we should have
removed edge e, which contradicts e ∈ F ′, and we are done.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

360 Further uses of the primal-dual method

C I

e

Q1

Q2

Q3

Figure 14.1: Part of the proof of Lemma 14.2.

14.2 The feedback vertex set problem in undirected graphs

In this section, we return to the feedback vertex set problem in undirected graphs introduced
in Section 7.2. Recall that in this problem we are given an undirected graph G = (V,E) and
nonnegative weights wv ≥ 0 for vertices v ∈ V , and the goal is to choose a minimum-cost
subset of vertices S ⊆ V such that every cycle C in the graph contains some vertex of S.
Alternatively, we must find a minimum-weight set of vertices S such that the induced graph
G(V − S) is acyclic, where G(V − S) is the graph induced by the vertex set V − S. We will
sometimes use the shorthand G− S for the graph induced on V − S.

In Section 7.2, we gave a primal-dual O(log n)-approximation algorithm for the feedback
vertex set problem. The algorithm used the following integer programming formulation for the
problem, where C denotes the set of all cycles C in the graph:

minimize
∑
v∈V

wvxv

subject to
∑
v∈C

xv ≥ 1, ∀C ∈ C,

xv ∈ {0, 1} , v ∈ V.

In that section we claimed that the integrality gap of this formulation is known to be Ω(logn),
and so we cannot achieve a performance guarantee better than O(log n) using the integer
programming formulation above.

However, we can devise a primal-dual 2-approximation algorithm by using an alternate
integer programming formulation for the problem. To do this, we start by considering the
number of edges that will need to be removed from the graph in order for the graph to be
acyclic. Let c(G) be the number of connected components in graph G. An acyclic subset of
edges in a graph G = (V,E) can have at most |V | − c(G) edges. Therefore, we must remove at
least |E| − |V | + c(G) edges for the graph to become acyclic. Note that if we remove a vertex
v and its incident edges, and d(v) is the degree of vertex v, then it would seem that we remove
d(v) edges towards the overall goal of removing |E| − |V |+ c(G) edges. However, note that by
removing v, we also reduce the number of vertices that need to be spanned by the remaining
edges. In particular, in the remaining graph (with v removed), we now need to remove at least
(|E|−|d(v)|)−(|V |−1)+c(G−v) edges for G−v to become acyclic. Thus removing v decreases

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

14.2 The feedback vertex set problem in undirected graphs 361

the total number of edges we need to remove by

[|E| − |V |+ c(G)]− [(|E| − d(v))− (|V | − 1) + c(G− v)] = d(v)− 1 + (c(G)− c(G− v)).

For simplicity of exposition, let us denote the quantity c(G − v) − c(G) + 1 by b(v), so that
removing v decreases the total number of edges we need to remove by d(v) − b(v). We can
formalize the reasoning above as follows.

Lemma 14.4: For any feedback vertex set F of the graph G = (V,E),∑
v∈F

(d(v)− b(v)) ≥ |E| − |V |+ c(G).

Proof. We know that if we remove F and its adjacent edges from the graph, the remaining
set of edges is acyclic. Let E(F) be the set of edges that have both endpoints in F . Then∑

v∈F d(v)−|E(F)| is an upper bound on the number of edges removed. Since |V |−|F |−c(G−F)
is an upper bound on the number of edges left over, we have that

|E| ≤
∑
v∈F

d(v)− |E(F)|+ |V | − |F | − c(G− F).

We now claim that we can show that

c(G) ≤
∑
v∈F

(1− b(v)) + |E(F)|+ c(G− F) (14.2)

Given the claim, if we add the two inequalities, we obtain

|E|+ c(G) ≤
∑
v∈F

(d(v)− b(v)) + |V |.

Subtracting |V | from both sides gives the desired inequality.
We prove inequality (14.2) by induction on F ; we will not need the fact that F is a feedback

vertex set to prove the claim. It is easy to see that the claim holds if F = ∅ or F = {v}; in the
latter case, this follows by the definition of b(v) since

c(G) ≤ (1− b(v)) + c(G− v) = (1− c(G− v) + c(G)− 1) + c(G− v) = c(G).

Suppose the claim holds for F − v; we now show it holds for F . Consider the neighbors of v
in G. If we remove v from G, these are partitioned into at least c(G − v) − c(G) = b(v) − 1
additional connected components. Suppose we choose one distinct neighbor of v in each of these
b(v) − 1 connected components. For each such neighbor, either the neighbor is already in F ,
and hence E(F) includes the edge from v to this neighbor, or the neighbor is not in F , and
removing v from G− (F − v) will create a new connected component containing this neighbor.
Thus we have that b(v)− 1 is at most |E(F)| − |E(F − v)| plus c(G− F)− c(G− (F − v)) or
0 ≤ 1− b(v) + |E(F)| − |E(F − v)|+ c(G− F)− c(G− (F − v)). By induction the inequality
holds for F − v, so that

c(G) ≤
∑

u∈F−v

(1− b(u)) + |E(F − v)|+ c(G− (F − v)).

Adding the previous inequality to this one gives inequality (14.2) for F .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

362 Further uses of the primal-dual method

Consider any subset S ⊆ V of vertices. Let G(S) be the subgraph of G = (V,E) induced
by S, let dS(v) for v ∈ S be the degree of v in G(S), and let bS(v) for v ∈ S be the value of
b(v) in the graph G(S). Let f(S) = |E(S)| − |S| + c(G(S)) be the minimum number of edges
we need to remove to have a feedback vertex set in G(S). Then by observing that F ∩ S is a
feedback vertex set for G(S), we have the following corollary to Lemma 14.4.

Corollary 14.5: For any subset of vertices S ⊆ V ,∑
v∈F∩S

(dS(v)− bS(v)) ≥ f(S).

We can now give the following integer program, which we claim models the feedback vertex
set problem in undirected graphs:

minimize
∑
v∈V

wvxv

subject to
∑
v∈S

(dS(v)− bS(v))xv ≥ f(S), ∀S ⊆ V,

xv ∈ {0, 1} , v ∈ V.

As before, the variable xv denotes whether the vertex v is in the feedback vertex set or not.
If a solution x corresponds to a feedback vertex set, then all the constraints are obeyed by
Corollary 14.5. If a solution x does not correspond to a feedback vertex set, then there must
exist a cycle C such that xv = 0 for all v ∈ C. Now consider the constraint corresponding to
C: the left-hand side will be zero, but we claim that f(C) ≥ 1, and so the constraint will be
violated. This will conclude the proof that the integer program indeed models the feedback
vertex set problem. To see that f(C) ≥ 1, note that since C is a cycle, |E(C)| ≥ |C|, so that
f(C) = |E(C)| − |C|+ c(G(C)) ≥ c(G(C)) ≥ 1.

The dual of the linear programming relaxation of the integer program is then

maximize
∑
S⊆V

f(S)yS

subject to
∑
S:v∈S

(dS(v)− bS(v))yS ≤ wv, ∀v ∈ S,

yS ≥ 0, ∀S ⊆ V.

Following the standard primal-dual algorithm as described in Chapter 7, we derive Algo-
rithm 14.2. We start with a dual feasible solution of y = 0, and a primal infeasible solution of
F = ∅. We maintain a set S of the vertices in the subgraph of G we are currently considering;
initially, S = V . Then while F is not feasible (equivalently, G(S) is not acyclic), we increase
the dual variable yS until some dual constraint becomes tight for some v ∈ S. We then add v
to F , and remove v from S. We also remove from S all vertices that are no longer in a cycle in
G(S − v).

Once F is a feasible solution, we have a final clean-up step similar to that used for the
generalized Steiner tree problem in Section 7.4. In particular, we iterate through the vertices
of F in the reverse of the order in which they were added to F . We check to see whether the
current vertex v can be removed from F without affecting its feasibility. If so, we remove it,
otherwise we leave v in F .

The cleanup step is designed to help prove the following lemma. We say that a feedback
vertex set F is minimal for a graph G if for any v ∈ F , F − v is not a feedback vertex set for G.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

14.2 The feedback vertex set problem in undirected graphs 363

y ← 0
F ← ∅
S ← V
ℓ← 0
while F is not feasible (and G(S) contains a cycle) do

ℓ← ℓ+ 1
Increase yS until for some vℓ ∈ S,

∑
C:vℓ∈C(dC(vℓ)− bC(vℓ))yC = wvℓ .

F ← F ∪ {vℓ}
T ← {v ∈ S : v not on some cycle in G(S − vℓ)}
S ← S − {vℓ} − T

F ′ ← F
for k ← ℓ downto 1 do

if F ′ − vk is a feasible solution then
Remove vk from F ′

return F ′

Algorithm 14.2: Improved primal-dual algorithm for the feedback vertex set problem in undirected graphs.

Lemma 14.6: For the primal solution F ′ and dual solution y returned by Algorithm 14.2, for
any S ⊆ V such that yS > 0, F ′ ∩ S is a minimal feedback vertex set for G(S).

Proof. The proof is by contradiction. Suppose there is some vertex vj ∈ F ′ ∩ S such that
F ′ ∩S− vj is a feedback vertex set for G(S). By the construction of the cleanup step, we know
that it must be the case that {v1, . . . , vj−1}∪F ′−vj must not be a feedback vertex set forG, since
otherwise we would have removed vj from F ′ in the cleanup step. Since {v1, . . . , vj−1}∪F ′− vj
is not a feedback vertex set for G, while F ′ is a feedback vertex set for G, it must be the case
that vj is the unique vertex of {v1, . . . , vj−1} ∪ F ′ on some cycle C in G. Furthermore, C ⊆ S
since vj ∈ S and {v1, . . . , vj−1} ∩ C = ∅, and thus by construction of the algorithm we cannot
have removed any vertex of C from S in the iteration in which yS is increased. Thus since C is
in G(S) and C ∩ F ′ = {vj}, it cannot be the case that F ′ ∩ S − vj is a feedback vertex set for
G(S).

As is typical for proofs of the analysis in primal-dual algorithms, the performance guarantee
of the algorithm can be reduced to a combinatorial lemma. In this case, the lemma is as follows.
We defer the proof for a moment.

Lemma 14.7: For any graph G such that every vertex v ∈ V is contained in some cycle, and
for any minimal feedback feedback vertex set F for G,∑

v∈F
(d(v)− b(v)) ≤ 2f(V) = 2(|E| − |V |+ c(G)).

Given the lemma, we can now prove the performance guarantee of the algorithm.

Theorem 14.8: Algorithm 14.2 is a 2-approximation algorithm for the feedback vertex set
problem in undirected graphs.

Proof. Let F ′ be the final feedback vertex set returned by the algorithm. Then by the standard

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

364 Further uses of the primal-dual method

primal-dual analysis, ∑
v∈F ′

wv =
∑
v∈F ′

∑
S:v∈S

(dS(v)− bS(v))yS

=
∑
S⊆V

yS
∑

v∈F ′∩S
(dS(v)− bS(v)).

By Lemma 14.6, we know that if yS > 0, then F ′∩S is a minimal feedback vertex set for G(S).
By Lemma 14.7, we know that

∑
v∈F ′∩S(dS(v)− bS(v)) ≤ 2f(S) for the graph G(S). Thus we

have that ∑
v∈F ′

wv ≤ 2
∑
S⊆V

f(S)yS ≤ 2OPT,

by weak duality, since
∑

S⊆V f(S)yS is the dual objective function.

We now turn to the proof of Lemma 14.7.

Proof of Lemma 14.7. We know that
∑

v∈V d(v) = 2|E|, so subtracting this from both sides
of the inequality and leaves us to prove that∑

v∈F
d(v)−

∑
v∈V

d(v)−
∑
v∈F

b(v) ≤ 2(c(G)− |V |).

Doing some rearranging, we get∑
v/∈F

d(v) ≥ 2|V | −
∑
v∈F

b(v)− 2c(G).

Note that
∑

v/∈F d(v) =
∑

v/∈F dV−F (v)+|δ(F)| and that sinceG(V−F) is a forest,
∑

v/∈F dV−F (v) =
2(|V | − |F | − c(G− F)). Thus the desired inequality is equivalent to proving that

2(|V | − |F | − c(G− F)) + |δ(F)| ≥ 2|V | −
∑
v∈F

b(v)− 2c(G).

Rearranging terms again gives us

2|F |+ 2c(G− F) ≤ |δ(F)|+
∑
v∈F

b(v) + 2c(G). (14.3)

Since F is a minimal feedback vertex set of G, for each v ∈ F there must be some cycle Cv

in G such that v is the only vertex of F in the cycle, since otherwise we can remove v from
F and still have a feedback vertex set. Therefore each v ∈ F must be adjacent to two edges
from F to V − F from the cycle Cv; we will call these edges cycle edges. Note then that we
can charge the quantity 2|F | in the desired inequality to the cycle edges in |δ(F)|. Observe also
that the two cycle edges for any vertex v ∈ F must both be adjacent to the same connected
component of G(V − F).

To complete the proof, we must show for each component of G(V − F), we can charge 2
against the right-hand side of the inequality (14.3) above. We show that we can appropriately
charge the connected components of G, the non-cycle edges of δ(F), or b(v) for v ∈ F . Consider
a given connected component S of G(V −F). Note that by the hypothesis of the lemma, every
vertex is in some cycle of the graph, so there must be at least two edges from F to S. Also
note that if a cycle edge from some cycle Cv connects v to S, then the other cycle edge must
also connect v to S; it cannot connect some other connected component of G(V −F) to v. We
now give the charging scheme in a case analysis.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

14.2 The feedback vertex set problem in undirected graphs 365

F

components of G− F

Figure 14.2: The final case analysis of Lemma 14.7. Solid lines represent cycle edges,
and dashed edges non-cycle edges. The four cases are illustrated in order by the four
components of G(V − F).

• If there are at least two non-cycle edges from F to S, then we can charge 2 to |δ(F)| for
these non-cycle edges.

• If there are exactly two edges from F to S, and both are cycle edges corresponding
to a cycle Cv, then either v ∪ S is a connected component of G and we can charge 2
to the corresponding connected component (that is, to the 2c(G) term), or removing v
disconnects S from G, so that b(v) = c(G − v) − c(G) + 1 ≥ 2, and we can charge 2 to
b(v).

• If there are three edges from F to S, two of which are cycle edges corresponding to a cycle
Cv, then we can charge 1 to the non-cycle edge in |δ(F)| and 1 to b(v) ≥ 1.

• If there are four or more cycle edges from F to S, two of which correspond to a cycle Cv

and two of which correspond to a cycle Cw, then we can charge 1 to b(v) ≥ 1 and 1 to
b(w) ≥ 1.

See Figure 14.2 for an illustration of the cases.

In Exercise 14.4, we give another integer programming formulation for the feedback vertex
set problem and show that it can also lead to a primal-dual 2-approximation algorithm for the
problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

366 Further uses of the primal-dual method

Exercises

14.1 Show that the performance guarantee of the primal-dual algorithm for the prize-collecting
Steiner tree algorithm in Section 14.1 can be strengthened in the following way. Let T
be the tree returned by the algorithm and let y be the dual solution constructed by the
algorithm. Show that ∑

e∈T
ce + 2

∑
i∈V−V (T)

πi ≤ 2
∑

S⊆V−r

yS .

This proves that the algorithm is Lagrangean multiplier preserving (see Section 7.7).

14.2 In the k-minimum spanning tree problem (k-MST), we are given an undirected graph
G = (V,E) with edge costs ce ≥ 0 for all e ∈ E, a root vertex r ∈ V , and a positive
integer k. The goal is to find a minimum-cost tree spanning at least k vertices that
includes the root.

(a) Give an integer programming formulation for the k-MST problem that has the same
constraints as the integer program for the prize-collecting Steiner tree problem plus
one additional constraint. Then apply Lagrangean relaxation to obtain an integer
program in the same form as that for the prize-collecting Steiner tree problem modulo
a constant term in the objective function.

(b) Prove that an α-approximation algorithm which works in the case that the maximum
distance from the root r is no more than OPTk (the cost of an optimal tree spanning
k vertices) can be used to produce an α-approximation algorithm for the general
case.

(c) Using the prize-collecting Steiner tree algorithm as a subroutine and the analysis in
Exercise 14.1, obtain a (5 + ϵ)-approximation algorithm for the k-MST problem.

14.3 Show that the linear programming relaxation for the prize-collecting Steiner tree problem
used in Section 14.1 is equivalent to the linear programming relaxation for the problem
used in Sections 4.4 and 5.7.

14.4 There are other possible primal-dual 2-approximation algorithms for the feedback vertex
set problem in undirected graphs other than the one given in the chapter. In this exercise,
we derive another such algorithm.

(a) Argue that for any feedback vertex set F ,∑
v∈F

(d(v)− 1) ≥ |E| − |V |+ 1.

(b) Show that the following is an integer programming formulation of the feedback vertex
set problem for g(S) = |E(S)| − |S|+ 1:

minimize
∑
v∈V

wvxv

subject to
∑
v∈S

(dS(v)− 1)xv ≥ g(S), ∀S ⊆ V,

xv ∈ {0, 1} , v ∈ V.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

14.2 The feedback vertex set problem in undirected graphs 367

(c) A cycle is semidisjoint if it at most one vertex of the cycle has degree greater than 2.
Show that if every vertex of G has degree at least 2 and G contains no semidisjoint
cycles, then for any minimal feedback vertex set F ,∑

v∈F
(d(v)− 1) ≤ 2g(S).

(d) Give a primal-dual algorithm for the problem based on the formulation above and
prove that it is a 2-approximation algorithm (Hint: The algorithm will need to
increase a different dual variable if the graph contains a semidisjoint cycle).

14.5 Consider the prize-collecting generalized Steiner tree problem. In this problem, we are
given an undirected graph G = (V,E) with nonnegative costs ce ≥ 0 on e ∈ E. We are
also given k source-sink pairs si-ti, and a penalty πi ≥ 0 for each source-sink pair. We
want to find a set of edges F ⊆ E that minimizes the total cost of the edges in F plus the
sum of the penalties of the si-ti pairs that are not connected in (V, F).

(a) Give an integer programming formulation of the problem with variables yi ∈ {0, 1}
that indicate whether the pair si and ti are connected in the solution. Using a
linear programming relaxation of this formulation, give a randomized rounding (1−
e−1/2)−1-approximation algorithm for the problem, where (1− e−1/2)−1 ≈ 2.54.

(b) Let X be a collection of subsets of vertices. Let Si be the collection of all sets S
such that |S ∩ {si, ti} | = 1. We give another integer programming formulation of
the problem. In our formulation, we will have 0-1 variables zX , where zX = 1 for X
containing all sets S such that we have selected no edge in δ(S). Let π(X) be the
sum of all penalties πi such that there exists some S ∈ Si that is also in X ; that is,

π(X) =
∑

1≤i≤k:X∩Si ̸=∅

πi.

Then our formulation is

minimize
∑
e∈E

cexe +
∑
X

π(X)zX

subject to
∑

e∈δ(S)

xe +
∑

X :S∈X
zX ≥ 1, ∀S ⊆ V,

xe ∈ {0, 1} , ∀e ∈ E,

zX ∈ {0, 1} , ∀X .

Prove that this formulation models the prize-collecting generalized Steiner tree prob-
lem.

(c) Give a primal-dual 3-approximation algorithm for the prize-collecting generalized
Steiner tree problem using the linear programming relaxation of the integer program
above. For an easier variant of this problem, you do not need to explain how to
detect in polynomial time when the dual constraint corresponding to the variables
zX becomes tight.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

368 Further uses of the primal-dual method

Chapter Notes

The prize-collecting Steiner tree algorithm of Section 14.1 is due to Goemans and Williamson
[138].

The first 2-approximation algorithms for the feedback vertex set problem in undirected
graphs are due to Becker and Geiger [41] and Bafna, Berman, and Fujito [29], and were stated
in terms of the local ratio technique. These algorithms were translated into primal-dual ap-
proximation algorithms by Chudak, Goemans, Hochbaum, and Williamson [74]; Exercise 14.4
is from this paper. The algorithm given in Section 14.2 is based on another primal-dual 2-
approximation algorithm for the problem due to Fujito [117].

The result of Exercise 14.1 is implicit in Goemans and Williamson [138], but made explicit
independently by Blum, Ravi, and Vempala [51] and Goemans and Kleinberg [131]. The 5-
approximation algorithm for the k-MST problem in Exercise 14.2 was first given by Garg [125];
the use of Lagrangean relaxation for the problem was made explicit by Chudak, Roughgarden,
and Williamson [75]. The equivalence of the two prize-collecting Steiner tree formulations given
in Exercise 14.3 is found in Williamson [287]. The prize-collecting generalized Steiner tree
problem in Exercise 14.5 is defined by Hajiaghayi and Jain [154]; the two algorithms in the
exercise are also from this paper.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 15

Further uses of cuts and metrics

In Section 8.5, we introduced the idea of approximating one kind of metric with another one;
namely, we looked at the idea of approximating a general metric with a tree metric. Here
we will consider approximating a general metric with another metric more general than a tree
metric, namely an ℓ1-embeddable metric. We show that we can approximate any metric (V, d)
with an ℓ1-embeddable metric with distortion O(log n), where n = |V |. The ℓ1-embeddable
metrics have a particularly close connection to cuts; we show that any such metric is a convex
combination of the cut semimetrics we discussed at the beginning of Chapter 8. We show that
the low distortion embeddings into ℓ1-embeddable metrics have applications to cut problems
by giving an approximation algorithm for the sparsest cut problem.

In Section 15.2, we give an algorithm that finds a packing of trees called cut-trees into a
graph; this packing allows us to solve a particular routing problem. In the subsequent section, we
show that the cut-tree packing can be used in a way analogous to the probabilistic approximation
of metrics by tree metrics in Section 8.5. In that section, we showed that given an algorithm to
solve a problem on a tree metric, we could provide an approximate solution for the problem in
a general metric with only an additional factor of O(log n) in the performance guarantee. Here
we show that given an algorithm to solve a cut problem on trees, we can use a cut-tree packing
to find a cut in general graphs with only an additional factor of O(log n) in the performance
guarantee. We will see that the two results are intimately related. We use the algorithm to give
an O(log n)-approximation algorithm for the minimum bisection problem introduced in Section
8.4.

Finally, in Section 15.4, we return to a special case of the sparsest cut problem called the
uniform sparsest cut problem, and we show how using a vector programming relaxation leads
to an O(

√
log n)-approximation algorithm for the problem.

15.1 Low distortion embeddings and the sparsest cut problem

In Section 8.5, we considered the idea of approximating a metric with a tree metric. Here
we will consider approximating a general metric with another metric more general than a tree
metric, namely an ℓ1-embeddable metric. Recall that if x ∈ ℜm and xi is the ith component of
the vector x then ∥x∥1 =

∑m
i=1 |xi|.

369

370 Further uses of cuts and metrics

Definition 15.1: A metric (V, d) is an ℓ1-embeddable metric (or embeds isometrically into ℓ1)
if there exists a function f : V → ℜm for some m such that duv = ∥f(u) − f(v)∥1 for all
u, v ∈ V .

The function f is called the embedding of the metric into ℓ1. It is not too hard to show that
any tree metric is an ℓ1-embeddable metric, and that the converse is not true; we leave this as
an exercise to the reader (Exercise 15.1).

The ℓ1-embeddable metrics are very closely related to cuts. We will show that any ℓ1 metric
(V, d) is a weighted sum of cuts of the vertex set V . To be clearer about we mean, let χδ(S)(u, v)
be an indicator function for whether an edge (u, v) is in the cut S; that is, χδ(S)(u, v) = 1 if
exactly one of u, v is in S and is 0 otherwise. Then we can show the following.

Lemma 15.2: Let (V, d) be an ℓ1-embeddable metric, and let f : V → ℜm be the associated
embedding. Then there exist λS ≥ 0 for all S ⊆ V such that for all u, v ∈ V ,

∥f(u)− f(v)∥1 =
∑
S⊆V

λSχδ(S)(u, v).

Furthermore, at most mn of the λS are nonzero, and the λS can be computed in polynomial
time.

Proof. We start by considering the simple case that f embeds V into one dimension and V =
{1, 2, . . . , n}; i.e. f : {1, . . . , n} → ℜ. Let xi = f(i), and assume without loss of generality
that x1 ≤ x2 ≤ · · · ≤ xn. Then we consider cuts {1},{1, 2},. . .,{1, 2, . . . , n− 1}, and let λ{1} =
x2−x1, λ{1,2} = x3−x2,. . .,λ{1,2,...,n−1} = xn−xn−1. Then observe that for any i, j ∈ V , where
i < j,

|xi − xj | = xj − xi =

j−1∑
k=i

λ{1,...,k} =
∑
S⊆V

λSχδ(S)(i, j).

For embeddings f into m > 1 dimensions, we generate the cuts and λS in each dimension
using the process above as in the one-dimensional case; i.e. we sort the vertices by the value
of their component in that dimension, consider cuts S of the first i points ordered in that
dimension, and set λS to be the distance in that dimension between the (i+1)st and ith points.
Then certainly at most mn of the λS are nonzero. If xu = f(u), and xiu is the ith coordinate of
xu, and λi

S are the λ generated in the process for dimension i, we showed above that for any
u, v ∈ V , |xiu − xiv| =

∑
S⊆V λi

SχS(u, v). Then we get that

∥f(u)− f(v)∥1 =
m∑
i=1

|xiu − xiv| =
m∑
i=1

∑
S⊆V

λi
Sχδ(S)(u, v) =

∑
S⊆V

λSχδ(S)(u, v),

as desired. Clearly the λS can be computed in polynomial time.

Not every metric is ℓ1-embeddable, but we will show that every metric is in some sense not
too far from an ℓ1-embeddable metric. Consider the following definition.

Definition 15.3: A metric (V, d) embeds into ℓ1 with distortion α if there exists a function
f : V → ℜm for some m and r such that

r · duv ≤ ∥f(u)− f(v)∥1 ≤ rα · duv

for all u, v ∈ V .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.1 Low distortion embeddings and the sparsest cut problem 371

The central result of this section is to show that there are relatively low-distortion embed-
dings into ℓ1 for any metric.

Theorem 15.4: Any metric (V, d) embeds into ℓ1 with distortion O(log n), where n = |V |.
Furthermore, the embedding f : V → ℜO(log2 n) is computable with high probability in randomized
polynomial time.

This result is in some sense the best possible. In Exercise 15.2, the reader is asked to show
that there exist distance metrics that cannot be embedded into ℓ1 with distortion less than
Ω(log n).

To show an application of Theorem 15.4, we recall the sparsest cut problem, introduced
earlier in Exercise 8.6. In the sparsest cut problem, we are given an undirected graphG = (V,E),
costs ce ≥ 0 for all e ∈ E, and k pairs of vertices si, ti with associated positive integer demands
di. We want to find a set of vertices S that minimizes

ρ(S) ≡
∑

e∈δ(S) ce∑
i:|S∩{si,ti}|=1 di

.

That is, the sparsest cut problem finds a cut that minimizes the ratio of the cost of the edges in
the cut to the sum of the demands separated by the cut. In the exercise, the reader is asked to
show that the following is an LP relaxation of the problem and is solvable in polynomial time,
where Pi is the set of all si-ti paths:

minimize
∑
e∈E

cexe

subject to

k∑
i=1

diyi = 1,∑
e∈P

xe ≥ yi, ∀P ∈ Pi, 1 ≤ i ≤ k,

yi ≥ 0, 1 ≤ i ≤ k,

xe ≥ 0, ∀e ∈ E.

Using this LP relaxation, we show below that we can obtain an O(log n)-approximation algo-
rithm for the sparsest cut problem via Theorem 15.4.

Theorem 15.5: There is a randomized O(log n)-approximation algorithm for the sparsest cut
problem.

Proof. To see this, suppose that we have an optimal solution (x, y) to the LP relaxation of the
sparsest cut problem. Let dx(u, v) be the shortest path from u to v in the graph G using xe
as the length of edge e. By Theorem 15.4, we can obtain in randomized polynomial time an
embedding f : V → ℜO(log2 n) such that for some r, ∥f(u) − f(v)∥1 ≤ r · O(log n) · dx(u, v)
and ∥f(u) − f(v)∥1 ≥ r · dx(u, v) for all u, v ∈ V . By Lemma 15.2, given the embedding f ,
we can find in polynomial time at most O(n log2 n) nonzero λS such that ∥f(u) − f(v)∥1 =∑

S⊆V λSχδ(S)(u, v) for all u, v ∈ V . Let S∗ be the minimum of ρ(S) over all S ⊆ V such that
λS > 0; that is,

ρ(S∗) = min
S:λS>0

ρ(S) = min
S:λS>0

∑
e∈δ(S) ce∑

i:|S∩{si,ti}|=1 di
.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

372 Further uses of cuts and metrics

We will show that ρ(S∗) ≤ O(log n)OPT . Note that for any S ⊆ V ,
∑

e∈δ(S) ce =
∑

e∈E ce ·
χδ(S)(e) and

∑
i:|S∩{si,ti}|=1 di =

∑
i di · χδ(S)(si, ti). Using this and Fact 1.10, we have that

ρ(S∗) = min
S:λS>0

∑
e∈δ(S) ce∑

i:|S∩{si,ti}|=1 di

= min
S:λS>0

∑
e∈E ce · χδ(S)(e)∑
i di · χδ(S)(si, ti)

≤
∑

S⊆V λS
∑

e∈E ce · χδ(S)(e)∑
S⊆V λS

∑k
i=1 di · χδ(S)(si, ti)

=

∑
e∈E ce

∑
S⊆V λSχδ(S)(e)∑k

i=1 di
∑

S⊆V λSχδ(S)(si, ti)

=

∑
e=(u,v)∈E ce∥f(u)− f(v)∥1∑k

i=1 di∥f(si)− f(ti)∥1

≤
r ·O(log n)

∑
e=(u,v)∈E ce · dx(u, v)

r ·
∑k

i=1 di · dx(si, ti)
,

where the final inequality follows since the function f embeds dx(u, v) into ℓ1 with distortion
O(log n). Then noticing that xe ≥ dx(u, v) for all e = (u, v) ∈ E, and by the LP constraints
yi ≤ dx(si, ti) for all i and

∑k
i=1 diyi = 1, we have that

ρ(S∗) ≤ O(log n)

∑
e=(u,v)∈E ce · dx(u, v)∑k

i=1 di · dx(si, ti)

≤ O(log n)

∑
e∈E cexe∑k
i=1 diyi

= O(log n)
∑
e∈E

cexe

≤ O(log n) ·OPT .

If we look back at the proof above of Theorem 15.5, we can observe that we aren’t using
all the properties required by a low-distortion embedding. In the proof of the performance
guarantee, we need that for every edge e = (u, v), ∥f(u) − f(v)∥1 ≤ r · O(log n)dx(u, v), but
we only need that ∥f(si) − f(ti)∥1 ≥ r · dx(si, ti) for every i, 1 ≤ i ≤ k. With this weaker
requirement, we can show that we can obtain a slightly stronger version of Theorem 15.4, and
hence obtain a better approximation algorithm. In particular, we can obtain the following.

Theorem 15.6: Given a metric (V, d) and k pairs of distinguished vertices, si, ti ∈ V , 1 ≤ i ≤
k, we can in randomized polynomial time compute an embedding f : V → ℜO(log2 k) such that
with high probability, ∥f(u)− f(v)∥1 ≤ r ·O(log k) · duv for all u, v ∈ V and ∥f(si)− f(ti)∥1 ≥
r · dsiti for 1 ≤ i ≤ k.

Note that it is a generalization of Theorem 15.4 since we can take all
(
n
2

)
pairs of vertices

from V to be the si-ti pairs, in which case the statement of Theorem 15.6 reduces to that of
Theorem 15.4.

Using the theorem above we can get the following improved approximation algorithm simply
by repeating the analysis of Theorem 15.5.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.1 Low distortion embeddings and the sparsest cut problem 373

Corollary 15.7: There is a randomized O(log k)-approximation algorithm for the sparsest cut
problem.

We now turn to the proof of Theorem 15.6. We start by explaining how to map a metric
(V, d) to points in Euclidean space. To do this, we will use a Fréchet embedding. Given (V, d)
and a set of vertices A ⊆ V , define d(u,A) = minv∈A duv for every u ∈ V .

Definition 15.8: Given a metric space (V, d) and p subsets of vertices A1, . . . , Ap, a Fréchet
embedding f : V → ℜp is defined by

f(u) = (d(u,A1), d(u,A2), . . . , d(u,Ap)) ∈ ℜp

for all u ∈ V.

A Fréchet embedding has the nice property that it is easy to compute given the sets Ai. It
is also easy to show that the ℓ1 distance between points is at most the dimension p times the
original distance in the metric.

Lemma 15.9: Given a metric (V, d) and the Fréchet embedding f : V → ℜp defined above, for
any u, v ∈ V , ∥f(u)− f(v)∥1 ≤ p · duv.

Proof. For any A ⊆ V and any u, v ∈ V , let w be the closest point in A to v so that d(v,A) =
dvw. Then d(u,A) ≤ duw ≤ duv + dvw = duv + d(v,A). Similarly, d(v,A) ≤ duv + d(u,A).
Therefore |d(u,A)− d(v,A)| ≤ duv. Hence we have that

∥f(u)− f(v)∥1 =
p∑

j=1

|d(u,Aj)− d(v,Aj)| ≤ p · duv.

Now the central problem of the proof is picking good sets Aj so that the distance between
any si-ti pair in the embedding is some reasonable fraction of the distance from si to ti. We
will pick O(log2 k) such sets using randomization, then show that with high probability that
the si-ti distance in the embedding is at least Ω(log k)dsiti . This will give the result of Theorem
15.6 by setting r = Θ(log k). The main lemma of the proof is as follows.

Lemma 15.10: Given a metric space (V, d) with k distinguished pairs si, ti ∈ V , we can pick
p = O(log2 k) sets Aj ⊆ V using randomization such that a Fréchet embedding f : V → ℜp

gives ∥f(si)− f(ti)∥1 ≥ Ω(log k) · dsiti for 1 ≤ i ≤ k with high probability.

Proof. To define the sets Aj , let T =
∪k

i=1{si, ti}. Assume that |T | is a power of two; if it is not,
we can pick some additional si-ti pairs and add them to T until it is. Let τ = log2(2k) so that
|T | = 2k = 2τ . Let L = q ln k for some constant q to be chosen later. Then we define the sets
Atℓ by picking 2τ−t = 2k/2t vertices randomly from T with replacement, for ℓ = 1, . . . , L and
t = 1, . . . , τ . We will show that the Fréchet embedding f using these sets Atℓ has the desired
properties. Note that we have chosen Lτ = O(log2 k) sets, as desired.

Pick some i, 1 ≤ i ≤ k. We will show that ∥f(si) − f(ti)∥1 ≥ Ω(Ldsiti) = Ω((log k)dsiti)
with high probability. Then this inequality will hold for all i, 1 ≤ i ≤ k, with high probability.

We define a closed ball B(u, r) of radius r around u ∈ V to be the vertices in T within
distance r of u, so that B(u, r) = {v ∈ T : duv ≤ r}. The open ball Bo(u, r) are all vertices
in T that have distance strictly less than r from u, so that Bo(u, r) = {v ∈ T : duv < r}. We
define a particular set of distances rt with respect to the vertices si and ti (for the arbitrary

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

374 Further uses of cuts and metrics

si ti
r1

r2

r3

r

Figure 15.1: An example of the choices of radii rt around si and ti. The radius r1 is
the smallest such that |B(si, r1)| ≥ 2 and |B(ti, r1)| ≥ 2. The radius r2 is the smallest
such that |B(si, r2)| ≥ 4 and |B(ti, r2)| ≥ 4. The radius r is the smallest such that
|B(si, r)| ≥ 8 and |B(ti, r)| ≥ 8. Since r ≥ 1

4dsiti , but r2 is less than this, t̂ = 3, and
rt̂ = r3 =

1
4dsiti .

choice of i made above). We define r0 = 0, and let rt be the minimum distance r such that
|B(si, r)| ≥ 2t and |B(ti, r)| ≥ 2t for t = 1, . . . , τ . Define t̂ to be the minimum index t so
that rt ≥ 1

4dsiti ; we redefine rt̂ =
1
4dsiti . Then note that the balls of radius rt̂ around si and

ti don’t intersect, so that B(si, rt̂) ∩ B(ti, rt̂) = ∅. See Figure 15.1 for an illustration. Since

|B(si, rt̂−1)| ≥ 2t̂−1 and |B(ti, rt̂−1)| ≥ 2t̂−1 and these balls also don’t intersect, if t̂ = τ , then
|B(si, rt̂)| = |B(ti, rt̂)| = 2τ−1 as there are 2τ vertices total in T .

The idea of the proof is to show that for any ℓ = 1, . . . , L and t = 1, . . . , t̂, the randomly
chosen set Atℓ has a constant probability of having an intersection with the ball of radius rt−1

around one of terminals si, ti and also having no intersection with the ball of radius rt around the
other terminal. Then with constant probability, the distance from one terminal to Atℓ is at most
rt−1 and the distance from the other terminal to Atℓ is at least rt, or |d(si, Atℓ)− d(ti, Atℓ)| ≥
rt− rt−1. By applying a Chernoff bound (from Section 5.10), we will be able to show that with
high probability for t = 1, . . . , t̂,

∑L
ℓ=1 |d(si, Atℓ)− d(ti, Atℓ)| ≥ Ω(L(rt − rt−1)). This will allow

us to conclude that with high probability,

∥f(si)− f(ti)∥1 ≥
t̂∑

t=1

L∑
ℓ=1

|d(si, Atℓ)− d(ti, Atℓ)|

≥
t̂∑

t=1

Ω(L(rt − rt−1))

= Ω(Lrt̂)

= Ω(Ldsiti).

Note that we only need to show the statement for t from 1 to t̂, not from 1 to τ ; since the sum
of rt − rt−1 telescopes to rt̂ and rt̂ = Ω(dsiti), this is sufficient.

Assume that the ball around si defines the radius rt so that |B(si, rt)| = 2t but |Bo(si, rt)| <
2t; otherwise, we can switch the roles of si and ti in the following discussion. Consider the
event Etℓ, which occurs when the randomly chosen set Atℓ has Atℓ ∩ Bo(si, rt) = ∅ and Atℓ ∩
B(ti, rt−1) ̸= ∅. If Etℓ occurs, then it must be the case that d(si, Atℓ) ≥ rt and d(ti, Atℓ) ≤ rt−1,
which in turn implies that |d(si, Atℓ) − d(ti, Atℓ)| ≥ rt − rt−1. We want to show that Pr[Etℓ]
is at least some constant. For notational simplicity, define G = B(ti, rt−1) (the “good set”),
B = Bo(si, rt) (the “bad set”), and A = Atℓ. Then we know that |G| ≥ 2t−1 by the definition

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.1 Low distortion embeddings and the sparsest cut problem 375

of rt−1, |B| < 2t by the assumption we made above on rt, and |A| = 2τ−t = |T |/2t; these
statements are true even in the case t = t̂. Recall |T | = 2τ . Then

Pr[Etℓ] = Pr[A ∩B = ∅ ∧A ∩G ̸= ∅]
= Pr[A ∩G ̸= ∅|A ∩B = ∅] · Pr[A ∩B = ∅]
≥ Pr[A ∩G ̸= ∅] · Pr[A ∩B = ∅].

Recall that the vertices in A are drawn randomly from T with replacement; if we want A∩B = ∅,
then each vertex drawn for A must be from T −B. The probability that one vertex drawn from
T is not in B is 1− |B|

|T | . Thus

Pr[A ∩B = ∅] =
(
1− |B|
|T |

)|A|
.

Substituting bounds on the sizes of B and T , we obtain Pr[A ∩B = ∅] ≥ (1− 2t−τ)2
τ−t

. Using
(1 − 1

x)
x ≥ 1

4 for x ≥ 2, we get that Pr[A ∩ B = ∅] ≥ 1
4 as long as τ − t ≥ 1; this is certainly

true if t ≤ t̂ < τ , while if t = t̂ = τ , we earlier observed that |B| = |Bo(si, rt̂)| ≤ 2τ−1, so the
statement still holds. Similarly, using 1− x ≤ e−x, we obtain that

Pr[A ∩G ̸= ∅] = 1−
(
1− |G|
|T |

)|A|
≥ 1− e−|G||A|/|T | ≥ 1− e−2t−1/2t = 1− e−1/2.

Thus

Pr[Etℓ] ≥ Pr[A ∩G ̸= ∅] · Pr[A ∩B = ∅] ≥ 1

4
(1− e−1/2) ≥ .098

for t ≤ t̂.
Now we apply a Chernoff bound to show that the desired result occurs with high probability.

Let Xtℓ be a 0-1 random variable which is 1 if event Etℓ occurs, and let Xt =
∑L

ℓ=1Xtℓ for

1 ≤ t ≤ t̂. Let µ = E[Xt] ≥ .098L. Observe that
∑L

ℓ=1 |d(si, Atℓ) − d(ti, Atℓ)| ≥ Xt(rt − rt−1).
Applying the Chernoff bound of Lemma 5.26 and recalling that L = q ln k for some constant q,
we get that the probability that Pr[Xt <

1
2µ] ≤ e−L/8 = k−q/8. Then with probability at least

1− k−q/8,
∑L

ℓ=1 |d(si, Atℓ)− d(ti, Atℓ)| ≥ .049L(rt − rt−1). Recalling that t̂ ≤ τ = log2(2k), we

have that with probability at least 1− log2(2k)

kq/8
,

∥f(si)− f(ti)∥1 ≥
t̂∑

t=1

L∑
ℓ=1

|d(si, Atℓ)− d(ti, Atℓ)| ≥
t̂∑

t=1

Ω(L(rt − rt−1)) ≥ Ω(Ldsiti),

as explained earlier. Since this probability holds for one arbitrary si-ti pair, the probability
that it holds for all si-ti pairs is at least 1− log2(2k)

kq/8−1 . Choosing q sufficiently large gives the result
with high probability.

Given the lemmas above, the proof of Theorem 15.6 is straightforward.

Proof of Theorem 15.6. We set r = Θ(L), where L = q ln k is the quantity used in the proof of
Lemma 15.10. Then by that lemma ∥f(si)−f(ti)∥1 ≥ r ·dsiti for all i with high probability. By
Lemma 15.9, for all u, v ∈ V , ∥f(u)− f(v)∥1 ≤ O(log2 k)duv = r ·O(log k)duv, and the theorem
is shown.

Note that we can consider embedding metrics (V, d) into metrics other than tree metrics or
ℓ1 metrics. For instance, consider the ℓp metric, where ||x − y||p = p

√∑
i(x

i − yi)p. Then we
have the following definition.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

376 Further uses of cuts and metrics

Definition 15.11: A metric (V, d) embeds into ℓp with distortion α if there exists a function
f : V → ℜm for some m and r such that

r · duv ≤ ∥f(u)− f(v)∥p ≤ rα · duv

for all u, v ∈ V .

The exercises consider embedding into ℓp metrics with low distortion.
Some recent work has shown that the sparsest cut problem may be quite difficult to approx-

imate.

Theorem 15.12: Assuming the unique games conjecture, there is no α-approximation algo-
rithm for the sparsest cut problem for constant α unless P = NP.

However, some recent work has used semidefinite programming to achieve improved results
for the sparsest cut problem. We discuss a special case of the sparsest cut problem called the
uniform sparsest cut problem in Section 15.4, and show that in this case one can achieve an
O(
√
log n)-approximation algorithm for the problem.

15.2 Oblivious routing and cut-tree packings

In this section, we turn to routing problems. In routing problems, we are typically given an
undirected graph G = (V,E) with capacities ce ≥ 0 for all edges e ∈ E. We are also given a set
of demands duv for all u, v ∈ V ; each demand duv must be routed along some u-v path in the
graph G; we will consider the case in which each demand duv can be split and sent along several
different u-v paths. The total amount of demand (or total flow) using a given edge e ∈ E is the
sum over all u-v paths containing e of the amount of demand sent along that path. We would
like to know if demands can be routed in such a way that the total flow on each edge is at most
its capacity; more generally, we would like to know by how much we would have to exceed the
given capacities in order to route the flows. The congestion ρ of a routing of demands is the
minimum value such that the total flow on each edge e is at most ρce. We would like to find a
routing that minimizes the overall congestion.

The problem as stated thus far is solvable in polynomial time; one can write a linear program
that will find a routing with the minimum possible congestion. However, let us now consider a
more difficult variant of the problem in which we do not know the demands duv in advance. We
must still find a set of u-v paths for each u, v ∈ V , and for each path we specify the fraction of
the demand that will be sent on that path; for example, our output for u, v may be three u-v
paths P1, P2, P3, and we specify that half the demand will be sent on P1, a third on P2, and
the remaining sixth on P3. We would like to find paths such that the congestion of routing on
these paths is close to the minimum possible congestion no matter what demands duv we are
given. This is the oblivious routing problem. We will give an O(log n)-approximation algorithm
for the problem, using some of the ideas from the probabilistic approximation of metrics by tree
metrics as discussed in Section 8.7.

To begin, we will give some simple ideas about how to specify the paths, and then we will
gradually refine them into ideas that will allow for the approximation algorithm. To start, it will
be easier to express the capacity of edges in the graph by letting cuv = ce for all e = (u, v) ∈ E,
and cuv = 0 for all (u, v) /∈ E. An initial idea on how to give the u-v paths is via some spanning
tree T in the graph G. Then for every u, v ∈ V , there is a unique u-v path in T . Furthermore,
we can give a simple way of deciding if routing demands on the tree will come within some factor
α of the optimal congestion for any set of demands duv. Consider any tree edge (x, y) ∈ T .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.2 Oblivious routing and cut-tree packings 377

Removing edge (x, y) from T splits it into two connected pieces, and induces a cut in the graph,
consisting of all edges that have exactly one endpoint in each piece. If S(x, y) is the set of
vertices of one of the two connected pieces of T created by removing (x, y) from T , let C(x, y)
be the capacity of this cut; that is, C(x, y) =

∑
u∈S(x,y),v /∈S(x,y) cuv. We observe that given any

set of demands d, the amount of demand crossing this cut is
∑

u∈S(x,y),v /∈S(x,y) duv; let us denote
this amount (for a given set of demands d) by D(x, y). Thus the flow per unit of capacity in
the cut for any possible routing of this set of demands is at least D(x, y)/C(x, y). Since this is
the flow per unit capacity, some edge in this cut must have congestion at least D(x, y)/C(x, y)
in any possible routing.

Now we also observe that if we route paths in T along the paths uniquely defined by the
tree, then the total amount of demand using edge (x, y) is exactly D(x, y). Thus if the capacity
cxy of edge (x, y) ∈ T is at least 1

αC(x, y), then the congestion on edge (x, y) in our routing
is D(x, y)/cxy ≤ αD(x, y)/C(x, y). Since the minimum congestion needed by any routing is at
least D(x, y)/C(x, y), the congestion on edge (x, y) is then within a factor of α of the optimal
congestion for routing the given set of demands d. Therefore, if for all (x, y) ∈ T , the capacity
cxy of edge (x, y) is at least 1

αC(x, y), then routing the demands on the tree has congestion
at most α times the optimal congestion. Notice that this condition does not depend on the
demand set d, and so if it holds, it will be true for any set of demands.

To get the approximation factor α we desire, we modify our routing scheme in two ways.
The first is to give a collection of trees Ti and a weighting λi of them, such that λi ≥ 0 for
all i and

∑
i λi = 1; see Figure 15.2. Now given any demand duv we send a λi fraction of it

on the unique u-v path in tree Ti for each i. For edge (x, y) ∈ Ti, let Ci(x, y) be the capacity
of the cut induced by edge (x, y) in the tree Ti, and let Di(x, y) be the total demand crossing
this cut for a given demand d; note that removing the same edge (x, y) from different trees Ti

may induce different cuts. Then as argued above, for a given demand set d and for any i, the
congestion of any routing of d is at least Di(x, y)/Ci(x, y), so any routing has congestion at
least maxiDi(x, y)/Ci(x, y). The total flow on edge (x, y) in our routing is

∑
i:(x,y)∈Ti

λiDi(x, y).
Thus if

cxy ≥
1

α

∑
i:(x,y)∈Ti

λiCi(x, y), (15.1)

then the congestion along edge (x, y) in our routing is∑
i:(x,y)∈Ti

λiDi(x, y)

cxy
≤ α

∑
i:(x,y)∈Ti

λiDi(x, y)∑
i:(x,y)∈Ti

λiCi(x, y)
≤ αmax

i

Di(x, y)

Ci(x, y)

by Fact 1.10. If inequality (15.1) holds for all edges (x, y), then our routing will have congestion
at most α times the optimal congestion.

Although the condition given by inequality (15.1) is weaker than the condition on capacities
for a single tree, in order to obtain the result we want we must modify our routing scheme in
one additional way. For each tree Ti in our collection, and each edge (x, y) ∈ Ti, we specify a
path in the graph G between the endpoints x and y. While this could be just the edge (x, y),
it could also be some other path as well; for the tree Ti and edge (x, y) ∈ Ti, we denote the
set of edges in this path by Pi(x, y). We now have i index both the tree i and the associated
paths Pi(x, y) for all (x, y) ∈ Ti, so that a different index i′ ̸= i may refer to the same tree
(that is, Ti = Ti′) but with different paths. For a given demand duv, to route the λi fraction of
the demand in tree Ti, we consider the unique path between u and v in the tree, and then we
concatenate the paths Pi(x, y) associated with each tree edge (x, y) along the path. This gives
a path from u to v in the graph and we route the demand along this path; see Figure 15.2. Now

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

378 Further uses of cuts and metrics

u v

u

u

v

v

u v

u

u

v

v

1/2 1/3 1/6weighting

Figure 15.2: Two different ways of specifying a routing. On top is a weighted collection
of trees. To route demand from u to v, we send 1/2 the demand along the u-v path in
the first tree, 1/3 along the u-v path in the second tree, and a 1/6 in the last tree. On
the bottom is a weighted collection of trees in which each tree edge has an associated
path (shown as a dotted line only for edges on the u-v path). To route demand from u
to v, we send flow along the concatenation of the paths associated with each in the u-v
path in the tree; we send 1/2 the demand along the concatenation of the paths in the
first tree, 1/3 along the concatenation of paths in the second tree, and 1/6 along the
concatenation of paths in the last tree.

for any edge (u, v) in the graph, the total demand we route through it is the sum over all trees
Ti of demand λiDi(x, y) for all edges (x, y) ∈ Ti that have edge (u, v) in the associated path
Pi(x, y); that is, ∑

i

λi

∑
(x,y)∈Ti:(u,v)∈Pi(x,y)

Di(x, y).

Now suppose that for any edge (u, v) ∈ E, we have that its capacity is at least an α fraction of
the weighted cuts associated with the paths using (u, v); that is,

cuv ≥
1

α

∑
i

λi

∑
(x,y)∈Ti:(u,v)∈Pi(x,y)

Ci(x, y). (15.2)

Then the congestion on (u, v) in our routing is∑
i λi
∑

(x,y)∈Ti:(u,v)∈Pi(x,y)
Di(x, y)

cuv
≤ α

∑
i λi
∑

(x,y)∈Ti:(u,v)∈Pi(x,y)
Di(x, y)∑

i λi
∑

(x,y)∈Ti:(u,v)∈Pi(x,y)
Ci(x, y)

≤ αmax
i

Di(x, y)

Ci(x, y)
.

As above, any routing will have congestion at least maxiDi(x, y)/Ci(x, y). Thus if inequality
(15.2) holds for all (u, v) ∈ E, then our routing will have congestion within a factor α of the
optimal congestion.

To find a collection of trees and associated paths, we will use a linear program. We have
a decision variable α and decision variables λi. Each λi is the weight for a tree Ti together
with paths Pi(x, y) for the edges (x, y) ∈ Ti. We will minimize α subject to the constraint that
inequality (15.2) holds for all u, v ∈ V ; since cuv = 0 for (u, v) /∈ E, we will not choose any

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.2 Oblivious routing and cut-tree packings 379

paths using (u, v). The LP is then:

minimize α

subject to
∑
i

λi

∑
(x,y)∈Ti:(u,v)∈Pi(x,y)

Ci(x, y) ≤ αcuv, ∀u, v ∈ V,

∑
i

λi = 1,

λi ≥ 0, ∀i.

We call the collection of trees found by this linear program a cut-tree packing. A cut-tree is a
weighted tree T such that the weight of the edge (x, y) is exactly C(x, y). One can view the LP
above as trying to pack a convex combination of cut-trees into the graph G, stretching out each
tree edge along a path, so as to minimize the overall factor by which each edge of G exceeds its
capacity.

We can now show non-constructively that the LP has a solution of value O(log n). The
non-constructive proof will then give us ideas for an algorithm to find the cut-tree packing.
This will prove that we can find an O(log n)-approximation algorithm for the oblivious routing
problem.

Lemma 15.13: The linear program has value O(log n).

Proof. To prove this, we will take the dual of the linear program, then show that we can apply
a result from the approximation of metrics by tree metrics in Section 8.7 to bound the value of
the dual by O(log n). This will then bound the value of the primal by strong duality.

The dual of the linear program above is:

maximize z

subject to
∑

u,v∈V
cuvℓuv = 1,

z ≤
∑

(x,y)∈Ti

Ci(x, y)
∑

(u,v)∈Pi(x,y)

ℓuv, ∀i,

ℓuv ≥ 0, ∀u, v ∈ V.

We will now begin modifying the dual solution to the point at which we can apply our knowledge
of tree metrics to the problem. We will treat the dual variables ℓuv as the length of an edge
between u and v. It will be useful to think of the shortest path distance between two x, y ∈ V
using edge lengths ℓuv; we will denote this distance as dℓ(x, y).

We first observe that the dual variable z is smaller than the sum over (x, y) ∈ Ti of Ci(x, y)
times the length of the associated path from x to y. Therefore, we only need to concentrate
on trees whose associated x-y paths are shortest paths using the edge lengths ℓuv. Thus for all
trees Ti we have that

z ≤
∑

(x,y)∈Ti

Ci(x, y)dℓ(x, y).

We can rewrite the dual as

max
ℓ≥0:

∑
u,v∈V cuvℓuv=1

min
i

∑
(x,y)∈Ti

Ci(x, y)dℓ(x, y).

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

380 Further uses of cuts and metrics

We would now like to drop the restriction on the lengths ℓ that
∑

u,v∈V cuvℓuv = 1. Observe
that if we have lengths ℓ such that

∑
u,v∈V cuvℓuv = β > 0, then if we multiply all the lengths

ℓuv by 1/β, we have that
∑

u,v∈V cuvℓuv = 1. The shortest path lengths dℓ(x, y) also change by
the same factor 1/β, so that the dual objective function changes by a factor of 1/β. Thus we
can rewrite the dual still further as

max
ℓ≥0

min
i

∑
(x,y)∈Ti

Ci(x, y)dℓ(x, y)∑
u,v∈V cuvℓuv

.

We recall from Theorem 8.25, combined with Theorem 8.19, that for any nonnegative set of
costs cuv and any distance metric dℓ, we can find a tree metric (V, T) such that dℓ(u, v) ≤ Tuv

for all u, v ∈ V and such that
∑

u,v∈V cuvTuv ≤ O(log n)
∑

u,v∈V cuvdℓ(u, v). With two more
observations, we will be done. First, we observe that dℓ(u, v) ≤ ℓuv for all u, v ∈ V since the
shortest path length between u and v is no more than the length of the u-v edge. Second,
since dℓ(x, y) ≤ Txy for all x, y ∈ V ,

∑
(x,y)∈Ti

Ci(x, y)dℓ(x, y) ≤
∑

(x,y)∈Ti
Ci(x, y)Txy. Further,

observe that
∑

(x,y)∈Ti
Ci(x, y)Txy =

∑
u,v∈V cuvTuv, since any u, v ∈ V contributes cuv exactly

to the cuts Ci(x, y) corresponding to the edges (x, y) on the unique path in Ti from u to v.
Putting all of this together, we have that for any edge lengths ℓ ≥ 0, we have that∑

(x,y)∈Ti

Ci(x, y)dℓ(x, y) ≤
∑

u,v∈V
cuvTuv ≤ O(log n)

∑
u,v∈V

cuvdℓ(u, v) ≤ O(log n)
∑

u,v∈V
cuvℓuv.

(15.3)
Hence for any edge lengths ℓ ≥ 0, there exists some tree Ti such that∑

(x,y)∈Ti
Ci(x, y)dℓ(x, y)∑

u,v∈V cuvℓuv
≤ O(log n).

This proves that the optimal value of the dual is O(log n), and since by strong duality, the value
of the primal is equal to the value of the dual, the original primal LP has value O(log n).

Finally, we can use our understanding from the lemma above to find an appropriate collection
of trees and corresponding paths such that we have an O(log n)-approximation algorithm. One
idea is to use the ellipsoid method of Section 4.3 to solve the dual linear program; the proof above
shows that in a sense the tree metric algorithm can find a violated constraint if z > Ω(log n).
However, if the optimal z is much smaller than O(log n), we may not be able to find violated
constraints. The idea for our approximation algorithm is to set up a different linear program
so that we can indeed use the tree metric algorithm as a separation oracle for the ellipsoid
method. We observe which tree metrics are used in defining the violated constraints, and then
we find a cut-tree packing using only these trees; we show that this is sufficient to obtain the
approximation algorithm.

Theorem 15.14: There is an O(log n)-approximation algorithm for the oblivious routing prob-
lem.

Proof. By the proof of the lemma above, we know that the value of the linear program is at
most Z = 4 · 96 ln(n + 1), since Theorem 8.25 and Theorem 8.19 show that given a metric
dℓ defined by edge lengths ℓ, we can find a tree metric (V, T) such that

∑
u,v∈V cuvTuv ≤

4 · 96 ln(n + 1)
∑

u,v∈V cuvdℓ(u, v). We now apply the ellipsoid method to a slightly different
linear program. Consider the linear program as follows, where I is the set of indices of all
possible trees and associated paths, and Z is treated as a constant. We are only looking for a

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.2 Oblivious routing and cut-tree packings 381

feasible solution to the problem, so we use the objective function of minimizing the constant 0.
Then the linear program is:

minimize 0

subject to
∑
i∈I

λi

∑
(x,y)∈Ti:(u,v)∈Pi(x,y)

Ci(x, y) ≤ Zcuv, ∀u, v ∈ V,

∑
i∈I

λi = 1,

λi ≥ 0, ∀i ∈ I.

The dual program is then:

maximize z − Z
∑

u,v∈V
cuvℓuv

subject to z ≤
∑

(x,y)∈Ti

Ci(x, y)
∑

(u,v)∈Pi(x,y)

ℓuv, ∀i ∈ I,

ℓuv ≥ 0, ∀u, v ∈ V.

Since we know that there is a feasible solution to the primal problem of value zero, the optimum
solution to the dual problem must also be of value zero. We now show how to use the ellipsoid
method on the dual program to obtain a polynomially-sized set T ⊆ I of tree/path indices such
that the primal is feasible for T . Once we have this, we can solve the primal in polynomial
time, and obtain the desired cut-tree packing.

To do this, we use some knowledge of how the ellipsoid method works. When the separation
oracle for the ellipsoid method declares that a given solution is feasible, the ellipsoid method
makes an objective function cut; that is, it restricts its attention to all solutions having objective
function value at least the value of the current solution (in the case of a maximization problem).
In terms of the operations of the ellipsoid method, this is equivalent to the separation oracle
returning a constraint stating that the objective function is at least the value of the current
solution. As long as the ellipsoid method, in each step, imposes a constraint which retains an
optimal solution, it will find an optimal solution in polynomial time (as long as the number of
bits used to encode the constraints is also polynomial, as discussed in Section 4.3).

We now apply the ellipsoid method to the dual linear program. Our separation oracle works
as follows. Given a solution (z, ℓ), we check to see if z > Z

∑
u,v∈V cuvℓuv. If so, then we find

a tree metric (V, T) such that
∑

u,v∈V cuvTuv ≤ Z
∑

u,v∈V cuvdℓ(u, v). By inequality (15.3) of
Lemma 15.13, for this tree T where P (x, y) is the shortest x-y path using lengths ℓ, we have
that ∑

(x,y)∈T

C(x, y)
∑

(u,v)∈P (x,y)

ℓuv ≤ Z
∑

u,v∈V
cuvdℓ(u, v) ≤ Z

∑
u,v∈V

cuvℓuv < z,

and we can return as a violated constraint the dual constraint associated with the index i of
this tree T and the associated paths. If z ≤ Z

∑
u,v∈V cuvℓuv, then we declare the solution (z, ℓ)

as feasible. Note in this case the objective function value is z − Z
∑

u,v∈V cuvℓuv ≤ 0. By the
discussion above, the ellipsoid method will make an objective function cut, stating that the
value of the objective function is at least z − Z

∑
u,v∈V cuvℓuv. Since we know that the value

of the optimal dual solution is zero, this does not remove any optimal solutions, and hence the
ellipsoid method will find an optimal solution to the dual in polynomial time.

Now let T ⊆ I be the set of all indices of trees and associated paths found by the separation
oracle during the execution of the ellipsoid method above. We note that since the ellipsoid

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

382 Further uses of cuts and metrics

method ran in polynomial time, the size of T must be bounded by a polynomial in the input
size. Also, we claim that if we set I = T in the dual above, then it still has an optimal solution
of value zero. To see this, we imagine running the ellipsoid method again on the dual with
I = T . Since the only violated constraints returned are from T , the execution of the ellipsoid
method is identical to the previous execution of the ellipsoid method, and the same optimal
solution of value zero is returned.

Since there is an optimal solution to the dual of value zero with I = T , there must also be
a feasible solution to the primal for this set of trees. Now we can run a polynomial-time linear
programming algorithm (such as the ellipsoid method) on a polynomially-sized set of variables
from T , and this will yield a cut-packing of congestion at most Z = O(log n), as desired.

The connection between cut-tree packings and tree metrics can be shown to hold in the
other direction as well. Suppose we are given as input a metric (V, d) and costs cuv for all
u, v ∈ V , and suppose we have a polynomial-time algorithm to find a cut-tree packing such that
inequality (15.2) holds for some value α. In Exercise 15.7, we ask the reader to show that we
can then derive a polynomial-time algorithm to find a tree metric (V, T) such that duv ≤ Tuv

for all u, v ∈ V and
∑

u,v∈V cuvTuv ≤ α
∑

u,v∈V cuvduv. Thus the two problems are reducible to
each other.

15.3 Cut-tree packings and the minimum bisection problem

In this section, we turn to additional applications of the cut-tree packings introduced in the
previous section. When we discussed the probabilistic approximation of metrics by tree metrics
in Section 8.5, we observed that it allowed us to translate the solution of problems on general
metrics to problems on tree metrics with a loss of a factor of O(log n) in performance guarantee.
In this section, we show that we can do the same for cut problems: we can reduce the solution
of finding good cuts in general graphs to finding good cuts in trees with a loss of a factor of
O(log n) in the performance guarantee.

To illustrate, we return to the problem of finding a minimum bisection, as introduced in
Section 8.4. Recall that a set of vertices S is a b-balanced cut for b ∈ (0, 1/2] if ⌊bn⌋ ≤ |S| ≤
⌈(1 − b)n⌉. Given an undirected graph G = (V,E) with nonnegative edge costs ce ≥ 0 for all
edges e ∈ E, and a b ∈ (0, 1/2], the goal of the minimum b-balanced cut problem is to find
the b-balanced cut S that minimizes the cost of the edges with exactly one endpoint in S. The
minimum bisection problem is a special case in which b = 1/2.

In this section, we will show how to use cut-tree packings to find an O(log n)-approximation
algorithm for the minimum bisection problem. However, the algorithm and analysis we give
here can be extended to many other cut problems as well. We give as exercises finding alternate
O(log n)-approximation algorithms for the minimum multicut problem (Exercise 15.5) and the
sparsest cut problem (Exercise 15.6).

The algorithm itself is quite simple. Given the graph G = (V,E) and edge costs ce, we
find a collection of trees and associated paths as discussed in the previous section, treating
the edge costs ce as capacities. Recall from the previous section that for a tree Ti and an
edge (x, y) ∈ Ti, we consider the cut induced by removing (x, y) from Ti. Let S(x, y) be the
set of vertices in one of the two connected components of the tree remaining after (x, y) is
removed. We denote the total cost of the edges in the cut by Ci(x, y) =

∑
e∈δ(Si(x,y))

ce. We let
Pi(x, y) be the path associated with the edge (x, y) ∈ Ti. For any S ⊆ V , let c(δ(S)) denote
the cost of the edges in G with exactly one endpoint in S, so that c(δ(S)) =

∑
e∈δ(S) ce, and

let cTi(δ(S)) denote the cost of the tree edges of Ti with exactly one endpoint in S, so that

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.3 Cut-tree packings and the minimum bisection problem 383

cTi(δ(S)) =
∑

(x,y)∈Ti∩δ(S)Ci(x, y). Given the trees Ti from the collection, we find an optimal
bisection Xi ⊆ V in each tree Ti in which the cost of each edge (x, y) ∈ Ti is Ci(x, y); that is,
we find the bisection Xi in Ti that minimizes cTi(δ(Xi)). We show below that we can find an
optimal bisection in a tree in polynomial time. Then over the trees Ti in the cut-tree packing,
we return the bisection Xi that minimizes the cost in the graph G; that is, that minimizes
c(δ(Xi)).

In the following two lemmas, we relate the cost of any cut S in the graph G to its cost in
Ti.

Lemma 15.15: For any tree Ti and any S ⊆ V ,

c(δ(S)) ≤ cTi(δ(S)).

Proof. By our definitions above, we can rewrite the right-hand side as

cTi(δ(S)) =
∑

(x,y)∈Ti∩δ(S)

Ci(x, y) =
∑

(x,y)∈Ti∩δ(S)

∑
e:e∈δ(Si(x,y))

ce.

Pick an arbitrary edge e = (u, v) in G that is in δ(S). We will show that it must exist in
the sum on the right-hand side. Since exactly one of u and v are in S, there must exist some
edge in δ(S) on the path from u to v in Ti; call this edge (x, y). Then (x, y) ∈ Ti ∩ δ(S) and
e = (u, v) ∈ δ(Si(x, y)), so that ce appears in the sum on the right-hand side.

Lemma 15.16: Suppose we have an O(log n)-congestion cut-tree packing of trees Ti as discussed
in Section 15.2 for input graph G with edge costs ce. Then for any cut S ⊆ V ,∑

i

λicTi(δ(S)) ≤ O(log n)c(δ(S)).

Proof. We recall the defining property of cut-tree packings, from inequality (15.2), where
Pi(x, y) is the path from x to y in G associated with the tree edge (x, y) ∈ Ti:∑

i

λi

∑
(x,y)∈Ti:(u,v)∈Pi(x,y)

Ci(x, y) ≤ O(log n)cuv.

To prove the lemma, for each edge (u, v) ∈ δ(S), we remove the corresponding tree edges (x, y)
for all (x, y) ∈ Ti such that (u, v) ∈ Pi(x, y). By the inequality above, the cost of the tree edges
(x, y) ∈ Ti removed (each multiplied by λi) is at most O(log n)c(δ(S)). If we can show that
we have removed all tree edges (x, y) ∈ δ(S) for each tree Ti, then we have proven the lemma.
Pick any tree edge (x, y) ∈ δ(S) for any tree Ti, and consider the corresponding path Pi(x, y)
between x and y. Because exactly one endpoint of (x, y) is in S, there must be some edge (u, v)
on the path with exactly one endpoint in S, so that (u, v) ∈ δ(S). Thus when we considered
(u, v) ∈ δ(S), we must have removed the tree edge (x, y).

Given the lemmas, the proof of the performance guarantee is straightforward, as we see
below.

Theorem 15.17: The algorithm above is an O(log n)-approximation algorithm for the mini-
mum bisection problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

384 Further uses of cuts and metrics

Proof. Let X∗ ⊆ V be an optimal bisection of G. We know that in each tree Ti we have found
an optimal bisection Xi, so that the cost of the bisection X∗ costs at least as much; in other
words, cTi(δ(Xi)) ≤ cTi(δ(X

∗)) for all trees Ti in the packing. Then by Lemma 15.15 we have
that ∑

i

λic(δ(Xi)) ≤
∑
i

λicTi(δ(Xi)).

By the observation above, ∑
i

λicTi(δ(Xi)) ≤
∑
i

λicTi(δ(X
∗)).

By Lemma 15.16 applied to the optimal bisection X∗, we have∑
i

λicTi(δ(X
∗)) ≤ O(log n)c(δ(X∗)) = O(log n)OPT .

Putting these together we have that∑
i

λic(δ(Xi)) ≤ O(log n)OPT .

Thus a convex combination of the costs of the bisections c(δ(Xi)) is at mostO(log n)OPT, which
implies that at least one of the bisections Xi must have cost at most O(log n)OPT. Since the
algorithm returns Xi minimizing c(δ(Xi)), it is an O(log n)-approximation algorithm.

To finish off the proof, we must show how to find a minimum bisection in trees. We do this
using dynamic programming.

Lemma 15.18: There is a polynomial-time algorithm to find a minimum bisection in a tree.

Proof. We assume that we are given as input a tree T on a set of vertices V with edge weights
ce ≥ 0 for all e ∈ T . The algorithm we give below will work on rooted trees where internal
nodes have either one or two children. If the tree has ℓ leaves, it will output the optimal cut
S such that there are exactly ⌊ℓ/2⌋ leaves in S; we will call this a leaf bisection of the tree.
First we must show that we can transform our input into an input on which this leaf bisection
algorithm will work. For any vertex v ∈ V that is an internal node, we create a new node v′ and
put it in the place of v, then add an edge (v, v′) of infinite cost. Now the leaves of the tree are
all the vertices of V . We pick an arbitrary internal node as the root. For any internal node with
more than two children, we create extra nodes and infinite cost edges so that each node has at
most two children. See Figure 15.3 for the transformation such that all original vertices become
leaves and each internal node has at most two children. Note that any solution in the modified
tree that does not have infinite cost and gives a leaf bisection has a corresponding solution in
the original tree of the same cost, and vice versa. For any node with d ≥ 3 children, we end up
creating d − 2 new nodes. Thus overall we may create O(n) new nodes, so any algorithm for
finding a leaf bisection running in time polynomial in the number of nodes will also run in time
polynomial in our original input size.

We now perform dynamic programming on the rooted tree, starting with the leaves and
working our way up the tree, to find a minimum leaf bisection. For each internal node u with k
leaves in its subtree, we create a table with entries for each integer i ∈ [0, k]. The table will give
the minimum-cost set of edges we need to remove from u’s subtree in order to have a cut with u
on one side along with i leaves, and k− i leaves on the other side of the cut. For a given internal

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 385

Figure 15.3: Modifying a tree into one in which all original vertices are leaves, and
each internal node has at most two children. The new edges are dashed and have infinite
cost. The new nodes have white interiors.

node u with two children v1 and v2 having k1 and k2 leaves in their subtrees, respectively, we
create entries for u’s table for each i ∈ [0, k1 + k2] by considering four different combinations;
see Figure 15.4 for an illustration. First, we consider all i1 ∈ [0, k1] and i2 ∈ [0, k2] such that
i1 + i2 = i; this captures the possible cuts in which u, v1, and v2 are all on the same side of the
cut as the i leaves. Second, we consider all i1 ∈ [0, k1] and i2 ∈ [0, k2] such that i1+(k2− i2) = i
while also removing the edge (u, v2); this captures the possible cuts in which u and v1 are on
the same side of the cut as the i leaves, while v2 is on the opposite side. Third, we consider all
i1 ∈ [0, k1] and i2 ∈ [0, k2] such that (k1 − i1) + i2 = i while also removing the edge (u, v1); this
captures the possible cuts in which u and v2 are on the same side of the cut as the i leaves,
while v1 is on the opposite side. Fourth, we consider all i1 ∈ [0, k1] and i2 ∈ [0, k2] such that
(k1 − i1) + (k2 − i2) = i while also removing both edges (u, v1) and (u, v2); this captures the
possible cuts in which u is on the same side of the cut as the i leaves, but v1 and v2 are on
the opposite side. Over all these possible combinations, we choose the combination of the least
overall cost to store in the table entry for i. The case in which u has only a single child is
similar. If there are ℓ leaves in the tree and n nodes, we consider O(ℓ) possible combinations
per table entry, so that we take O(ℓ2) time per internal node, and O(nℓ2) = O(n3) time overall.
To find the optimal leaf bisection, we consider the entry at the root node for ⌊ℓ/2⌋.

15.4 The uniform sparsest cut problem

For our final algorithmic result of the book, we revisit the sparsest cut problem, introduced
in Exercise 8.6 and discussed in Section 15.1. In the sparsest cut problem, we are given an
undirected graph G = (V,E), costs ce ≥ 0 for all e ∈ E, and k pairs of vertices si, ti with
associated positive integer demands di. We want to find a set of vertices S that minimizes

ρ(S) ≡
∑

e∈δ(S) ce∑
i:|S∩{si,ti}|=1 di

.

That is, the sparsest cut problem finds a cut that minimizes the ratio of the cost of the edges
in the cut to the demands separated by the cut. In this section, we will consider an interesting
special case of the problem, the uniform sparsest cut problem. In this case, there is a single
unit of demand between each distinct pair of vertices. Thus the goal is to find a set of vertices

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

386 Further uses of cuts and metrics

v1 v2

u

i1 i2

k1 − i1
k2 − i2

v1

v2

u

i1

i2

k1 − i1

k2 − i2

v1

v2

u

i1

i2

k1 − i1

k2 − i2

v1

u

i1

k1 − i1

v2

i2

k2 − i2

v1 v2

u

k1 k2

Figure 15.4: The four different cases of the dynamic program for an internal node u
with two children v1 and v2 that have k1 and k2 leaves respectively.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 387

S that minimizes

ρ(S) ≡
∑

e∈δ(S) ce

|S||V − S|
.

As with b-balanced cuts introduced in Section 8.4, finding a uniform sparsest cut is a popular
choice in some divide-and-conquer applications. In unweighted problems (with ce = 1 for all
e ∈ E), the uniform sparsest cut problem finds the cut S that minimizes the ratio of the
number of edges in the cut that do exist (that is, |δ(S)|) to the number that could exist (that
is, |S||V − S|). Additionally, finding the uniform sparsest cut is sometimes substituted for
finding the edge expansion of unweighted graphs. The edge expansion α(S) of a cut S ⊆ V for
|S| ≤ n/2 is

α(S) ≡ |δ(S)|
|S|

,

and the edge expansion of the graph is the minimum value of α(S) over all S with |S| ≤ n/2.
The cut that minimizes the edge expansion trades off the number of edges in the cut against
the size |S|. Unlike the b-balanced cut problem, there is no arbitrary lower bound on the size
of |S| for the set S that minimizes the edge expansion; we can have |S| small if the number
of edges in the cut is small enough to justify it. When |S| ≤ n/2, then n/2 ≤ |V − S| ≤ n,
so that 1

nα(S) ≤ ρ(S) ≤ 2
nα(S). Thus the uniform sparsest cut problem in unweighted graphs

approximates the edge expansion of the graph to within a factor of 2.

In Section 15.1, we considered a linear programming relaxation for the problem and used
it to obtain an O(log k)-approximation algorithm for the sparsest cut problem. Here we will
consider a vector programming relaxation for the uniform sparsest cut problem, and show that
it can be used to obtain an O(

√
logn)-approximation algorithm.

We start the discussion by giving an integer quadratic formulation of the problem. Consider
the following formulation:

minimize

1
4

∑
e=(i,j)∈E ce(xi − xj)

2

1
4

∑
i,j∈V :i̸=j(xi − xj)2

subject to (xi − xj)
2 ≤ (xi − xk)

2 + (xk − xj)
2, ∀i, j, k ∈ V, (15.4)

xi ∈ {−1,+1} , ∀i ∈ V.

We claim that this models the uniform sparsest cut problem. Given a set S ⊆ V , then by
setting xi = −1 for all i ∈ S, and xi = 1 otherwise, 1

4

∑
(i,j)∈E ce(xi − xj)

2 =
∑

e∈δ(S) ce and
1
4

∑
i,j∈V :i̸=j(xi − xj)

2 = |S||V − S|, so that the objective function is ρ(S). It is easy to check
that the constraints of the program are obeyed since the inequality (15.4) is trivially true if
xi = xj , while if xi ̸= xj , then either xi ̸= xk or xj ̸= xk. Similarly, given a solution x to the
integer quadratic program, let S = {i ∈ V : xi = −1}, and the value of the objective function
is ρ(S).

We relax the formulation first as follows:

minimize
1

n2

∑
e=(i,j)∈E

ce(yi − yj)
2

subject to
∑

i,j∈V :i̸=j

(yi − yj)
2 = n2,

(yi − yj)
2 ≤ (yi − yk)

2 + (yk − yj)
2, ∀i, j, k ∈ V.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

388 Further uses of cuts and metrics

Note that we do not require yi ∈ {−1, 1}. Given an optimal solution x∗ to the previous
formulation, let d =

∑
i,j∈V :i̸=j(x

∗
i − x∗j)

2. Set yi = nx∗i /
√
d. Then

∑
i,j∈V :i ̸=j

(yi − yj)
2 =

n2

d

∑
i,j∈V :i ̸=j

(x∗i − x∗j)
2 = n2,

as required. Furthermore,

1

n2

∑
e=(i,j)∈E

ce(yi − yj)
2 =

1

d

∑
e=(i,j)∈E

ce(x
∗
i − x∗j)

2 =

1
4

∑
e=(i,j)∈E ce(x

∗
i − x∗j)

2

1
4

∑
i,j∈V :i̸=j(x

∗
i − x∗j)

2
,

and each constraint (yi − yj)
2 ≤ (yi − yk)

2 + (yk − yj)
2 is satisfied since the corresponding

constraint on x∗ is satisfied. Thus y is feasible for this program and has value equal to that of
the optimal solution to the problem, so that this formulation is a relaxation.

We can now relax this formulation to a vector program. Note that ∥vi − vj∥2 = (vi − vj) ·
(vi − vj) for vectors vi ∈ ℜn, so that we have

minimize
1

n2

∑
e=(i,j)∈E

ce∥vi − vj∥2

subject to
∑

i,j∈V :i̸=j

∥vi − vj∥2 = n2,

∥vi − vj∥2 ≤ ∥vi − vk∥2 + ∥vk − vj∥2 ∀i, j, k ∈ V,

vi ∈ ℜn, ∀i ∈ V.

Given a solution y to the previous relaxation, we obtain a feasible solution to the vector program
of the same objective function value by setting vi = (yi, 0, · · · , 0). Observe that unlike many
previous vector programs we have studied, the vectors vi are not constrained to be unit vectors.

Our algorithm for the problem is a variation on the random hyperplane technique that
we have seen for rounding other vector programs. As usual, we pick a random vector r =
(r1, . . . , rn) by drawing each coordinate from the normal distribution N (0, 1) with mean 0 and
variance 1. The essence of the algorithm is that rather than simply partitioning the vectors
according to whether r ·vi ≥ 0 or not, we instead consider a “fat” hyperplane, looking at vectors
that have either significant positive projections on the random vector or significant negative
projections on the random vector. We will show that aside from an easy exceptional case, with
constant probability we obtain two sets of vectors L and R (with large positive and negative
projections respectively) that each have size Ω(n); see Figure 15.5 for an illustration. We then
show that most of the pairs of points from these two sets are far apart; namely that for most
i ∈ L and j ∈ R, ∥vi− vj∥2 = Ω(1/

√
log n). This is the key to the result; once we have this, we

see that ∑
i,j∈V :i̸=j

∥vi − vj∥2 ≥
∑

i∈L,j∈R
∥vi − vj∥2 ≥ Ω(n2/

√
log n). (15.5)

We will show that we can easily find a cut S with L ⊆ S ⊆ V −R such that

ρ(S) ≤
∑

e=(i,j)∈E ce∥vi − vj∥2∑
i∈L,j∈R ∥vi − vj∥2

.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 389

L

R

r

v · r ≥ σ

v · r ≤ −σ

Figure 15.5: An illustration of the fat hyperplane rounding defining the two sets L
and R.

Thus by inequality (15.5),

ρ(S) ≤ O(
√

log n)
1

n2

∑
e=(i,j)∈E

ce∥vi − vj∥2 ≤ O(
√

log n)OPT,

where the last inequality follows since 1
n2

∑
e=(i,j)∈E ce∥vi− vj∥2 is the objective function of the

vector programming relaxation of the problem.
To begin stating the algorithm more formally, we first introduce some notation. For i, j ∈ V ,

let d(i, j) = ∥vi − vj∥2 and let B(i, r) = {j ∈ V : d(i, j) ≤ r}. Note that d is a distance metric,
since it obeys the triangle inequality due to the constraint in the vector program; because d(i, j)
is equal to the square of the ℓ2 distance, it is sometimes called the ℓ22 metric. For a set S ⊆ V ,
let d(i, S) = minj∈S d(i, j). We let ∆ stand for the desired distance between most of the pairs
of vertices in L and R, so that our final goal is to show that we can find L and R where
|L|, |R| = Ω(n) and for most i ∈ L and j ∈ R, d(i, j) ≥ ∆ for ∆ = Ω(1/

√
log n).

The algorithm begins by checking to see whether a large fraction of the vertices are close
together; in particular, the algorithm checks if there is a ball B(i, 14) with at least n/4 vertices
in it for some i ∈ V . If there is, this turns out to be an easy case which we handle separately, so
we assume that there is no such ball. We choose a vertex o to maximize |B(o, 4)|; we will show
that this guarantees that a large fraction of pairs of vertices are some constant distance apart
and are not close to o. For a particular choice of constant σ, we consider two sets of vertices,
L = {i ∈ V : r · (vi − vo) ≥ σ} and R = {i ∈ V : r · (vi − vo) ≤ −σ}. We then pull out pairs
of points from L and R if they are too close together; in particular, if for i ∈ L and j ∈ R,
d(i, j) ≤ ∆, then we remove i from L and j from R. As discussed above, our goal will be to
show that the algorithm will work with ∆ = C/

√
log n for some constant C. We continue this

process until no pair of points in L and R are within this distance of each other; let L′ and R′

be the resulting set of vertices after this removal process. We then sort the vertices i ∈ V in
order of their distance d(i, L′) from the set L′, so that we have vertices i1, i2, . . . , in. Finally, we
consider the values of the sparsest cuts of all prefixes of this ordering; in particular, we consider
ρ({i1}), ρ({i1, i2}), . . . , ρ({i1, . . . , in−1}) and return the set {i1, . . . , ik} that gives the minimum
of these values. The algorithm is summarized in Algorithm 15.1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

390 Further uses of cuts and metrics

if ∃i ∈ V : |B(i, 14)| ≥
n
4 then

L′ = B(i, 14)
else

Pick o ∈ V to maximize |B(o, 4)|
Pick random vector r
Let L = {i ∈ V : r · (vi − vo) ≥ σ}, R = {i ∈ V : r · (vi − vo) ≤ −σ}
Let L′ = L, R′ = R
while ∃i ∈ L′, j ∈ R′ : d(i, j) ≤ ∆ do

L′ ← L′ − i; R← R′ − j

Sort i ∈ V by nondecreasing distance d(i, L′) to get i1, . . . , in
return {i1, . . . , ik} that minimizes min1≤k≤n−1 ρ({i1, . . . , ik})

Algorithm 15.1: Algorithm for rounding the vector programming relaxation of uniform sparsest cut problem.

Before we state the main theorem, we first define a few terms that will allow us to state the
theorems more easily. We will say that L and R are α-large if |L| ≥ αn and |R| ≥ αn. In what
follows α will be some constant we state later. We say that L and R are ∆-separated if for all
i ∈ L and j ∈ R, d(i, j) ≥ ∆. We will need the following lemma.

Lemma 15.19: If there is no i ∈ V such that |B(i, 14)| ≥
n
4 , then with constant probability, L

and R are α-large for a constant α.

We defer the proof of this lemma until the end of the section; while it takes a bit of work,
it is not hard and not part of the central difficulty of the result.

Now we state the central technical theorem of the analysis. As we sketched previously, this
theorem implies that the algorithm returns a cut S with ρ(S) ≤ O(

√
log n)OPT with constant

probability.

Theorem 15.20: If L and R are α-large, then with constant probability, L′ and R′ are α
2 -large

and are ∆-separated for ∆ = C/
√
log n for an appropriate choice of constant C.

The proof of this theorem is easily the most lengthy and complex of the book, so we will
work up to it slowly.

We start by showing that given that L′ and R′ are β-large and ∆-separated for some constant
β, the algorithm has a performance guarantee of O(1/β2∆).

Theorem 15.21: Given ∆ = O(1) and a constant β ≤ 1, suppose either that there exists an
i ∈ V such that |B(i, 14)| ≥

n
4 or else that the sets L′ and R′ are β-large and ∆-separated.

Then Algorithm 15.1 returns a solution to the uniform sparsest cut problem of value at most
O(1/β2∆)OPT .

Proof. We first claim that under the hypotheses of the theorem, the algorithm finds a set L′

such that ∑
i,j∈V

|d(i, L′)− d(j, L′)| ≥ Ω(β2n2∆).

Given the claim, let i1, . . . , in be the ordering of the vertices by nondecreasing distance d(i, L′).
The algorithm returns a solution of value min1≤k≤n−1 ρ({i1, . . . , ik}). Let Sk = {i1, . . . , ik}, and
let χδ(S)(i, j) = 1 if | {i, j} ∩ S| = 1 and 0 otherwise. We can bound the cost of the solution
found by the algorithm in a way similar to that in the proof of Theorem 15.5 for the sparsest

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 391

cut problem:

min
1≤k≤n−1

ρ(Sk) = min
1≤k≤n−1

∑
e∈δ(Sk)

ce

|Sk||V − Sk|
= min

1≤k≤n−1

∑
e∈E ceχδ(Sk)(e)∑
i,j∈V χδ(Sk)(i, j)

.

By Fact 1.10, we have that

min
1≤k≤n−1

∑
e∈E ceχδ(Sk)(e)∑
i,j∈V χδ(Sk)(i, j)

≤
∑n−1

k=1 |d(ik+1, L
′)− d(ik, L

′)|
∑

e∈E ceχδ(Sk)(e)∑n−1
k=1 |d(ik+1, L′)− d(ik, L′)|

∑
i,j∈V χδ(Sk)(i, j)

=

∑n−1
k=1

∑
e∈E ceχδ(Sk)(e)|d(ik+1, L

′)− d(ik, L
′)|∑n−1

k=1

∑
i,j∈V χδ(Sk)(i, j)|d(ik+1, L′)− d(ik, L′)|

=

∑
e=(i,j)∈E ce|d(i, L′)− d(j, L′)|∑

i,j∈V |d(i, L′)− d(j, L′)|

≤
∑

e=(i,j)∈E ced(i, j)

Ω(β2n2∆)
,

where the inequality follows by the triangle inequality (in the numerator) and the claim (in the
denominator). Then∑

e=(i,j)∈E ced(i, j)

Ω(β2n2∆)
= O(1/β2∆)

1

n2

∑
e=(i,j)∈E

ce∥vi − vj∥2 ≤ O(1/β2∆)OPT,

since 1
n2

∑
e=(i,j)∈E ce∥vi − vj∥2 is the objective function of the vector programming relaxation

of the problem.
We now need to prove the claim. If there is no i ∈ V with |B(i, 14)| ≥

n
4 , then by hypothesis

L′ and R′ are β-large and ∆-separated. Then we have that∑
i,j∈V

|d(i, L′)− d(j, L′)| ≥
∑

i∈L′,j∈R′

|d(i, L′)− d(j, L′)| ≥ |L′||R′|∆ = Ω(β2n2∆).

Now suppose there is an i′ ∈ V with |B(i′, 14)| ≥
n
4 ; the algorithm sets L′ = B(i′, 14). By the

constraint of the vector program we know that
∑

i,j∈V d(i, j) =
∑

i,j∈V ∥vi−vj∥2 = n2. For any
i ∈ V , there is some j ∈ L′ such that d(i, L′) = d(i, j), and therefore d(i, i′) ≤ d(i, j)+ d(j, i′) ≤
d(i, L′) + 1

4 . Thus

n2 =
∑
i,j∈V

d(i, j) ≤
∑
i,j∈V

(d(i, i′) + d(i′, j))

= 2n
∑
i∈V

d(i, i′)

≤ 2n
∑
i∈V

(
d(i, L′) +

1

4

)
= 2n

∑
i∈V

d(i, L′) +
n2

2
.

Rearranging this inequality, we obtain∑
i∈V

d(i, L′) =
∑
i/∈L′

d(i, L′) ≥ n

4
.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

392 Further uses of cuts and metrics

Then ∑
i,j∈V

|d(i, L′)− d(j, L′)| ≥
∑

j∈L′,i/∈L′

d(i, L′)

= |L′|
∑
i/∈L′

d(i, L′)

≥ n

4

∑
i/∈L′

d(i, L′) ≥ n2

16
= Ω(β2n2∆),

for ∆ = O(1) and constant β ≤ 1, which proves the claim.

The following corollary is now immediate from Lemma 15.19 and Theorems 15.20 and 15.21.

Corollary 15.22: With constant probability, Algorithm 15.1 returns a set S such that ρ(S) ≤
O(
√
log n)OPT .

We will now start working our way towards the proof of Theorem 15.20. As a warmup, we
will show that we can weaken the result by obtaining ∆-separated sets L′ andR′ for ∆ = C/ log n
rather than ∆ = C/

√
logn. This implies that the algorithm returns a solution of value at most

O(log n)OPT. Of course, we already have an O(log n)-approximation algorithm for the uniform
sparsest cut problem via the result of Section 15.1, but this will give us a start at the ideas behind
the proof of the O(

√
log n) performance guarantee. By Lemma 15.19, we assume that L and R

are α-large. Then for any i ∈ L, j ∈ R, it must be that (vi−vj)·r = (vi−vo)·r+(vo−vj)·r ≥ 2σ
by the definition of L and R. However, we will show that it is very unlikely that i ∈ L and
j ∈ R if d(i, j) ≤ ∆ = C/ log n since the probability that (vi−vj) · r ≥ 2σ is e−2σ2/∥vi−vj∥2 ≤ 1

nc

for C = 2
cσ

2. Thus with probability at least 1 − 1
nc−2 no pair of vertices i ∈ L and j ∈ R get

deleted, so that both L′ and R′ are α-large and ∆-separated.
To prove this result, we will need a bound on the tail of the normal distribution. Recall

that the density function p(x) of the normal distribution N (0, 1) is

p(x) =
1√
2π

e−x2/2,

and its cumulative distribution function is Φ(x) =
∫ x
−∞ p(s)ds. We let Φ(x) = 1 − Φ(x) =∫∞

x p(s)ds give the tail of the normal distribution. Then we have the following bounds.

Lemma 15.23: Let v ∈ ℜn be a vector v ̸= 0. Then for a random vector r and σ ≥ 0,

Pr[v · r ≥ σ] ≤ e
− σ2

2∥v∥2

and

Pr[|v · r| ≤ σ] ≤ 2σ

∥v∥
.

Proof. We recall from Fact 6.5 that v
∥v∥ · r is distributed as N (0, 1). Thus

Pr[v · r ≥ σ] = Pr

[
v

∥v∥
· r ≥ σ

∥v∥

]
= Φ

(
σ

∥v∥

)
.

Now if X is a random variable that is distributed as N (0, 1), then Φ(t) = Pr[X ≥ t].
Observe that for λ ≥ 0 and t ≥ 0, Pr[X ≥ t] ≤ Pr[eλX ≥ eλt], since X ≥ t implies eλX ≥ eλt.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 393

Then by Markov’s inequality (Lemma 5.25), Pr[eλX ≥ eλt] ≤ E[eλX]/eλt. We calculate

E[eλX] =

∫ ∞

−∞
eλxp(x)dx =

∫ ∞

−∞

1√
2π

eλx−x2/2dx.

Making a change of variables z = x− λ, so that z2 = x2 − 2λx+ λ2, we get

E[eλX] =

∫ ∞

−∞

1√
2π

eλ
2/2−z2/2dz = eλ

2/2

∫ ∞

−∞
p(z)dz = eλ

2/2.

Thus Φ(t) ≤ E[eλX]/eλt = eλ
2/2−λt. Plugging in λ = t, we get Φ(t) ≤ e−t2/2, so that Φ

(
σ
∥v∥

)
≤

e
− σ2

2∥v∥2 , as desired.
For the second inequality,

Pr[|v · r| ≤ σ] =

∫ σ/∥v∥

−σ/∥v∥
p(x)dx ≤

∫ σ/∥v∥

−σ/∥v∥
dx =

2σ

∥v∥
.

Now we can prove the weaker version of Theorem 15.20 with ∆ = C/ log n substituted
for ∆ = C/

√
log n. By Lemma 15.19 and Theorem 15.21, this implies an algorithm with

performance guarantee O(log n).

Theorem 15.24: If L and R are α-large, then with high probability Algorithm 15.1 finds α-large
sets L′ and R′ that are ∆-separated for ∆ = C/ log n and an appropriate choice of constant C.

Proof. Pick any i, j ∈ V such that d(i, j) ≤ C/ logn. By Lemma 15.23, we know that

Pr[(vi − vj) · r ≥ 2σ] ≤ e−2σ2/∥vi−vj∥2 ≤ e−2σ2 logn/C = n−2σ2/C .

Thus if we set C = 2
cσ

2, we have that this probability is at most n−c. However, by construction
we know that if i ∈ L and j ∈ R then

(vi − vj) · r = [(vi − vo) + (vo − vj)] · r ≥ 2σ.

Thus with high probability (i, j) /∈ L × R. Since there are at most n2 pairs (i, j) such that
d(i, j) ≤ C/ log n, with probability at least 1 − 1

nc−2 , no such pair is in L × R, and thus no
vertices are removed from L and R. Thus if L and R are α-large, then with high probability,
so are L′ and R′, and L′ and R′ are ∆-separated for ∆ = C/ log n.

The key to the proof of the O(
√
log n) performance guarantee is similar to the proof of

the O(log n) performance guarantee above. The proof of Theorem 15.20 will be a proof by
contradiction. Suppose that L and R are α-large, and with constant probability, L′ and R′

are not α
2 -large. Then we will show that for a constant fraction of the probability space of

random vectors r there exist pairs of vertices i, j ∈ V such that d(i, j) ≤ O(
√
log n) and such

that (vi− vj) · r ≥ Ω(σ logn). By Lemma 15.23, we know that the probability that i, j ∈ V can
have (vi − vj) · r ≥ Ω(σ log n) is at most

e−Ω(σ2 log2 n)/∥vi−vj∥2 ≤ e−Ω(σ2 logn) ≤ n−Ω(σ2).

Thus over all pairs i, j ∈ V such that d(i, j) ≤ O(
√
log n), we know that the probability that

any such pair i, j has (vi − vj) · r ≥ Ω(σ log n) is 1/nc for some constant c. Yet we will show

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

394 Further uses of cuts and metrics

that under these assumptions about L′ and R′, such pairs i and j must exist with constant
probability, which is a contradiction.

To get some sense of how we will prove this, observe that if Theorem 15.20 is false, then
with some constant probability, we remove at least Ω(n) pairs from L × R; we can view this
as a matching of vertices in L and R, where we know that for any i ∈ L and j ∈ R that get
removed, d(i, j) ≤ ∆ while (vi − vj) · r ≥ 2σ. For a given random vector r, let us call this
set of matching edges M(r). Thus if the main theorem is false, for a constant fraction of the
probability space of random vectors r, we have matchings M(r) such that |M(r)| = Ω(n), and
for any (i, j) ∈ M(r), (vi − vj) · r ≥ 2σ. LetM be the set of these matching edges taken over
the random vectors r for which L′ and R′ fail to be α

2 -large.
The crux of the proof of the O(

√
log n) performance guarantee is to show that for a constant

fraction of the probability space of random vectors r we can find paths of k = Θ(log n) matching
edges inM (i1, i2), (i2, i3), . . . , (ik−1, ik) such that (vik − vi1) · r = Ω(σk) = Ω(σ logn). By the
triangle inequality

d(ik, i1) ≤
k−1∑
j=1

d(ij+1, ij) ≤ (k − 1)∆ = O(
√

log n),

and thus the pairs of vertices at the beginning and end of the paths give the desired contradic-
tion. To see how we can get that (vik − vi1) · r ≥ Ω(σk) with constant probability, note that for
each j ∈ [1, k − 1], (vij+1 − vij) · r ≥ 2σ for some fraction of the space of random vectors r. We
would like extend this to show that for a constant fraction of the probability space of random
vectors r, it is the case that for all j ∈ [1, k − 1], (vij+1 − vij) · r ≥ Ω(σ). Then we obtain what
we desire: with constant probability we have that

(vik − vi1) · r =

k−1∑
j=1

(vij+1 − vij)

 · r ≥ Ω(σk) = Ω(σ log n).

In fact, we will end up proving something weaker, but this gives some intuition of how the result
is obtained.

In order to give ourselves the right start, we first prove one more intermediate result by
showing that Theorem 15.20 holds for ∆ = C/ log2/3 n. To do this, we take the approach as
described above, but with ∆ = C/ log2/3 n and k = Θ(log1/3 n). In particular, for a constant
fraction of the probability space of random vectors r we find paths of k = Θ(log1/3 n) matching
edges inM, (i1, i2), (i2, i3), . . . , (ik−1, ik) such that (vik − vi1) · r ≥ Ω(σk) = Ω(σ log1/3 n). Then
by the triangle inequality, we know that d(ik, i1) ≤ (k − 1)∆ = O(log−1/3 n). By Lemma 15.23
the probability that (vik − vi1) · r ≥ Ω(σ log1/3 n) is at most

e−Ω(σ2 log2/3 n)/∥vi−vj∥2 ≤ e−Ω(σ2 logn) ≤ n−Ω(σ2).

Thus over all pairs i, j ∈ V such that d(i, j) ≤ O(log−1/3 n), we know that the probability that
any such pair i, j has (vi − vj) · r ≥ Ω(σ log1/3 n) is 1/nc for some constant c. Yet if L′ and R′

are not α
2 -large with constant probability, then there exist such pairs with constant probability,

which is a contradiction.
To start the proof, we give a more formal definition of the matching graphM = (VM , AM) in

which we will find the desired paths. For a given ∆ (either ∆ = C/
√
log n for the main result or

∆ = C/ log2/3 n for the intermediate result),M will be a subgraph of (V, {(i, j) ∈ V × V : d(i, j) ≤ ∆}).
As above, we define M(r) to be the set of edges (i, j) such that for the random vector r, we

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 395

initially have i ∈ L, j ∈ R, and in some step of the algorithm i and j are removed from L and R
respectively. Since i ∈ L and j ∈ R, (vi − vj) · r ≥ 2σ, and since they are removed, d(i, j) ≤ ∆.
Note that the algorithm does not specify the order in which the pairs i, j are removed from L
and R. We assume that this order is such that (i, j) ∈M(r) if and only if (j, i) ∈M(−r). We
give each arc (i, j) in the graph a weight wij equal to the probability that the pair (i, j) is a
matching edge in M(r) for a randomly chosen vector r; that is, wij = Pr[(i, j) ∈M(r)], where
the probability is taken over the random vectors r. As we noted above, if (i, j) ∈ M(r), then
(vi − vj) · r ≥ 2σ, so that Pr[(vi − vj) · r ≥ 2σ] ≥ wij (where the probability is over the choice
of random vectors). Since (i, j) ∈ M(r) if and only if (j, i) ∈ M(−r), we have that wij = wji.
We will show that if L′ and R′ fail to be α

2 -large given that L and R are α-large, then there is
a subgraph M of (V, {(i, j) ∈ V × V : d(i, j) ≤ ∆}) such that the weight of the outgoing arcs
from any node is at least some constant δ. The next lemma shows that we can indeed construct
the matching graphM to have this property.

Lemma 15.25: If L and R are α-large, but with constant probability q > 0, L′ and R′ are not
α
2 -large, then we can define the matching graph so that the total weight of arcs coming out of
each vertex i ∈ VM is at least δ = qα/8.

Proof. Given the hypothesis of the lemma, with probability at least q, |M(r)| ≥ α
2n over the

distribution of random vectors r. Thus given the definition of the weights in the graph we know
that the total weight of all arcs must be at least qαn/2. To obtain the desired matching graph,
we repeatedly remove all nodes whose outgoing arc weight is less than qα/8. Note that since
outgoing arc weight is equal to incoming arc weight, we remove arc weight at most qα/4 per
node removed. Thus we remove at most weight qαn/4 from the graph overall; since there was
total weight at least qαn/2, some of the graph must remain. We let VM be the remaining nodes,
and AM the remaining arcs, withM = (VM , AM); each i ∈ VM has at least δ = qα/8 outgoing
arc weight.

In the course of finding Θ(log1/3 n)-arc paths in the matching graph discussed above, we
build up a set of paths, starting with an empty path for each node in VM , and then extending
each path by an additional arc, possibly eliminating some paths if we can’t find an extension
with the desired properties. At any point in the process of building up the paths, we characterize
the paths by several properties. We say that the paths have length at most k if each path has
at most k arcs in it. The heads of the paths are the vertices of VM at which the paths end;
we denote this set of vertices by H. The tails of the paths are the vertices at which the paths
start. Since we will be extending the paths from the heads of the paths, we will pay special
attention to them. We say that the paths have projection at least ρ with probability at least
δ if for each i ∈ H, the probability is at least δ that there exists some path with tail j such
that (vi − vj) · r ≥ ρ. For the most part, the set of paths will be defined implicitly as follows.
Let Γ−

k (i) be the set of all vertices in VM that can reach i in the matching graph via a path of
k or fewer arcs; symmetrically, let Γ+

k (i) be the set of all vertices in VM that can be reached
from i in the matching graph via a path of k or fewer arcs. We will write Γ−(i) = Γ−

1 (i) and
Γ+(i) = Γ+

1 (i), and for S ⊆ VM , we let Γ+
k (S) be the set of all vertices in VM that can be

reached from the vertices in S in k or fewer arcs; see Figure 15.6 for an illustration. Thus for a
given head i ∈ H, we know there is a path of length at most k to i if there exists some j ∈ Γ−

k (i),
and we extend paths by an extra arc by looking at the paths with heads in Γ+(i). Using the
new notation, the paths of length at most k have projection at least ρ with probability at least
δ if for each i ∈ H, Pr[∃j ∈ Γ−

k (i) : (vi − vj) · r ≥ ρ] ≥ δ.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

396 Further uses of cuts and metrics

i
Γ

+
(i)

Γ
−
(i)

Γ
−
2
(i)

Figure 15.6: An illustration of the notation Γ−(i), Γ−
k (i), and Γ+(i).

We will give below a procedure for extending the paths until we have a set of paths of length
O(log1/3 n) having projection Ω(σ log1/3 n) with constant probability. As we argued above, this
is sufficient to give a O(log2/3 n) performance guarantee. We will then explain how we can
strengthen the path-building argument to obtain the O(

√
log n) performance guarantee.

We now state a lemma that will allow us to trade off the various characteristics in the paths
as we extend them. In particular, the following lemma will allow us to boost the probability of
the paths by reducing their projection. We defer the proof to the end of the section.

Lemma 15.26: For any set of paths of length at most k having projection at least ρ with
probability at least β ≤ 1/2, the same paths have projection at least ρ− γ

√
k∆ with probability

at least 1− e−λ2/2 for any λ ≥ 0 and any γ ≥
√

2 ln(1/β) + λ.

We can now give the inductive proof that will allow us to construct the length O(log1/3 n)
paths that result in the O(log2/3 n) performance guarantee.

Theorem 15.27: Suppose L and R are α-large, but with constant probability q > 0, L′ and
R′ are not α

2 -large. Then for each k, 0 ≤ k ≤ O(log1/3 n), there exists a set of paths in the
matching graph of length at most k with heads Hk, having projection σk/4 with probability at

least 1− δ/2, such that |Hk| ≥
(
δ
4

)k |VM |.

Proof. We will show that the statement of the theorem holds for 0 ≤ k ≤ K, where

K =

⌊
7σ

8
√

2∆ ln(4/δ)

⌋
= O(log1/3 n).

For the base case we start with the set of paths being the collection of empty paths consisting
of a single node, for each node in VM , so that H0 = VM . Then trivially these paths have length
0, and projection 0 with probability 1.

Now for the inductive case: suppose the statement holds true for 1 ≤ k ≤ K − 1. We now
carry out three steps to complete the inductive step: first, we extend the paths by an additional
arc and increase the projection of the paths; second, we choose a subset of the heads of the
extended paths in order to make sure the paths have reasonably good probability; third, we
apply Lemma 15.26 to boost the probability back to 1 − δ/2 while decreasing the projection
only slightly.

For the first step, we extend the paths by an additional arc. By the induction hypothesis,
for each i ∈ Hk, Pr[∃j ∈ Γ−

k (i) : (vi − vj) · r ≥ σk/4] ≥ 1 − δ/2. By Lemma 15.25, we know
that the total weight of arcs leaving any i in the matching graph is at least δ, implying that

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 397

Pr[∃(i, ℓ) ∈ AM : (vℓ− vi) · r ≥ 2σ] ≥ δ. Thus for at least a δ/2 fraction of the probability space
of random vectors r, both statements are true, and for some j ∈ Γ−

k (i) and some (i, ℓ) ∈ AM ,
(vi − vj) · r ≥ σk/4 and (vℓ − vi) · r ≥ 2σ. Thus we can extend the path by the arc (i, ℓ), and
this new path has projection

(vℓ− vj) · r = [(vℓ− vi)+ (vi− vj)] · r = (vℓ− vi) · r+(vi− vj) · r ≥
1

4
σk+2σ =

1

4
σ(k+1)+

7

4
σ.

This gives us a new set of length k + 1 paths, but now for the second step, we need to
pick a subset of them so that the induction hypothesis holds. In particular, we pick a set
Hk+1 ⊆ Γ+(Hk) as the new heads of the paths. For each ℓ ∈ Γ+(H), let p(ℓ) be the fraction
of the probability space of random vectors r such that one of the paths constructed above has
ℓ as its head. Observe that for each i ∈ Hk, we extended the path from i for a δ/2 fraction of
the random vectors r. Observe also that since for any random vector r, M(r) is a matching,
for a given r and different heads i, i′ ∈ Hk, i ̸= i′, it cannot be the case that the paths from
i and i′ are extended by edges to the same vertex ℓ. These two observations together imply
that

∑
ℓ∈Γ+(Hk)

p(ℓ) ≥ δ
2 |Hk|. Note that trivially p(ℓ) ≤ 1 for all ℓ ∈ Γ+(Hk). Let the new

set of heads Hk+1 be those that have a significant probability of paths extended to them; in

particular, we let Hk+1 = {ℓ ∈ Γ+(Hk) : p(ℓ) ≥ δ|Hk|
4|Γ+(Hk)|}. Then we have

δ

2
|Hk| ≤

∑
ℓ∈Γ+(Hk)

p(ℓ) =
∑

ℓ∈Γ+(Hk)−Hk+1

p(ℓ) +
∑

ℓ∈Hk+1

p(ℓ)

≤ |Γ+(Hk)−Hk+1|
δ|Hk|

4|Γ+(Hk)|
+ |Hk+1|

≤ δ

4
|Hk|+ |Hk+1|,

so that |Hk+1| ≥ δ
4 |Hk|. Thus if we choose the paths constructed above that have their heads

in Hk+1, we have that |Hk+1| ≥ δ
4 |Hk| ≥

(
δ
4

)k+1 |VM |. Also, as we argued above, for each

ℓ ∈ Hk+1, the projection of each path is 1
4σ(k + 1) + 7

4σ with probability at least δ|Hk|
4|Γ+(Hk)| ≥

δ
4
(δ/4)k|VM |
|Γ+(Hk)| ≥

(
δ
4

)k+1
.

For the third and final step of the induction, we apply Lemma 15.26 to increase the prob-
ability of the paths by decreasing their projection by at most 7

4σ. To achieve a probability of

1− δ/2, we need to set β =
(
δ
4

)k+1
and λ =

√
2 ln(2/δ), so that 1− e−λ2/2 = 1− δ/2. Then we

set

γ =
√

2 ln(1/β) + λ =
√

2 ln(1/β) +
√

2 ln(2/δ)

=
√

2(k + 1) ln(4/δ) +
√

2 ln(2/δ)

≤ (
√
k + 1 + 1)

√
2 ln(4/δ)

≤ 2
√
k + 1

√
2 ln(4/δ),

using δ ≤ 1 and k ≥ 1. By the lemma, the projection of the length k + 1 paths decreases by at
most 7

4σ exactly when γ
√

(k + 1)∆ ≤ 7
4σ. This inequality holds when

2(k + 1)
√

2∆ ln(4/δ) ≤ 7

4
σ

or when

k + 1 ≤ 7σ

8
√

2∆ ln(4/δ)
.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

398 Further uses of cuts and metrics

This holds since k + 1 ≤ K.

We can now summarize the discussion above in the following theorem.

Theorem 15.28: If L and R are α-large, then with constant probability Algorithm 15.1 finds
α
2 -large sets L′ and R′ that are ∆-separated for ∆ = C/ log2/3 n and an appropriate choice of
constant C.

Proof. If L and R are α-large, but with constant probability q > 0, L′ and R′ are not α
2 -large

for ∆, then by Lemma 15.25 we can define the matching graph, and by Theorem 15.27, we can
find paths of length at most K having projection σK/4 with probability at least 1− δ/2. Let
i, j be the head and tail of such a path (respectively); since the path has length at most K, we
know that d(i, j) ≤ K∆, so that ∥vi − vj∥2 ≤ K∆. By Lemma 15.23, we know that

Pr[(vi − vj) · r ≥ Kσ/4] ≤ e−K2σ2/32∥vi−vj∥2 ≤ e−Kσ2/32∆.

By the definition of K in Theorem 15.27, K/∆ = Θ(∆−3/2) = Θ(C−3/2 log n), so that the
probability is at most

e−Θ(C−3/2 logn) = n−Θ(C−3/2).

Thus if we set C to an appropriate constant, we have that this probability is at most n−c,
and over all possible i, j pairs this probability is at most n−c+2. For n sufficiently large, this
contradicts the fact that such paths exist with probability at least 1− δ/2.

Then from Lemma 15.19 and Theorems 15.21 and 15.28 we get the following corollary.

Corollary 15.29: With constant probability, Algorithm 15.1 produces a set S such that ρ(S) ≤
O(log2/3 n)OPT .

We can now think about the limitations of Theorem 15.27 so that we can figure out how to
extend these ideas to the proof of the O(

√
log n) performance guarantee. We first observe that

in our overall proof methodology, we are giving a proof by contradiction via the tail bound in
Lemma 15.23. In order to get the contradiction, if our paths of length at most k from i to j
have projection length at least kσ we need that

(kσ)2

2∥vi − vj∥2
≥ kσ2

2∆
= Ω(log n),

so that for the right choice of constants e−(kσ)2/2∥vi−vj∥2 ≤ 1/nc. Thus we need that k/∆ =
Ω(log n). Now let us consider how this limitation on k and ∆ interacts with the proof of Theorem
15.27. In this proof, a key issue is that when we augment the length k paths to length k+1, the
probability of having a projection of Ω(σ(k+1)) drops significantly, from 1−δ/2 to δ|Hk|

4|Γ+(Hk)| . We

know that this probability is at least
(
δ
4

)k+1
, as shown in the proof. However, this means that

in using Lemma 15.26 to increase the probability of the paths (while decreasing the projection)
we must have γ ≥

√
2 ln(4/δ)k = Ω(

√
k). In order to reduce the projection by at most σ, then

we need γ
√
k∆ ≤ σ, or k = O(

√
1/∆). Combined with the observation above that we need

k/∆ = Ω(log n) this implies that ∆−3/2 = Ω(log n) or ∆ = O(log−2/3 n).
To improve the result, we will modify the way in which we augment paths so that when we

increase the length of a path, the probability of having projection Ω(kσ) drops from 1 − δ/2
to something constant in δ. Then we apply Lemma 15.26, γ will be constant in δ, and in
order to reduce the projection by at most σ, we will have k = O(1/∆). Then since we need

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 399

k/∆ = Ω(log n), this yields ∆−2 = Ω(log n) or ∆ = O(log−1/2 n), which will lead to the
O(
√
log n) performance guarantee.

In order to obtain this improvement, we will try to make sure that the set of vertices that can
be reached from the heads of the paths is not too big in terms of the number of heads of paths
|Hk|; in particular, we would like to make sure that |Γ+(Hk)| ≤ 1

δ |Hk|. In this case, increasing

the projection to Ω(σ(k + 1)) only drops the probability from 1− δ/2 to δ|Hk|
4|Γ+(Hk)| ≥ δ2/4. To

achieve this condition on Γ+
k (Hk), we will extend paths by some number of extra arcs until the

desired condition is true. Note that if the condition is not true, then |Γ+(Hk)| > 1
δ |Hk|, so

that the number of vertices reached by extending the paths is increasing geometrically; thus
not many extra steps can be taken before all vertices are reachable and the condition is met.
We will show that the extension does not decrease the projection and probability of the paths
by too much, and the paths with heads in Hk will have length at most 4k. We will use the
following lemma to bound the decrease in projection and probability that we get by extending
the paths.

Lemma 15.30: Given any path of length at most k, having projection at least ρ with probability
at least δ, then extending the path by any t arcs has projection at least ρ−λ

√
t∆ with probability

at least δ − e−λ2/2 for any t ≥ 0 and λ ≥ 0.

Proof. Let i ∈ H be the head of some set of paths of length at most k, let r be a random vector,
and let ℓ ∈ Γ+

t (i). If there exists j ∈ Γ−
k (i) such that (vi−vj) ·r ≥ ρ but (vℓ−vj) ·r < ρ−λ

√
t∆,

then it must be the case that (vℓ − vi) · r < −λ
√
t∆, or (vi − vℓ) · r > λ

√
t∆. Note that since

there is a path of length at most t from i to ℓ, d(i, ℓ) = ∥vi − vℓ∥2 ≤ t∆. By Lemma 15.23,

Pr[(vi − vℓ) · r > λ
√
t∆] ≤ e−

λ2t∆
2t∆ = e−λ2/2. Thus Pr[∃j ∈ Γ−

k+t(ℓ) : (vℓ − vj) · r ≥ ρ− λ
√
t∆] ≥

δ − e−λ2/2.

Now we can show the procedure for extending the paths.

Theorem 15.31: Suppose L and R are α-large, but with constant probability q > 0, L′ and
R′ are not α

2 -large. Assume δ ≤ 1/2. Then for each k, 0 ≤ k ≤ O(
√
logn), there exists a set

of paths in the matching graph of length at most 4k, having projection σk/4 with probability at

least 1− δ/2, such that |Hk| ≥
(
δ
4

)k |VM | and |Hk| ≥ δ|Γ+(Hk)|.

Proof. We will show that the statement of the theorem holds for 0 ≤ k ≤ K, where

K =

⌊
σ2

128∆ ln(2/δ)

⌋
= O(

√
log n).

As in the proof of Theorem 15.27, in the base case we start with the paths being the
collection of empty paths consisting of a single node, for each node in VM , so that H0 = VM .
Then trivially these paths have length 0, and projection 0 with probability 1. Furthermore
|H0| = |VM | ≥ δ|Γ+(H0)| = δ|VM |.

Now for the inductive case: suppose the statement holds true for 1 ≤ k ≤ K − 1. To carry
out the inductive case, we take four steps: first, we extend the paths by an additional arc
and increase their projection; second, we choose a subset of the heads of the extended paths
in order to make sure the paths have reasonably good probability; third, we extend the paths
still further by some additional arcs to make sure that |Hk+1| ≥ δ|Γ+(Hk+1)| while losing a bit
in the projection and probability; and fourth, we apply Lemma 15.26 to boost the probability
back to 1− δ/2 while decreasing the projection by a bit more.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

400 Further uses of cuts and metrics

The first two steps of the induction are identical to those in the proof of Theorem 15.27: we
can use the current set of paths to construct paths that are one arc longer that have projection
at least 1

4σ(k + 1) + 7
4σ with probability at least δ|Hk|

4|Γ+(Hk)| . By induction, |Hk| ≥ δ|Γ+(Hk)| so
this probability is at least δ2/4. Let H ′

k+1 be the heads of these paths. By the proof of Theorem

15.27, we have that |H ′
k+1| ≥

δ
4 |Hk| ≥

(
δ
4

)k+1 |VM |.
We now carry out the third step of the induction. Let t be the smallest non-negative integer

for which |Γ+
t (H

′
k+1)| ≥ δ|Γ+

t+1(H
′
k+1)|. We take each path in our current set of paths and

consider the resulting set of paths obtained by adding any additional path of up to t arcs to its
head; let the heads of the resulting set of paths be Hk+1. Then clearly Hk+1 = Γ+

t (H
′
k+1) and

by the choice of t we have the desired inductive statement that |Hk+1| ≥ δ|Γ+(Hk+1)|. Also,

Hk+1 ⊇ H ′
k+1, so we still have |Hk+1| ≥

(
δ
4

)k+1 |VM |.
We now bound the length of the paths. In carrying out the first step of the induction, we

added one additional arc to the paths. In the third step, we added t additional arcs. Note that
for any t′ < t, it must have been the case that 1

δ |Γ
+
t′ (H

′
k+1)| < |Γ

+
t′+1(H

′
k+1)|. Thus in the third

step we must have added at most t ≤ log1/δ
|Hk+1|
|H′

k+1|
arcs. The total number of arcs added in the

third step over all steps of the induction is then at most

k∑
s=0

log1/δ
|Hs+1|
|H ′

s+1|
.

Since |H ′
s+1| ≥ δ

4 |Hs|, we have that the total length of the paths is at most

(k + 1) +

k∑
s=0

log1/δ
|Hs+1|
|H ′

s+1|
= (k + 1) + log1/δ

(
k∏

s=0

|Hs+1|
|H ′

s+1|

)

≤ (k + 1) + log1/δ

((
4

δ

)k+1 k∏
s=0

|Hs+1|
|Hs|

)

≤ (k + 1) + (k + 1) log1/δ

(
4

δ

)
+ log1/δ

(
|VM |
|VM |

)
≤ (k + 1) + 3(k + 1) ≤ 4(k + 1),

using δ ≤ 1
2 , H0 = VM and Hk+1 ⊆ VM . Note that the proof above shows that the number t of

extra arcs added in the third step of the induction is t ≤ 3(k + 1).

We now apply Lemma 15.30 to determine the projection and probability of the paths with
heads in Hk+1. As argued above, we know that the paths with heads in H ′

k+1 have projection at

least 1
4(k+1)σ+ 7

4σ with probability at least δ2/4. By applying Lemma 15.30 with λ = σ/
√
t∆,

we know that extending the paths by up to t additional arcs drops the projection by at most
λ
√
t∆ = σ and the probability by at most e−λ2/2 = e−σ2/2t∆. We would like the probability

to decrease by at most δ2/8, so that it remains at least δ2/8. For this to be true, we need

e−σ2/2t∆ ≤ δ2

8 or − σ2

2t∆ ≤ ln δ2

8 or t ≤ σ2

2∆ ln(8/δ2)
. Recalling that t ≤ 3(k + 1), the condition is

true if

3(k + 1) ≤ σ2

2∆ ln(8/δ2)
,

or

k + 1 ≤ σ2

6∆ ln(8/δ2)
.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 401

Since ln(8/δ2) ≤ 3 ln(2/δ) (because δ ≤ 1), the condition is met if

k + 1 ≤ σ2

18∆ ln(2/δ)
,

which holds since k + 1 ≤ K. Thus the paths with heads in Hk+1 have projection at least
1
4(k + 1)σ + 3

4σ with probability at least δ2/8.
For the fourth and final step of the induction, we apply Lemma 15.26 to increase the overall

probability of the paths while decreasing their projection somewhat. To achieve a probability
of 1− δ/2, we need to set β = δ2/8 and λ =

√
2 ln(2/δ) so that 1− e−λ2/2 = 1− δ/2. Then we

set

γ =
√

2 ln(1/β) + λ =
√

2 ln(8/δ2) +
√
2 ln(2/δ) ≤

√
2 ln(2/δ)(

√
3 + 1) ≤ 3

√
2 ln(2/δ).

This reduces the projection of the paths by at most 3
4σ when γ

√
4(k + 1)∆ ≤ 3

4σ, or when

k + 1 ≤ 9σ2

64γ2∆
.

This inequality holds if

k + 1 ≤ σ2

128∆ ln(2/δ)
.

This condition holds since k+ 1 ≤ K. Thus the paths have projection at least (k+ 1)σ/4 with
probability at least 1− δ/2.

The proof of the main theorem, Theorem 15.20, now follows from this theorem by a similar
argument as used in the proof of Theorem 15.28.

Theorem 15.20: If L and R are α-large, then with constant probability, L′ and R′ are α
2 -large

and are ∆-separated for ∆ = C/
√
log n for an appropriate choice of constant C.

Proof. If L and R are α-large, but with constant probability q > 0, L′ and R′ are not α
2 -large

for ∆, then by Lemma 15.25 we can define the matching graph, and by Theorem 15.27, we can
find paths of length at most 4K having projection σK/4 with probability at least 1− δ/2. Let
i, j be the head and tail of such a path (respectively); since the path has length at most 4K,
we know that d(i, j) ≤ 4K∆, so that ∥vi − vj∥2 ≤ 4K∆. By Lemma 15.23, we know that

Pr[(vi − vj) · r ≥ Kσ/4] ≤ e−K2σ2/32∥vi−vj∥2 ≤ e−Kσ2/128∆.

By the definition of K in Theorem 15.31, K/∆ = Θ(∆−2) = Θ(C−2 log n), so that the proba-
bility is at most

e−Θ(C−2 logn) = n−Θ(C−2).

Thus if we set C to an appropriate constant, we have that the probability is at most n−c,
and over all possible i, j pairs this probability is at most n−c+2. For n sufficiently large this
contradicts the fact that such paths exist with probability at least 1− δ/2.

We still have a few remaining lemmas to prove. To prove Lemma 15.26 requires a theorem
whose proof is beyond the scope of this book; in order to state the theorem we need a few
definitions. Given a set A ⊆ ℜn, we let µ(A) denote the probability that a random vector
r ∈ A. For γ > 0, we let Aγ = {r′ ∈ ℜn : ∃r ∈ A, ∥r − r′∥ ≤ γ}. Recall that Φ(x) is
the cumulative distribution function of the standard normal probability distribution, and that

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

402 Further uses of cuts and metrics

Φ(x) = 1 − Φ(x). The statement of the theorem requires that A is a measurable set; we will
not define what this means, but a set is measurable if it is the union of a countable number of
halfspaces.

Theorem 15.32: Given a measurable set A ⊆ ℜn, let α ∈ [−∞,+∞] be such that µ(A) = Φ(α).
Then µ(Aγ) ≥ Φ(α+ γ).

We can now derive Lemma 15.26 from the theorem above; we restate the lemma here for
convenience.

Lemma 15.26: For any set of paths of length at most k having projection at least ρ with
probability at least β ≤ 1/2, the same paths have projection at least ρ− γ

√
k∆ with probability

at least 1− e−λ2/2 for any λ ≥ 0 and any γ ≥
√

2 ln(1/β) + λ.

Proof. Pick some i that is a head of a set of paths of length at most k. We let A be the set
of random vectors r such that there exists j ∈ Γ−

k (i) with (vi − vj) · r ≥ ρ. We note that the
set A is measurable since it is defined by a union of halfspaces (namely, A =

∪
j∈Γ−

k (i){r ∈ ℜ
n :

(vi − vj) · r ≥ ρ}. Pick any r′ ∈ Aγ ; there must be some r ∈ A such that ∥r − r′∥ ≤ γ. Since
the path has length at most k, we know that ∥vi − vj∥2 ≤ k∆. Then

(vi − vj) · r′ = (vi − vj) · r + (vi − vj) · (r′ − r) ≥ ρ− ∥r′ − r∥∥vi − vj∥ ≥ ρ− γ
√
k∆.

Thus given the random vectors in Aγ , we have the desired projection; we now determine the
probability of drawing a random vector from Aγ .

By the hypothesis, µ(A) ≥ β, and β ≤ 1/2. Thus if we choose α so that β = Φ(α), we know
α ≤ 0 since the normal distribution is symmetric around 0. Also by symmetry, Φ(α) = Φ(−α).
By applying Lemma 15.23, we know that β = Φ(−α) ≤ e−(−α)2/2, so that −α ≤

√
2 ln(1/β).

Since Φ is a nondecreasing function, if we choose α′ so that µ(A) = Φ(α′) ≥ β = Φ(α), then
α ≤ α′. By Theorem 15.32, we know µ(Aγ) ≥ Φ(α′ + γ) ≥ Φ(α + γ), so all we need to do is
give a lower bound on Φ(α + γ). By the hypothesis γ ≥

√
2 ln(1/β) + λ ≥ −α + λ so that

α+ γ ≥ λ ≥ 0. Thus by Lemma 15.23,

µ(Aγ) ≥ Φ(α+ γ) = 1− Φ(α+ γ) ≥ 1− e−(α+γ)2/2 ≥ 1− e−λ2/2,

as desired.

We finally give the proof of Lemma 15.19 which guarantees that with constant probability,
the sets L and R are α-large. We restate the lemma here with values of the various constants
filled in.

Lemma 15.33 (Lemma 15.19): If there is no i ∈ V such that |B(i, 14)| ≥
n
4 , then the sets

L = {i ∈ V : (vi − vo) · r ≥ σ} and R = {i ∈ V : (vi − vo) · r ≤ −σ} are α-large with probability
at least a/32, for a = 1

π arccos(31/32), σ = a2/214, and α = a/128.

Proof. We begin by showing that there are Ω(n2) pairs of vertices i, j whose distance is at least
1/4, and whose distance from o is at least 1/4. First, we claim that by the algorithm’s choice
of o ∈ V , |B(o, 4)| ≥ 3n

4 . Since o maximized |B(o, 4)|, if this is not the case, then for any j ∈ V ,
more than a fourth of the vertices have distance at least 4 to j, yielding

∑
i,j∈V

d(i, j) =
∑
i∈V

∑
j∈V

d(i, j)

 > n · n
4
· 4 = n2.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 403

This contradicts the vector programming constraint that
∑

i,j∈V d(i, j) =
∑

i,j∈V ∥vi − vj∥2 =

n2. Thus it must be the case that |B(o, 4)| ≥ 3n/4. Let A = B(o, 4)−B(o, 1/4). By hypothesis,
|B(o, 1/4)| < n/4, so that |A| ≥ n/2. Then since for any i ∈ V , |B(i, 14)| <

n
4 , for any i ∈ A,

there are at least n/4 other vertices j ∈ A such that d(i, j) > 1/4 and d(j, o) > 1/4. This
proves that the number of distinct pairs of vertices i, j ∈ A such that d(i, j) > 1/4 is at least
n2/16 ≥ 1

8

(
n
2

)
.

We now wish to show that a constant fraction of A appears in each of L and R. We will
say that vertices i and j are separated by the random vector r if either (vi − vo) · r ≥ 0 and
(vj − vo) · r < 0, or vice versa; we may also say that i and j are a separated pair. By the
proof of Lemma 6.7, for a given pair i, j ∈ A with d(i, j) > 1/4 the probability that i and j are
separated is θij/π, where θij is the angle between the two vectors vi − vo and vj − vo. By the
law of cosines, we know that

cos θij =
∥vi − vo∥2 + ∥vj − vo∥2 − ∥vi − vj∥2

2∥vi − vo∥∥vj − vo∥
.

The angle is minimized when ∥vi−vo∥ and ∥vj−vo∥ are maximized and ∥vi−vj∥ is minimized;
we know that for i, j ∈ A, i, j ∈ B(o, 4), so that ∥vi − vo∥2 ≤ 4 and ∥vj − vo∥2 ≤ 4, and
by our choice of i, j, ∥vi − vj∥2 > 1/4. Thus cos θij ≤ (8 − 1/4)/8 = 1 − 1/32, so that
θij ≥ arccos(1 − 1/32), and the probability that i and j are separated by the random vector
when i, j ∈ A and d(i, j) > 1/4 is at least some (small) constant a = 1

π arccos(31/32). Thus the
expected number of distinct pairs of i, j ∈ A separated by the random vector is at least a

8

(
n
2

)
.

We now bound the probability that the number of distinct pairs in in A separated is less
than half this, a

16

(
n
2

)
. If P is the total number of distinct pairs in A (so that P ≤

(
n
2

)
), this

probability is equal to the probability that the number of distinct pairs not separated in A is
at least P − a

16

(
n
2

)
. Let X be a random variable giving the number of non-separated pairs in

A; by the above, E[X] ≤ P − a
8

(
n
2

)
. Using Markov’s inequality (Lemma 5.25),

Pr

[
X ≥ P − a

16

(
n

2

)]
≤ E[X]

P − a
16

(
n
2

)
≤

P − a
8

(
n
2

)
P − a

16

(
n
2

)
≤

(
n
2

)
(1− a

8)(
n
2

)
(1− a

16)

≤ 1− a/8

1− a/16
≤ 1− a/16.

If the number of separated pairs in A is indeed at least a
16

(
n
2

)
, then there must be at least

a(n− 1)/32 ≥ an/64 vertices in A on each side of the random hyperplane; that is, there must
be at least an/64 vertices i ∈ A such that (vi − vo) · r ≥ 0 and at least an/64 vertices i ∈ A
such that (vi− vo) · r < 0. Thus with probability at least a/16, there are at least an/64 vertices
of A on each side of the random hyperplane.

Applying Lemma 15.23 to the vectors vi − vo for i ∈ A, we have that Pr[|(vi − vo) · r| ≤
σ] ≤ 2σ/∥vi − vo∥ ≤ 4σ since ∥vi − vo∥2 ≥ 1/4. Let Y be a random variable denoting the
number of vertices i ∈ A such that |(vi − vo) · r| ≤ σ, so that E[Y] ≤ 4σn. Applying Markov’s
inequality again, Pr[Y ≥ an/128] ≤ E[Y]/(an/128) ≤ 4σn/(an/128) = 512σ/a. If we set
σ = a2/(32 · 512) = a2/214, this probability is at most a/32.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

404 Further uses of cuts and metrics

Therefore, the probability that there are fewer than an/64 vertices of A on some side of the
random hyperplane or that there are at least an/128 vertices i ∈ A such that |(vi−vo) ·r| ≤ σ is
at most 1−a/16+a/32 = 1−a/32. Thus with probability at least a/32 there are at least an/64
vertices of A on each side of the random hyperplane and there are at most an/128 vertices i
such that |(vi − vo) · r| ≤ σ. Thus with probability at least a/32, of the an/64 vertices i ∈ A
such that (vi− vo) · r ≥ 0, at least an/128 of them must have (vi− vo) · r ≥ σ, and of the an/64
vertices j ∈ A such that (vj − vo) · r < 0, at least an/128 of them must have (vj − vo) · r ≤ −σ.
This implies that with probability at least a/32 there are at least an/128 vertices in each of L
and R.

By building on some of the techniques introduced in this section, it is possible to do better
for the general case of the sparsest cut problem than the O(log n)-approximation algorithm
given in Section 15.1.

Theorem 15.34: There is an O(
√
log n log log n)-approximation algorithm for the sparsest cut

problem.

Exercises

15.1 Show that every tree metric is an ℓ1-embeddable metric, and that there is an ℓ1-embeddable
metric that is not equivalent to any tree metric (even on a larger set of nodes).

15.2 In this exercise, we will show that the distortion achieved by Theorem 15.4 is the best
possible up to constant factors. For this, we need to look at distance metrics given by
shortest paths in an expander graph. An expander graph G = (V,E) has the property
that the number of edges in any cut is some constant factor times the smaller side of the
cut; that is, there is some constant α > 0 such that for any S ⊆ V such that |S| ≤ |V |/2,
|δ(S)| ≥ α · |S|. There exist expanders such that every vertex in G has degree 3.

(a) Given an expander G = (V,E) with ce = 1 for all e ∈ E, an si-ti pair for each
j, k ∈ V with j ̸= k, and di = 1 for all i, show that the sparsest cut has value at
least Ω(1/n).

(b) Let G be an expander such that every vertex has degree 3. Let (V, d) be the shortest
path distance in G; that is, duv is the shortest path from u to v in G in which every
edge has length 1. Show that for any vertex v, there are at most n/4 vertices u such
that duv ≤ log n− 3.

(c) Given the graph and distance metric from the previous item, show that∑
(u,v)∈E duv∑

u,v∈V :u̸=v duv
= O

(
1

n log n

)
.

(d) Using the items above, show that any expander with every vertex having degree 3
cannot be embedded into ℓ1 with distortion less than Ω(logn).

15.3 Show that by using semidefinite programming, for any metric space (V, d) one can compute
an embedding f : V → ℜ|V | into ℓ2 of minimum possible distortion.

15.4 Show that the Fréchet embedding given in the proof of Theorem 15.4 also gives a O(log n)-
distortion embedding into ℓp for any given p ≥ 1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

15.4 The uniform sparsest cut problem 405

15.5 Using cut-tree packings, give an alternate O(log n)-approximation algorithm for the min-
imum multicut problem defined in Section 8.3. (Hint: Look at Exercise 7.2).

15.6 Using cut-tree packings, give an alternate O(log n)-approximation algorithm for the spars-
est cut problem defined in Section 15.1.

15.7 Suppose we are given as input a metric (V, d) and costs cuv for all u, v ∈ V , and suppose we
have a polynomial-time algorithm to find cut-tree packing such that inequality (15.2) holds
for some value α. Show that we can then derive a polynomial-time algorithm to find a tree
metric (V, T) such that duv ≤ Tuv for all u, v ∈ V and

∑
u,v∈V cuvTuv ≤ α

∑
u,v∈V cuvduv.

15.8 Using the ideas of Theorem 15.14, prove that one can use the ellipsoid method to solve the
linear programming relaxation of the bin-packing problem given in Section 4.6 to within
an additive error of 1 in time that is polynomial in the number of different piece sizes m
and log(n/sm), where n is the total number of pieces and sm is the size of the smallest
piece.

15.9 Suppose we have a metric (V, d). Suppose we are also given a deterministic algorithm
that for any costs cuv ≥ 0 for all u, v ∈ V finds a tree metric (V ′, T) with V ′ ⊇ V
such that duv ≤ Tuv and

∑
u,v∈V cuvTuv ≤ O(log n)

∑
u,v∈V cuvduv. Obtain a randomized

algorithm that obtains a tree metric (V ′′, T ′) with V ′′ ⊇ V such that duv ≤ T ′
uv and

E[T ′
uv] ≤ O(log n)duv for all u, v ∈ V .

Chapter Notes

The book of Deza and Laurent [87] contains a technical and indepth treatment of the subject
of cuts and metrics, though not from the point of view of approximation algorithms.

The study of the embedding of metrics into other metrics so as to minimize the distortion
of the embedding has received a good deal of attention in the literature. In the area of ap-
proximation algorithms, this line of research was started with the results of Section 15.1. The
main theorem of that section, Theorem 15.4, is essentially a result of Bourgain [55]. Bourgain’s
theorem did not give a polynomial-time algorithm; the result was made algorithmic by Linial,
London, and Rabinovich [217]. Aumann and Rabani [26] and Linial et al. [217] independently
derived the strengthened result in Theorem 15.6 and the O(log k)-approximation algorithm for
the sparsest cut problem. A deterministic version of the result is shown in Linial et al. Our
proof follows the presentation in a survey of Shmoys [262].

Theorem 15.12 is due to Chawla, Krauthgamer, Kumar, Rabani, and Sivakumar [68].
The results of Sections 15.2 and 15.3 are due to Räcke [244]. Exercises 15.5 and 15.6 are

from this paper as well. The duality between cut-tree packings and tree metrics has been shown
in more general form by Andersen and Feige [8].

The improved result for the uniform sparsest cut problem of Section 15.4 is a breakthrough
due to Arora, Rao, and Vazirani [22]; the discussion in this section follows an improved analysis
due to Lee [212]. Arora, Rao, and Vazirani [21] also present a non-technical overview of the
result. The improvement for the general sparsest cut problem in Theorem 15.34 is due to Arora,
Lee, and Naor [17] and is based on these earlier papers. Theorem 15.32 is due to Borell [54]
and Sudakov and Tsirel’son [275].

Exercise 15.2 is from a combination of Leighton and Rao [214] and Linial et al. [217]. Exercise
15.4 is from Linial et al. [217]. Exercise 15.8 is from Karmarkar and Karp [187].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

406 Further uses of cuts and metrics

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 16

Techniques in proving the hardness

of approximation

For the penultimate chapter of this book, we turn from techniques for designing good approx-
imation algorithms to techniques for proving that problems are hard to approximate within
certain factors. Our coverage of this topic will be relatively brief: indeed, another book could
be written on this subject alone.

We will look at several ways in which these results are proven. First, we start with reduc-
tions from NP-complete problems. We have already seen a few examples of such reductions in
this book; for example, in Theorem 2.4, we showed that there is no α-approximation algorithm
for the k-center problem for α < 2 unless P = NP, and in Theorem 2.9 we argued that there is
no O(2n)-approximation algorithm for the general case of the traveling salesman problem unless
P = NP. Second, we will look at reductions that preserve approximation; these are reductions
from a problem Π to another problem Π′ such that if there is an approximation algorithm with
performance guarantee α for problem Π′, then there is an approximation algorithm with per-
formance guarantee f(α) for problem Π, where f is some function. These results yield hardness
theorems via the contrapositive: if there is no f(α)-approximation algorithm for problem Π
unless P = NP, then there is no α-approximation algorithm for problem Π′ unless P = NP.
Third, we will turn to a definition of NP in terms of probabilistically checkable proofs or PCPs.
These PCPs allow us to prove hardness of approximation results for a number of particular
constraint satisfaction problems. We can then use approximation-preserving reductions from
these constraint satisfaction problems to derive hardness results for a number of other problems.
Fourth, we look at a particular problem called the label cover problem; reductions from label
cover are used to prove certain kinds of hardness results. We will look at reductions to the set
cover problem and two network design problems. Last, we can show reductions to problems
from the unique games problem, which gives hardness results conditional on the truth of the
unique games conjecture.

16.1 Reductions from NP-complete problems

An easy way to show hardness results is via a reduction from an NP-complete problem. A
brief discussion of reductions and NP-completeness can be found in Appendix B. As discussed

407

408 Techniques in proving the hardness of approximation

above, we have already seen several examples of this in the book. In particular, we have shown
in Theorem 2.4 that there is no α-approximation algorithm for the k-center problem for α < 2
unless P = NP; we did this via a reduction from the dominating set problem, showing that we
can find a dominating set of size at most k if and only if an instance of the k-center problem in
which all distances are either 1 or 2 has optimal value 1. In Theorem 2.9, we showed that the
general case of the traveling salesman problem has no O(2n)-approximation algorithm unless
P = NP; we did this via a reduction from the Hamiltonian cycle problem. Theorem 3.8 shows
that the bin-packing problem does not have an approximation algorithm with performance
guarantee better than 3/2 unless P = NP via a reduction from the partition problem; we also
showed that since the bin-packing problem does not have the rescaling property, we are able to
give better performance guarantees if we have additional additive terms.

In most of these cases, we are able to reduce an NP-compete problem Π into a set of instances
of a minimization problem of interest Π′ in which the objective function has a small integer
value. In these reductions, a “Yes” instance of Π maps to an instance of Π′ of objective function
value k, whereas a “No” instance maps into an instance of Π′ with objective function value k+1
or more. This proves that obtaining an approximation algorithm with performance guarantee
better than k+1

k is not possible unless P = NP, since this would then allow us to distinguish
between the “Yes” and “No” instances of NP-complete problem Π. For instance, with the bin-
packing problem, the“Yes” instances of the partition problem are mapped in polynomial time to
instances of the bin-packing problem that can be packed into two bins, while the “No” instances
of the partition problem are mapped to instances requiring at least 3 bins. This implies that
no performance guarantee better than 3/2 is possible unless P = NP. As is typical with all
NP-completeness reductions, devising such reductions is something of an art.

We now give another such reduction. We consider the generalized assignment problem from
Section 11.1, but without the costs of assigning of jobs to machines. If we assign job j to
machine i, it requires pij units of time to be processed on machine i. The goal of the problem
is to find an assignment of jobs to machines that minimizes the maximum total processing time
assigned to any machine. We considered this problem in Exercise 11.1, where we called it the
problem of minimizing the makespan on unrelated parallel machines. Both the algorithms of
Section 11.1 and Exercise 11.1 give a 2-approximation algorithm for this problem. By using a
reduction directly from an NP-complete problem, we are able to show that it is NP-complete
to decide whether there is a schedule of length at most 2 or one of length at least 3; this proves
that there is no approximation algorithm with performance guarantee better than 3/2 unless
P = NP.

We first prove a weaker result: we show that deciding whether there is a schedule of length
at most 3 is NP-complete (where all processing times are integers). The reduction is from
the 3-dimensional matching problem, which is as follows: given disjoint sets A = {a1, . . . , an},
B = {b1, . . . , bn}, and C = {c1, . . . , cn}, along with a family F = {T1, . . . , Tm}, where each Ti,
i = 1, . . . ,m, is a triple of elements, one from each of A, B, and C, does there exist a subset
F ′ ⊆ F such that each element of A ∪ B ∪ C is contained in exactly one triple of F ′? Such a
subset is a called a 3-dimensional matching.

The idea behind the reduction is quite simple. Given an instance of the 3-dimensional
matching problem, we construct a scheduling input as follows. There is a job for each of the
3n elements in A ∪ B ∪ C, and there is a machine for each of the given m triples in F . The
intuition is that we will embed a 3-dimensional matching as a “short” schedule. To do this, for
each job j that corresponds to an element of the triple Ti, we set its processing time pij to 1,
but otherwise we set the processing time to +∞. Thus, given a 3-dimensional matching, we
can schedule all 3n of these jobs on n of the machines. This leaves m−n machines without any

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.1 Reductions from NP-complete problems 409

1

2

4

5

6

7

8

93

T1

T2T3

T4

T5

B CA

Machines

0 1 3 0 1 22

Time

9

3 5 7

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5

4 8

6 9

5 7

1 4 8

2 6

Type 1

Type 2

Dummy

Dummy

Type 1 machines

Type 2 machines

Type 3 machine

Figure 16.1: Illustration of the reduction from 3-dimensional matching to scheduling
unrelated parallel machines. The 3-dimensional matching instance is given above with
F = {T1, . . . , T5}, where A = {1, 2, 3}, B = {4, 5, 6}, C = {7, 8, 9}, T1 = (1, 4, 7),
T2 = (1, 4, 8), T3 = (2, 5, 8), T4 = (2, 6, 9), and T5 = (3, 5, 7) The triples T2,T4, and
T5 form a 3-dimensional matching. A corresponding schedule of length 3 (for the first
reduction) is shown below on the left; a corresponding schedule of length 2 (for the
second reduction) is shown below on the right. Note that in the second reduction
k1 = 2, k2 = 2 and k3 = 1, so there is one type 1 dummy job, one type 2 dummy job,
and no type 3 dummy jobs.

assigned jobs, and to make full use of this capacity, we complete the reduction by introducing
m − n additional jobs that require exactly 3 time units on each machine i, i = 1, . . . ,m. We
shall call these additional jobs the dummy jobs, in contrast to the previous ones, which we shall
call element jobs. Clearly, if there is a 3-dimensional matching, then there exists a schedule of
length 3. See Figure 16.1 for an illustration.

However, suppose that there is a schedule of length 3 for a scheduling input obtained from
this reduction. Fix one such schedule. Each of the m−n dummy jobs must be scheduled; each
takes 3 time units regardless of which machine is assigned to process it. Thus, in our fixed
schedule, there are m− n machines for which their entire capacity is exhausted by the dummy
jobs, and exactly n machines for processing the element jobs. There are 3n element jobs, and
so we have exactly sufficient capacity to schedule each of them for 1 time unit; hence, each
must consume exactly 1 unit processing time. But then, each element job must be (uniquely)
assigned to a machine i corresponding to a triple Ti that contains that element. And each
machine must be assigned exactly three such element jobs, one from A, one from B, and one
from C. But then these machines must correspond to a 3-dimensional matching of the ground
set A ∪B ∪ C.

Two minor notes: first, the construction implicitly assumes that m ≥ n, but if m < n,
then there cannot be a 3-dimensional matching, so we construct a trivial ‘no’ instance of the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

410 Techniques in proving the hardness of approximation

scheduling problem; second, observe that if we replace the +∞ with 3 (or 2) in the construction
above, then the identical proof remains valid.

We can refine the previous reduction to prove that deciding if there is a schedule of length
2 is NP-complete. Suppose that we start with essentially the same construction as above, but
only have an element job for each element of B and C. If we let each dummy job take 2 time
units on each machine, we have the property that if there is a 3-dimensional matching, then
there is a schedule of length 2. Of course, we no longer have the reverse implication – there
might be a schedule of length 2, and yet there need not be a 3-dimensional matching in the
original input. Consider such a schedule of length 2; there might be an element a ∈ A such that
there are two machines i and i′ assigned to process element jobs for which a ∈ Ti and a ∈ Ti′ .
Equivalently, if we let k denote the number of triples in F that contain this element a, then
we are assigning a dummy job to k− 2 of their corresponding machines, instead of to k− 1, as
desired. We can modify the construction of the dummy jobs to make sure that any schedule of
length 2 has this additional property.

For each element a ∈ A, let ka denote the number of triples in F that contain the element
a. Instead of m − n identical dummy jobs, let there be ka − 1 dummy jobs of type a, for each
of the n elements a ∈ A. (There are still m − n dummy jobs in total.) Each dummy job of
type a takes 2 time units on each machine i for which the triple Ti contains a, but takes +∞
time units on each other machine. We also call a machine i of type a if a ∈ Ti. (Analogous to
the case above where m < n, if some ka = 0, then again construct a trivial ‘no’ instance of the
scheduling problem.)

Suppose that there is a 3-dimensional matching F ′. For each Ti ∈ F ′, schedule the jobs
corresponding to its elements of B and C on machine i. For each of the n elements a ∈ A, this
leaves ka − 1 machines of type a that are still idle, and so we can schedule the ka − 1 dummy
jobs of type a on them. This is a schedule of length 2. See Figure 16.1 for an illustration of
this reduction.

Conversely, suppose that there is a schedule of length 2. Each dummy job of type a must
be scheduled on a machine of type a. Therefore, for each a ∈ A, there is exactly one machine
of type a that is not processing a dummy job. Since there are 2n element jobs processed by
the remaining n machines, each of these machines must be processing two element jobs in one
time unit each. If the remaining machine of type a is processing b and c, then there is a triple
(a, b, c) corresponding to it. Let F ′ be the set of n triples corresponding to machines that are
not processing dummy jobs. Since each element job is scheduled exactly once, and there is one
machine of each type scheduling element jobs, F ′ is a 3-dimensional matching.

We have proved the following theorem.

Theorem 16.1: It is NP-complete to decide whether there exists a schedule of length at most
2, given an input of scheduling on unrelated parallel machines, where each job j is restricted to
a subset of machines Mj, and takes time pj ∈ {1, 2} on any machine i ∈ Mj. Consequently,
for any α < 3/2, there is no α-approximation algorithm for the problem of minimizing the
makespan on unrelated parallel machines, unless P = NP.

We conclude this section by showing one case in which a reduction from an NP-complete
problem gives a very strong hardness result. We show this for the edge-disjoint paths problem in
directed graphs introduced in Exercise 2.14. In this problem, we are given as input a directed
graph G = (V,A) and k source-sink pairs si, ti ∈ V . The goal of the problem is to find edge-
disjoint paths so that as many source-sink pairs as possible have a path from si to ti. More
formally, let S ⊆ {1, . . . , k}. We want to find S and paths Pi for all i ∈ S such that |S| is
as large as possible and for any i, j ∈ S, i ̸= j, Pi and Pj are edge-disjoint (Pi ∩ Pj = ∅). In

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.1 Reductions from NP-complete problems 411

a1

a2

ai

aj

ak

b1 b2 b3 bi bj bk

a3 s1

s2

t1

t2

G

Figure 16.2: Illustration of the reduction from edge-disjoint paths problem for k = 2
to general k. Note that a copy of G is placed at the intersections of the various paths
from the ai to the bi.

Exercise 2.14, we saw that a greedy algorithm gives an Ω(m−1/2)-approximation algorithm for
this problem. Here we show via a reduction from an NP-complete problem that we cannot
do much better than this unless P = NP; in particular, for any ϵ > 0, we cannot obtain an
Ω(m− 1

2
+ϵ)-approximation algorithm unless P = NP.

The particular NP-complete problem we reduce from is simply the edge-disjoint paths prob-
lem in directed graphs in which k = 2; it has been shown that it is NP-complete to decide
whether or not we can find edge-disjoint paths both from s1 to t1 and from s2 to t2 or only a
single edge-disjoint path from s1 to t1, or from s2 to t2, but not both. Notice that this NP-
complete problem immediately implies that we cannot get a ρ-approximation algorithm for the
edge-disjoint paths problem in directed graphs for ρ > 1/2 unless P = NP, but via a reduction
we can prove a significantly stronger result than this.

Given an instance of the k = 2 problem on a graph G = (V,A) and a constant ϵ > 0, we
create a new instance G′ shown in Figure 16.2 where k = |A|⌈1/ϵ⌉; to keep the two problems
distinct, we call the source-sink pairs in G′ ai-bi. The total number of arcs in G′ is O(k2|A|) =
O(k2+ϵ). We make two observations about the relationship of G to G′. First, if there are
two edge-disjoint paths in G from s1 to t1 and from s2 to t2, then it is clear that there are k
edge-disjoint paths in G′, one for each ai-bi pair. Second, if there are two edge-disjoint paths
in G′, from ai to bi and aj to bj for i ̸= j, then we claim that there must be two edge-disjoint
paths in G. This follows since the ai-bi and aj-bj paths must cross at some intersection in the
graph G′ that contains a copy of G; in order for the two paths to be edge-disjoint, there must
be edge-disjoint s1-t1 and s2-t2 paths in G.

Thus given an Ω(m− 1
2
+ϵ)-approximation algorithm for the edge-disjoint paths problem, we

can decide whether the graph G has two edge-disjoint paths or only one by constructing G′ in
polynomial time as follows. If |A| is smaller than some constant to be specified later, we simply
do exhaustive search to determine whether G has both paths or not; this takes constant time.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

412 Techniques in proving the hardness of approximation

If |A| is larger than the constant, we create G′ as given above and apply the approximation
algorithm to it. If there is only one path in G, there is only one path in G′. If both paths exist
in G, then we know that k paths exist in G′, so that the approximation algorithm will find

Ω
(
(k2+ϵ)−

1
2
+ϵ
)
· k = Ω

(
k

3
2
ϵ+ϵ2

)
= Ω

(
|A|

3
2
+ϵ
)

paths, and this is greater than 1 for |A| larger than some constant. Thus if the number of paths
found in G′ is greater than 1, then both paths exist in G, otherwise only one does, and this
decides an NP-complete problem in polynomial time. Thus we have shown the following.

Theorem 16.2: For any ϵ > 0, there is no Ω(m− 1
2
+ϵ)-approximation algorithm for the edge-

disjoint paths problem in directed graphs unless P = NP.

16.2 Reductions that preserve approximation

In this section, we turn to the idea of an approximation-preserving reduction. We show how to
reduce a problem Π to a problem Π′ so that if there exists an α-approximation algorithm for
Π′, we can then get an f(α)-approximation algorithm for Π, where f is some function. Then if
we know that Π is hard to approximate to within some factor, the reduction implies that the
problem Π′ is also hard to approximate to within some factor.

We illustrate this type of reduction as follows. Consider the maximum satisfiability problem
in which each clause has exactly three literals; we will call this variant of the problem MAX
E3SAT. We will show a reduction to the maximum satisfiability problem in which each clause
has at most two literals; this variant of the problem is called MAX 2SAT. In our reduction,
we take each clause of the MAX E3SAT instance and create ten clauses for the MAX 2SAT
instance; these ten clauses will involve the same variables xi as used in the E3SAT instance,
but for the jth E3SAT clause will introduce a new variable yj to be used in the corresponding
ten 2SAT clauses. In particular, suppose the jth E3SAT clause is x1 ∨ x2 ∨ x3; we create the
following ten clauses for the 2SAT instance:

x1, x2, x3, x̄1 ∨ x̄2, x̄2 ∨ x̄3, x̄1 ∨ x̄3, yj , x1 ∨ ȳj , x2 ∨ ȳj , x3 ∨ ȳj .

We claim that if the E3SAT clause is satisfied by the assignment of values to x1,x2, and x3,
then we can set the variable yj so that 7 of the 10 clauses are satisfied; if all of x1, x2, and
x3 are false, then we can set the variable yj so that 6 of the 10 clauses can be satisfied, but
no more. To see this, consider the various cases: if all three of x1, x2, and x3 are true, then
setting yj to true satisfies the first three and the last four clauses of the ten. If two of the three
variables are true, then setting yj true satisfies two of the first three, two of the next three, and
three of the last four clauses. If one of the three variables is true, then setting yj false satisfies
one of the first three, all of the next three, and all of the last three clauses. If none of the three
variables is true, then setting yj to true satisfies none of the first three, all of the next three,
and one of the last four clauses, whereas setting yj to false satisfies none of the first three, all
of the next three, and three of the last four clauses. We can give a similar reduction for any
E3SAT clause.

Now we wish to relate the approximability of the MAX 2SAT instance to that of the MAX
E3SAT instance. Suppose that the E3SAT instance has m clauses, and that an optimal solution
satisfies k∗ clauses, and thus m−k∗ clauses go unsatisfied. Note then that the optimal solution
to the 2SAT instance will satisfy 7k∗ + 6(m − k∗) clauses. Furthermore, suppose we have an

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.2 Reductions that preserve approximation 413

α-approximation algorithm for the MAX 2SAT problem that satisfies 7 clauses for k̃ of the 10
clause groups, and 6 clauses for each of the m− k̃ remaining groups. Using the same setting of
the variables xi, we then satisfy k̃ clauses of the E3SAT instance. To relate the approximability
of MAX 2SAT to MAX E3SAT, let I be the original instance of MAX E3SAT and let I ′ be the
corresponding instance of MAX 2SAT. Let OPT(I) = k∗ and OPT(I ′) = 7k∗ + 6(m − k∗) be
the optimal values of the two instances. We want to show that the α-approximation algorithm
for MAX 2SAT gives us some f(α)-approximation algorithm for MAX E3SAT. To do this, we
see that

OPT(I ′)− αOPT(I ′) ≥ 7k∗ + 6(m− k∗)− [7k̃ + 6(m− k̃)] = k∗ − k̃ = OPT(I)− k̃.

We then have that
k̃ ≥ OPT(I)− (1− α)OPT(I ′).

To bound the value of the solution created for the E3SAT instance, we now need to relate
OPT(I ′) to OPT(I). Recall from Section 5.1 that the simple randomized algorithm for the
maximum satisfiability problem satisfies at least 7

8 of the clauses of a MAX SAT instance in
which each clause has exactly 3 literals, so that k∗ ≥ 7

8m. Thus

OPT(I ′) = 7k∗ + 6(m− k∗) = k∗ + 6m ≤ k∗ +
48

7
k∗ =

55

7
OPT(I).

Plugging this inequality into the one above, we obtain that

k̃ ≥ OPT(I)− (1− α)OPT(I ′) ≥ OPT(I)− (1− α)
55

7
OPT(I) =

(
55

7
α− 48

7

)
OPT(I).

Thus given an α-approximation algorithm for the MAX 2SAT problem, we then have a
(557 α−

48
7)-approximation algorithm for the MAX E3SAT problem. By using the contrapositive,

if it is the case that we know that no ρ-approximation algorithm exists for MAX E3SAT for a
given ρ unless P = NP, then for any α such that 55

7 α−
48
7 ≥ ρ, we know that no α-approximation

algorithm exists for MAX 2SAT unless P = NP. In Theorem 5.2 we asserted that there can
be no ρ-approximation algorithm for MAX E3SAT for constant ρ > 7/8 unless P = NP. By
determining the values of α for which 55

7 α−
48
7 > 7

8 , we can draw the following conclusion.

Theorem 16.3: There exists no α-approximation algorithm for the MAX 2SAT problem for
constant α > 433

440 ≈ .984 unless P = NP.

We abstract the features of the reduction we used as follows; we will call this an L-reduction.
An L-reduction from problem Π to problem Π′ produces from an instance I of Π an instance I ′

of Π′ in polynomial time such that for some constant a, OPT(I ′) ≤ aOPT(I). In addition, for
a feasible solution to I ′ of value V ′, we can in polynomial time produce a solution to I of value
V such that for some constant b, |OPT(I) − V | ≤ b|OPT(I ′) − V ′|. Because the parameters
a and b are important in determining approximability, we will sometimes say that we have an
L-reduction with parameters a and b; for instance, in our reduction of MAX E3SAT to MAX
2SAT above, we had an L-reduction with parameters a = 55

7 and b = 1. For convenience, we
make a formal definition of L-reduction below.

Definition 16.4: Given two optimization problems Π and Π′ we say we have an L-reduction
(or an L-reduction with parameters a and b) from Π to Π′ if for some a, b > 0:

1. For each instance I of Π we can compute in polynomial time an instance I ′ of Π′;

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

414 Techniques in proving the hardness of approximation

2. OPT(I ′) ≤ aOPT(I);

3. Given a solution of value V ′ to I ′, we can compute in polynomial time a solution of value
V to I such that

|OPT(I)− V | ≤ b|OPT(I ′)− V ′|.

Notice then that if both Π and Π′ are maximization problems, and if we have an α-
approximation algorithm for problem Π′, then we can obtain a solution for instance I of Π. We
do this by producing in polynomial time the instance I ′ of Π′, using the α-approximation algo-
rithm to produce a solution of value V ′ ≥ αOPT(I ′), then using the polynomial time algorithm
to produce a solution to I of value V . Furthermore, we obtain that

V ≥ OPT(I)− b(OPT(I ′)− V ′) ≥ OPT(I)− b(1− α)OPT(I ′) ≥ OPT(I)(1− ab(1− α)),

so that this algorithm is a (1 − ab(1 − α))-approximation algorithm for Π. Similarly, if both
Π and Π′ are minimization problems, and we have an α-approximation algorithm for Π′, we
obtain from that an (ab(α − 1) + 1)-approximation algorithm for Π. Again, so that it is easy
to refer to these results later, we state these both as theorems.

Theorem 16.5: If there is an L-reduction with parameters a and b from maximization problem
Π to maximization problem Π′, and there is an α-approximation algorithm for Π′, then there is
an (1− ab(1− α))-approximation algorithm for Π.

Theorem 16.6: If there is an L-reduction with parameters a and b from minimization problem
Π to minimization problem Π′, and there is an α-approximation algorithm for Π′, then there is
an (ab(α− 1) + 1)-approximation algorithm for Π.

We observe that the quality of the L-reduction depends on the product ab; the smaller it
is, the better the resulting approximation algorithm for Π. For instance, we can give a better
L-reduction from MAX E3SAT to MAX 2SAT as follows. For the jth E3SAT clause x1∨x2∨x3,
we introduce the clauses x1 ∨ x3, x̄1 ∨ x̄3, x1 ∨ ȳj , x̄1 ∨ yj , x3 ∨ ȳj , x̄3 ∨ yj , and x2 ∨ yj , with
weights 1/2 on all clauses except the last, which has weight 1. Then it can be shown that for
any assignment satisfying x1 ∨ x2 ∨ x3, it is possible to set yj so that clauses of total weight 3.5
are satisfied, while if all of x1, x2, and x3 are false, then yj can be set to satisfy clauses of weight
2.5, but no more. This gives an L-reduction with parameters a = 1+ 5

2 ·
8
7 = 27

7 and b = 1, and
thus an α-approximation algorithm for MAX 2SAT implies a (1 − 27

7 (1 − α))-approximation
algorithm for MAX E3SAT. As above, since there is no ρ-approximation algorithm for MAX
E3SAT for constant ρ > 7/8 unless P = NP, we get the following theorem.

Theorem 16.7: There is no α-approximation algorithm for MAX 2SAT for constant α > 209
216 ≈

.968 unless P = NP.

We now give another L-reduction. Recall the maximum independent set problem from
Section 10.2: given an undirected graph G = (V,E) the goal is to find a subset S ⊆ V of
vertices of maximum cardinality such that for all u, v ∈ S, (u, v) /∈ E. We show an L-reduction
from MAX E3SAT to the maximum independent set problem. Given an E3SAT instance I with
m clauses, we create a graph with 3m nodes, one for each literal in the E3SAT instance. For
any clause, we add edges connecting the nodes corresponding to the three literals in the clause.
Furthermore, for each node corresponding to a literal xi we add an edge connecting this node
to each node corresponding to the literal x̄i. Call this instance I

′ for the maximum independent
set problem; see Figure 16.3 for an illustration of the reduction.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.2 Reductions that preserve approximation 415

x1

x̄2 x3

x̄1

x2 x̄4

x1

x̄3 x5

Figure 16.3: Illustration of the reduction from MAX E3SAT to the maximum indepen-
dent set problem; the reduction is shown for the three clauses x1 ∨ x̄2 ∨x3, x̄1 ∨x2 ∨ x̄4,
and x1 ∨ x̄3 ∨ x5.

Observe that given any solution to the independent set instance, we can obtain a solution
to the E3SAT instance by setting to true any xi whose corresponding literal node is in the
independent set and to false any x̄i whose corresponding literal node is in the independent set.
This leads to a consistent assignment to the variables since there is an edge between each xi
node and each x̄i node, so that only one of the two kinds of nodes can be in the independent
set. If for some variable xj neither kind of node is in the independent set, we set xj arbitrarily.
Notice that at most one literal node can be in the independent set for each clause; thus we
satisfy at least as many clauses as there are nodes in the independent set. Similarly, given any
solution to the E3SAT instance, for each satisfied clause we can pick one of the literals that
satisfies the clause (that is, a positive literal xi set true or a negative literal x̄i set false) and put
the corresponding node in the independent set for an independent set of size at least the number
of satisfied clauses. Thus OPT(I) = OPT(I ′), and for any solution V ′ to the independent set
instance we can get a solution V to the E3SAT instance with V ≥ V ′. This implies that we
have an L-reduction with parameters a = b = 1, so that any α-approximation algorithm for the
maximum independent set problem yields an α-approximation algorithm for the MAX E3SAT
problem. The following is then immediate.

Theorem 16.8: There is no α-approximation algorithm for the maximum independent set prob-
lem for constant α > 7

8 unless P = NP.

Let us give one last L-reduction before we move on to other types of approximation-
preserving reductions. We give a reduction of the unweighted vertex cover problem in bounded
degree graphs (where the vertex cover problem was introduced in Section 1.2) to the Steiner tree
problem (given in Exercise 2.5). Given an instance I of the unweighted vertex cover problem in
a connected graph G = (V,E) in which each node has degree at most ∆, we create an instance
I ′ of the Steiner tree problem as follows. We create a new graph G′ in which the new vertex
set V ′ has one vertex per vertex in V plus one vertex te per edge in E. The vertices from V
will be nonterminals and the vertices te will be terminals. Let T = {e ∈ E : te} be the set of
terminals; then V ′ = V ∪ T . For any e = (u, v) ∈ E, we set the cost cte,u = cte,v = 1, and for
any pair of nonterminals u, v ∈ V , we set cuv = 1. For any other pair of vertices u, v ∈ V ∪ T ,
we set cuv = 2. We give an illustration of the reduction in Figure 16.4.

Now to show that this is an L-reduction. In the vertex cover instance, each vertex v can
cover at most ∆ edges, so that OPT(I) ≥ |E|/∆. In the Steiner tree instance, we can build

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

416 Techniques in proving the hardness of approximation

1

2

3

4

t(1,2)

t(1,4)

t(3,4)

t(2,3)

t(1,3)

1 4

2 3

Figure 16.4: Illustration of the reduction from unweighted vertex cover in bounded
degree graphs to the Steiner tree problem. The vertex cover instance on the left is
reduced to the Steiner tree instance on the right. Only edges with cost 1 in the Steiner
tree instance are shown; all other edges have cost 2.

a tree by taking a path connecting just the terminals via edges of cost 2, so that OPT(I ′) ≤
2(|T | − 1) ≤ 2|E| ≤ 2∆OPT(I), since |E| = |T |.

Observe that given a vertex cover C ⊆ V , we can build a Steiner tree of cost |T |+ |C| − 1
as follows: build a tree of cost |C| − 1 on the nonterminals in C by using edges of cost 1, then
connect each terminal te to the vertex u ∈ C that covers e at a cost of |T |.

Similarly, given a Steiner tree of cost L, we show that we can convert it into a vertex cover
with at most L − (|T | − 1) vertices. We first take the Steiner tree and show that we can find
another Steiner tree of cost at most L that uses no edges of cost 2. Removing any edge of cost
2 disconnects the tree into two components. If both components contain a nonterminal, then
we can add the cost 1 edge between these two nonterminals and get a Steiner tree of lower cost.
If one component does not contain a nonterminal, then it must have all cost 2 edges, and there
is some terminal te for e = (u, v) that is a leaf in the component. Replace the original cost 2
edge and remove the cost 2 edge incident on te. Since we assumed that G is connected, there
is some other edge e′ in G that is incident on either u or v; assume e′ is incident on u. Then
we can add the edges (te, u) and (u, te′) to the Steiner tree, both of which have cost 1. Since
the terminal te′ must be in the Steiner tree, the terminal te is still connected and the tree has
no greater cost. By repeating this process, we find a tree of cost no greater than L which uses
only edges of cost 1. Then consider the set C of all nonterminals in the Steiner tree: since we
only use edges of cost 1, each terminal te for e = (u, v) must have the edge (te, u) or (te, v)
connecting it to either u or v in C, so that C must be a vertex cover. Furthermore, since the
tree spans |T | + |C| vertices with edges of cost 1, it has cost |T | + |C| − 1 ≤ L, so that the
vertex cover has size at most L− (|T | − 1), as desired.

Thus given a solution of cost Z ′ to the Steiner tree instance I ′, we can get a solution
of size at most Z ≤ Z ′ − |T | + 1 to the vertex cover problem, and given a solution of size
Z to the vertex cover problem, we can get a solution of cost at most Z + |T | − 1 to the
Steiner tree problem. Then in particular OPT(I ′) = OPT(I) + |T | − 1, which proves that
Z −OPT(I) = Z −OPT(I ′) + |T | − 1 ≤ Z ′ −OPT(I ′). It follows that we have an L-reduction
with parameters a = 2∆ and b = 1. Hence we obtain the following.

Lemma 16.9: Given an α-approximation algorithm for the minimum-cost Steiner tree problem,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.2 Reductions that preserve approximation 417

there is a 2α∆-approximation algorithm for the vertex cover problem in connected graphs of
maximum degree ∆.

The following theorem is known about the vertex cover problem in bounded degree graphs.

Theorem 16.10: For any sufficiently large ∆, there exists ϵ > 0 such that if a (1 + ϵ)-
approximation algorithm exists for the unweighted vertex cover problem in connected graphs
of maximum degree ∆, then P = NP.

Thus we are able to infer the following corollary.

Corollary 16.11: There exists ϵ′ > 0 such that if a (1+ ϵ′)-approximation algorithm exists for
the minimum-cost Steiner tree problem, then P = NP.

So far, all of the approximation-preserving reductions that we have seen are L-reductions.
Also, we have only seen reductions from one problem to another. Next we will give an inter-
esting example in which we have an approximation-preserving reduction from the maximum
independent set problem to itself. We will use this reduction to show that there is no approxi-
mation algorithm possible with constant performance guarantee for the maximum independent
set problem unless P = NP.

Theorem 16.12: If there exists an α-approximation algorithm for the maximum independent
set problem, then there is also a

√
α-approximation algorithm for the maximum independent set

problem.

Proof. Suppose we are given an α-approximation algorithm for the maximum independent set
problem, and we have an input graph G. We would like to find a solution of value at least√
αOPT(G), where OPT(G) is the size of the maximum independent set in G. To do this, we

create a new graph G×G, with a vertex set V ′ = V × V and an edge set E′ in which there is
an edge between (u1, u2) ∈ V ′ and (v1, v2) ∈ V ′ if either (u1, v1) ∈ E or (u2, v2) ∈ E.

Given an independent set S in G, we claim that S × S is an independent set in G×G; this
follows since for any (u1, u2), (v1, v2) ∈ S × S, both (u1, v1) /∈ E and (u2, v2) /∈ E since S is
independent. Furthermore, given any independent set S′ ⊆ V ′ in G × G, we claim that both
S1 = {u ∈ V : ∃(u,w) ∈ S′} and S2 = {u ∈ V : ∃(w, u) ∈ S′} are independent sets in G. To see
this, if both u, v ∈ S1, then there exist (u,w1), (v, w2) ∈ S′. Since S′ is independent, there can
be no edge (u, v) ∈ E; the argument for S2 is identical. Thus given an independent set S in G,
we can find an independent set of size at least |S|2 in G × G. Also, given an independent set
S′ in G×G, it is the case that S′ ⊆ S1 × S2, so that |S′| ≤ |S1||S2|; if we take the larger of the
two sets S1 and S2, then we have an independent set in G of size at least

√
|S′|. Thus it must

be the case that OPT(G×G) = OPT(G)2.

Given an α-approximation algorithm for the maximum independent set problem and an
instance G, we construct the graph G×G, use the approximation algorithm to find an indepen-
dent set S′ in G×G of size at least αOPT(G×G), then use this to find an independent set of
size S in G of size at least

√
αOPT(G×G) =

√
αOPT(G). Thus this is an

√
α-approximation

algorithm for the maximum independent set problem.

By applying this reduction repeatedly, we can obtain the following result.

Corollary 16.13: If there is a ρ-approximation algorithm for any constant 0 < ρ < 1 for the
maximum independent set problem, then there is a polynomial-time approximation scheme for
the maximum independent set problem.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

418 Techniques in proving the hardness of approximation

Proof. Given ϵ > 0, and the ρ-approximation algorithm, if ρ > 1 − ϵ, then we are done.
Otherwise if we apply the argument of the theorem above k times for k ≥ log log 1

ρ − log log 1
1−ϵ ,

then we have that ρ1/2
k ≥ 1− ϵ. If n is the size of the input graph, then the reduction creates a

graph of size n2k , which is polynomial in the input size. Thus we have a (1− ϵ)-approximation
algorithm.

This argument yields the following.

Corollary 16.14: There is no ρ-approximation algorithm for any constant ρ for the maximum
independent set problem unless P = NP.

Proof. By Theorem 16.8, we know there is no α-approximation algorithm for the maximum
independent set for α > 7/8 unless P = NP. Thus by Corollary 16.13, there can be no ρ-
approximation algorithm for any constant ρ unless P = NP.

As a final example of a reduction from approximating one problem to approximating another,
we give a reduction from the unweighted set cover problem (introduced in Section 1.2) to the
metric uncapacitated facility location problem (introduced in Section 4.5). We show that if
there is an α-approximation algorithm for the metric uncapacitated facility location problem
with α < 1.463, then there is a (c lnn)-approximation algorithm for the unweighted set cover
problem with c < 1. However, by Theorem 1.13, we know that no such algorithm for the
unweighted set cover problem exists unless there is an O(nO(log log n)) time algorithm for each
NP-complete problem. This implies that there is no α-approximation algorithm for the metric
uncapacitated facility location problem with α < 1.463 unless there is an O(nO(log log n))-time
algorithm for each NP-complete problem.

The reduction is somewhat more involved than the previous reductions we have seen; in
particular, we obtain an approximation algorithm for the unweighted set cover problem by
making several calls to the α-approximation algorithm for the facility location problem. Given
an instance of the set cover problem with ground set E and subsets S1, . . . , Sm ⊆ E, we create
an instance of the uncapacitated facility location problem in which we set the clients D = E,
and the set of facilities F = {1, 2, . . . ,m}. We let cij = 1 if the element corresponding to client
j is in the set Si, and let cij = 3 otherwise. Observe that these assignment costs are metric
since for any facilities h, i ∈ F and clients j, l ∈ D, cij ≤ cil + chl + chj .

In what follows, we let k be the size of the optimal set cover. Obviously, we do not know the
size of the optimal set cover, so we run the following algorithm for each possible value of k from 1
tom, and return the smallest set cover found. We let the facility cost fi = γ|D|/k for all facilities
i ∈ F for a constant γ to be given later. Our algorithm will run the given α-approximation
algorithm for the facility location problem multiple times; each time the algorithm finds all
clients j assigned to facilities i with cij = 1; we then add the corresponding subsets Si to our set
cover and create a smaller facility location instance as above with the clients D corresponding to
the uncovered elements and the facilities F to the unchosen sets. We continue until all elements
are covered. The algorithm is summarized in Algorithm 16.1.

Theorem 16.15: If there is an α-approximation algorithm for the metric uncapacitated facility
location problem for α < 1.463, then Algorithm 16.1 is a (c lnn)-approximation algorithm for
the unweighted set cover problem with c < 1 when n is sufficiently large.

Proof. Assume that the optimal set cover has size k, and that we are currently in iteration k of
the for loop. Let nℓ be the number of uncovered elements at the start of iteration ℓ of the while
loop, and let f ℓ = γnℓ/k be the facility cost in iteration ℓ for a constant γ; we will show later

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.2 Reductions that preserve approximation 419

for k ← 1 to m do
Ik ← ∅
Let D = E, F = [m] be the facility location instance
while D ̸= ∅ do

fi ← γ|D|/k for all i ∈ F
Run α-approximation algorithm on facility location instance with clients D,

facilities F
Let F ′ be facilities opened by approximation algorithm
Ik ← Ik ∪ F ′

Let D′ be clients j such that cij = 1 for some i ∈ F ′

F ← F − F ′, D ← D −D′

return Ik that minimizes |Ik|

Algorithm 16.1: Algorithm for the unweighted set cover problem on elements E, sets S1, . . . , Sm, using α-approximation algorithm for the metric uncapacitated facility location problem as a subroutine.

that we want γ = .463. Then there is a solution to the facility location problem of cost at most
f ℓk+nℓ in which we open the k facilities corresponding to the sets in the optimal set cover, and
assign the nℓ clients corresponding to uncovered elements to these facilities with an assignment
cost of 1 for each client. Given the α-approximation algorithm for the facility location problem,
the solution returned by the algorithm has a cost of at most α(f ℓk + nℓ) = αnℓ(γ + 1), by the
definition of f ℓ.

Now consider the solution found by the algorithm in the ℓth iteration. Suppose it opens
βℓk facilities and of the nℓ clients in this iteration, ρℓnℓ are assigned to facilities such that their
assignment cost is 1. Since the other (1− ρℓ)nℓ clients have assignment cost 3, the cost of this
solution is

βℓkf
ℓ + ρℓnℓ + 3(1− ρℓ)nℓ = nℓ(βℓγ + 3− 2ρℓ).

By the properties of the approximation algorithm, we know from above that this has cost at
most αnℓ(γ + 1), so we have that

βℓγ + 3− 2ρℓ ≤ α(γ + 1), (16.1)

or, rearranging,
βℓγ + 3− 2ρℓ

1 + γ
≤ α < 1.463, (16.2)

where the last inequality is by hypothesis.

Let c be a constant such that 0 < c < 1 that we set later. We claim that if ρℓ ≤ 1− e−βℓ/c

for any ℓ, then α > 1.463, a contradiction. Thus it must the case that ρℓ > 1−e−βℓ/c, and from
this we shall now show that the algorithm returns a solution to the set cover problem using
at most (c′ lnn)k sets for some c′, c < c′ < 1, and for n sufficiently large. Since initially the
number of elements to be covered is n1 = |E|, and in the ℓth iteration we cover a ρℓ fraction
of them, we have that nℓ+1 = (1 − ρℓ)nℓ. Since the algorithm ends when we cover all the
elements, it must be the case that in the final, rth iteration, ρr = 1, that nr ≥ 1, and that
|E|
∏r−1

ℓ=1(1− ρℓ) = nr ≥ 1.

If the algorithm runs for r iterations of the while loop, the total number of sets chosen by the
algorithm is

∑r
ℓ=1 βℓk, so that the performance guarantee of the algorithm is

∑r
ℓ=1 βℓ. By our

claim, ρℓ > 1− e−βℓ/c for all ℓ, so that βℓ < c ln 1
1−ρℓ

for all ℓ. We also bound βr in particular:
by inequality (16.1), βrγ + 3 − 2ρr = βrγ + 1 ≤ α(γ + 1). Given the choice of γ = .463, we

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

420 Techniques in proving the hardness of approximation

obtain that βr ≤ α
(
1 + 1

γ

)
≤ 4α. Thus the performance guarantee of the algorithm is

r∑
ℓ=1

βℓ =
r−1∑
ℓ=1

βℓ + βr < c
r−1∑
ℓ=1

ln
1

1− ρℓ
+ 4α = c ln

r−1∏
ℓ=1

1

1− ρℓ
+ 4α.

As we noted above, |E|
∏r−1

ℓ=1(1 − ρℓ) ≥ 1, so that ln
∏r−1

ℓ=1
1

1−ρℓ
≤ ln |E|. Substituting this

inequality into the one above, we have that the performance guarantee is

r∑
ℓ=1

βℓ ≤ c ln
r−1∏
ℓ=1

1

1− ρℓ
+ 4α ≤ c ln |E|+ 4α < c′ lnn

for some c′ and n sufficiently large, where c < c′ < 1. This follows since n = |E| and α is
constant.

Now to prove the claim that if ρℓ ≤ 1 − e−βℓ/c for some ℓ, then α > 1.463. Suppose
ρℓ ≤ 1− e−βℓ/c for some ℓ. For fixed γ and c, set

f(βℓ) =
βℓγ + 1 + 2e−βℓ/c

1 + γ
≤ βℓγ + 3− 2ρℓ

1 + γ
.

Thus by inequality (16.2), f(βℓ) ≤ α. This inequality remains true if we use a value of βℓ that
minimizes the left-hand side of the inequality. The derivative f ′(βℓ) =

1
1+γ (γ −

2
ce

−βℓ/c); it is

zero for βℓ = c ln 2
γc . Because f ′′(βℓ) =

2
c2(1+γ)

e−βℓ/c > 0 for all values of βℓ, the function must

achieve a minimum at c ln 2
γc . For this value of βℓ the function has value

1

1 + γ

(
γc ln

2

γc
+ 1 + γc

)
.

Then if we choose γ = .463 and c close to 1, we get βℓ = 1.46305, and f(1.46305) ≥ 1.46305.
Since this value of βℓ minimizes f , we know that 1.463 < f(βℓ) ≤ α, contradicting the fact
that we had an α-approximation algorithm for α < 1.463. Thus it must be the case that
ρℓ > 1− e−βℓ/c for all ℓ.

We get the following corollary immediately from Theorem 1.13.

Corollary 16.16: There is no α-approximation algorithm for the metric uncapacitated facility
location problem with constant α < 1.463 unless each problem in NP has an O(nO(log log n)) time
algorithm.

The result above can be extended to a hardness result for the k-median problem. The
extension is not difficult, and we leave it as an exercise for the reader.

Theorem 16.17: There is no α-approximation algorithm for the k-median problem with con-
stant α < 1 + 2

e ≈ 1.736 unless each problem in NP has an O(nO(log log n)) time algorithm.

16.3 Reductions from probabilistically checkable proofs

In this section, we turn to a definition of NP via a notion of probabilistically checkable proofs
(PCPs). Probabilistically checkable proofs give us a direct way to show that certain constraint
satisfaction problems cannot have particular performance guarantees unless P = NP. Then by

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.3 Reductions from probabilistically checkable proofs 421

using some of the approximation-preserving reductions of the previous section, we will see that
PCPs imply hardness results for still other problems.

Before we define what we mean by a probabilistically checkable proof, it will be useful to
recall a particular perspective on the problem class NP (see, for instance, Appendix B). Recall
that the problem class NP concerns itself with decision problems; each instance of a decision
problem is either a “Yes” instance or a “No” instance. For a given decision problem Π, Π is in
NP if for any “Yes” instance of Π there is a short, easily verifiable “proof” that the instance
is a “Yes” instance, while for any “No” instance, no short proof is convincing. For instance,
for the problem of deciding whether a given 3SAT formula is satisfiable or not, a listing of
the Boolean values to assign to each variable is a short proof that is easily verifiable: if the
instance is a“Yes” instance, and is satisfiable, then it is easy to check that assigning the variables
the values given in the proof in fact satisfies all the clauses, whereas if the instance is a “No”
instance and is not satisfiable, then no possible assignment of values to variables leads to a
satisfying assignment, and so no proof is convincing. More technically, we have a polynomial-
time verification algorithm (or verifier) V that takes two inputs, the encoding x of the input
instance and some proof y; the length of y must be bounded by a polynomial in the length of
x (that is, the proof is short). If the instance is a “Yes” instance, then there exists some short
proof y such that the verifier outputs “Yes”; we say that the verifier accepts the proof y. If the
instance is a “No” instance, then for any short proof y, the verifier outputs “No”; we say that
the verifier rejects all proofs y.

Surprisingly, it is possible to have a much weaker, randomized concept of a verifier for any
problem in NP. Instead of reading the entire proof y, the verifier will only examine some number
of bits of the proof; it will decide which bits to look at by using some number of random bits.
It performs some computation only on the bits of the proof, and based on this either accepts
or rejects. Informally, for any “Yes” instance x of an NP problem Π, there exists a proof y such
that the verifier almost certainly accepts (over all the possible choices of random bits), while
for any “No” instance and for any proof y, the verifier rejects with reasonable probability. We
formalize this notion as follows. For an instance whose encoding x is n bits long, the verifier will
use r(n) random bits to select q(n) bits of the proof to examine. It selects a polynomial-time

computable function f : {0, 1}q(n) → {0, 1}, and computes the function f on the q(n) bits. It
accepts if the function evaluates to 1, and rejects if the function evaluates to 0. If the input
instance is a “Yes” instance, then there exists a polynomially-sized proof y such that the verifier
accepts with probability at least c, where the probability is taken over the r(n) random bits
used by the verifier; the parameter c is called the completeness of the verifier. If the input
instance is a “No” instance, then for any polynomially-sized proof y, the verifier will accept with
probability at most s < c; the parameter s is called the soundness of the verifier. The class of
decision problems that have such a verifier is denoted by PCPc,s(r(n), q(n)). We can capture
the previous notion of a non-randomized verifier by noting that if for a particular problem Π all
proofs have length at most p(n) for some polynomial p, then Π ∈ PCP1,0(0, p(n)); that is, the
verifier uses no randomness, looks at all p(n) bits of the proof, accepts a “Yes” instance with
probability 1, and accepts a “No” instance with probability 0.

A truly astonishing fact is that it is possible to capture the class NP with a verifier that
looks at just some small constant number of bits of the proof while using only a logarithmic
amount of randomness.

Theorem 16.18 (PCP theorem): There exists a positive constant k such that NP ⊆ PCP1,1/2(O(log n), k).

While we could now forge ahead and draw implications for the hardness of approximation
from this theorem, it is worth spending a few moments to admire the view. Note that since

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

422 Techniques in proving the hardness of approximation

the verifier uses O(log n) random bits, this is just enough randomness to index a polynomial

number of locations in the proof since 2c logn = nc. Additionally, since there are 22
k
different

functions on k bits, the verifier selects one of a constant number of functions to evaluate in
order to decide whether or not it accepts the proof. Thus the verifier seems to have remarkably
little power: it has just enough randomization to access any bit of the proof, is only looking
at a constant number of bits, is only evaluating one of a constant number of functions, and
yet this is enough to distinguish between “Yes” and “No” instances of a problem in NP with a
reasonable probability!

We can now start to work out the implications of this theorem for the hardness of approx-
imation. The central idea is that given the verifier, we can create from it an instance of a
constraint satisfaction problem; in this instance we will try to determine the bits of the proof so
as to maximize the verifier’s probability of acceptance. Since there is a difference of a factor of
two in the probability of acceptance (by the PCP theorem) between “Yes” and “No” instances
of an NP-complete problem, approximating the maximum constraint satisfaction problem to
some factor better than a half will imply that P = NP.

More formally, given an NP-complete problem Π, and a verifier for Π via the PCP theorem,
we consider all 2c logn = nc possible strings of random bits that the verifier could use. Let xi be
the ith bit of the proof, and let F be the collection of all possible functions on k bits. Given one
of the random strings, for some f ∈ F , the verifier computes a function f(xi1 , . . . , xik). In our
constraint satisfaction instance, we create a constraint f(xi1 , . . . , xik). By the PCP theorem, for
any “Yes” instance of Π, there exists some proof such that the verifier accepts with probability
1; this implies that there is some way of setting the variables xi ∈ {0, 1} so that all of the
constraints f(xi1 , . . . , xik) are satisfiable. Similarly, for any “No” instance of Π, for any proof,
the verifier accepts with probability at most 1/2; thus for any setting of the variables xi ∈ {0, 1},
at most half of the constraints can be satisfiable. Now suppose we have an α-approximation
algorithm for this maximum constraint satisfaction problem with α > 1

2 . If the constraint
satisfaction instance corresponds to a “Yes” instance of Π, all the constraints are satisfiable,
and so our approximation algorithm will satisfy strictly more than half the constraints. If the
constraint satisfaction instance corresponds to a“No” instance of Π, at most half the constraints
are satisfiable, and our approximation algorithm can satisfy at most half the constraints. Thus
by checking whether we have satisfied strictly more than half the constraints or at most half, we
will be able to tell whether the instance of Π was a “Yes” instance or a “No” instance, yielding
a polynomial-time algorithm for an NP-complete problem, implying P = NP. In general, if the
PCP verifier has completeness c and soundness s, getting an α-approximation algorithm with
α > s/c implies that P = NP.

Variants of the PCP theorem have been shown in which the verifier uses particular k-
bit functions. Notice that this immediately implies hardness results for constraint satisfaction
problems for these particular k-bit functions. For example, let odd(x1, x2, x3) be a 3-bit function
such that odd(x1, x2, x3) = 1 if the sum x1 + x2 + x3 is odd and is 0 otherwise. Similarly, let
even(x1, x2, x3) be a 3-bit function that is 1 if the sum of the bits is even and 0 otherwise. We
can assume that the functions are always taken over distinct xi. The following variation on the
PCP theorem has been shown.

Theorem 16.19: For any positive constants ϵ, δ > 0, it is the case that NP ⊆ PCP1−ϵ,1/2+δ(O(log n), 3),
and the verifier only uses the functions odd and even.

The resulting constraint satisfaction problem has constraints of the form odd(xi, xj , xk) and
even(xi, xj , xk) in which the constraints are taken over distinct variables xi; let us call this the
odd/even constraint satisfaction problem. Given the discussion above, we have the following

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.3 Reductions from probabilistically checkable proofs 423

immediate corollary.

Corollary 16.20: If for any constant α > 1/2, there is a α-approximation algorithm for the
odd/even constraint satisfaction problem, then P = NP.

However, it is quite easy to see that there is a trivial 1/2-approximation algorithm for the
problem. If we set xi = 1 for all i, then since the constraints are taken over distinct variables,
it is the case that all odd constraints are satisfied. If we set xi = 0 for all i, then all even
constraints are satisfied. Since either the odd constraints or the even constraints make up at
least half the constraints, one of the two settings satisfies at least half the constraints, yielding
an easy 1/2-approximation algorithm. Hence the corollary above gives a sharp threshold in
approximability; we can get a performance guarantee of 1/2, but any better constant for a
performance guarantee implies that P = NP.

The result of Theorem 16.19 has further implications for the MAX E3SAT problem. We
will show an L-reduction from the odd/even constraint satisfaction problem to MAX E3SAT.
For each odd(xi, xj , xk) constraint, we create four clauses xi ∨xj ∨xk, x̄i ∨ x̄j ∨xk, x̄i ∨xj ∨ x̄k,
and xi∨ x̄j ∨ x̄k. We observe that if the variables are set so that odd(xi, xj , xk) is satisfied, then
all four of the clauses above are satisfied, whereas if the variables are set so that odd(xi, xj , xk)
is not satisfied, then exactly three of the four clauses are satisfied. For each even(xi, xj , xk)
constraint, we create four clauses x̄i ∨ xj ∨ xk, xi ∨ x̄j ∨ xk, xi ∨ xj ∨ x̄k, and x̄i ∨ x̄j ∨ x̄k.
Again, if the variables are set so that even(xi, xj , xk) is satisfied, then all four clauses are
satisfied, whereas if even(xi, xj , xk) is not satisfied, then exactly three of the four clauses are
satisfied. Let I be the original odd/even constraint satisfaction instance, and I ′ our MAX
E3SAT instance. Suppose an optimal solution to the odd/even constraint satisfaction problem
satisfies k∗ of m constraints, and our algorithm satisfies 4 clauses for k̃ of the groups of 4 clauses
and 3 for each of the m− k̃ remaining groups of 4 clauses. Then the same settings of variables
will satisfy k̃ constraints of the odd/even problem. Let V ′ = 4k̃ + 3(m − k̃) be the number of
E3SAT clauses satisfied by our algorithm, and V = k̃ be the number of odd/even constraints
satisfied by the corresponding setting of the variables xi. Then

OPT(I)− V = k∗ − k̃ = [4k∗ + 3(m− k∗)]− [4k̃ + 3(m− k̃)] = OPT(I ′)− V ′.

As we previously discussed, it is always possible to satisfy at least half of the m odd/even
constraints, so that k∗ ≥ 1

2m. Then

OPT(I ′) = 4k∗ + 3(m− k∗) = k∗ + 3m ≤ k∗ + 6k∗ = 7k∗ = 7OPT(I).

Thus this is an L-reduction with parameters a = 7 and b = 1. Then from Theorem 16.5 we have
that given an α-approximation algorithm for the MAX E3SAT problem, we have a (7α− 6)-
approximation algorithm for the odd/even constraint satisfaction problem. Given Corollary
16.20, we can deduce that if 7α− 6 > 1

2 , then an α-approximation algorithm for MAX E3SAT
implies that P = NP. This yields the following theorem.

Theorem 16.21: If for any constant α > 13/14 ≈ .928, there is an α-approximation algorithm
for MAX E3SAT, then P = NP.

However, we can derive a slightly stronger bound in the following way. Consider any NP-
complete problem Π. By Theorem 16.19, for any“Yes” instance of Π, the corresponding instance
of the odd/even constraint satisfaction problem has a solution that satisfies a (1− ϵ) fraction of
the constraints, while for any “No” instance of Π, the corresponding instance of the odd/even
constraint satisfaction problem has no solution that satisfies more than a 1

2 + δ fraction of the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

424 Techniques in proving the hardness of approximation

constraints. Now consider the E3SAT instances created by the reduction above. If there is a
solution that satisfies at least a (1− ϵ) fraction of the m odd/even constraints, then the number
of E3SAT clauses that are satisfiable in the reduction above is at least 4(1 − ϵ)m + 3ϵm =
(4 − ϵ)m. If no solution satisfies more than a 1

2 + δ fraction of the constraints, then at most
4
(
1
2 + δ

)
m + 3

(
1
2 − δ

)
m =

(
7
2 + δ

)
m E3SAT clauses are satisfiable. Thus if in polynomial

time we can distinguish between E3SAT instances in which at least (4 − ϵ)m of 4m clauses
are satisfiable, and at most

(
7
2 + δ

)
m of 4m clauses are satisfiable, we can distinguish between

“Yes” and“No” instances of the NP-complete problem Π in polynomial time, and P = NP. Note
that we can distinguish between the two types of instances with an α-approximation algorithm
for constant α > 7

8 , since α · 4(1 − ϵ)m >
(
7
2 + δ

)
m for appropriate choices of ϵ, δ > 0. This

leads to Theorem 5.2.

Theorem 16.22 (Theorem 5.2): If for any constant α > 7/8 = .875, there is an α-
approximation algorithm for MAX E3SAT, then P = NP.

The reduction above is sometimes called a gap-preserving reduction. It preserves a “gap” in
the fraction of constraints/clauses that can be satisfied that allows us to distinguish between
“Yes” and “No” instances of NP-complete problems; the gap between satisfying at least a (1− ϵ)
fraction of odd/even constraints and at most a

(
1
2 + δ

)
fraction of odd/even constraints is

preserved in the E3SAT instances, in which we can satisfy at least a
(
1− ϵ

4

)
fraction of the

E3SAT clauses, or at most a
(
7
8 + δ

4

)
fraction of the clauses. This gap allows us to infer that

an α-approximation algorithm for MAX E3SAT with constant α > 7/8 implies that P = NP.
There is also a direct proof of this result from the PCP theorem. We state it here because

it will be useful to us later on.

Theorem 16.23: For any positive constant δ > 0, NP ⊆ PCP1,7/8+δ(O(log n), 3), and the
verifier only uses a functions that check the “or” of three bits or their negations.

Thus by our previous discussion, for any δ > 0 no polynomial-time algorithm can distinguish
between MAX E3SAT instances in which all clauses are satisfiable, and instances in which 7/8+δ
fraction of the clauses are satisfiable, unless P = NP.

We can also show a gap-preserving reduction from the odd/even constraint satisfaction
problem to the MAX 2SAT problem, yielding an improved hardness bound for MAX 2SAT.
For any even constraint even(xi, xj , xk), we create the following 12 2SAT clauses with four
additional variables yℓ00, y

ℓ
01, y

ℓ
10, and yℓ11 for the ℓth constraint:

x̄i ∨ ȳℓ00, x̄j ∨ ȳℓ00, xk ∨ yℓ00,

xi ∨ ȳℓ01, x̄j ∨ ȳℓ01, x̄k ∨ yℓ01, x̄i ∨ ȳℓ10, xj ∨ ȳℓ10, x̄k ∨ yℓ10,

xi ∨ ȳℓ11, xj ∨ ȳℓ11, xk ∨ yℓ11.

We leave it as an exercise to the reader to verify that for any setting of xi, xj , and xk such that
the even constraint is satisfied, it is possible to set the yℓ variables such that 11 of the 12 clauses
are satisfied, while if the even constraint is not satisfied, then there is a setting of the yℓ variables
that satisfies 10 of the 12 clauses, but no more. We further leave it to the reader to obtain a
similar set of 12 2SAT clauses for the odd constraint. With this reduction, if at least (1− ϵ)m
of m odd/even constraints are satisfiable, then at least 11(1− ϵ)m+ 10ϵm = (11− ϵ)m of the
12m 2SAT clauses are satisfiable, while if only

(
1
2 + δ

)
m fraction of the odd/even constraints

are satisfiable, then at most 11
(
1
2 + δ

)
m + 10

(
1
2 − δ

)
m =

(
21
2 + δ

)
m of the 12m clauses are

satisfiable. Thus if in polynomial time we can distinguish between 2SAT instances in which
at least a 11

12 −
ϵ
12 fraction of the clauses are satisfiable and those in which at most a 21

24 + δ
12

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.4 Reductions from label cover 425

fraction of the clauses are satisfiable, then we can distinguish between “Yes” and “No” instances
of an NP-complete problem in polynomial time. We can distinguish between such instances
with an α-approximation algorithm for the MAX 2SAT problem for constant α > 21/22 since
then α ·

(
11
12 −

ϵ
12

)
> 21

24+
δ
12 for suitable choices of ϵ, δ > 0. Thus we have the following theorem.

Theorem 16.24: If for any constant α > 21/22, there is an α-approximation algorithm for
MAX 2SAT, then P = NP (where 21/22 ≈ .954).

16.4 Reductions from label cover

In this section, we define another problem, the label cover problem, that is frequently used in
reductions for hardness of approximation results. The label cover problem has both a maxi-
mization and a minimization version. In the label cover problem, we have a bipartite graph
(V1, V2, E). We have a set L1 of possible labels for the vertices in V1, and a set L2 of pos-
sible labels for the vertices in V2. For each edge (u, v) ∈ E, we have a non-empty relation
Ruv ⊆ L1 × L2 of acceptable labels for the edge. If u has a label ℓ1 ∈ L1 and v has a label
ℓ2 ∈ L2, then the edge (u, v) is satisfied if (ℓ1, ℓ2) ∈ R(u,v). In the maximization version of the
label cover problem, each vertex is assigned exactly one label, and the goal is to assign labels so
as to satisfy as many edges as possible. In the minimization version of the problem, each vertex
v is assigned a set of labels Lv so that for each edge (u, v) ∈ E, there is some label ℓ1 ∈ Lu

and some label ℓ2 ∈ Lv so that (ℓ1, ℓ2) ∈ R(u,v). The goal of the minimization problem is to
minimize the total number of labels used; that is, minimize

∑
u∈V1

|Lu|+
∑

v∈V2
|Lv|.

It is sometimes useful to ensure that the graph in the label cover instances are regular; that
is, every u ∈ V1 has the same degree d1 and every v ∈ V2 has the same degree d2. We will call
such instances (d1, d2)-regular label cover instances. If every vertex in both V1 and V2 have the
same degree d, we will call the instance d-regular. Note that if the instance is d-regular, then
|V1| = |V2|.

The maximization label cover problem is related to the unique games problem introduced
in Section 13.3; in the case of unique games, we assume that the label sets are the same (so
L1 = L2) and the relation Ruv on each edge (u, v) is in fact a permutation πuv on the set of
labels, so that for each potential label ℓ of u, there is a unique label πuv(ℓ) that v can have that
satisfies the edge, and vice versa.

We will show that it is hard to approximate both versions of the label cover problem given
results we already know. Then we will use a reduction from the maximization version of the
label cover problem to show that it is hard to approximate the set cover problem, and we will
use a reduction from the minimization version of the label cover problem to show that it is
hard to approximate two network design problems. In particular, we will show that it is hard
to approximate a directed version of the generalized Steiner tree problem introduced in Section
7.4 and a vertex-connectivity version of the survivable network design problem introduced in
Section 11.3.

In order to show that it is hard to approximate the maximization version of the label cover
problem, we give a gap-preserving reduction from the MAX E3SAT problem. Given an instance
of the MAX E3SAT problem, we create an instance of the label cover problem as follows. We
create a vertex i in V1 for each variable xi in the E3SAT instance, and a vertex j in V2 for
each clause Cj . We create an edge (i, j) for i ∈ V1 and j ∈ V2 exactly when the variable xi
occurs in the clause Cj (whether positively or negatively). The labels L1 for V1 will be the set
L1 = {true, false}. The labels L2 for V2 will be all possible triples of Boolean values, so that

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

426 Techniques in proving the hardness of approximation

L2 = L1 × L1 × L1; intuitively we label i ∈ V1 with the boolean value b that is assigned to
the variable xi, and we label j ∈ V2 with the three boolean values (bp, bq, br) assigned to the
three variables xp, xq, xr in the clause. Note that for an edge (i, j), the variable xi is one of
the variables xp, xq, xr in the clause Cj ; that is, i = p or i = q or i = r. Then for an edge
(i, j) ∈ E, the relation Rij is the set of all (b, (bp, bq, br)) ∈ L1 × L2 such that (bp, bq, br) satisfy
the clause Cj and b = bi. For example, if x1 ∨ x̄2 ∨ x̄3 is the first E3SAT clause C1, then we
will have edges (1, 1), (2, 1), and (3, 1) in the edge set, and the relation R11 is as follows (where
each element in R11 is given in the form (x1, (x1, x2, x3))):

R11 = {(true, (true, true, true)), (true, (true, true, false)), (true, (true, false, true)), (true, (true, false, false)),
(false, (false, true, false)), (false, (false, false, true)), (false, (false, false, false))}.

We note that given a label for clause Cj and an edge (i, j), there is at most one label for xi that
will satisfy the relation Rij ; for instance, in the example above, if C1 is labelled (false, false, false),
then only the label false for x1 satisfies the relation. This is a useful property of these instances
that we will exploit later in the section.

Now to show that this is a gap-preserving reduction. If there are m clauses in the E3SAT
instance I, then there are 3m edges in the label cover instance I ′. We claim that given a setting
of the xi that satisfies k clauses, we can construct a solution to the label cover instance that
satisfies 3k + 2(m − k) edges. We obtain this solution by labelling every vertex i ∈ V1 with
the label corresponding to the setting of xi. For each satisfied clause Cj , we label j ∈ V2 with
the corresponding setting of the three variables. For the three edges (i, j) incident on j, all
three edges are satisfied. For each unsatisfied clause Cj , we label j ∈ V2 with a label of variable
settings that flips the setting of one of the variables so as to satisfy the clause. Then two of
the three edges incident on j are satisfied and one is not (the one corresponding to the variable
that was flipped). By the same logic, given any labelling of V1, we can always modify the labels
of V2 so that each j ∈ V2 has either 2 or 3 satisfied edges incident on it. Thus given a solution
to the label cover instance, we can assign each xi in the E3SAT instance with the value of the
label of i ∈ V1. Each j ∈ V2 that has three satisfied edges incident on it must correspond to a
satisfied clause Cj in this assignment. Thus if the label cover solution satisfies 3k + 2(m − k)
edges, then k clauses of the E3SAT instance are satisfied.

We know from Theorem 16.23 that it is NP-hard to distinguish between E3SAT instances
in which all m clauses are satisfiable, and those in which at most

(
7
8 + δ

)
m clauses are satis-

fiable. By the reduction above, if all m clauses are satisfiable, then all 3m edges of the label
cover instance are satisfiable, whereas if at most

(
7
8 + δ

)
m clauses are satisfiable, then at most

3m
(
7
8 + δ

)
+2m

(
1
8 − δ

)
=
(
23
8 + δ

)
m of the 3m edges of the label cover instance are satisfiable.

Thus distinguishing between the case in which all edges of the label cover instance are satisfi-
able and a

(
23
24 + δ

3

)
fraction of the edges are satisfiable is NP-hard. Given an α-approximation

algorithm for the maximization version of the label cover problem in which α > 23/24, we can
distinguish between these two types of instances. Thus we obtain the following theorem.

Theorem 16.25: If for any constant α > 23
24 there is an α-approximation algorithm for the

maximization version of the label cover problem, then P = NP.

We can show the same result for a different constant α for the (5, 3)-regular version of the
label cover problem, though we do not give the details. In order to show this, we first claim that
it is still hard to approximate the MAX E3SAT problem on instances in which each variable
appears in exactly 5 clauses; in particular, in polynomial time we cannot distinguish between
instances in which all clauses are satisfiable, and instances in which at most an ρ fraction of the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.4 Reductions from label cover 427

clauses are satisfiable, for some constant ρ < 1. By following the same reduction as above, we
obtain an instance of the maximization version of the label cover problem in which each i ∈ V1

(corresponding to a variable xi) has degree 5, and each j ∈ V2 (corresponding to a clause Cj)
has degree exactly 3. Thus the instance is (5,3)-regular, and it is still hard to distinguish in
polynomial time between instances in which all the edges are satisfiable, and instances in which
at most an α fraction of the edges are satisfiable for some constant α < 1. It is still also the
case that given an edge (u, v) ∈ E, and a label ℓ2 for v ∈ V2, there is at most one label ℓ1 for u
such that (ℓ1, ℓ2) ∈ Ruv. Following the rest of the reduction above then gives the following.

Theorem 16.26: If for a particular constant α < 1 there is a α-approximation algorithm for
the maximization version of the label cover problem on (5,3)-regular instances, then P = NP.

From the hardness of the label cover problem on (5, 3)-regular instances, we can derive
the hardness of the maximization version of the label cover problem on d-regular instances for
d = 15. Given a (d1, d2)-regular instance (V1, V2, E) with labels L1 and L2, we create a new
instance (V ′

1 , V
′
2 , E

′) in which V ′
1 = V1 × V2, V

′
2 = V2 × V1, L

′
1 = L1, and L′

2 = L2. For any
(u, v) ∈ V ′

1 and (v′, u′) ∈ V ′
2 , we create an edge ((u, v), (v′, u′)) ∈ E′ exactly when (u, v′) ∈ E

and (u′, v) ∈ E; then |E′| = |E|2. If we label (u, v) ∈ V ′
1 with label ℓ1 and (v′, u′) ∈ V ′

2 with
label ℓ2, then (ℓ1, ℓ2) is in the relation R′

((u,v),(v′,u′)) for the edge ((u, v), (v′, u′)) if and only

if (ℓ1, ℓ2) ∈ Ruv′ . By construction, for any fixed (u′, v) ∈ E, there is a copy of the original
instance: each edge (u, v′) in the original instance corresponds to an edge ((u, v), (v′, u′)) in the
new instance. If (u, v) ∈ V ′

1 is labelled with ℓ1 and (v′, u′) ∈ V2 is labelled with ℓ2 then the
edge is satisfied in the new instance if and only if labelling u ∈ V1 with ℓ1 and v′ ∈ V2 with ℓ2
satisfies the edge (u, v′) in the original instance. Thus if all edges are satisfiable in the original
instance, then all edges will be satisfiable in the new instance, whereas if at most an α fraction
of the edges are satisfiable in the original instance, then for each fixed (u′, v) ∈ E, at most an α
fraction of the corresponding set of edges ((u, v), (v′, u′)) are satisfiable. Since the edges of the
new instance can be partitioned according to (u′, v), it follows that if at most an α fraction of
the edges of the original instance can be satisfied, then at most an α fraction of edges of the new
instance can be satisfied. To see that the new instance is d-regular, fix any vertex (u, v) ∈ V ′

1 .
Then since the original instance is (d1, d2)-regular, there are d1 possible vertices v′ ∈ V2 such
that (u, v′) is an edge in the original instance, and d2 possible vertices u′ ∈ V1 such that (u′, v)
is an edge in the original instance. Hence there are d = d1d2 edges ((u, v), (v′, u′)) incident on
the vertex (u, v) ∈ V ′

1 . The argument that each vertex in V ′
2 has degree d = d1d2 is similar.

Finally, suppose in the original instance it was the case that given (u, v) ∈ E and a label ℓ2 for
v ∈ V2, there is at most one label ℓ1 for u such that (ℓ1, ℓ2) ∈ Ruv. Then in the new instance,
given an edge ((u, v), (v′, u′)) ∈ E′ and a label ℓ2 for (v′, u′) ∈ V ′

2 , then again there can be at
most one ℓ1 for (u, v) ∈ V ′

1 such that (ℓ1, ℓ2) is in the relation for the edge. We thus have the
following result.

Theorem 16.27: If for a particular constant α < 1 there is a α-approximation algorithm for
the maximization version of the label cover problem on 15-regular instances, then P = NP.

We can prove a theorem with a much stronger hardness bound by using a technique similar
to the one we used for the independent set problem, and reducing the maximization version
of the label cover problem to itself. Given an instance I of the maximization version of the
label cover problem with vertex sets V1 and V2, label sets L1 and L2, edges E, and relations
Ruv for all (u, v) ∈ E, we create a new instance I ′ of the problem with vertex sets V ′

1 = V k
1 =

V1 × V1 × · · · × V1 and V ′
2 = V k

2 , with label sets L′
1 = Lk

1 and L′
2 = Lk

2, and with edge set
E′ = Ek for any positive integer k. Consider an edge (u, v) ∈ E′; let u ∈ V ′

1 be a vertex such

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

428 Techniques in proving the hardness of approximation

that u = (u1, . . . , uk), where each ui ∈ V1, and let v ∈ V ′
2 be a vertex such that v = (v1, . . . , vk),

where each vi ∈ V2, so that (ui, vi) ∈ E for all i. Then the relation R′
uv for edge (u, v) ∈ E′ is

given so that if u is labelled with (ℓ′1, ℓ
′
2, . . . , ℓ

′
k) ∈ L′

1 and v is labelled with (ℓ′′1, ℓ
′′
2, . . . , ℓ

′′
k) ∈ L′

2,
then the pair of labels is in R′

uv if and only if (ℓ′i, ℓ
′′
i) ∈ Rui,vi for all i = 1, . . . , k. Suppose it is

the case in the original instance that given a label ℓ2 for v ∈ V2 and an edge (u, v) then there
is at most one label ℓ1 ∈ L1 for u such that (ℓ1, ℓ2) ∈ Ruv (as we argued is true for the hard
instances of Theorem 16.27); then this property also holds for this new instance. Similarly, if
the original instance is d-regular, then the new instance is dk-regular. If the size of the original
instance I is n, then the size of the new instance I ′ is O(nO(k)). If m = |E| = OPT(I) and all
edges of the original instance can be satisfied, then by labelling each of the new vertices with
the corresponding k-tuple of labels, we can satisfy all mk = |E′| edges of the new instance, so
that OPT(I ′) = mk. However, if OPT(I) is somewhat less than m, then the following theorem
shows that the optimum of the new instance is much smaller.

Theorem 16.28: There is a constant c > 0, such that for any label cover instance I with m

edges and L = |L1|+ |L2| total labels, if OPT(I) = |E|(1− δ), then OPT(I ′) ≤ |E′|(1− δ)
ck

logL .

The proof of this theorem is highly non-trivial, and we will not give it here.
From the reduction above, we can derive the stronger hardness result. We first observe that

in our reduction from MAX E3SAT to the label cover problem, we use L = 2 + 8 = 10 labels.
Now we apply Theorem 16.28 for some fixed k. As we stated above, there is no polynomial-time
algorithm that can distinguish between d-regular label cover instances that satisfy all edges and
those that satisfy some constant fraction α < 1 of edges unless P = NP. Then by the theorem,
with δ > 0 for some constant δ, we know that if OPT(I) = |E|, then OPT(I ′) = |E′|, while
if OPT(I) = |E|(1 − δ), then OPT(I ′) ≤ |E′|(1 − δ)

ck
log 10 . Thus for any fixed k, if we have a

polynomial-time algorithm that can distinguish between whether all |E′| edges are satisfied in

I ′ and only |E′|(1− δ)
ck

log 10 edges are satisfied, then we can distinguish whether OPT(I) = |E|
and OPT(I) = |E|(1− δ), and then P = NP. This implies that a performance guarantee better

than (1 − δ)
ck

log 10 for the maximization version of the label cover problem is not possible for a
particular constant δ > 0 unless P = NP. We state this conclusion as follows.

Theorem 16.29: There is a constant c > 0, such that for any positive integer k, we can-
not distinguish between d-regular instances I of the maximization label cover problem in which

OPT(I) = |E| and OPT(I) = |E|(1 − δ)
ck

log 10 for some constant δ > 0 unless each problem in
NP has an algorithm running in time O(nO(k)).

We can easily derive the following corollary.

Corollary 16.30: There is no α-approximation algorithm for any constant α ≤ 1 for the
maximization version of the label cover problem unless P = NP.

Proof. Given any α-approximation algorithm for constant α, if we set k so that (1−δ)
ck

log 10 < α,
then k is constant, and so O(nO(k)) is a polynomial. Hence in polynomial time we will be able
to distinguish between label cover instances in which all edges are satisfied and those in which

at most a (1− δ)
ck

log 10 fraction of edges are satisfied.

Using Theorem 16.29, we can get a very strong hardness bound if we are willing to weaken the

hypothesis that P ̸= NP. If we set k = C(log |E|)
1−ϵ
ϵ for some ϵ > 0, then for an appropriate

choice of C we have ckϵ

log 10 log2(1 − δ) ≤ −(log |E|)1−ϵ which implies that ck
log 10 log2(1 − δ) ≤

−(k log |E|)1−ϵ or (1−δ)ck/ log 10 ≤ 2− log1−ϵ |E|k = 2− log1−ϵ |E′|. However, to create the instance I ′

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.4 Reductions from label cover 429

requiresO(|E|O(k)) = O(|E|O(logO((1−ϵ)/ϵ) |E|)) time. Thus if we have a polynomial-time algorithm
that can distinguish between the case in which all |E′| edges of I ′ are satisfiable, and those in

which at least 2− log1−ϵ |E′||E′| edges are satisfiable, this only implies that NP has algorithms
that run in time O(nO(logc n)) for some constant c. The running time O(nO(logc n)) for constant
c is sometimes called quasipolynomial time. This gives us the following theorem.

Theorem 16.31: For any ϵ > 0, there is no 2− log1−ϵ m-approximation algorithm for the maxi-
mization version of the label cover problem with d-regular instances unless NP has quasipolynomial-
time algorithms.

We can use the hardness of the maximization version of the label cover problem to derive
a slightly weakened version of the hardness of the unweighted set cover problem claimed in
Theorems 1.13 and 1.14. We will show the following.

Theorem 16.32: There is no (1
32 logN)-approximation algorithm for the unweighted set cover

problem (where N is size of the ground set of elements) unless each problem in NP has an
algorithm running in time O(nO(log log n)) time.

We will need the following version of the hardness of the maximization version of the label
cover problem, which we can easily derive from our prior results. We will also need a property
that we observed earlier, namely that for these hard instances, given a label ℓ2 ∈ L2 for v ∈ V2,
and an edge (u, v), then there is at most one label ℓ1 ∈ L1 for u ∈ V1 such that (ℓ1, ℓ2) ∈ Ruv.

Lemma 16.33: There exist d-regular instances of the maximization version of the label cover
problem such that we cannot distinguish in polynomial time between instances in which all edges
are satisfiable and those in which at most a 1/ log2(|L1||E|) fraction of the edges are satisfiable
unless each problem in NP has an algorithm running in time O(nO(log log n)).

Proof. We apply Theorem 16.29 with k = 2 log 10
c log1/(1−δ)(log |L1||E|) = O(log log n), where n

is the input size of the label cover instance. The reduction takes time O(nO(k)) = O(nO(log log n)),
and we cannot distinguish between instances in which all the edges are satisfiable, and at most

a (1−δ)
ck

log 10 = (1−δ)2 log1/(1−δ)(log |L1||E|) = 1/ log2(|L1||E|) fraction of edges are satisfiable.

The basic idea of the reduction is that given a label cover instance as in Lemma 16.33, we
will create a set cover instance in which there is a set Su,i for each u ∈ V1 and i ∈ L1, and a
set Sv,j for each v ∈ V2 and j ∈ L2. The ground set of elements will be a set E × U for some
set U ; let N = |E||U | be the number of ground elements. We will construct these sets so that
given some edge (u, v) in the label cover instance, and labels (i, j) ∈ Ruv, then either the set
cover must have chosen the sets Su,i and Sv,j , or it must have chosen Ω(logN) times more sets
to cover the elements in the ground set from {(u, v)} × U .

To obtain sets with this property, we will need the notion of a partition system. A partition
system on a universe U of size s with t pairs of sets for a parameter h consists of a set U =
{1, . . . , s} = [s], and t pairs of sets (A1, Ā1) (where Ā1 = U − A1), (A2, Ā2), . . . , (At, Āt).
Furthermore, if from each of h of the pairs of sets we choose one set from the pair, the union of
these h sets is a strict subset of U . More formally, if we choose h distinct indices i1, i2, . . . , ih
and for each index ij let either Bij = Aij or Bij = Āij , then

∪h
j=1Bij ⊂ U . We will later show

how such a partition system can be constructed with size s = |U | = 22h+2t2; we will later set
t = |L1| and h = log |L1||E|, and will show that h = Ω(logN). Intuitively, we will want to
create the sets so that if for an edge (u, v) of the label cover instance, we have (i, j) ∈ Ruv, then
one set Su,i contains {(u, v)}×Ak for some index k and Sv,j contains {(u, v)}× Āk. Thus their

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

430 Techniques in proving the hardness of approximation

union contains {(u, v)} × U , while otherwise it will take at least h = Ω(logN) sets to contain
{(u, v)} × U .

We now give the construction following this intuition. Given the partition system with
universe U with t = |L1| pairs of sets (A1, Ā1), . . . , (At, Āt) with parameter h = log |L1||E|, we
create a set cover instance as follows. As stated previously, the ground set of elements will be
the set E × U , and we create a set Su,i for each u ∈ V1 and i ∈ L1, and a set Sv,j for each
v ∈ V2 and j ∈ L2. Recall that for the hard instances of the label cover problem, for any edge
(u, v) ∈ E and any label j ∈ L2, there is at most one label i ∈ L1 such that (i, j) ∈ Ruv. Then
for all u ∈ V1 and i ∈ L1 we set

Su,i = {((u, v), a) : v ∈ V2, (u, v) ∈ E, a ∈ Ai}

and

Sv,j =
{
((u, v), a) : u ∈ V1, (u, v) ∈ E, (i, j) ∈ Ruv, a ∈ Āi

}
.

In the definition of Sv,j note that given j and edge (u, v), there is at most one (i, j) ∈ Ruv, and
hence the set Āi is well-defined.

We argue that this gives us the hardness result that we want. First, given a solution to the
label cover instance that satisfies all edges, we claim that there is a solution to the set cover
instance that uses only |V1|+ |V2| sets; in particular if u ∈ V1 is labelled with i, then we choose
set Su,i, and if v ∈ V2 is labelled with j, then we choose set Sv,j . Since (i, j) ∈ Ruv, it is the
case that

{(u, v)} × U = {(u, v)} × (Ai ∪ Āi) ⊆ Su,i ∪ Sv,j .

Since all edges are satisfied, it is the case that {(u, v)} × U is contained in the union of all
selected sets for all (u, v) ∈ E, and thus the entire ground set is covered.

Next, we need to argue that given a relatively small solution to the set cover instance, then
we can satisfy a relatively large fraction of the edges of the label cover instance.

Lemma 16.34: Given a solution to the set cover instance using at most h
8 (|V1|+ |V2|) sets, we

can find in polynomial time a solution to the label cover instance satisfying at least 2
h2 |E| edges.

Proof. For u ∈ V1, let nu be the number of sets Su,i in the set cover, and for v ∈ V2, let
nv be the number of sets Sv,j in the set cover. Let E1 = {(u, v) ∈ E : nu ≥ h/2} and let
E2 = {(u, v) ∈ E : nv ≥ h/2}. Since there are at most h

8 (|V1| + |V2|) sets in the set cover
solution, there can be at most 1/4 of the vertices in V1 ∪ V2 that have nu or nv at least h/2.
Since the label cover instance is d-regular, |E1 ∪ E2| ≤ 1

2 |E|. Let E0 = E − E1 − E2. Then for
any edge (u, v) ∈ E0, nu+nv < h, so that the number of sets Su,i and Sv,j in the set cover is less
than h. By the property of partition system, then, in order for the elements in {(u, v)} × U to
be covered, it must be the case that for (u, v) there are labels i ∈ L1 and j ∈ L2 such that sets
Su,i and Sv,j are in the set cover and Sv,j ⊇ {(u, v)} × Āi, implying that (i, j) ∈ Ruv. Suppose
that for each u ∈ V1 we pick a label i for u by randomly choosing a set Su,i from all such sets in
the set cover, and similarly for all v ∈ V2. For each edge (u, v) ∈ E0, since there is at least one
labelling out of the (h/2)2 possible choices of labels for u and v that will satisfy the edge, the
probability that the edge is satisfied is at least 1/(h/2)2 = 4/h2 . Thus the expected number
of satisfied edges is at least ∑

(u,v)∈E0

4

h2
=

4

h2
|E0| ≥

2

h2
|E|.

We can derandomize the algorithm using the method of conditional expectations.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.4 Reductions from label cover 431

We can now prove the desired theorem on the hardness of the set cover problem.

Theorem 16.32: There is no (1
32 logN)-approximation algorithm for the unweighted set cover

problem (where N is size of the ground set of elements) unless each problem in NP has an
algorithm running in time O(nO(log log n)) time.

Proof. Given the label cover instance (V1, V2, E) with label sets |L1| and |L2|, we set h =
log |E||L1| and t = |L1|. Then the size of the partition system has s = |U | = 22h+2t2 =
4(|E||L1|)2|L1|2 = 4|E|2|L1|4. By construction of the set cover instance, the size of the ground
set is N = |E||U | = 4|E|3|L1|4 ≤ (|E||L1|)4 if |E| ≥ 4; then h ≥ 1

4 logN . Given an instance of
the label cover problem in which all edges are satisfiable, we know that there is a solution to
the set cover instance in which we need |V1| + |V2| sets. If for such instances we can obtain a
set cover of size at most h

8 (|V1| + |V2|), then by Lemma 16.34 we can obtain a solution to the
maximization version of the label cover problem satisfying at least a 2/h2 > 1/ log2(|L1||E|)
fraction of the edges; this will allow us to distinguish between instances of the label cover
problem in which all of the edges are satisfiable and at most a 1/ log2(|L1||E|) fraction of edges
are satisfiable. If we have an approximation algorithm for the unweighted set cover problem with
performance guarantee at most h/8 we can distinguish such instances in polynomial time. Note
that h/8 = 1

8 log |E||L1| ≥ 1
32 logN . Thus by Lemma 16.33, there cannot be a approximation

algorithm for the unweighted set cover problem with performance guarantee 1
32 logN unless

each problem in NP has an algorithm running in time O(nO(log logn)).

To finish the hardness result for the set cover problem, we need to give the construction
of the partition system. There is a deterministic algorithm for constructing systems of size
22h+2t2; however, we give a simpler randomized algorithm that needs a somewhat smaller size.

Lemma 16.35: Given h and t, there is a randomized algorithm for constructing a partition
system of size s = 2hh ln(4t) ≤ 22h+2t2 with high probability.

Proof. We pick each set Ai uniformly at random from the set 2U of all possible subsets of U .
Suppose we select one particular set of h indices i1 < i2 < · · · < ih and sets Bij such that for

each j either Bij = Aij or Bij = Āij . There are
(
t
h

)
2h ways to select these indices and choose

the sets Bij . For a given choice, consider the probability that
∪h

j=1Bij = U . By the random
construction of the sets Ai, the probability that any given u ∈ U is in this union is independent
of the probability that any other u′ ∈ U is in the union. The probability that u /∈

∪h
j=1Bij

is the probability that for each index j, for the pair (Aij , Āij) the element u is not in the set
we choose. For each pair, the probability that u is not in the chosen set is 1/2, and so the
probability is 1/2h. Thus

Pr

 h∪
j=1

Bij = U

 =

(
1− 1

2h

)s

.

Thus the probability that the sets Ai do not form a partition system is at most(
t

h

)
2h
(
1− 1

2h

)s

≤ (2t)he−s/2h = (2t)h · e−h ln(4t) ≤ 1

2h
.

Given a choice of h = log |L1||E|, the sets Ai form the desired partition system with probability
at least 1− 1

|E||L1| .

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

432 Techniques in proving the hardness of approximation

We now turn to proving bounds on the approximability of the minimization version of the
label cover problem. To do this, we will show that a 2log

1−ϵ m-approximation algorithm for

d-regular instances of the minimization version of the label cover problem implies a 2− log1−ϵ′ m-
approximation algorithm for d-regular instances of the maximization version of the problem,
which implies that NP has quasipolynomial-time algorithms. We first need the following lemma.

Lemma 16.36: Given a d-regular instance of the label cover problem and a solution that uses
at most K(|V1|+|V2|) labels and satisfies all the edges, then there is a polynomial-time algorithm
to choose a single label per vertex so that at least 1/32K2 edges are satisfied.

Proof. This lemma is similar to Lemma 16.34 used in the reduction to the set cover problem.
We give a randomized algorithm for the problem, and assert that by using the method of
conditional expectations we can get a deterministic version that does at least as well. Let Lv

be the set of labels assigned to node v ∈ V1 ∪ V2, and let nv = |Lv| be the number of labels in
the set assigned a node v ∈ V1 ∪ V2. For each v ∈ V1 ∪ V2 we select a single label at random
from Lv and assign it to v. For each edge (u, v) there exists some label i ∈ Lu and j ∈ Lv such
that (u, v) is satisfied, so that the probability that the random choice of labels satisfies (u, v) is
at least 1

nunv
.

Let E1 = {(u, v) ∈ E : nu ≥ 4K} and let E2 = {(u, v) ∈ E : nv ≥ 4K}. Since the total
number of labels used is at most K(|V1| + |V2|), at most 1/4 of the nodes in V1 ∪ V2 have at
least 4K labels. Since the instance is d-regular, |E1 ∪ E2| ≤ 1

2 |E|. Let E0 = E − E1 − E2, so
that |E0| ≥ 1

2 |E|. Then the expected number of satisfied edges by choosing a label uniformly
at random is ∑

(u,v)∈E

1

nunv
≥

∑
(u,v)∈E0

1

nunv
≥

∑
(u,v)∈E0

1

(4K)(4K)
≥ |E|

32K2
.

Now we can prove the hardness of the minimization version of the label cover problem.

Theorem 16.37: For any ϵ > 0, there is no 2log
1−ϵ m-approximation algorithm for d-regular

instances of the minimization version of the label cover problem unless NP has quasipolynomial-
time algorithms.

Proof. We prove this by a gap-preserving reduction from the hardness of the maximization
version of the label cover problem for d-regular instances given in Theorem 16.31. Suppose
we have an α-approximation algorithm for d-regular instances of the minimization version of
the label cover problem. Given a d-regular instance (V1, V2, E) of the maximization problem
in which all edges are satisfiable, we know that only |V1|+ |V2| labels are needed to satisfy all
edges, so that the algorithm will return a solution using at most α(|V1| + |V2|) labels. Then
by Lemma 16.36, we can get a solution to the maximization problem that satisfies at least a
1/32α2 fraction of the edges. If 1/32α2 > 2− log1−ϵ m, then we would be able to distinguish
between instances of the maximization problem in which all edges are satisfied and those in
which at most a 2− log1−ϵ m fraction of the edges can be satisfied. Hence it must be the case
that α ≥ 1√

32
· 2

1
2
log1−ϵ m = 2

1
2
(log1−ϵ m−5), unless NP has quasipolynomial time algorithms.

For sufficiently large m, 1
2(log

1−ϵm − 5) ≥ log1−2ϵm, so that there cannot be a 2log
1−ϵ′ m-

approximation algorithm for the minimization version of the label cover problem unless NP has
quasipolynomial-time algorithms, for ϵ′ = 2ϵ. Since the hardness result for the maximization
problem holds for any ϵ > 0, the result also holds for the minimization problem for any ϵ′ >
0.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.4 Reductions from label cover 433

The minimization version of the label cover problem is useful for proving the hardness of
network design problems. In particular, we reduce the minimization version of the label cover
problem to the directed generalized Steiner tree problem, and then show how this leads to
the hardness of a vertex-connectivity version of the survivable network design problem. The
directed generalized Steiner tree problem is a version of the generalized Steiner tree problem
(introduced in Section 7.4) in directed graphs. We are given as input a directed graph G =
(V,A), nonnegative costs ca ≥ 0 for all arcs a ∈ A, and k pairs of vertices si, ti ∈ V . The goal
is to find a minimum-cost subset of arcs F ⊆ A such that there is a si-ti path in the set of
selected arcs; that is, there is a directed path from si to ti in (V, F) for all i.

Lemma 16.38: Given an α-approximation algorithm for the directed generalized Steiner tree
problem, we can obtain an α-approximation algorithm for the minimization version of the label
cover problem.

Proof. Given an instance of the minimization version of the label cover problem, we reduce it to
an instance of the directed generalized Steiner tree problem. Given any feasible solution to the
label cover instance, we can create a feasible solution to the generalized Steiner tree instance
whose cost is equal to the number of labels used. Furthermore, given any feasible solution to the
generalized Steiner tree instance, we can obtain a feasible solution to the label cover instance
using labels equal to the cost of the generalized Steiner tree instance. Thus the optimal values
of the two instances are exactly the same. Also, we can use an α-approximation algorithm for
the directed generalized Steiner tree problem to give an α-approximation algorithm for the label
cover problem by first reducing the label cover instance to a generalized Steiner tree instance,
running the α-approximation algorithm on it, then translating the feasible solution obtained
back to a feasible solution for the label cover instance. If OPTLC is the value of an optimal
solution to the label cover instance, and OPTGST is the value of an optimal solution to the
generalized Steiner tree instance, then this algorithm produces a solution to the label cover
instance of value at most αOPTGST = αOPTLC .

Let (V1, V2, E) be the input graph for the label cover instance, let L1 and L2 be the labels,
and let Ruv be the relation for each (u, v) ∈ E. We create an instance of the directed generalized
Steiner tree problem as follows. We create a vertex set V = V1 ∪ V2 ∪ (V1 × L1) ∪ (V2 × L2).
We will denote the vertices in V1 × L1 and V2 × L2 by pairs such as (u, ℓ1) and (v, ℓ2). We
also create a set of arcs A = A1 ∪ A2 ∪ A3, where A1 = {(u, (u, ℓ1)) : u ∈ V1, ℓ1 ∈ L1}, A2 =
{((u, ℓ1), (v, ℓ2)) : u ∈ V1, ℓ1 ∈ L1, v ∈ V2, ℓ2 ∈ L2, (ℓ1, ℓ2) ∈ Ruv}, andA3 = {((v, ℓ2), v) : v ∈ V2, ℓ2 ∈ L2}.
We set the cost of arcs in A1 and A3 to be 1, and the cost of arcs in A2 to be 0. For each edge
(u, v) ∈ E, we create an si-ti pair with si = u and ti = v.

Given a feasible labelling for the label cover instance, with label sets Lu for each u ∈ V1,
and Lv for each v ∈ V2, we create a feasible solution to the generalized Steiner tree instance as
follows. For u ∈ V1 and each label ℓ1 ∈ Lu, we add arc (u, (u, ℓ1)) to the solution, and for each
v ∈ V2 and each label ℓ2 ∈ Lv, we add arc ((v, ℓ2), v). We know that for each edge (u, v) in the
label cover instance, there is some ℓ1 ∈ Lu and ℓ2 ∈ Lv such that (ℓ1, ℓ2) ∈ Ruv; we then add
the arc ((u, ℓ1), (v, ℓ2)) to the solution. This arc allows there to be a directed path from u to v
by taking the arcs (u, (u, ℓ1)), ((u, ℓ1), (v, ℓ2)), and ((v, ℓ2), v). Thus for each si-ti pair, there is
a directed path in the solution. Clearly the cost of the generalized Steiner tree solution is equal
to the number of labels in label cover solution.

Given a feasible solution F to the generalized Steiner tree instance, we convert it to a feasible
solution to the label cover instance in a similar way. For each arc (u, (u, ℓ1)) ∈ F , we label
u ∈ V1 with label ℓ1 ∈ L1, and for each arc ((v, ℓ2), v) ∈ F , we label v ∈ V2 with label ℓ2 ∈ L2.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

434 Techniques in proving the hardness of approximation

Note that the total number of labels used is exactly equal to the cost of the set of arcs F . We
now need to argue that this labelling is a feasible solution for the minimization version of the
label cover problem. Because F is a feasible solution to the generalized Steiner tree instance, for
the si-ti pair in which si = u and ti = v, there must be some path in the directed graph (V,A)
from u to v, and this must use an arc (u, (u, ℓ1)) from A1, an arc ((u, ℓ1), (v, ℓ2)) from A2, and
an arc ((v, ℓ2), v) from A3, where by the definition of A2 it must be the case that (ℓ1, ℓ2) ∈ Ruv.
Since the arcs (u, (u, ℓ1)) and ((v, ℓ2), v) are in F , we must have labelled u with ℓ1 and v with
ℓ2.

We can now derive the following corollary; it follows from the theorem above combined with
the fact that the number of vertices n in the Steiner tree instance is related by a polynomial to
the number of edges m in the label cover instance.

Corollary 16.39: There is no O(2log
1−ϵ n)-approximation algorithm for the directed generalized

Steiner tree problem for any ϵ > 0 unless NP has quasipolynomial-time algorithms.

We conclude this section by considering a vertex-connectivity version of the survivable net-
work design problem introduced in Section 11.3. As in the survivable network design problem,
we are given as input an undirected graph G = (V,E), costs ce ≥ 0 for all e ∈ E, and con-
nectivity requirements rij for all pairs of vertices i, j ∈ V , where i ̸= j. The goal is to find
a minimum-cost set of edges F ⊆ E such that for all pairs of vertices i, j with i ̸= j, there
are at least rij vertex-disjoint paths connecting i and j in (V, F); by this we mean that the
only vertices that the paths have in common are the endpoints i, j. In Section 11.3, we gave
a 2-approximation algorithm for the case in which we needed rij edge-disjoint paths between
i and j. However, the vertex-connectivity version is substantially harder. We will prove the
following theorem.

Theorem 16.40: Given an α-approximation algorithm for the vertex-connectivity version of
the survivable network design problem in which there is some k such that each rij ∈ {0, k}, there
is an α-approximation algorithm for the directed generalized Steiner tree problem.

From the theorem, we get the following corollary immediately.

Corollary 16.41: There is no O(2log
1−ϵ n)-approximation algorithm for the vertex-connectivity

version of the survivable network design problem in which each rij ∈ {0, k} for any ϵ > 0 unless
NP has quasipolynomial-time algorithms.

To prove the theorem, we give a reduction from the directed generalized Steiner tree problem
to the vertex-connectivity version of the survivable network design problem. Given the directed
graph G = (V,A) with costs ca ≥ 0 for all arcs a ∈ A, we create an undirected graph G′ =
(V ′, E′) as follows. For the vertex set V ′ we let V ∗ be a copy of the vertex set V , and set
V ′ = V ∗ ∪ V . We let u∗ ∈ V ∗ denote the copy of u ∈ V . For each u, v ∈ V , u ̸= v, we create
an edge (u, v) of cost 0, and for each u∗, v∗ ∈ V ∗, u∗ ̸= v∗, we create an edge (u∗, v∗). We also
create edges (u, u∗) of cost 0 for each u ∈ V . Finally, for each arc a = (u, v) ∈ A of cost ca,
we create an edge (u, v∗) of cost ca. We call this latter set of edges arc edges, and the prior
set of edges nonarc edges; let N ′ ⊆ E′ be all the nonarc edges. For any set of arcs F ⊆ A, we
denote the corresponding set of arc edges by F ′; that is, for each arc (u, v) ∈ F , we have the
edge (u, v∗) ∈ F ′. Let ce denote the cost of each edge e ∈ E′, and let k = |V |+1. For each si-ti
pair in the generalized Steiner tree instance, we set rsi,t∗i = k, and for all other pairs of vertices
u, v ∈ V ′, u ̸= v, we set ruv = 0. See Figure 16.5 for an illustration of the reduction.

The following lemma is the key to proving Theorem 16.40.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.4 Reductions from label cover 435

1 2 3 4

1 2 3 4

1
∗

2
∗

3
∗

4
∗

Figure 16.5: Illustration of the reduction from the directed generalized Steiner tree
problem to the vertex-connectivity version of the survivable network design problem.
The directed graph is on the left, and the corresponding undirected graph is on the
right. The nonarc edges are dotted, and the arc edges are solid. We suppose that we
need to find a path from vertex 1 to vertex 4 in the generalized Steiner tree instance;
this translates to finding 5 vertex-disjoint paths between vertex 1 and vertex 4∗ in the
survivable network design instance.

Lemma 16.42: Let F ⊆ A be a set of arcs from G = (V,A), and let s, t ∈ V be two vertices
from G. Then there is a directed path from s to t in (V, F) if and only if there are k = |V |+ 1
vertex-disjoint paths in (V ′, N ′ ∪ F ′) between s ∈ V ′ and t∗ ∈ V ′.

Proof. See Figure 16.6 for an illustration of the proof. First, assume there is a simple path from
s to t in (V, F); let the path P be s, u1, . . . , ur, t. From P , we construct the k vertex-disjoint
paths in (V ′, N ′ ∪ F ′). For the first arc in P , (s, u1), we construct the path (s, u∗1), (u

∗
1, t

∗).
For the last arc in P , (ur, t), we construct the path (s, ur), (ur, t

∗). For all other arcs (ui, ui+1)
in P (for 1 ≤ i ≤ r − 1), we construct the path (s, ui), (ui, u

∗
i+1), (u

∗
i+1, t

∗). For all vertices
v /∈ {s, t, u1, . . . , ur}, we construct the path (s, v), (v, v∗), (v∗, t∗). Finally, we construct the two
paths (s, s∗), (s∗, t∗) and (s, t),(t, t∗). Observe that all of these paths are vertex-disjoint. We
have one path for each of the r+1 arcs in P , one path for each of the |V | − (r+2) vertices not
in the path, plus two more paths for a total of (r + 1) + (|V | − (r + 2)) + 2 = |V |+ 1 = k.

Now assume there is no path from s to t in (V, F). Then there must be a set S ⊆ V with
s ∈ S, and t /∈ S, such that there is no arc of F leaving S. Consider the same set of vertices
S ⊆ V ′, and consider the edges of N ′ ∪F ′ with one endpoint in S and the other in V ′− S. Let
Γ(S) ⊆ V ′ be the set of endpoints of these edges that are not in S. We claim that |Γ(S)| < k ,
and that t∗ /∈ Γ(S). Given the claim, we can show that there cannot be k vertex-disjoint paths
from s to t∗ in (V ′, N ′ ∪F ′) as follows. Observe that since s ∈ S and t∗ /∈ S ∪Γ(S), any vertex
disjoint path from s to t∗ must pass through one of the vertices of Γ(S). But since |Γ(S)| < k,
there cannot be k such paths.

To prove the claim, we enumerate the vertices in Γ(S). Note that every vertex v ∈ V − S
must be in Γ(S) since (s, v) ∈ N ′. Also, for each u ∈ S, (u, u∗) ∈ N ′, so that u∗ ∈ Γ(S); thus
there are at least |V − S| + |S| = |V | = k − 1 vertices in Γ(S). Observe that this accounts
for all edges in N ′ with exactly one endpoint in S. For any v ∈ V − S, it cannot be the case
that v∗ ∈ Γ(S), since this would imply that there is some arc edge (u, v∗) ∈ F ′ with u ∈ S,
v /∈ S, which would imply that the arc (u, v) ∈ F is leaving S, a contradiction. Since for any
v ∈ V − S, v∗ /∈ Γ(S), this implies that |Γ(S)| = |V | = k − 1, and that t∗ /∈ Γ(S) since t /∈ S.

It is now straightforward to prove Theorem 16.40.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

436 Techniques in proving the hardness of approximation

1 2 3 4

1 2 3 4

1
∗

2
∗

3
∗

4
∗

1 2 3 4

1 2 3 4

1
∗

2
∗

3
∗

4
∗

S

Γ(S)

Figure 16.6: Illustration of the proof of Lemma 16.42. The instances on the top
show a case in which a path from 1 to 4 exists, and there are 5 vertex-disjoint paths
between 1 and 4∗ in the corresponding survivable network design instance; the edges in
the vertex-disjoint paths are solid, while the other edges are dotted. The instances on
the bottom show a case in which a path from 1 to 4 does not exist; the set S = {1, 2}
and Γ(S) = {1∗, 2∗, 3, 4} are shown in the survivable network design instance. Since
|Γ(S)| = 4, and all paths between 1 and 4∗ must use a vertex in Γ(S), it is not possible
to have 5 vertex-disjoint paths between 1 and 4∗.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.5 Reductions from unique games 437

Proof of Theorem 16.40. Given any feasible solution F to the instance of the directed
generalized Steiner tree problem, we construct a feasible solution of the same cost to the vertex
connectivity problem by taking the nonarc edges in N ′ (at zero cost) and the corresponding
arc edges in F ′ (at the same cost as those in F). Then by Lemma 16.42, for each si-ti pair,
there must be at least k vertex-disjoint paths between si and t∗i , and so we have a feasible
solution to the vertex-connectivity version of the survivable network design problem. Given a
feasible solution to the vertex connectivity problem, we can assume without loss of generality
that it includes all nonarc edges in N ′, since these have zero cost. So assume the solution to
the vertex connectivity problem is N ′ ∪F ′; from this we can construct the corresponding set of
arcs F in the generalized Steiner tree problem of the same cost. Since for each i there must be
at least k vertex-disjoint paths between si and t∗i in the vertex-connectivity problem, then by
Lemma 16.42, there must be a directed path from si to ti in (V, F). Thus the optimal values
of the two instances are the same. Furthermore, given an α-approximation algorithm for the
vertex-connectivity version of the survivable network design problem in which rij ∈ {0, k} for all
i, j, we can give an α-approximation algorithm for the directed generalized Steiner tree problem
by reducing the generalized Steiner tree instance to a vertex connectivity instance as above,
running the α-approximation algorithm on it to obtain a solution N ′ ∪ F ′, and then returning
the corresponding set of arcs F at cost at most α times the cost of an optimal solution.

16.5 Reductions from unique games

In this section, we return to the unique games problem introduced in Section 13.3. Recall that
in the unique games problem, we are given as input an undirected graph G = (V,E), and a set
of labels L. Also, for each (u, v) ∈ E, we are given a permutation πuv. The goal of the problem
is to assign a label from L to each vertex in V so as to satisfy as many edges as possible; we
say that edge (u, v) is satisfied if when u is labelled with label i and v is labelled with label j,
then πuv(i) = j.

We also recall the unique games conjecture (UGC), which states that it is NP-hard to
distinguish between instances of the unique games problem in which almost all of the edges can
be satisfied and almost none of the edges can be satisfied.

Conjecture 16.43 (Unique Games Conjecture (UGC)): Given any ϵ, δ > 0, there exists
some k > 0 depending on ϵ and δ, such that for the unique games problem with |L| = k, it is
NP-hard to distinguish between instances in which at least a 1 − ϵ fraction of the edges can be
satisfied, and instances in which at most a δ fraction of the edges can be satisfied.

In this section, we show how reductions from the UGC can be used to prove hardness
results (conditional on the truth of the conjecture, of course). For this purpose, it will be
useful to give a special case of the unique games problem called MAX 2LIN(k). The unique
games conjecture for MAX 2LIN(k) can be shown to be equivalent the original unique games
conjecture, though we will not show the equivalence here. In MAX 2LIN(k), we assume that
L = {0, 1, . . . , k − 1}, and that the permutation πuv is given by a constant cuv ∈ {0, . . . , k − 1}
such that if u is labelled with xu ∈ L and v is labelled with xv ∈ L then πuv(xu) = xv if and
only if xu − xv = cuv(modk). The problem is called MAX 2LIN(k) since the permutation is
linear in the labels, since the linear equation relates two variables, and since it is over a universe
of size k. We will call the associated conjecture the linear unique games conjecture (LUGC),
which is as follows.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

438 Techniques in proving the hardness of approximation

Conjecture 16.44 (Linear Unique Games Conjecture (LUGC)): Given any ϵ, δ > 0,
there exists some k > 0 depending on ϵ and δ, such that for MAX 2LIN(k) version of the
unique games problem with L = {0, . . . , k − 1}, it is NP-hard to distinguish between instances
in which at least a 1− ϵ fraction of the edges can be satisfied, and instances in which at most a
δ fraction of the edges can be satisfied.

We begin by showing a strong connection between MAX 2LIN(k) and the multicut problem
introduced in Section 8.3; this gives the hardness result for the multicut problem we claimed in
Theorem 8.10. Additionally, it will give us an approximation algorithm for MAX 2LIN(k) that
is better than the approximation algorithm given for the more general unique games problem in
Section 13.3. Recall that in the multicut problem we are given an undirected graph G = (V,E)
with nonnegative costs ce ≥ 0 for all edges e ∈ E. We are also given a set of distinguished
source-sink pairs of vertices s1-t1,. . .,sk-tk. The goal is to find a minimum-cost set of edges
F whose removal disconnects all si-ti pairs; that is, for every i, 1 ≤ i ≤ k, there is no path
connecting si and ti in (V,E − F).

To show the connection between the two problems, we give a reduction from MAX 2LIN(k)
to the multicut problem. Given an instance of MAX 2LIN(k) with input graph G = (V,E),
label set L = {0, . . . , k − 1}, and constants cuv ∈ L for all (u, v) ∈ E, we create an instance of
the multicut problem as follows. We let V ′ = V ×L, and we create an edge between (u, i) ∈ V ′

and (v, j) ∈ V ′ if and only if (u, v) ∈ E and i− j = cuv(modk). Let E′ be this set of edges, and
let G′ = (V ′, E′). Note that |E′| = k|E| and |V ′| = k|V |. We let the cost of each edge in E′ be
1 (that is, we consider an unweighted instance of the problem). Finally, we create a source-sink
pair consisting of the pair of vertices (u, i) and (u, j) for each u ∈ V and each pair i ̸= j with
i, j ∈ L.

We can now show the following two lemmas connecting the value of the MAX 2LIN(k)
instance to the new multicut instance.

Lemma 16.45: For any ϵ such that 0 ≤ ϵ ≤ 1, given any feasible solution to the MAX 2LIN(k)
instance that satisfies at least (1−ϵ)|E| edges, there is a feasible solution to the multicut instance
of cost at most ϵ|E′|.

Proof. Suppose we have a labelling of G that satisfies at least (1 − ϵ)|E| edges of G; let xu ∈
{0, . . . , k − 1} be the label given to u ∈ V . We now obtain a multicut of G′ by partitioning its
vertex set V ′ into k parts, V ′

0 , . . . , V
′
k−1, and removing all edges whose endpoints are in different

parts. We let the cth part V ′
c = {(u, xu + c(modk)} for all u ∈ V . We first observe that this

is indeed a multicut of G′ since (u, i) and (u, j) end up in different parts of the partition for
i ̸= j and i, j ∈ {0, . . . , k − 1}. Now we determine the cost of the multicut. Consider any
edge ((u, i), (v, j)) ∈ E′ such that (u, i) and (v, j) end up in different parts of the partition; we
show that (u, v) must not be satisfied by the labelling. By construction of E′, we know that
i − j = cuv(modk). We also know that (u, i) and (v, j) are in different parts of the partition;
suppose (u, i) ∈ V ′

c and (v, j) ∈ V ′
c′ for c ̸= c′. Then i = xu + c(modk) and j = xv + c′(modk),

so that

cuv = i−j(mod k) = (xu+c)−(xv+c′)(mod k) = (xu−xv)+(c−c′)(mod k) ̸= xu−xv(mod k),

since c ̸= c′. Thus the edge (u, v) ∈ E is not satisfied in the solution to the MAX 2LIN(k)
problem. Since each edge (u, v) in the MAX 2LIN(k) instance corresponds to k edges in the
multicut instance, the total number of edges removed in the multicut can be at most k times
the number of unsatisfied edges in the MAX 2LIN(k) solution. Thus if at most ϵ|E| edges are
not satisfied in the MAX 2LIN(k) solution, at most ϵk|E| = ϵ|E′| edges are in the multicut.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.5 Reductions from unique games 439

Lemma 16.46: For any ϵ such that 0 ≤ ϵ ≤ 1, given any feasible solution to the multicut
instance of cost at most ϵ|E′|, there is a solution to the MAX 2LIN(k) instance that satisfies at
least (1− 2ϵ)|E| edges.

Proof. Suppose that if we remove the edges in the multicut solution from G′, the graph is
partitioned into ℓ components. We randomly index the corresponding partition of the vertex
set V ′ from 1 to ℓ, so that we have V ′

1 , . . . , V
′
ℓ . We use this partition to determine a labelling for

the MAX 2LIN(k) instance: in particular, for each u ∈ V , there is some part V ′
c of least index

c such that some vertex (u, i) ∈ V ′
c for some label i ∈ L and no vertex (u, j) ∈ V ′

c′ for c′ < c.
Because the partition is given by a multicut, we know that there can be no other (u, j) ∈ V ′

c

for j ̸= i. We then label u with i. We say that the part V ′
c defines u.

In order to analyze the number of edges satisfied by this labeling, consider an edge (u, v) ∈ E.
Consider the k corresponding edges in E′, and let ϵuv be the fraction of these k edges that are
in the multicut. Then for a 1− ϵuv fraction of these edges, both endpoints (u, i) and (v, j) are
inside the same part of the partition. Suppose some such part V ′

c contains both endpoints (u, i)
and (v, j) of an edge ((u, i), (v, j)) and the part defines both u and v. Then the labeling of u
and v will satisfy (u, v) ∈ E since then u is labelled with i, v is labelled with j, and the edge
((u, i), (v, j)) implies that i − j = cuv(modk), so that the labels satisfy the edge (u, v). We
call such a part of the partition a good part; there are (1 − ϵuv)k good parts of the partition.
We now analyze the probability that a good part of the partition defines both u and v. This
probability gives us a lower bound on the probability that the edge (u, v) is satisfied. To do
this, we analyze the probability that some other part (a bad part) defines a label for u or v.
Since ϵuvk edges corresponding (u, v) are in the multicut, there are at most 2ϵuvk parts of the
partition for which one of the following three things is true: it contains a vertex (u, i) but no
vertex (v, j); it contains a vertex (v, j) but no vertex (u, i); or it contains both (u, i) and (v, j),
but there is no edge ((u, i), (v, j)). If any such part is ordered first, a good part will not define
the labels for u and v. Suppose there are b ≤ 2ϵuvk bad parts. Thus the probability that edge
(u, v) ∈ E is not satisfied by the labelling is at most the probability that of the b+ (1− ϵuv)k
total good and bad parts of the partition, one of the bad parts is ordered first. This is at most

b

b+ (1− ϵuv)k
≤ 2ϵuvk

2ϵuvk + (1− ϵuv)k
=

2ϵuv
1 + ϵuv

≤ 2ϵuv.

Therefore, the overall expected number of edges that are not satisfied by the random la-
belling is at most 2

∑
(u,v)∈E ϵuv. By the definition of ϵuv, there are k

∑
(u,v)∈E ϵuv edges of

|E′| in the multicut. Thus if the multicut has cost k
∑

(u,v)∈E ϵuv ≤ ϵ|E′| = ϵk|E|, then∑
(u,v)∈E ϵuv ≤ ϵ|E|. Then the expected number of edges not satisfied is at most 2ϵ|E|, so

that the expected number of satisfied edges is at least (1− 2ϵ)|E|.

Although the lemma above gives a randomized algorithm for obtaining a solution to the
MAX 2LIN(k) instance from the solution to the multicut instance, it is not hard to convert this
to a deterministic algorithm. We leave this as an exercise to the reader.

Corollary 16.47: There is a deterministic polynomial-time algorithm such that given any fea-
sible solution to the multicut instance of cost at most ϵ|E′| finds a solution to the MAX 2LIN(k)
instance that satisfies at least (1− 2ϵ)|E| edges.

From these two lemmas, we can derive the following corollaries.

Corollary 16.48: Given the unique games conjecture, for any constant α ≥ 1, there is no
α-approximation algorithm for the multicut problem unless P = NP.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

440 Techniques in proving the hardness of approximation

Proof. We use the equivalence of the unique games conjecture and the linear unique games
conjecture. Suppose for some constant α ≥ 1, an α-approximation algorithm for the multicut
problem exists. Then choose any ϵ, δ such that ϵ < 1−δ

2α . Given an instance of the MAX 2LIN(k)
problem, we create a multicut instance as described above, the apply the α-approximation
for the multicut problem, then use Corollary 16.47 to transform the multicut solution back
into a solution to the MAX 2LIN(k) instance in polynomial time. Given an instance of the
MAX 2LIN(k) problem in which at least (1 − ϵ)|E| constraints can be satisfied, we know by
Lemma 16.45 that the corresponding multicut instance has an optimal solution of cost at most
ϵ|E′|. Given the approximation algorithm, we find a multicut of cost at most ϵα|E′|. Then
by Corollary 16.47, the MAX 2LIN(k) solution we obtain from this multicut satisfies at least
(1 − 2ϵα)|E| constraints. Given a MAX 2LIN(k) instance in which at most δ|E| constraints
can be satisfied, our algorithm will in the end satisfy at most δ|E| constraints. If ϵ < 1−δ

2α ,
then (1− 2ϵα)|E| > δ|E|, and our algorithm can in polynomial time distinguish between MAX
2LIN(k) instances in which at least (1− ϵ)|E| constraints are satisfied, and instances in which
at most δ|E| are satisfied. Given the unique games conjecture, this implies that P = NP.

Corollary 16.49: There is a polynomial-time algorithm for MAX 2LIN(k), such that given
any instance that satisfies at least a 1− ϵ fraction of the edges, the algorithm can satisfy at least
a 1−O(ϵ log n) fraction of the edges.

Proof. Given the MAX 2LIN(k) instance, we create a multicut instance as described above, then
apply the approximation algorithm from Section 8.3, then use Corollary 16.47 to transform the
multicut solution back into a solution to the MAX 2LIN(k) instance. The number of source-
sink pairs in the multicut instance is nk(k − 1)/2, so that the performance guarantee of the
multicut algorithm is O(log nk) = O(log n), treating k as a constant. By hypothesis, the MAX
2LIN(k) instance satisfies at least a 1 − ϵ fraction of the edges, so that the optimal solution
to the multicut problem must cost at most ϵ|E′|. The approximation algorithm then must
find a solution that costs at most O(ϵ log n)|E′|, and by the algorithm of Corollary 16.47, we
must obtain a solution to the MAX 2LIN(k) instance that satisfies at least (1−O(ϵ log n))|E|
edges.

To conclude this section, we give a high-level sketch of the proof of Theorem 6.11, the
theorem giving a hardness bound for the maximum cut problem conditional on the unique
games conjecture. We restate the theorem here.

Theorem 6.11: Given the unique games conjecture there is no α-approximation algorithm for
the maximum cut problem with constant

α > min
−1≤x≤1

1
π arccos(x)
1
2(1− x)

≥ .878

unless P = NP.

The proof of this theorem gives many ideas that are used in other proofs showing the
hardness of approximation for other problems conditional on the unique games conjecture.
However, the entire proof is too complex to give here; instead we sketch the ideas so that the
reader will have familiarity with them when encountered elsewhere.

To start the proof, we need another, equivalent formulation of the unique games conjecture.
The unique games conjecture is equivalent to the case in which all instances are bipartite graphs
in which the degree of the vertices in one part are the same.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.5 Reductions from unique games 441

Conjecture 16.50 (Bipartite Unique Games Conjecture): Given any ϵ, δ > 0, there
exists some k > 0 depending on ϵ and δ, such that for the unique games problem with |L| = k
on bipartite graphs in which all vertices in one part have the same degree, it is NP-hard to
distinguish between instances in which at least a 1− ϵ fraction of the edges can be satisfied, and
instances in which at most a δ fraction of the edges can be satisfied.

We will sketch the proof of the following theorem.

Theorem 16.51: Assuming the bipartite unique games conjecture, for any positive constant
γ > 0 and any ρ ∈ (−1, 0), NP ⊆ PCP(logn, 2), where the verifier has completeness at least
1
2(1− ρ)− γ, soundness at most 1

π arccos(ρ) + γ, and the verifier accepts if the two bits are not
equal.

Given the theorem, the hardness of the maximum cut problem follows easily.

Proof of Theorem 6.11. Following the discussion of Section 16.3, for any instance an NP-
complete problem Π and a verifier for Π via Theorem 16.51, we create a graph with a vertex
for each possible bit of the proof. For each of the possible 2c logn = nc strings of random bits
that the verifier could use, we create an edge corresponding to the two bits of the proof that
the verifier checks. We know that for any “Yes” instance of the problem Π, it is possible to set
the bits of the proof to 0 and 1 such that at least a 1

2(1− ρ)− γ fraction of the verifier’s tests
pass. This corresponds to partitioning the graph into two parts: one part consists of vertices
corresponding to bits that are set to 0, and the other corresponds to bits that are set to 1. Since
at least 1

2(1− ρ)− γ of the verifier’s tests pass, this implies that at least a 1
2(1− ρ)− γ fraction

of all edges are in the cut (since the values of the two endpoints are different). Similarly, for
any “No” instance of the problem, at most a 1

π arccos(ρ) + γ fraction of the edges can be in the
cut. Thus if we have an α-approximation with constant α such that

α >
1
π arccos(ρ) + γ
1
2(1− ρ)− γ

,

then we can distinguish between “Yes” and “No” instances of Π in polynomial time and thus
P = NP. Since this holds for any γ > 0 and any ρ ∈ (−1, 0), we have that there is no
α-approximation algorithm for constant α with

α > min
ρ∈(−1,0)

1
π arccos(ρ)
1
2(1− ρ)

unless P = NP. To complete the proof, we only need to observe that

min
ρ∈(−1,0)

1
π arccos(ρ)
1
2(1− ρ)

= min
ρ∈[−1,1]

1
π arccos(ρ)
1
2(1− ρ)

;

that is, the minimum of the ratio over the range [−1, 1] is in fact achieved on the range (−1, 0).

We now explain how the PCP proofs for the “Yes” instances of the bipartite unique games
conjecture (those in which at least a 1 − ϵ fraction of the edges are satisfiable) are encoded.
Let G = (V1, V2, E) be the instance of the unique games problem with label set L, such that
every vertex in V1 has the same degree. For each vertex v ∈ V1 ∪ V2 of the bipartite graph
(V1, V2, E), we want to encode its label. To do this, we create a function fv : {0, 1}k → {0, 1}.
To encode the fact that vertex v is labelled with label i, we set the function fv so that it is

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

442 Techniques in proving the hardness of approximation

1 exactly when the ith bit of its input is 1, and is 0 if the ith bit is 0. Such a function is
sometimes called a dictator; its value is dictated completely by one of the input bits (in this
case, fv(x1, . . . , xk) = xi). A block of the PCP proof will be devoted to encoding fv; we will do
this by listing the value of fv on all 2k input strings from {0, 1}k. Note that this is a particularly
inefficient encoding; to encode one of k possible labels takes only ⌈log2 k⌉ bits, whereas 2k bits
is larger by a doubly-exponential factor. For this reason, this encoding is sometimes known as
the long code. However, since k is a constant, the length 2k is also constant, and the length of
the proof is (|V1|+ |V2|)2k, which is polynomial in the size of the unique games instance.

We now need to define a few concepts in order to explain the test that the verifier will use
to check the proof. We say that the influence of the ith bit on a function f : {0, 1}k → {0, 1}
is the probability (taken over all inputs to f) that the function’s value changes if the ith input
bit is flipped. We call this quantity Infi, so that

Infi(f) = Pr
x∈{0,1}k

[f(x) ̸= f(x1, . . . , xi−1, 1− xi, xi+1, . . . , xk)].

Notice that for a dictator function f that depends on the ith bit, Infi(f) = 1, while Infj(f) = 0
for all other j ̸= i. We will say that a function f is far from being a dictator if the influence
of every bit is low. Given an input x ∈ {0, 1}k, we consider the possible introduction of noise
that flips the bits of x independently. We write y ∼ρ x if we obtain y by randomly flipping the
bits of x so that for each i, yi = xi with probability 1

2(1 + ρ) and yi = 1− xi with probability
1
2(1 − ρ) for ρ ∈ [−1, 1]. Finally, we define the concept of the noise sensitivity of a function

f : {0, 1}k → {0, 1}. The noise sensitivity is the probability taken over all inputs x that f(x)
is different than f(y) for y ∼ρ x; a function with high noise sensitivity is one whose output is
likely to change in the presence of noise. We denote noise sensitivity by NS so that

NSρ(f) = Pr
x∈{0,1}k,y∼ρx

[f(x) ̸= f(y)].

There is a more general definition of noise sensitivity for non-Boolean functions that reduces to
this one in the case of Boolean functions.

We now observe that for a dictator Boolean function f , it is easy to state the noise sensitivity;
if the dictator depends on bit i, then it is just the probability that the ith bit is flipped, so that
for a dictator f , NSρ(f) =

1
2(1− ρ). Furthermore, if a function is far from being a dictator, the

following can be shown.

Theorem 16.52: For every ρ ∈ (−1, 0) and γ > 0 there exists a β (depending on ρ and γ)
such that if f : {0, 1}k → [0, 1] has Infi(f) ≤ β for all i, then

NSρ(f) ≤
1

π
arccos(ρ) + γ.

The discussions of noise sensitivity above are suggestive of the proof of Theorem 16.51.
Suppose we choose a vertex v ∈ V1 ∪ V2 at random, choose an input x ∈ {0, 1}k at random,
pick y ∼ρ x, and check if the proof bits corresponding to fv(x) and fv(y) are equal. By the
discussion above, if fv is a dictator, then fv(x) ̸= fv(y) with probability 1

2(1− ρ), while if fv is
far from being a dictator, this probability is at most 1

π arccos(ρ) + γ. Thus we should be able
to test whether the proof encodes a labelling in the proper way by performing this test; the
test will pass with the completeness probability if the proof does indeed encode a labelling and
will pass with at most the soundness probability if each encoded function is far from being a
dictator.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.5 Reductions from unique games 443

However, we need to test more than simply whether the encoding is that of dictator func-
tions; we want to check whether almost all of the edges are satisfied by the encoded labelling,
or whether almost none of the edges are satisfied. We will use the following notation in devising
the appropriate test. For x ∈ {0, 1}k, and a permutation π on the label set π : [k]→ [k], we let
x ◦ π denote the set of bits xπ(1), xπ(2), . . . , xπ(k). Note that for an edge (v, w) ∈ E, if v and w
have labels i and j such that πvw(i) = j, and if fv and fw are the dictator functions encoding
the labels i and j respectively, then for any x ∈ {0, 1}k, fv(x) = fw(x ◦ πvw). Furthermore if
there are two edges (v, w) and (v, u), and we have labels i for v, j for w, and h for u, such that
πvw(i) = j and πvu(i) = h, and if fv,fw, and fu are dictator functions encoding the appropriate
labels for v,w, and u, then for any x ∈ {0, 1}k, fv(x) = fw(x ◦ πvw) = fu(x ◦ πvu).

We can now give the verifier’s test: for a bipartite unique games instance (V1, V2, E) in which
all vertices in V1 have the same degree, it picks a vertex v ∈ V1 uniformly at random, then picks
two neighbors of v uniformly and independently, w, u ∈ V2. It picks x ∈ {0, 1}k uniformly at
random, and draws y ∼ρ x. Finally, it looks at the two bits fw(x ◦ πvw) and fu(y ◦ πvu) and
accepts only if the two bits are different.

We can now prove the completeness of the verifier’s test.

Lemma 16.53: For any ρ ∈ [−1, 1], if at least a 1− ϵ fraction of the edges of the unique games
instance are satisfiable, then there is a proof such that the verifier accepts with probability at
least (1− 2ϵ) · 12(1− ρ).

Proof. We observe that since each vertex in V1 has the same degree, if we choose v randomly,
and choose a neighbor w of v randomly, then (v, w) is a randomly chosen edge, and similarly
(v, u). The probability that (v, w) is not satisfied is at most ϵ, and similarly for (v, u). Hence
the probability that both edges are satisfied is at least 1− 2ϵ.

We assume that the proof is an encoding of the appropriate dictator function fv for each
v ∈ V1∪V2. By the reasoning above, if the edges (v, w) and (v, u) are satisfied, then fw(x◦πvw) =
fu(x ◦ πvu). Now if we draw y ∼ρ x, the probability that the bit of x that dictates the value of
fu is flipped in y is 1

2(1−ρ). Thus given that both (v, w) and (v, u) are satisfied, the probability
that fw(x ◦ πvw) ̸= fu(y ◦ πvu) is 1

2(1 − ρ). Therefore the overall probability that the verifier
accepts is at least (1− 2ϵ) · 12(1− ρ).

We note that given the value of ρ and a γ > 0, we can choose the values of ϵ and δ in the
unique games instance. Thus we get the following corollary.

Corollary 16.54: For any ρ ∈ [−1, 1] and any γ > 0, if at least a 1− ϵ fraction of edges of the
unique games instance are satisfiable, then there is a proof such that the verifier accepts with
probability at least 1

2(1− ρ)− γ.

The proof of soundness is the technically difficult part of the proof, and we only state the
very high level idea here. Suppose there exists a proof such that the verifier accepts with
probability greater than 1

π arccos(ρ) + γ. For a given v ∈ V1 with degree d, define gv(z) =
1
d

∑
w∈V2:(v,w)∈E fw(z ◦ πvw). Let pv be the probability that the verifier accepts given that

it chooses vertex v. Then it can be shown that pv = NSρ(gv). If the verifier accepts with
probability at least 1

π arccos(ρ)+γ, then it is possible to show that for a γ/2 fraction of vertices
v ∈ V1, it is the case that NSρ(gv) ≥ 1

π arccos(ρ) + γ/2. By Theorem 16.52, any such function
gv must have a bit i such that its influence is large. These large influence coordinates are then
used to construct a solution to the unique games instance that satisfies more than a δ fraction
of its edges. The soundness theorem proved is as follows.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

444 Techniques in proving the hardness of approximation

Theorem 16.55: For any ρ ∈ (−1, 0) and any γ > 0, if at most a δ fraction of edges of the
unique games instance are satisfiable, then there is no proof such that the verifier accepts with
probability more than 1

π arccos(ρ) + γ.

The unique games conjecture has been used to prove the hardness of many other problems
in a way similar to that above: the test of a labelling encoded as a dictatorship function via
the long code reduces to the problem of interest.

Chapter Notes

As mentioned in the beginning of the section, complete coverage of the topic of the hardness
of approximation would be a book in itself. At this time that book has not yet been written.
However, there is some coverage of the topic in the book on complexity theory by Arora and
Barak [14], as well as the books on approximation algorithms by Ausiello, Crescenzi, Gambosi,
Kann, Marchetti-Spaccamela, and Protasi [27] and Vazirani [283]. An older survey of Arora and
Lund [18] is still well worth reading; there is also an excellent, more recent survey by Trevisan
[281]. Also useful are lecture notes from a workshop organized by Harsha and Charikar [156].

Our coverage of hardness results is roughly chronological; that is, some of the first proofs
of the hardness of approximation were by reduction from NP-complete problems. It was then
observed that there were relationships between the approximability of various problems, such
that the hardness of one problem would imply the hardness of another. In the early 1990s, the
PCP theorem was proven. This result and subsequent work showed the hardness of various
constraint satisfaction problems, and by using the approximation-preserving reductions previ-
ously known other hardness results were derived. During this time, the label cover problem
was derived as a way of showing the hardness of still other problems. As mentioned previously,
the unique games problem and the unique games conjecture was introduced by Khot [192] in
the early 2000s. Since that time, there has been a substantial amount of work done on deriving
hardness results from the unique games conjecture.

In Section 16.1, the results showing the hardness of scheduling unrelated parallel machines
via a reduction from the 3-dimensional matching problem are due to Lenstra, Shmoys, and
Tardos [215]. The result showing the hardness of the edge-disjoint paths problem is due to
Guruswami, Khanna, Rajaraman, Shepherd, and Yannakakis [153].

In Section 16.2, the concept of an L-reduction was formalized by Papadimitriou and Yan-
nakakis [240] in the paper that introduced the problem class MAX SNP. This paper defined a
particular class of problems and showed that unless P = NP, either all problems in the class
have polynomial-time approximation schemes or no problem in the class has a PTAS; the PCP
theorem then proved that none of the problems in the class have approximation schemes. The
L-reduction from MAX E3SAT to MAX 2SAT is actually the original reduction showing the
NP-completeness of MAX 2SAT due to Garey, Johnson, and Stockmeyer [124]. The L-reduction
from MAX E3SAT to the maximum independent set problem is due to Papadimitriou and Yan-
nakakis [240]. The L-reduction from vertex cover in bounded degree graphs to the Steiner tree
problem is due to Bern and Plassmann [44]. The reduction of the maximum independent set
problem to itself, showing that either there is a polynomial-time approximation scheme for the
problem or no constant factor is possible is due to Garey and Johnson [123]. The reduction of
the set cover problem to the uncapacitated facility location problem is due to Guha and Khuller
[146]; the observation that the same reduction can be extended to the k-median problem is due
to Jain, Mahdian, Markakis, Saberi, and Vazirani [176].

The PCP theorem of Section 16.3 is due to Arora, Lund, Motwani, Sudan, and Szegedy [19],
building on previous work of Feige, Goldwasser, Lovász, Safra, and Szegedy [108] and Arora

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

16.5 Reductions from unique games 445

and Safra [23]. The definition of NP in terms of probabilistically checkable proofs is due to
Arora and Safra [23], though with different parameters than those given in the PCP theorem.
Since the proof of the PCP theorem, there has been a significant stream of work improving the
various parameters of the theorem. Theorem 16.19 is a significant example of this, showing
that the verifier only needs to read three bits of the proof and use the functions odd and even.
This theorem is due to H̊astad [159], as is Theorem 16.23 on a variant of the PCP theorem
that has completeness 1 and proves the hardness of MAX E3SAT to within a factor of 7/8.
Dinur [89] has substantially simplified the very complicated original proof; Radhakrishnan and
Sudan [245] give a presentation of Dinur’s result. The gap-preserving reduction from odd/even
constraint satisfaction to MAX 2SAT at the end of the section is from Bellare, Goldreich, and
Sudan [42].

The label cover problem was introduced in a paper of Arora, Babai, Stern, and Sweedyk
[13] as a way of capturing certain aspects of two-prover interactive proofs. The definition of the
label cover problem given there is somewhat different than the one we give here. The hardness
of approximating MAX E3SAT in which each variable appears in exactly 5 clauses is due to
Feige [107]. The reduction we use from (d1, d2)-regular instances to d-regular instances follows
an analogous reduction in Lund and Yannakakis [220] for the underlying two-prover interactive
proof systems. Theorem 16.28 follows from a theorem known as the parallel repetition theorem,
which again is used in the underlying context of two-prover interactive proof systems; the par-
allel repetition theorem is due to Raz [250]. The proof of the hardness of the set cover problem
is due to Lund and Yannakakis [220]; our presentation follows lecture notes of Khot [191]. The
reduction from the minimization version of the label cover problem to the directed generalized
Steiner tree problem is due to Dodis and Khanna [92]. The reduction from the directed gener-
alized Steiner tree problem to the vertex-connectivity version of the survivable network design
problem is due to Lando and Nutov [207]; this result for the vertex-connectivity version of the
survivable network design problem had been earlier shown by Kortsarz, Krauthgamer, and Lee
[204] in a more complicated proof.

As mentioned previously, the unique games problem and the unique games conjecture were
introduced by Khot [192], originally for bipartite graphs; hence the bipartite unique games
conjecture is in fact the original conjecture. The equivalence of the unique games conjecture
and the linear unique games conjecture was shown by Khot, Kindler, Mossel, and O’Donnell
[193]. The reduction from MAX 2LIN to multicut we show is due to Steurer and Vishnoi [272].
Previously a more complicated proof showed that multicut is not approximable to within any
constant given the unique games conjecture; this prior work is by Chawla, Krauthgamer, Kumar,
Rabani, and Sivakumar [68]. The result on the hardness of the maximum cut problem is due
to Khot, Kindler, Mossel, and O’Donnell [193] together with a result of Mossel, O’Donnell, and
Oleszkiewicz [227]. The overview of the result we give here follow closely lecture notes by Khot
from a workshop on the hardness of approximation mentioned earlier [156]. The unique games
conjecture continues to prove to be a source of strong hardness results. Raghavendra [248] and
Raghavendra and Steurer [249] have given essentially the best possible approximation algorithm
for any constraint satisfaction problem given the unique games conjecture; Raghavendra [248]
shows that the hardness bound for a given constraint satisfaction matches the integrality gap
of a natural SDP, while Raghavendra and Steurer give an algorithm for rounding the SDP with
performance guarantee matching the integrality gap. Resolving the status of the conjecture is
a very interesting open question in the area of approximation algorithms.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

446 Techniques in proving the hardness of approximation

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r 17

Open Problems

The design of approximation algorithms has reached a period of relative maturity as a discipline.
We hope that the wealth of results presented herein makes a strong case that this is so. However,
we also believe that there is much work remaining, with many more fundamental contributions
yet to be discovered.

We will outline a few questions to highlight some of the research that we speculate might
have potential to surprise us with new directions for this area. Since “top 10” lists are the norm
not just for year-end film critics and late-night show hosts, we will structure these thoughts in
that format.

For many optimization problems, the ultimate result is a performance guarantee with a
matching lower bound (based on a complexity-theoretic assumption, at least until the time
that questions such as P vs. NP are resolved). For a significant fraction of this book, we have
been concerned with designing α-approximation algorithms for some constant α – polynomial-
time algorithms that find solutions of objective function value within a factor of α of optimal.
Implicitly, we were seeking the best value α that is achievable for the given problem at hand.

One of the significant developments of the past decade is the introduction of the unique
games conjecture, as discussed in Section 16.5. This conjecture provides a stronger complexity-
theoretic hypothesis on which to base lower bounds for performance guarantees, and recent work
has shown that tight bounds on performance guarantees follow for a wide swath of optimization
problems. Consequently, before turning our attention to questions of algorithm design, our
Open Problem 0 is the resolution of Conjecture 16.43, the unique games conjecture of Khot
[192]. Of course, it is possible that the conjecture is false, but that there are still no polynomial-
time or even quasipolynomial-time algorithms to distinguish nearly-satisfiable instances of the
unique games problem from instances in which very few constraints are satisfiable, and this
would imply similar complexity bounds for all hardness results relying on the unique games
conjecture.

Problem 1: the metric traveling salesman problem. The metric traveling salesman
problem, as introduced in Section 2.4, has repeatedly been the source of inspiration for a wide
gamut of algorithmic advances. Christofides [73] presented his 3/2-approximation algorithm
for this problem nearly 35 years ago, and yet no improved performance guarantee has been
obtained in the intervening years. This is even more remarkable in light of the state of knowledge
concerning the natural linear programming relaxation given in Exercise 11.3. For this LP, we

447

448 Open Problems

k

Figure 17.1: Illustration of the worst example known for the integrality gap for the
metric TSP. The figure on the left gives a graph, and the costs cij are the shortest path
distances in the graph. The figure in the center gives the LP solution, in which the
dotted edges have value 1/2, and the solid edges have value 1. The figure on the right
gives the optimal tour.

know that its integrality gap is at most 3/2 (shown by Wolsey [291], and later by Shmoys and
Williamson [266]), but no example worse than 4/3 is known (see Figure 17.1). Our first open
problem is to give an improved algorithm for the TSP, and in particular to show that one
can obtain a 4/3-approximation algorithm based on this linear program. We note that Oveis
Gharan, Saberi, and Singh have announced a result (not yet published at this writing) that
gives a glimmer of hope for this problem; the result slightly improves upon the bound of 3/2
for the special case in which the metric is given by shortest path distances in an unweighted
undirected graph.

Problem 2: the asymmetric traveling salesman problem. There are still many prob-
lems for which we might be able to obtain constant approximation algorithms (even assuming
that P is not equal to NP), and yet no such algorithm is known. Perhaps most notable among
this class of problems is the metric asymmetric variant of the traveling salesman problem. Exer-
cises 1.3 and 12.4 give O(log n)-approximation algorithms for this problem, and recent elegant
work of Asadpour, Goemans, M ↪adry, Oveis Gharan, and Saberi [25] improves this to a per-
formance guarantee of O(log n/ log log n). As our second open problem, we ask for a constant
approximation algorithm for the metric asymmetric TSP. Again, the natural approach is via
the LP relaxation given in Exercise 12.4. Even progress on the following special case would be
of interest: this is the so-called no-wait flowshop scheduling problem. In this problem, the input
consists of n jobs, and their processing requirements on each of m machines; let pij denote the
processing requirement of job j, j = 1, . . . , n, on machine i, i = 1, . . . ,m. Each job must be
processed first on machine 1, then on machine 2, and so forth, through machine m. Further-
more, this processing must take place over a continuous period of time, or in other words, the
processing on machine i + 1 must start at the moment that it finishes on machine i (that is,
without waiting). The aim is to sequence the jobs so as to minimize the time by which they
have all completed. This problem is NP-hard, and yet no constant approximation algorithm is
known for it.

Problem 3: the bin-packing problem. The ultimate approximation algorithm result
for a problem (in which all feasible solutions have integer objective function values) is to show
that, despite the NP-completeness of deciding if there exists a feasible solution of value k, it is

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Open Problems 449

nonetheless possible to find a feasible solution in polynomial time of objective function value
at most one off from the optimal. For example, we saw such results in Section 2.7 for the edge
coloring problem, and in Section 9.3 for the minimum-degree spanning tree problem. There are
not many natural optimization problems for which such a result might still be achievable, but
the bin-packing problem is the foremost candidate, at least in terms of its previous importance
in the development of approximation algorithms. In Section 4.6, we have seen a polynomial-time
algorithm for the bin-packing problem that uses O(log2 n) extra bins (beyond the optimal), but
although Karmarkar and Karp [187] obtained this result nearly 30 years ago, there has been
no progress on this problem in the interim, and this is our third open problem. Showing that
one can compute a packing with only a constant number of extra bins would be remarkable
progress; again there is an LP relaxation (the one used in the Karmarkar-Karp result) for which
we have no evidence that it cannot be the basis for such a result.

Problem 4: a primal-dual algorithm for the survivable network design problem.
Although we are often tempted to measure progress solely in terms of the performance guaran-
tees that can be achieved, there are other axes of progress. For example, a significant fraction of
the results in this text are based on a linear programming or semidefinite programming relax-
ation; however, not all of those results “are created equal”. Some are rounding results, whereas
others are based on a primal-dual approach. Although both have the advantage of providing
an instance-by-instance a fortiori guarantee, the first approach is saddled by the fact that the
relaxation must be solved first. While solving these relaxations can be done in polynomial time,
it is important to note that solving these relaxations can be computationally quite demanding,
such as when we have an exponential number of constraints in the LP and rely on the ellipsoid
method for its polynomial time solvability (or on the simplex method in practice). For our
fourth open problem, we focus on the survivable network design problem; in Section 11.3, we
presented the iterative rounding 2-approximation algorithm of Jain [175]. For the case in which
the connectivity requirements are 0-1, the primal-dual 2-approximation algorithm of Section 7.4
is known, but for the general case, the best known performance guarantee for a primal-dual algo-
rithm is O(logR), where R is the maximum connectivity requirement (that is, R = maxi,j rij);
this result is due to Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [135]. Our
fourth open problem is to design a primal-dual 2-approximation algorithm for this optimization
problem.

Problem 5: a relaxation-based algorithm for the capacitated facility location
problem. Whether via a primal-dual algorithm or a rounding-based approach, results that
rely on a particular relaxation have a distinct advantage over the alternative – such an algo-
rithm provides an instance-by-instance a fortiori guarantee. In fact, due to recent work by
Raghavendra [248], we know that the ultimate performance guarantee can surprisingly often
be obtained via a semidefinite programming relaxation. Among the problems for which such a
relaxation-based result is still unknown, foremost is the capacitated variant of the uncapacitated
facility location problem introduced in Section 4.5 and discussed extensively throughout this
volume. The only difference between the capacitated and uncapacitated variants is that each
potential facility has a given limit (or capacity) on the number of client nodes that it can serve.
There are elegant local search algorithms for the capacitated problems, starting with work of
Korupolu, Plaxton, and Rajaraman [205], but no such relaxation-based result is known, and
this is our fifth open problem.

Problem 6: the generalized Steiner tree problem. There is a rich literature of
fundamental optimization problems for which a well-known constant approximation algorithm
has remained the benchmark despite substantial effort to improve upon it in the intervening
years (such as the metric TSP). For the last fifteen years, the majority of these questions have

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

450 Open Problems

been settled via advances in complexity theory; indeed, proving the unique games conjecture
would settle far more of these, and we focus only on those problems not known to be related
to this conjecture (and its variants). For our sixth open problem, we turn to a special case
of the survivable network design problem just discussed, the generalized Steiner tree problem
introduced in Section 7.4. For even this special case, the best known performance guarantee
is the factor of 2 first obtained by Agrawal, Klein, and Ravi [4], and more than twenty years
have passed without improvement on this basic problem. Of course, we hope that ideas that
generate progress in this case will lead to comparable improvement for the survivable network
design problem in general.

Problem 7: scheduling unrelated parallel machines. A final example of an improved
constant that we would like to highlight is for the problem of finding a schedule of minimum
length on unrelated parallel machines, which was introduced in Exercise 11.1 and Section 16.1.
The best performance guarantee known is the factor of 2 first obtained by Lenstra, Shmoys,
and Tardos [215]; furthermore, their hardness result proving the NP-hardness of a performance
guarantee better than 3/2 (as we showed in Section 16.1). There has been no progress on either
the upper or lower bound in the intervening 25 years, and so our seventh open problem is, for
some α < 2, to provide an α-approximation algorithm. One particular ray of hope for this
problem lies in a very recent result of Svensson [276] for the special case in which each job has a
given processing time, but is restricted to be processed on a specified subset of machines — in
other words, for each job, its finite machine-dependent processing times are all identical. This
special case is often referred to as requiring that pij ∈ {pj ,∞}. The NP-hardness result given in
Section 16.1 still applies to this special case, and yet Svensson proves a performance guarantee
of 1.9412.

Problem 8: scheduling related parallel machines with precedence constraints.
Complexity-theoretic techniques have also been extremely successful over the past decade in
squashing our hopes for constant approximation algorithms for problems where none were
known. However, there are still a few central open problems of this type, and for our eighth
open problem we would like to highlight one of these. One of the earliest approximation al-
gorithm results is that of Graham [142], who gave a 2-approximation algorithm for scheduling
precedence-constrained jobs on identical parallel machines (given in Exercise 2.3). We have
already mentioned a generalization of this machine environment, when the parallel machines
are unrelated. However, there is natural model in between unrelated and identical machines, in
which the machines run at different speeds, but do so uniformly for all jobs; in other words, the
time that it takes for a given machine to process a particular job is always equal to the inherent
processing requirement of the job divided by that machine’s speed. This is the model of related
parallel machines given in Exercise 2.4. Surprisingly, no constant approximation algorithm is
known for this problem when the jobs have precedence constraints; the best result known for
this problem is an O(logm)-approximation algorithm due to Chudak and Shmoys [76] (see also
Chekuri and Bender [69]).

Problem 9: coloring 3-colorable graphs. Coloring problems have played an integral
role in the history of the development of approximation algorithms. While much has been
accomplished, several basic problems remain. Foremost among them is the problem discussed
in Sections 6.5 and 13.2, finding a good vertex coloring for a graph known to be 3-colorable.
Here the state of the art provides algorithms with guarantees of the form O(nϵ), starting with
the algorithm of Wigderson [286] given in Section 6.5 that uses O(

√
n) colors. However, there

are no complexity-theoretic barriers known to obtaining a polynomial-time algorithm that uses
O(log n) colors for a 3-colorable graph, and to do so is our ninth open problem.

Problem 10: a primal-dual algorithm for the maximum cut problem. Finally,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Open Problems 451

we have already noted that semidefinite programming has been shown to be the basis for the
ultimate performance guarantee for a wide swath of problems. However, while semidefinite
programming is in P, the state of the art for solving SDPs in practice is quite far from what
is known for LP, even in light of recent work to quickly obtain near-optimal solutions for
the SDP itself. Hence, the appeal of primal-dual algorithms in this context is particularly
profound. Our last open problem is to return to the starting point of semidefinite programming
in approximation algorithms, the maximum cut problem and to derive a direct primal-dual
algorithm that matches the performance guarantee of the algorithm presented in Section 6.2.

One final footnote should be added to this list. One surprise, at least to us, is that none of the
problems on this list was of the form: for the following problem for which there is an approxima-
tion algorithm with constant performance guarantee, show that there exists a polynomial-time
approximation scheme. It is not that no such problems exist, but none appeared to us to be
of the same level of centrality to the field as the problems listed above. Nonetheless, we view
this as a testament to which the interplay between algorithm design and complexity theory has
served to yield a thorough understanding of this level of performance guarantee. We believe
that similar understanding for other thresholds will follow, and hope that this list might provide
some guideposts along the way.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

452 Open Problems

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r A

Linear programming

In this appendix we give a quick overview of linear programming. In linear programming,
we find a non-negative, rational vector x that minimizes a given linear objective function in
x subject to linear constraints on x. More formally, given an n-vector c ∈ Qn, an m-vector
b ∈ Qm, and an m×n matrix A = (aij) ∈ Qm×n, an optimal solution to the linear programming
problem

minimize

n∑
j=1

cjxj

(P) subject to

n∑
j=1

aijxj ≥ bi, i = 1, . . . ,m, (A.1)

xj ≥ 0, j = 1, . . . , n. (A.2)

is an n-vector x that minimizes the linear objective function
∑n

j=1 cjxj subject to the constraints
(A.1) and (A.2). The vector x is called the variable. Any x which satisfies the constraints is
said to be feasible, and if such an x exists, the linear program is said to be feasible or is a feasible
solution. We say that we solve the linear program if we find an optimal solution x. If there
does not exist any feasible x, the linear program is called infeasible. The term “linear program”
is frequently abbreviated to LP. There are very efficient, practical algorithms to solve linear
programs; LPs with tens of thousands of variables and constraints are solved routinely.

One could imagine variations and extensions of the linear program above: for example,
maximizing the objective function rather than minimizing it, having equations in addition to
inequalities, and allowing variables xj to take on negative values. However, the linear program
(P) above is sufficiently general that it can capture all these variations, and so is said to be
in canonical form. To see this, observe that maximizing

∑n
j=1 cjxj is equivalent to minimizing

−
∑n

j=1 cjxj , and that an equation
∑n

j=1 aijxj = bi can be expressed as a pair of inequalities∑n
j=1 aijxj ≥ bi and −

∑n
j=1 aijxj ≥ −bi. Finally, a variable xj which is allowed to be negative

can be expressed in terms of two nonnegative variables x+j and x−j by substituting x+j − x−j for
xj in the objective function and the constraints.

Another variation of linear programming, called integer linear programming or integer pro-
gramming, allows constraints that require variable xj to be an integer. For instance, we can

453

454 Linear programming

require that xj ∈ N, or that xj be in a bounded range of integers, such as xj ∈ {0, 1}. Unlike
linear programming, there is currently no efficient, practical algorithm to solve general integer
programs; in fact, many quite small integer programs are very difficult to solve. Integer pro-
gramming is known to be NP-complete, so no efficient algorithm is likely to exist. Nevertheless,
integer programming remains a useful tool because it is a compact way to model problems in
combinatorial optimization, and because there are several important special cases that do have
efficient algorithms.

Linear programming has a very interesting and useful concept of duality. To explain it, we
begin with a small example. Consider the following linear program in canonical form:

minimize 6x1 + 4x2 + 2x3

subject to 4x1 + 2x2 + x3 ≥ 5,

x1 + x2 ≥ 3,

x2 + x3 ≥ 4,

xi ≥ 0, for i = 1, 2, 3.

Observe that because all variables xj are nonnegative, it must be the case that the objective
function 6x1 + 4x2 + 2x3 ≥ 4x1 + 2x2 + x3. Furthermore, 4x1 + 2x2 + x3 ≥ 5 by the first
constraint. Thus we know that the value of the objective function of an optimal solution to
this linear program (called the optimal value of the linear program) is at least 5. We can get
an improved lower bound by considering combinations of the constraints. It is also the case
that 6x1 + 4x2 + 2x3 ≥ (4x1 + 2x2 + x3) + 2 · (x1 + x2) ≥ 5 + 2 · 3 = 11, which is the first
constraint summed together with twice the second constraint. Even better, 6x1 + 4x2 + 2x3 ≥
(4x1 + 2x2 + x3) + (x1 + x2) + (x2 + x3) ≥ 5 + 3 + 4 = 12, by summing all three constraints
together. Thus the optimal value of the LP is at least 12.

In fact, we can set up a linear program to determine the best lower bound obtainable by
various combinations of the constraints. Suppose we take y1 times the first constraint, y2 times
the second, and y3 times the third, where the yi are non-negative. Then the lower bound
achieved is 5y1 + 3y2 + 4y3. We need to ensure that

6x1 + 4x2 + 2x3 ≥ y1(4x1 + 2x2 + x3) + y2(x1 + x2) + y3(x2 + x3),

which we can do by ensuring that no more than 6 copies of x1, 4 copies of x2, and 2 copies of
x3 appear in the sum; that is, 4y1 + y2 ≤ 6, 2y1 + y2 + y3 ≤ 4, and y1 + y3 ≤ 2. We want to
maximize the lower bound achieved subject to these constraints, which gives the linear program

maximize 5y1 + 3y2 + 4y3

subject to 4y1 + y2 ≤ 6,

2y1 + y2 + y3 ≤ 4,

y1 + y3 ≤ 2,

yi ≥ 0, i = 1, 2, 3.

This maximization linear program is called the dual of the previous minimization linear program,
which is referred to as the primal. It is not hard to see that any feasible solution to the dual
gives an objective function value that is a lower bound on the optimal value of the primal.

We can create a dual for any linear program; the dual of the canonical form LP (P) above

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Linear programming 455

is

maximize

m∑
i=1

biyi

(D) subject to
m∑
i=1

aijyi ≤ cj , for j = 1, . . . , n, (A.3)

yi ≥ 0, for i = 1, . . . ,m. (A.4)

As in our small example, we introduce a variable yi for each linear constraint in the primal, and
try to maximize the lower bound achieved by summing yi times the ith constraint, subject to
the constraint that the variable xj not appear more than cj times in the sum.

We now formalize our argument above that the value of the dual of the canonical form LP
is a lower bound on the value of the primal. This fact is called weak duality.

Theorem A.1 (Weak duality): If x is a feasible solution to the LP (P), and y a feasible
solution to the LP (D), then

∑n
j=1 cjxj ≥

∑m
i=1 biyi.

Proof.

n∑
j=1

cjxj ≥
n∑

j=1

(
m∑
i=1

aijyi

)
xj (A.5)

=

m∑
i=1

 n∑
j=1

aijxj

 yi

≥
m∑
i=1

biyi, (A.6)

where the first inequality follows by the feasibility of y (via dual inequalities (A.3)) and xj ≥ 0,
the next equality by an interchange of summations, and the last inequality by the feasibility of
x (via primal inequalities (A.1)) and yi ≥ 0.

A very surprising, interesting, and useful fact is that when both primal and dual LPs are
feasible, their optimal values are exactly the same! This is sometimes called strong duality.

Theorem A.2 (Strong duality): If the LPs (P) and (D) are feasible, then for any optimal
solution x∗ to (P) and any optimal solution y∗ to (D),

∑n
j=1 cjx

∗
j =

∑m
i=1 biy

∗
i .

As an example of this, for the small, three-variable LP and its dual we saw earlier, the
optimal value is 14, achieved by setting x∗1 = 0, x∗2 = 3, and x∗3 = 1 in the primal, and y∗1 = 0,
y∗2 = 2, and y∗3 = 2 in the dual. A proof of Theorem A.2 is beyond the scope of this appendix,
but one can be found in the textbooks on linear programming referenced in the notes at the
end of Chapter 1.

An easy but useful corollary of strong duality is a set of implications called the complemen-
tary slackness conditions. Let x̄ and ȳ be feasible solutions to (P) and (D), respectively. We
say that x̄ and ȳ obey the complementary slackness conditions if

∑m
i=1 aij ȳi = cj for each j such

that x̄j > 0 and if
∑n

j=1 aij x̄j = bi for each i such that ȳi > 0. In other words, whenever x̄j > 0
the dual constraint that corresponds to the variable xj is met with equality, and whenever
ȳi > 0 the primal constraint that corresponds to the variable yi is met with equality.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

456 Linear programming

Corollary A.3 (Complementary slackness): Let x̄ and ȳ be feasible solutions to the LPs
(P) and (D), respectively. Then x̄ and ȳ obey the complementary slackness conditions if and
only if they are optimal solutions to their respective LPs.

Proof. If x̄ and ȳ are optimal solutions, then by strong duality the two inequalities (A.5) and
(A.6) must hold with equality, which implies that the complementary slackness conditions are
obeyed. Similarly, if the complementary slackness conditions are obeyed, then (A.5) and (A.6)
must hold with equality, and it must be the case that

∑n
j=1 cj x̄j =

∑m
i=1 biȳi. By weak duality,∑n

j=1 cjxj ≥
∑m

i=1 biyi for any feasible x and y so therefore x̄ and ȳ must both be optimal.

So far we have only discussed the case in which the LPs (P) and (D) are feasible, but of
course it is possible that one or both of them are infeasible. The following theorem tells us that
if the primal is infeasible and the dual is feasible, the dual must be unbounded: that is, given a
feasible y with objective function value z, then for any z′ > z there exists a feasible y′ of value
z′. Similarly, if the dual is infeasible and the primal is feasible, then the primal is unbounded:
given feasible x with objective function value z, then for any z′ < z there exists a feasible x′

with value z′. If an LP is not unbounded, we say it is bounded.

Theorem A.4: For primal and dual LPs (P) and (D), one of the following four statements
must hold: (i) both (P) and (D) are feasible; (ii) (P) is infeasible and (D) is unbounded; (iii)
(P) is unbounded and (D) is infeasible; or (iv) both (P) and (D) are infeasible.

Sometimes in the design of approximation algorithms it is helpful to take advantage of
the fact that if an LP is feasible, there exist feasible solutions of a particular form, called
basic feasible solutions. Furthermore, if an optimal solution exists, then there exists an basic
optimal solution; that is, an optimal solution that is also a basic feasible solution. Most linear
programming algorithms will return a basic optimal solution. Consider the canonical primal LP:
there are n+m constraints and n variables. A basic solution is obtained by selecting n of the
constraints, treating them as equalities, and solving the resulting n×n linear system (assuming
the system is consistent and the n constraints are linearly independent). The solution might
not be feasible since we ignored some of the constraints. The oldest and most frequently used
linear programming algorithm, called the simplex method, works by moving from basic solution
to basic solution, at each step swapping a constraint outside of the linear system for another
in the linear system in a particular manner, eventually reaching a basic feasible solution, then
finally a basic optimal solution.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

C h a p t e r B

NP-completeness

In this appendix, we briefly review the concepts of NP-completeness and reductions. We will
use the knapsack problem of Section 3.1 as a running example. Recall that in the knapsack
problem, we are given a set of n items I = {1, . . . , n}, where each item i has a value vi and
a size si. All sizes and values are positive integers. The knapsack has capacity B, where B is
also a positive integer. The goal is to find a subset of items S ⊆ I that maximizes the value∑

i∈S vi of items in the knapsack subject to the constraint that the total size of these items is
no more than the capacity; that is,

∑
i∈S si ≤ B.

Recall the definition of a polynomial-time algorithm.

Definition B.1: An algorithm for a problem is said to run in polynomial time, or said to be
a polynomial-time algorithm, with respect to a particular model of computer (such as a RAM)
if the number of instructions executed by the algorithm can be bounded by a polynomial in the
size of the input.

More formally, let x denote an instance of a given problem; for example, an instance of the
knapsack problem is the number n of items, the numbers si and vi giving the sizes and values
of the items, and the number B giving the size of the knapsack. To present the instance as
an input to an algorithm A for the problem, we must encode it in bits in some fashion; let
|x| be the number of bits in the encoding of x. Then |x| is called the size of the instance or
the instance size. Furthermore, we say that A is a polynomial-time algorithm if there exists a
polynomial p(n) such that the running time of A is O(p(|x|)).

We will need the concept of a decision problem. A decision problem is one whose output
is either “Yes” or “No”. It is not difficult to think of decision problems related to optimization
problems. For instance, consider a decision variant of the knapsack problem in which, in addition
to inputs B, and vi and si for every item i, there is also an input C, and the problem is to
output “Yes” if the optimum solution to the knapsack instance has value at least C, and “No”
otherwise. The instances of a decision problem can be divided into “Yes” instances and “No”
instances; that is, instances in which the correct output for the instance is “Yes” (or “No”). The
class P contains all decision problems that have polynomial-time algorithms.

Roughly speaking, the class NP is the set of all decision problems such that for any “Yes”
instance of the problem, there is a short, easily verifiable “proof” that the answer is “Yes”.
Additionally, for each “No” instance of the problem, no such “proof” is convincing. What kind

457

458 NP-completeness

of “short proof” do we have in mind? Take the example of the decision variant of the knapsack
problem given above. For any “Yes” instance, in which there is a feasible subset of items of
value at least C, a short proof of this fact is a list of the items in the subset. Given the knapsack
instance and the list, an algorithm can quickly verify that the items in the list have total size
at most B, and total value at least C. Note that for any “No” instance, then no possible list of
items will be convincing.

We now attempt to formalize this rough idea as follows. A short proof is one whose encoding
is bounded by some polynomial in the size of the instance. An easily verifiable proof is one that
can be verified in time bounded by a polynomial in the size of the instance and the proof. This
gives the following definition.

Definition B.2: A decision problem is said to be in the problem class NP if there exists a
verification algorithm A(·, ·) and two polynomials, p1 and p2, such that:

1. for every “Yes” instance x of the problem, there exists a proof y with |y| ≤ p1(|x|) such
that A(x, y) outputs “Yes”;

2. for every “No” instance x of the problem, for all proofs y with |y| ≤ p1(|x|), A(x, y) outputs
“No”;

3. the running time of A(x, y) is O(p2(|x|+ |y|)).

NP stands for non-deterministic polynomial time.
Observe that nothing precludes a decision problem in NP from having a polynomial-time

algorithm. However, the central problem of complexity theory is whether every problem in NP
has a polynomial-time algorithm. This is usually expressed as the question of whether the class
P of decision problems with polynomial-time algorithms is the same as the class NP, or, more
succinctly, as whether P = NP.

As an approach to this problem, it has been shown that there are problems in NP that are
representative of the entire class, in the sense that if they have polynomial-time algorithms,
then P = NP, and if they do not, then P ̸= NP. These are the NP-complete problems. To
define NP-completeness, we will need the notion of a polynomial-time reduction.

Definition B.3: Given two decision problems A and B, there is a polynomial-time reduction
from A to B (or A reduces to B in polynomial time) if there is a polynomial-time algorithm that
takes as input an instance of A and produces as output an instance of B and has the property
that a “Yes” instance of B is output if and only if a “Yes” instance of A is input.

We will use the symbol ≼ to denote a polynomial-time reduction so that we write A ≼ B
if A reduces to B in polynomial time. Sometimes the symbol ≤P

m is used in the literature to
denote a polynomial-time reduction. We can now give a formal definition of NP-completeness.

Definition B.4 (NP-complete): A problem B is NP-complete if B is in NP, and for every
problem A in NP, there is a polynomial-time reduction from A to B.

The following theorem is now easy to show.

Theorem B.5: Let B be an NP-complete problem. If B has a polynomial-time algorithm, then
P = NP.

Proof. It is easy to see that P ⊆ NP. To show that NP ⊆ P, pick any problem A ∈ NP. For
any instance of the problem A, we can run our polynomial-time reduction from A to B and use
the polynomial-time algorithm for B. We return “Yes” if this algorithm returns “Yes”, and “No”

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

NP-completeness 459

otherwise. By the properties of the polynomial-time reduction, this algorithm correctly decides
whether the instance is a “Yes” instance of A, and does so in polynomial time.

A useful property of NP-complete problems is that once we have an NP-complete problem
B it is often easy to prove that other problems are also NP-complete. As we will see, all we have
to do is show that a problem A is in NP, and that B ≼ A. This follows as an easy corollary of
the transitivity of polynomial-time reductions.

Theorem B.6: Polynomial-time reductions are transitive: that is, if A ≼ B and B ≼ C, then
A ≼ C.

Corollary B.7: If A is in NP, B is NP-complete, and B ≼ A, then A is also NP-complete.

Proof. All we need to show is that for each problem C in NP, there is a polynomial-time
reduction from C to A. Because B is NP-complete, we know that C ≼ B. By hypothesis,
B ≼ A. By Theorem B.6, C ≼ A.

Many thousands of problems have been shown to be NP-complete. We list two of them here.
In the partition problem, we are given as input positive integers a1, . . . , an such that

∑n
i=1 ai

is even. We must decide whether there exists a partition of {1, . . . , n} into sets S and T such
that

∑
i∈S ai =

∑
i∈T ai. In the 3-partition problem, we are given as input positive integers

a1, . . . , a3n, b, such that b/4 < ai < b/2 for all i, and such that
∑3n

i=1 ai = nb. We must decide
whether there exists a partition of {1, . . . , 3n} into n sets Tj such that

∑
i∈Tj

ai = b for all
j = 1, . . . , n. By the condition on the ai, each Tj must contain exactly 3 elements. The decision
version of the knapsack problem given at the beginning of the section is also NP-complete.
However, as shown in Section 3.1, we know that this problem has a pseudopolynomial-time
algorithm. This brings up an interesting distinction among the NP-complete problems. Some
NP-complete problems, such as the knapsack and partition problems, are NP-complete only
when it is assumed that their numeric data is encoded in binary. As we have seen, the knapsack
problem has a polynomial-time algorithm if the input is encoded in unary (recall that in a
unary encoding the number 7 would be encoded as 1111111). The partition problem also has
a polynomial-time algorithm if the input is encoded in unary. Other problems, however, such
as the 3-partition problem above, are NP-complete even when their numeric data is encoded in
unary. We call such problems strongly NP-complete, or, sometimes, unary NP-complete. In
contrast, problems such as the knapsack and partition problems are called weakly NP-complete
or binary NP-complete.

Definition B.8: A problem B is strongly NP-complete if it is NP-complete even when its nu-
meric data is encoded in unary. A problem C is weakly NP-complete if it has a pseudopolynomial-
time algorithm (that is, it has a polynomial-time algorithm if its numeric data is encoded in
unary).

We conclude this section by defining the term NP-hard, which can be applied to either
optimization or decision problems. Roughly speaking, it means “as hard as the hardest problem
in NP”. To be more precise, we need to define an oracle. Given a decision or optimization
problem A, we say that an algorithm has A as an oracle (or has oracle access to A) if we
suppose that the algorithm can solve instance of A with a single instruction.

Definition B.9 (NP-hard): A problem A is NP-hard if there is a polynomial-time algorithm
for an NP-complete problem B when the algorithm has oracle access to A.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

460 NP-completeness

For example, the knapsack problem is NP-hard, because given oracle access to it, we can
solve the decision version of the knapsack problem in polynomial time: we simply check whether
the value of the optimal solution is at least the value C for the decision problem, and output
“Yes” if so, otherwise ”No”.

The term“NP-hard” is most frequently applied to optimization problems whose correspond-
ing decision problems are NP-complete; it is easy to see that such optimization problems are
indeed NP-hard as we saw for the knapsack problem above. It is also easy to see that if A is
NP-hard and there is a polynomial-time algorithm for A, then P = NP.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography

[1] A. A. Ageev and M. I. Sviridenko. An 0.828-approximation algorithm for the uncapaci-
tated facility location problem. Discrete Applied Mathematics, 93:149–156, 1999.

[2] A. A. Ageev and M. I. Sviridenko. Approximation algorithms for maximum coverage and
max cut with given sizes of parts. In G. Cornuéjols, R. E. Burkard, and G. J. Woeginger,
editors, Integer Programming and Combinatorial Optimization, number 1610 in Lecture
Notes in Computer Science, pages 17–30, 1999.

[3] A. A. Ageev and M. I. Sviridenko. Pipage rounding: A new method of constructing
algorithms with proven performance guarantee. Journal of Combinatorial Optimization,
8:307–328, 2004.

[4] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approximation algorithm for
the generalized Steiner problem on networks. SIAM Journal on Computing, 24:440–456,
1995.

[5] F. Alizadeh. Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM Journal on Optimization, 5:13–51, 1995.

[6] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid. Approximation schemes for scheduling.
In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
493–500, 1997.

[7] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretic game and its application
to the k-server problem. SIAM Journal on Computing, 24:78–100, 1995.

[8] R. Andersen and U. Feige. Interchanging distance and capacity in probabilistic mappings.
CoRR, abs/0907.3631, 2009. Available from http://arxiv.org/abs/0907.3631. Accessed
June 4, 2010.

[9] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton, NJ, USA, 2006.

[10] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted
to partial k-trees. Discrete Applied Mathematics, 23:11–24, 1989.

461

462 Bibliography

[11] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45:753–782, 1998.

[12] S. Arora. Approximation schemes for NP-hard geometric optimization problems: a survey.
Mathematical Programming, 97:43–69, 2003.

[13] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in
lattices, codes, and systems of linear equations. Journal of Computer and System Sciences,
54:317–331, 1997.

[14] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, 2009.

[15] S. Arora, E. Chlamtac, and M. Charikar. New approximation guarantee for chromatic
number. In Proceedings of the 38th Annual ACM Symposium on the Theory of Computing,
pages 215–224, 2006.

[16] S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense
instances of NP-hard problems. Journal of Computer and System Sciences, 58:193–210,
1999.

[17] S. Arora, J. R. Lee, and A. Naor. Euclidean distortion and the sparsest cut. Journal of
the American Mathematical Society, 21:1–21, 2008.

[18] S. Arora and C. Lund. Hardness of approximations. In D. S. Hochbaum, editor, Ap-
proximation Algorithms for NP-Hard Problems, chapter 10. PWS Publishing Company,
1997.

[19] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45:501–555, 1998.

[20] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for Euclidean k-medians and
related problems. In Proceedings of the 30th Annual ACM Symposium on the Theory of
Computing, pages 106–113, 1998.

[21] S. Arora, S. Rao, and U. Vazirani. Geometry, flows, and graph-partitioning algorithms.
Communications of the ACM, 51:96–105, 2008.

[22] S. Arora, S. Rao, and U. Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM, 56, 2009. Article 5.

[23] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45:70–122, 1998.

[24] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search
heuristics for k-median and facility location problems. SIAM Journal on Computing,
33:544–562, 2004.

[25] A. Asadpour, M. X. Goemans, A. M ↪adry, S. Oveis Gharan, and A. Saberi. An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman prob-
lem. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 379–389, 2010.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 463

[26] Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theorem and
approximation algorithm. SIAM Journal on Computing, 27:291–301, 1998.

[27] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Pro-
tasi. Complexity and Approximation: Combinatorial Optimization Problems and Their
Approximability Properties. Springer-Verlag, Berlin, Germany, 1999.

[28] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In Proceedings of the 38th Annual
IEEE Symposium on Foundations of Computer Science, pages 542–547, 1997.

[29] V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM Journal on Discrete Mathematics, 12:289–297, 1999.

[30] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM, 41:153–180, 1994.

[31] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636, 1989.

[32] N. Bansal, R. Khandekar, and V. Nagarajan. Additive guarantees for degree-bounded
directed network design. SIAM Journal on Computing, 39:1413–1431, 2009.

[33] R. Bar-Yehuda. One for the price of two: a unified approach for approximating covering
problems. Algorithmica, 27:131–144, 2000.

[34] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Local ratio: A unified framework
for approximation algorithms. ACM Computing Surveys, 36:422–463, 2004.

[35] R. Bar-Yehuda and S. Even. A linear time approximation algorithm for the weighted
vertex cover problem. Journal of Algorithms, 2:198–203, 1981.

[36] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex
cover problem. Annals of Discrete Mathematics, 25:27–46, 1985.

[37] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth. Approximation algorithms for the
feedback vertex set problem with applications to constraint satisfaction and Bayesian
inference. SIAM Journal on Computing, 27:942–959, 1998.

[38] R. Bar-Yehuda and D. Rawitz. On the equivalence between the primal-dual schema and
the local ratio technique. SIAM Journal on Discrete Mathematics, 19:762–797, 2005.

[39] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science,
pages 184–193, 1996.

[40] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proceedings of the 30th
Annual ACM Symposium on the Theory of Computing, pages 161–168, 1998.

[41] A. Becker and D. Geiger. Optimization of Pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artificial Intelligence,
83:167–188, 1996.

[42] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs, and nonapproximability –
towards tight results. SIAM Journal on Computing, 27:804–915, 1998.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

464 Bibliography

[43] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically check-
able proofs and applications to approximation. In Proceedings of the 25th Annual ACM
Symposium on the Theory of Computing, pages 294–304, 1993.

[44] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information
Processing Letters, 32:171–176, 1989.

[45] D. P. Bertsekas and J. N. Tsitsiklis. Introduction to Probability. Athena Scientific, Nashua,
NH, USA, second edition, 2008.

[46] D. Bertsimas and C.-P. Teo. From valid inequalities to heuristics: A unified view of primal-
dual approximation algorithms in covering problems. Operations Research, 46:503–514,
1998.

[47] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
Belmont, MA, USA, 1997.

[48] D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize
collecting traveling salesman problem. Mathematical Programming, 59:413–420, 1993.

[49] G. Birkhoff. Tres observaciones sobre el algebra lineal. Revista Facultad de Ciencias
Exactas, Puras y Aplicadas Universidad Nacional de Tucuman, Serie A (Matematicas y
Fisica Teorica), 5:147–151, 1946.

[50] R. G. Bland, D. Goldfarb, and M. J. Todd. The ellipsoid method: A survey. Operations
Research, 29:1039–1091, 1981.

[51] A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for the
k-MST problem. Journal of Computer and System Sciences, 58:101–108, 1999.

[52] H. L. Bodlaender. Planar graphs with bounded treewidth. Technical Report RUU-CS-
88-14, Utrecht University Department of Computer Science, 1988.

[53] A. Borchers and D.-Z. Du. The k-Steiner ratio in graphs. SIAM Journal on Computing,
26:857–869, 1997.

[54] C. Borell. The Brunn-Minkowski inequality in Gauss space. Inventiones Mathematicae,
30:207–216, 1975.

[55] J. Bourgain. On Lipschitz embedding of finite metric spaces in Hilbert space. Israel
Journal of Mathematics, 52:46–52, 1985.

[56] S. C. Boyd and W. R. Pulleyblank. Optimizing over the subtour polytope of the travelling
salesman problem. Mathematical Programming, 49:163–187, 1991.

[57] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23:1222–1239,
2001.

[58] J. Byrka and K. Aardal. An optimal bifactor approximation algorithm for the metric
uncapacitated facility location problem. SIAM Journal on Computing, 39:2212–2231,
2010.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 465

[59] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. An improved LP-based approximation
for Steiner tree. In Proceedings of the 42nd Annual ACM Symposium on the Theory of
Computing, pages 583–592, 2010.

[60] G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences, 60:564–574, 2000.

[61] T. Carnes and D. Shmoys. Primal-dual schema for capacitated covering problems. In
A. Lodi, A. Panconesi, and G. Rinaldi, editors, Integer Programming and Combinatorial
Optimization, number 5035 in Lecture Notes in Computer Science, pages 288–302, 2008.

[62] R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips. Strengthening integrality
gaps for capacitated network design and covering problems. In Proceedings of the 11th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 106–115, 2000.

[63] D. Chakrabarty, J. Könemann, and D. Pritchard. Integrality gap of the hypergraphic
relaxation of Steiner trees: a short proof of a 1.55 upper bound. Operations Research
Letters, 38:567–570, 2010.

[64] M. Charikar and S. Guha. Improved combinatorial algorithms for facility location prob-
lems. SIAM Journal on Computing, 34:803–824, 2005.

[65] M. Charikar, K. Makarychev, and Y. Makarychev. Near-optimal algorithms for unique
games. In Proceedings of the 38th Annual ACM Symposium on the Theory of Computing,
pages 205–214, 2006.

[66] M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem. In Proceedings
of the 39th Annual IEEE Symposium on Foundations of Computer Science, pages 458–
467, 1998.

[67] M. Charikar and A. Wirth. Maximizing quadratic programs: extending Grothendieck’s
inequality. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 54–60, 2004.

[68] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hardness
of approximating multicut and sparsest-cut. Computational Complexity, 15:94–114, 2006.

[69] C. Chekuri and M. Bender. An efficient approximation algorithm for minimizing makespan
on uniformly related machines. Journal of Algorithms, 41:212–224, 2001.

[70] C. Chekuri, S. Guha, and J. Naor. The Steiner k-cut problem. SIAM Journal on Discrete
Mathematics, 20:261–271, 2006.

[71] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Annals of Mathematical Statistics, 23:493–507, 1952.

[72] E. Chlamtac, K. Makarychev, and Y. Makarychev. How to play unique games using
embeddings. In Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science, pages 687–696, 2006.

[73] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.
Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University,
1976.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

466 Bibliography

[74] F. A. Chudak, M. X. Goemans, D. S. Hochbaum, and D. P. Williamson. A primal-dual
interpretation of two 2-approximation algorithms for the feedback vertex set problem in
undirected graphs. Operations Research Letters, 22:111–118, 1998.

[75] F. A. Chudak, T. Roughgarden, and D. P. Williamson. Approximate k-MSTs and k-
Steiner trees via the primal-dual method and Lagrangean relaxation. Mathematical Pro-
gramming, 100:411–421, 2004.

[76] F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrainted
scheduling problems on parallel machines that run at different speeds. Journal of Algo-
rithms, 30:323–343, 1999.

[77] F. A. Chudak and D. B. Shmoys. Improved approximation algorithms for the uncapaci-
tated facility location problem. SIAM Journal on Computing, 33:1–25, 2003.

[78] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of Operations
Research, 4:233–235, 1979.

[79] V. Chvátal. Linear Programming. W. H. Freeman, 1983.

[80] W. Cook and P. Seymour. Tour merging via branch-decomposition. INFORMS Journal
on Computing, 15:233–248, 2003.

[81] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. Wiley and Sons, New York, NY, USA, 1998.

[82] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA, USA, third edition, 2009.

[83] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of bank accounts to optimize
float: an analytic study of exact and approximate algorithms. Management Science,
23:789–810, 1977.

[84] G. Cornuéjols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a graph
and some related integer polyhedra. Mathematical Programming, 33:1–27, 1985.

[85] W. H. Cunningham. Minimum cuts, modular functions, and matroid polyhedra. Networks,
15:205–215, 1985.

[86] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23:864–894, 1994.

[87] M. M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer, 1997.

[88] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959.

[89] I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54, 2007. Article
12.

[90] I. Dinur, E. Mossel, and O. Regev. Conditonal hardness for approximate coloring. SIAM
Journal on Computing, 39:843–873, 2009.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 467

[91] I. Dinur and S. Safra. The importance of being biased. In Proceedings of the 34th Annual
ACM Symposium on the Theory of Computing, pages 33–42, 2002.

[92] Y. Dodis and S. Khanna. Designing networks with bounded pairwise distance. In Proceed-
ings of the 31st Annual ACM Symposium on the Theory of Computing, pages 750–759,
1999.

[93] R. Durrett. The Essentials of Probability. The Duxbury Press, Belmont, CA, USA, 1994.

[94] R. Durrett. Elementary Probability for Applications. Cambridge University Press, New
York, NY, USA, 2009.

[95] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Stan-
dards B, 71B:233–240, 1967.

[96] J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1:127–136,
1971.

[97] K. Edwards. The complexity of colouring problems on dense graphs. Theoretical Computer
Science, 43:337–343, 1986.

[98] F. Eisenbrand, F. Grandoni, T. Rothvoß, and G. Schäfer. Connected facility location via
random facility sampling and core detouring. Journal of Computer and System Sciences,
76:709–726, 2010.

[99] P. Erdős. Gráfok páros körüljárású részgráfjairól (On bipartite subgraphs of graphs, in
Hungarian). Mat. Lapok, 18:283–288, 1967.

[100] P. Erdős and L. Pósa. On the maximal number of disjoint circuits of a graph. Publ. Math
Debrecen, 9:3–12, 1962.

[101] P. Erdős and J. L. Selfridge. On a combinatorial game. Journal of Combinatorial Theory
B, 14:293–301, 1973.

[102] G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning algo-
rithms. SIAM Journal on Computing, 28:2187–2214, 1999.

[103] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-and-conquer approximation algorithms
via spreading metrics. Journal of the ACM, 47:585–616, 2000.

[104] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity
flow problems. SIAM Journal on Computing, 5:691–703, 1976.

[105] J. Fakcharoenphol, S. Rao, and K. Talwar. Algorithms column: Approximating metrics
by tree metrics. SIGACT News, 35:60–70, 2004.

[106] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, 69:485–497, 2004.

[107] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45:634–652,
1998.

[108] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques. Journal of the ACM, 43:268–292, 1996.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

468 Bibliography

[109] U. Feige and G. Schechtman. On the optimality of the random hyperplane rounding
technique for MAX CUT. Random Structures and Algorithms, 20:403–440, 2002.

[110] W. Fernandez de la Vega. MAX-CUT has a randomized approximation scheme in dense
graphs. Random Structures and Algorithms, 8:187–198, 1996.

[111] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ϵ in
linear time. Combinatorica, 1:349–355, 1981.

[112] M. C. Ferris, O. L. Mangasarian, and S. J. Wright. Linear Programming with MATLAB.
Society for Industrial and Applied Mathematics and the Mathematical Programming
Society, Philadelphia, PA, USA, 2007.

[113] G. Finn and E. Horowitz. A linear time approximation algorithm for multiprocessor
scheduling. BIT, 19:312–320, 1979.

[114] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for
maximizing submodular set functions – II. Mathematical Programming Study, 8:73–87,
1978.

[115] L. Fleischer, J. Könemann, S. Leonardi, and G. Schäfer. Simple cost sharing schemes
for multicommodity rent-or-buy and stochastic Steiner tree. In Proceedings of the 38th
Annual ACM Symposium on the Theory of Computing, pages 663–670, 2006.

[116] D. Fotakis. A primal-dual algorithm for online non-uniform facility location. Journal of
Discrete Algorithms, 5:141–148, 2007.

[117] T. Fujito. Approximating node-deletion problems for matroidal properties. Journal of
Algorithms, 31:211–227, 1999.

[118] M. Fürer and B. Raghavachari. Approximating the minimum degree spanning tree to
within one from the optimal degree. In Proceedings of the 3rd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 317–324, 1992.

[119] M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner tree to within
one of optimal. Journal of Algorithms, 17:409–423, 1994.

[120] H. N. Gabow, M. X. Goemans, É. Tardos, and D. P. Williamson. Approximating the
smallest k-edge connected spanning subgraph by LP-rounding. Networks, 53:345–357,
2009.

[121] D. Gale. Optimal assignments in an ordered set: An application of matroid theory.
Journal of Combinatorial Theory, 4:176–180, 1968.

[122] M. R. Garey and D. S. Johnson. “Strong”NP-completeness results: Motivation, examples,
and implications. Journal of the ACM, 25:499–508, 1978.

[123] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, NY, 1979.

[124] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1:237–267, 1976.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 469

[125] N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings of
the 37th Annual IEEE Symposium on Foundations of Computer Science, pages 302–309,
1996.

[126] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut
theorems and their applications. SIAM Journal on Computing, 25:235–251, 1996.

[127] N. Garg, V. V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for
integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

[128] G. Gens and E. Levner. Complexity of approximation algorithms for combinatorial prob-
lems: a survey. SIGACT News, 12:52 – 65, 1980.

[129] G. V. Gens and E. V. Levner. On approximation algorithms for universal scheduling
problems. Izvestiya Akademii Nauk SSSR, Tehnicheskaya Kibernetika, 6:38–43, 1978. (in
Russian).

[130] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Math-
ematics, 16:1–29, 1968.

[131] M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum latency
problem. Mathematical Programming, 82:111–124, 1998.

[132] M. X. Goemans. A supermodular relaxation for scheduling with release dates. In W. H.
Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer Programming and
Combinatorial Optimization, volume 1084 of Lecture Notes in Computer Science, pages
288–300, 1996.

[133] M. X. Goemans. Improved approximation algorithms for scheduling with release dates.
In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
591–598, 1997.

[134] M. X. Goemans. Minimum bounded-degree spanning trees. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, pages 273–282, 2006.

[135] M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and D. P.
Williamson. Improved approximation algorithms for network design problems. In Proceed-
ings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223–232,
1994.

[136] M. X. Goemans, N. J. A. Harvey, K. Jain, and M. Singh. A randomized rounding al-
gorithm for the asymmetric traveling salesman problem. CoRR, abs/0909.0941, 2009.
Available at http://arxiv.org/abs/0909.0941. Accessed June 10, 2010.

[137] M. X. Goemans and D. P. Williamson. New 3/4-approximation algorithms for the maxi-
mum satisfiability problem. SIAM Journal on Discrete Mathematics, 7:656–666, 1994.

[138] M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems. SIAM Journal on Computing, 24:296–317, 1995.

[139] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42:1115–1145, 1995.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

470 Bibliography

[140] M. X. Goemans and D. P. Williamson. The primal-dual method for approximation al-
gorithms and its application to network design problems. In D. S. Hochbaum, editor,
Approximation algorithms for NP-hard problems, chapter 4. PWS Publishing Company,
1997.

[141] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

[142] R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical
Journal, 45:1563–1581, 1966.

[143] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17:416–429, 1969.

[144] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1:169–197, 1981.

[145] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial
Optimization. Springer-Verlag, 1988.

[146] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.
Journal of Algorithms, 31:228–248, 1999.

[147] A. Gupta. Steiner points in tree metrics don’t (really) help. In Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 220–227, 2001.

[148] A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approximation via cost-sharing:
Simpler and better approximation algorithms for network design. Journal of the ACM,
54, 2007. Article 11.

[149] A. Gupta, A. Kumar, and T. Roughgarden. Simpler and better approximation algorithms
for network design. In Proceedings of the 35th Annual ACM Symposium on the Theory
of Computing, pages 365–372, 2003.

[150] A. Gupta and K. Talwar. Approximating unique games. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 99–106, 2006.

[151] A. Gupta and K. Tangwongsan. Simpler analyses of local search algorithms for facility
location. Available at http://arxiv.org/abs/0809.2554, 2008.

[152] V. Guruswami and S. Khanna. On the hardness of 4-coloring a 3-colorable graph. SIAM
Journal on Discrete Mathematics, 18:30–40, 2004.

[153] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis. Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and related
problems. Journal of Computer and System Sciences, 67:473–496, 2003.

[154] M. Hajiaghayi and K. Jain. The prize-collecting generalized Steiner tree problem via
a new approach of primal-dual schema. In Proceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 631–640, 2006.

[155] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average com-
pletion time: Off-line and on-line approximation algorithms. Mathematics of Operations
Research, 22:513–544, 1997.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 471

[156] P. Harsha, M. Charikar, M. Andrews, S. Arora, S. Khot, D. Moshkovitz, L. Zhang,
A. Aazami, D. Desai, I. Gorodezky, G. Jagannathan, A. S. Kulikov, D. J. Mir, A. Newman,
A. Nikolov, D. Pritchard, and G. Spencer. Limits of approximation algorithms: PCPs and
unique games (DIMACS tutorial lecture notes). CoRR, abs/1002.3864, 2010. Available
at http://arxiv.org/abs/1002.3864. Accessed June 2, 2010.

[157] R. Hassin. Approximation schemes for the restricted shortest path problem. Mathematics
of Operations Research, pages 36–42, 1992.

[158] J. H̊astad. Clique is hard to approximate within n1−ϵ. Acta Mathematica, 182:105–142,
1999.

[159] J. H̊astad. Some optimal inapproximability results. Journal of the ACM, 48:798–859,
2001.

[160] D. S. Hochbaum. Approximation algorithms for the set covering and vertex cover prob-
lems. SIAM Journal on Computing, 11:555–556, 1982.

[161] D. S. Hochbaum. Heuristics for the fixed cost median problem. Mathematical Program-
ming, 22:148–162, 1982.

[162] D. S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS Publish-
ing Company, 1997.

[163] D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k-center problem.
Mathematics of Operations Research, 10:180–184, 1985.

[164] D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algorithms for
bottleneck problems. Journal of the ACM, 33:533–550, 1986.

[165] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. Journal of the ACM, 34:144–162, 1987.

[166] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58:13–30, 1963.

[167] A. J. Hoffman. Some recent applications of the theory of linear inequalities to extremal
combinatorial analysis. In R. Bellman and M. Hall, Jr., editors, Combinatorial Analysis,
volume X of Proceedings of Symposia in Applied Mathematics, pages 113–127. American
Mathematical Society, 1960.

[168] A. J. Hoffman. On simple combinatorial optimization problems. Discrete Mathematics,
106/107:285–289, 1992.

[169] K. Hogstedt, D. Kimelman, V. T. Rajan, T. Roth, and M. Wegman. Graph cutting
algorithms for distributed applications partitioning. ACM SIGMETRICS Performance
Evaluation Review, 28:27–29, 2001.

[170] I. Holyer. The NP-completeness of edge coloring. SIAM Journal on Computing, 10:718–
720, 1981.

[171] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, New York,
NY, USA, 1985.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

472 Bibliography

[172] W.-L. Hsu and G. L. Nemhauser. Easy and hard bottleneck location problems. Discrete
Applied Mathematics, 1:209–215, 1979.

[173] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems. Journal of the ACM, 22:463–468, 1975.

[174] J. R. Jackson. Scheduling a production line to minimize maximum tardiness. Research
Report 43, Management Science Research Project, University of California at Los Angeles,
1955.

[175] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21:39–60, 2001.

[176] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. V. Vazirani. Greedy facility location
algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM,
50:795–824, 2003.

[177] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of
the ACM, 48:274–296, 2001.

[178] D. S. Johnson. Near-optimal Bin Packing Algorithms. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, June 1973.

[179] D. S. Johnson. Approximation algorithms for combinatorial problems. Journal of Com-
puter and System Sciences, 9:256–278, 1974.

[180] M. Jünger and W. Pulleyblank. New primal and dual matching heuristics. Algorithmica,
13:357–380, 1995.

[181] N. Kahale. On reducing the cut ratio to the multicut problem. Techical Report 93-78,
DIMACS, 1993.

[182] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite
programming. Journal of the ACM, 45:246–265, 1998.

[183] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algo-
rithm. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 21–30, 1993.

[184] D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47:46–76, 2000.

[185] D. R. Karger, P. Klein, C. Stein, M. Thorup, and N. E. Young. Rounding algorithms for
a geometric embedding of minimum multiway cut. Mathematics of Operations Research,
29:436–461, 2004.

[186] O. Kariv and S. L. Hakimi. An algorithmic approach to network location problems. II:
The p-medians. SIAM Journal on Applied Mathematics, 37:539–560, 1979.

[187] N. Karmarkar and R. M. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In Proceedings of the 23rd Annual IEEE Symposium on Foundations
of Computer Science, pages 312–320, 1982.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 473

[188] J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess, G. J. Tesauro, and S. R.
White. Biologically inspired defenses against computer viruses. In Proceedings of the
International Joint Conference on Artificial Intelligence, 1995.

[189] L. G. Khachiyan. A polynomial algorithm in linear programming (in Russian). Doklady
Akademii Nauk SSSR, 244:1093–1096, 1979.

[190] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic
number. Combinatorica, 20:393–415, 2000.

[191] S. Khot. Lecture notes from Fall 2004, Georgia Tech CS 8002: PCPs
and the Hardness of Approximation, Lecture 3: Hardness of Set Cover.
http://http://www.cs.nyu.edu/ khot/pcp-lecnotes/lec3.ps. Accessed June 2,
2010.

[192] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
Annual ACM Symposium on the Theory of Computing, pages 767–775, 2002.

[193] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for
MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing, 37:319–357, 2007.

[194] S. Khot and O. Regev. Vertex cover might be hard to approximate to with 2-ϵ. Journal
of Computer and System Sciences, 74:335–349, 2008.

[195] H. Kise, T. Ibaraki, and H. Mine. Performance analysis of six approximation algorithms
for the one-machine maximum lateness scheduling problem with ready times. Journal of
the Operations Research Society of Japan, 22:205–224, 1979.

[196] P. Klein and R. Ravi. A nearly best-possible approximation algorithm for node-weighted
Steiner trees. Journal of Algorithms, 19:104–115, 1995.

[197] J. Kleinberg and É. Tardos. Approximation algorithms for classification problems with
pairwise relationships: Metric labeling and markov random fields. Journal of the ACM,
49:616–639, 2002.

[198] J. Kleinberg and É. Tardos. Algorithm Design. Pearson Education, Boston, Mas-
sachusetts, 2006.

[199] J. M. Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD thesis,
Massachusetts Institute of Technology, May 1996.

[200] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, third edition, 1998.

[201] D. Kőnig. Grafok és alkalmazásuk a determinánsok és a halmazok elméletére [in Hungar-
ian]. Mathematikai és Természettudományi Értesitő, 34:104–119, 1916.

[202] G. Konjevod, R. Ravi, and F. Sibel Salman. On approximating planar metrics by tree
metrics. Information Processing Letters, 80:213–219, 2001.

[203] B. Korte and J. Vygen. Combinatorial Optimization. Springer, Berlin, Germany, fourth
edition, 2007.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

474 Bibliography

[204] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-
connectivity network design problems. SIAM Journal on Computing, 33:704–720, 2004.

[205] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic
for facility location problems. Journal of Algorithms, 37:146–188, 2000.

[206] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses. Man-
agement Science, 9:643–666, 1963.

[207] Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theoretical Computer
Science, 410:2122–2125, 2009.

[208] L. C. Lau, R. Ravi, and M. Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, New York, NY, USA, 2011.

[209] L. C. Lau and M. Singh. Iterative rounding and relaxation. To appear in RIMS Kôkyûroku
Bessatsu. Available at http://www.cse.cuhk.edu/∼chi/papers/relaxation.pdf. Ac-
cessed November 19, 2010., 2008.

[210] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4:339–356, 1979.

[211] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization. John Wiley and Sons,
Chichester, 1985.

[212] J. R. Lee. Distance scales, embeddings, and metrics of negative type. Unpublished
manuscript. Available at http://www.cs.washington.edu/homes/jrl/papers/soda05-
full.pdf. Accessed November 19, 2010., 2005.

[213] T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-
commodity flow problems with applications to approximation algorithms. In Proceedings
of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 422–
431, 1988.

[214] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46:787–832, 1999.

[215] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

[216] K. J. Lieberherr and E. Specker. Complexity of partial satisfaction. Journal of the ACM,
28:411–421, 1981.

[217] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15:215–245, 1995.

[218] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,
13:383–390, 1975.

[219] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on Information
Theory, IT-25:1–7, 1979.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 475

[220] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.
Journal of the ACM, 41:960–981, 1994.

[221] N. Maeda, H. Nagamochi, and T. Ibaraki. Approximate algorithms for multiway objective
point split problems of graphs (in Japanese). Surikaisekikenkyusho Kôkyûroku, 833:98–
109, 1993.

[222] S. Mahajan and H. Ramesh. Derandomizing approximation algorithms based on semidef-
inite programming. SIAM Journal on Computing, 28:1641–1663, 1999.

[223] C. Mathieu and W. Schudy. Yet another algorithm for dense max cut: Go greedy. In
Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
176–182, 2008.

[224] A. Megretski. Relaxations of quadratic programs in operator theory and system anal-
ysis. In A. A. Borichev and N. K. Nikolski, editors, Systems, approximation, singular
integral operators, and related topis: Interntational Workshop on Operator Theory and
Applications, IWOTA 2000, pages 365–392. Birkhäuser, 2001.

[225] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM Journal on Computing, 28:1298–1309, 1999.

[226] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[227] E. Mossel, R. O’Donnell, and K. Oleszkiewicz. Noise stability of functions with low
influences: Invariance and optimality. Annals of Mathematics, 171:295–341, 2010.

[228] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
1995.

[229] C. Nagarajan and D. P. Williamson. Offline and online facility leasing. In A. Lodi, A. Pan-
conesi, and G. Rinaldi, editors, Integer Programming and Combinatorial Optimization,
number 5035 in Lecture Notes in Computer Science, pages 303–315. Springer, 2008.

[230] V. Nagarajan, R. Ravi, and M. Singh. Simpler analysis of LP extreme points for traveling
salesman and survivable network design problems. Operations Research Letters, 38:156–
160, 2010.

[231] G. L. Nemhauser and L. E. Trotter, Jr. Vertex packings: structural properties and
algorithms. Mathematical Programming, 8:232–248, 1975.

[232] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley,
1988.

[233] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functions — I. Mathematical Programming, 14:265–294, 1978.

[234] A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic form over in-
tersection of ellipsoids with common center. Mathematical Programming, 86:463–473,
1999.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

476 Bibliography

[235] Y. Nesterov. Semidefinite relaxation and nonconvex quadratic optimization. Optimization
Methods and Software, 9:141–160, 1998.

[236] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.

[237] C. H. Norton. Problems in Discrete Optimization. PhD thesis, Massachusetts Institute
of Technology, Sept. 1993.

[238] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Com-
plexity. Prentice-Hall, Englewood Cliffs, NJ, 1982. Reprinted by Dover Publications, 1998.

[239] C. H. Papadimitriou and S. Vempala. On the approximability of the traveling salesman
problem. Combinatorica, 26:101–120, 2006.

[240] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences, 43:425–440, 1991.

[241] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the presence
of release dates. Mathematical Programming, 82:199–223, 1998.

[242] H. J. Prömel and A. Steger. The Steiner tree problem: a tour through graphs, algorithms,
and complexity. Vieweg, Braunschweig, 2002.

[243] M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Programming,
58:263–285, 1993.

[244] H. Räcke. Optimal hierarchical decompositions for congestion minimization in networks.
In Proceedings of the 40th Annual ACM Symposium on the Theory of Computing, pages
255–264, 2008.

[245] J. Radhakrishnan and M. Sudan. On Dinur’s proof of the PCP theorem. Bulletin of the
American Mathematical Society, 44:19–61, 2007.

[246] R. Rado. Note on independence functions. Proceedings of the London Mathematical
Society, s3-7:300–320, 1957.

[247] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good
algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

[248] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th Annual ACM Symposium on the Theory of Computing, pages
245–254, 2008.

[249] P. Raghavendra and D. Steurer. How to round any CSP. In Proceedings of the 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 586–594, 2009.

[250] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27:763–803, 1998.

[251] A. Rényi. Probability Theory. North-Holland, Amsterdam, 1970.

[252] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7:309–322, 1986.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 477

[253] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory B, 52:153–190, 1991.

[254] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM
Journal on Discrete Mathematics, 19:122–134, 2005.

[255] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II. An analysis of several heuristics
for the traveling salesman problem. SIAM Journal on Computing, 6:563–581, 1977.

[256] S. Ross. A First Course in Probability. Prentice Hall, eighth edition, 2009.

[257] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM,
23:555–565, 1976.

[258] S. K. Sahni. Algorithms for scheduling independent tasks. Journal of the ACM, 23:116–
127, 1976.

[259] H. Saran and V. V. Vazirani. Finding k cuts within twice the optimal. SIAM Journal on
Computing, 24:101–108, 1995.

[260] F. Schalekamp and D. B. Shmoys. Universal and a priori TSP. Operations Research
Letters, 36:1–3, 2008.

[261] A. S. Schulz and M. Skutella. Scheduling unrelated machines by randomized rounding.
SIAM Journal on Discrete Mathematics, 15:450–469, 2002.

[262] D. B. Shmoys. Cut problems and their application to divide-and-conquer. In D. S.
Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, chapter 5. PWS
Publishing Company, 1997.

[263] D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62:461–474, 1993.

[264] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility loca-
tion problems. In Proceedings of the 29th Annual ACM Symposium on the Theory of
Computing, pages 265–274, 1997.

[265] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines on-line.
SIAM Journal on Computing, 24:1313–1331, 1995.

[266] D. B. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound: A mono-
tonicity property with application. Information Processing Letters, 35:281–285, 1990.

[267] N. Z. Shor. Cut-off method with space extension in convex programming problems [in
Russian]. Kibernetika, 13:94–95, 1977.

[268] M. Singh. Iterative Methods in Combinatorial Optimization. PhD thesis, Carnegie Mellon
University, May 2008.

[269] M. Singh and L. Lau. Approximating minimum bounded degree spanning trees to within
one of optimal. In Proceedings of the 39th Annual ACM Symposium on the Theory of
Computing, pages 661–670, 2007.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

478 Bibliography

[270] W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics
Quarterly, 3:59–66, 1956.

[271] J. Spencer. Ten Lectures on the Probabilistic Method. Society for Industrial and Applied
Mathematics, 1987.

[272] D. Steurer and N. K. Vishnoi. Connections between unique games and multicut. Re-
port TR09-125, Electronic Colloquium on Computational Complexity, 2009. Available at
http://eccc.hpi-web.de/report/2009/125/.

[273] G. Strang. Linear Algebra and Its Applications. Brooks Cole, fourth edition, 2005.

[274] G. Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley, MA,
USA, fourth edition, 2009.

[275] V. N. Sudakov and B. S. Tsirel’son. Extremal properties of semi-spaces for spherically
symmetric measures [in russian]. In V. N. Sudakov, editor, Problems of the theory of
probability distributions. Part II., volume 41 of Zapiski Nauchnykh Seminarov LOMI,
pages 14–24. Nauka, Leningrad, Russia, 1974.

[276] O. Svensson. Santa Claus schedules jobs on unrelated machines. CoRR, abs/1011.1168,
2010. Available at http://arxiv.org/1011.1168. Accessed November 4, 2010.

[277] C. Swamy. Correlation clustering: Maximizing agreements via semidefinite programming.
In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
519–520, 2004.

[278] A. Tamir. An O(pn2) algorithm for the p-median and related problems in tree graphs.
Operations Research Letters, 19:59–64, 1996.

[279] L. Trevisan. Positive linear programming, parallel approximation, and PCP’s. In J. Diaz
and M. Serna, editors, Algorithms – ESA ’96, number 1136 in Lecture Notes in Computer
Science, pages 62–75, 1996.

[280] L. Trevisan. Parallel approximation algorithms by positive linear programming. Algorith-
mica, 21:72–88, 1998.

[281] L. Trevisan. Inapproximabilité des problèmes d’optimisation combinatoire. In V. T.
Paschos, editor, Optimisation combinatoire 2: concepts avancés, Informatique et Systèmes
D’Information, chapter 3. Lavoisier, Paris, France, 2005. English version available at
http://www.cs.berkeley.edu/∼luca/pubs/inapprox.pdf. Accessed June 2, 2010.

[282] L. Trevisan. Approximation algorithms for unique games. Theory of Computing, 4:111–
128, 2008. Online journal at http://theoryofcomputing.org.

[283] V. V. Vazirani. Approximation Algorithms. Springer, Berlin, Germany, second edition,
2004.

[284] V. G. Vizing. On an estimate of the chromatic class of a p-graph (in Russian). Diskretny̆ı
Analiz, 3:25–30, 1964.

[285] H. Whitney. On the abstract properties of linear dependence. American Journal of
Mathematics, 57:509–533, 1935.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Bibliography 479

[286] A. Wigderson. Improving the performance guarantee of approximate graph coloring.
Journal of the ACM, 30:729–735, 1983.

[287] D. P. Williamson. On the design of approximation algorithms for a class of graph prob-
lems. PhD thesis, MIT, Cambridge, MA, September 1993. Also appears as Tech Report
MIT/LCS/TR-584.

[288] D. P. Williamson. The primal-dual method for approximation algorithms. Mathematical
Programming, 91:447–478, 2002.

[289] D. P. Williamson and A. van Zuylen. A simpler and better derandomization of an approx-
imation algorithm for single source rent-or-buy. Operations Research Letters, 35:707–712,
2007.

[290] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite Pro-
gramming: Theory, Algorithms, and Applications. Kluwer Academic Publishers, 2000.

[291] L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Mathemat-
ical Programming Study, 13:121–134, 1980.

[292] L. A. Wolsey. Mixed integer programming formulations for production planning and
scheduling problems. Invited talk at the 12th International Symposium on Mathematical
Programming, MIT, Cambridge, 1985.

[293] M. Yannakakis. On the approximation of maximum satisfiability. Journal of Algorithms,
17:475–502, 1994.

[294] A. Z. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem.
Algorithmica, 9:463–470, 1993.

[295] L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating
multiway partition problems. Mathematical Programming, 102:167–183, 2005.

[296] D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3:103–128, 2007. Online journal at
http://theoryofcomputing.org.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

480 Bibliography

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Author index

Aardal, K. 104, 330
Aazami, A. 444, 445
Ageev, A. A. 104, 140
Agrawal, A. 193, 450
Alizadeh, F. 158
Alon, N. 79, 229
Andersen, R. 405
Andrews, M. 444, 445
Applegate, D. L. 62
Arnborg, S. 278
Arnold, W. C. 34
Arora, S. 4, 34, 139, 278, 331, 353, 405, 444,

445
Arya, V. 254
Asadpour, A. 331, 448
Aumann, Y. 405
Ausiello, G. 33, 444
Awerbuch, B. 229
Azar, Y. 79, 229

Babai, L. 445
Bafna, V. 368
Baker, B. S. 278
Balas, E. 103
Bansal, N. 308
Bar-Yehuda, R. 34, 193, 194
Barak, B. 444
Bartal, Y. 229
Becker, A. 368
Bellare, M. 34, 445
Bendel, K. 194
Bender, M. 450

Berman, P. 368
Bern, M. 444
Bertsekas, D. P. 33
Bertsimas, D. 33, 194
Bienstock, D. 103
Birkhoff, G. 104
Bixby, R. E. 62
Bland, R. G. 103
Blum, A. 368
Bodlaender, H. L. 278
Borchers, A. 331
Borell, C. 405
Bourgain, J. 405
Boyd, S. C. 308
Boykov, Y. 255
Byrka, J. 330

Călinescu, G. 229
Carnes, T. 194
Carr, R. D. 194
Chakrabarty, D. 331
Charikar, M. 229, 254, 353, 444, 445
Chawla, S. 405, 445
Chekuri, C. 228, 450
Chernoff, H. 139
Chess, D. M. 34
Chlamtac, E. 353
Christofides, N. 62, 447
Chudak, F. A. 104, 139, 330, 368, 450
Chvátal, V. 62
Cook, W. 279
Cook, W. J. 33, 62

481

482 Author index

Cormen, T. H. 33
Cornuéjols, G. 279
Crescenzi, P. 33, 444
Cunningham, W. H. 33, 308

Dahlhaus, E. 228
Desai, D. 444, 445
Deza, M. M. 405
Dijkstra, E. W. 193
Dinur, I. 34, 140, 445
Dodis, Y. 445
Du, D.-Z. 331
Durrett, R. 33

Edmonds, J. 62, 193
Edwards, K. 140
Eisenbrand, F. 330
Erdős, P. 33, 139, 193
Even, G. 229
Even, S. 34, 159, 193, 194

Fakcharoenphol, J. 5, 229
Feige, U. 34, 63, 159, 405, 444, 445
Fernandez de la Vega, W. 79, 331
Ferris, M. C. 33
Finn, G. 62
Fisher, M. L. 62, 63
Fleischer, L. 330
Fleischer, L. K. 194
Fonlupt, J. 279
Fotakis, D. 255
Freund, A. 194
Fujito, T. 368
Fürer, M. 63, 254

Gabow, H. N. 308
Gail, A. B. 481
Gale, D. 62
Gambosi, G. 33, 444
Garey, M. R. 79, 444
Garg, N. 194, 229, 254, 368
Geiger, D. 193, 368
Gens, G. 79
Gens, G. V. 78
Gilbert, E. N. 330
Goemans, M. 368
Goemans, M. X. 103, 139, 140, 159, 193, 194,

308, 331, 368, 448, 449
Goldberg, A. V. 449

Goldfarb, D. 103
Goldreich, O. 445
Goldwasser, S. 34, 444
Gonzalez, T. 62, 139
Gonzalez, T. F. 63
Gorodezky, I. 444, 445
Graham, R. L. 33, 62, 63, 79, 450
Grandoni, F. 330
Grötschel, M. 103, 158, 159
Guha, S. 104, 194, 228, 254, 444
Gupta, A. 229, 254, 330, 353
Guruswami, V. 140, 444

Hajiaghayi, M. 368
Hakimi, S. L. 229
Hall, L. A. 104
Hamburger, M. J. 254
Harsha, P. 444, 445
Harvey, N. J. A. 331
Hassin, R. 79
H̊astad, J. 34, 159, 445
Hochbaum, D. S. 34, 63, 79, 103, 368
Hoeffding, W. 331
Hoffman, A. J. 193, 331
Hogstedt, K. 228
Holyer, I. 63
Horn, R. A. 159
Horowitz, E. 62
Hsu, W.-L. 63

Ibaraki, T. 62, 228
Ibarra, O. H. 78
Itai, A. 159

Jackson, J. R. 62
Jagannathan, G. 444, 445
Jain, K. 193, 194, 254, 308, 331, 368, 444, 449
Johnson, C. R. 159
Johnson, D. S. 33, 34, 79, 139, 228, 444
Jünger, M. 193

Kahale, N. 229
Kann, V. 33, 444
Karger, D. 139, 159, 331, 353
Karger, D. R. 229, 331
Kariv, O. 229
Karloff, H. 229
Karmarkar, N. 103, 104, 405, 449
Karp, R. M. 103, 104, 229, 405, 449

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Author index 483

Karpinski, M. 139, 331

Kephart, J. O. 34

Khachiyan, L. G. 103

Khandekar, R. 254, 308

Khanna, S. 140, 444, 445

Khot, S. 34, 159, 353, 444, 445, 447

Khuller, S. 104, 194, 444

Kim, C. E. 78

Kimelman, D. 228

Kindler, G. 159, 353, 445

Kise, H. 62

Klein, P. 34, 193, 229, 450

Kleinberg, J. 33, 140, 368

Kleinberg, J. M. 63

Knuth, D. E. 159

Könemann, J. 330, 331

Kőnig, D. 63

Konjevod, G. 229

Korte, B. 33

Kortsarz, G. 445

Korupolu, M. R. 254, 449

Krauthgamer, R. 405, 445

Kuehn, A. A. 254

Kulikov, A. S. 444, 445

Kumar, A. 330

Kumar, R. 405, 445

Lando, Y. 445

Lau, L. 308

Lau, L. C. 308

Laurent, M. 405

Lawler, E. L. 62, 78

Lee, J. R. 405, 445

Leighton, T. 229, 405

Leiserson, C. E. 33

Lenstra, J. K. 62, 307, 444, 450

Leonardi, S. 330

Leung, V. J. 194

Levner, E. 79

Levner, E. V. 78

Lewis II, P. M. 62

Lieberherr, K. J. 139

Linial, N. 140, 405

London, E. 405

Lovász, L. 34, 103, 158, 159, 444

Lueker, G. S. 79

Lund, C. 34, 444, 445

Maeda, N. 228

Mahajan, S. 159

Mahdian, M. 194, 254, 444

Makarychev, K. 353

Makarychev, Y. 353

Mangasarian, O. L. 33

Marchetti-Spaccamela, A. 33, 444

Markakis, E. 194, 254, 444

Mathieu, C. 331

Megretski, A. 353

Meyerson, A. 254

Mine, H. 62

Mir, D. J. 444, 445

Mitchell, J. S. B. 278

Mitzenmacher, M. 34, 139

M ↪adry, A. 331, 448

Moshkovitz, D. 444, 445

Mossel, E. 140, 159, 353, 445

Motwani, R. 34, 139, 159, 353, 444

Munagala, K. 254

Naddef, D. 279

Nagamochi, H. 228

Nagarajan, C. 255

Nagarajan, V. 308

Naor, A. 405

Naor, J. 193, 228, 229

Nemhauser, G. L. 34, 62, 63

Nemirovski, A. 353

Nemirovskii, A. 158

Nesterov, Y. 158, 159

Newman, A. 444, 445

Niel, D. A. 481

Nikolov, A. 444, 445

Norton, C. H. 140

Nutov, Z. 445

O’Donnell, R. 159, 353, 445

Oleszkiewicz, K. 159, 353, 445

Oveis Gharan, S. 331, 448

Pál, M. 330

Pandit, V. 254

Papadimitriou, C. H. 62, 193, 228, 444

Peleg, D. 229

Phillips, C. 104

Phillips, C. A. 194

Plassmann, P. 444

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

484 Author index

Plaxton, C. G. 254, 449

Plotkin, S. 449

Pollak, H. O. 330

Pósa, L. 193

Pritchard, D. 331, 444, 445

Prömel, H. J. 331

Proskurowski, A. 278

Protasi, M. 33, 444

Pulleyblank, W. 193

Pulleyblank, W. R. 33, 308

Queyranne, M. 104

Rabani, Y. 229, 405, 445

Rabinovich, Y. 405

Räcke, H. 405

Radhakrishnan, J. 445

Rado, R. 62

Raghavachari, B. 63, 229, 254

Raghavan, P. 139, 278

Raghavendra, P. 445, 449

Rajan, V. T. 228

Rajaraman, R. 254, 444, 449

Ramesh, H. 159

Rao, S. 4, 5, 229, 278, 405

Ravi, R. 34, 193, 229, 308, 368, 450

Rawitz, D. 194

Raz, R. 445

Regev, O. 34, 140

Rényi, A. 159

Rinnooy Kan, A. H. G. 62

Rivest, R. L. 33

Robertson, N. 278

Robins, G. 331

Roos, C. 353

Rosenkrantz, D. J. 62

Ross, S. 33

Roth, R. M. 193

Roth, T. 228

Rothvoß, T. 330

Roughgarden, T. 330, 368

Russell, A. 34

Saberi, A. 194, 254, 331, 444, 448

Safra, S. 34, 140, 444, 445

Sahni, S. 62, 139

Sahni, S. K. 78

Sanità, L. 330

Saran, H. 229
Schäfer, G. 330
Schalekamp, F. 229
Schechtman, G. 159
Schieber, B. 229
Schrijver, A. 33, 103, 158, 159
Schudy, W. 331
Schulz, A. S. 104, 139
Selfridge, J. L. 139
Seymour, P. 279
Seymour, P. D. 228, 278
Shamir, A. 159
Shepherd, B. 444
Shmoys, D. 194
Shmoys, D. B. 62, 63, 79, 104, 139, 229, 307,

330, 405, 444, 448–450
Shor, N. Z. 103
Sibel Salman, F. 229
Simchi-Levi, D. 103
Singh, M. 307, 308, 331
Sivakumar, D. 405, 445
Skutella, M. 139
Smith, W. E. 104
Sorkin, G. B. 34
Specker, E. 139
Spencer, G. 444, 445
Spencer, J. 139
Stearns, R. E. 62
Steger, A. 331
Steiglitz, K. 193
Stein, C. 33, 104, 229
Stern, J. 445
Steurer, D. 353, 445
Stockmeyer, L. 444
Strang, G. 158
Sudakov, V. N. 405
Sudan, M. 34, 159, 353, 444, 445
Svensson, O. 450
Sviridenko, M. I. 104, 140
Swamy, C. 159
Sweedyk, Z. 445
Szegedy, M. 34, 444

Talwar, K. 5, 229, 353
Tamir, A. 229
Tangwongsan, K. 254
Tardos, E. 449
Teo, C.-P. 194

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Author index 485

Terlaky, T. 353
Tesauro, G. J. 34
Thompson, C. D. 139
Thorup, M. 229
Todd, M. J. 103
Trevisan, L. 140, 353, 444
Trotter, Jr., L. E. 34
Tsirel’son, B. S. 405
Tsitsiklis, J. N. 33

Upfal, E. 34, 139
Uth, R. 481

van Zuylen, A. 330
Vazirani, U. 4, 405
Vazirani, V. V. 33, 193, 194, 229, 254, 444
Veksler, O. 255
Vempala, S. 62, 368
Vishnoi, N. K. 353, 445
Vizing, V. G. 33, 62
Vygen, J. 33

Wegman, M. 228
Wein, J. 63, 104

West, D. 229

White, S. R. 34

Whitney, H. 62

Wigderson, A. 159, 450

Williamson, D. 103

Williamson, D. P. 63, 139, 140, 159, 193, 194,
255, 308, 330, 368, 448, 449

Wirth, A. 353

Woeginger, G. J. 79

Wolsey, L. A. 62, 63, 104, 448

Wright, S. J. 33

Yadid, T. 79

Yannakakis, M. 34, 139, 194, 228, 229, 444,
445

Young, N. E. 229

Zabih, R. 255

Zelikovsky, A. 331

Zelikovsky, A. Z. 330

Zhang, L. 444, 445

Zhao, L. 228

Zuckerman, D. 34

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

Index

Φ (cumulative distribution function of normal
distribution), 339, 392

α-point, 128

Φ (tail of normal distribution), 339, 392

δ-dense graph, 133

ℓ1 metric, 198

ℓ1-embeddable metric, 369–370, 404

and tree metrics, 404

≽, see positive semidefinite matrix

Õ, 153

k-MST, see k-minimum spanning tree problem

k-center problem, 37–39

definition, 37–38

hardness, 39

k-colorable, 133

k-cut problem, 228

k-cycle partition problem, 193

k-edge-colorable, 54

k-edge-connected subgraph, 306

k-median problem, 38, 184–190, 193, 227, 239–
243, 250, 277, 420

and uncapacitated facility location prob-
lem, 185–186

definition, 184–185

dual of LP relaxation, 186

greedy algorithm, 250

hardness, 190, 420

in trees, 227

integer programming formulation, 185

Lagrangean relaxation, 185–186

linear programming relaxation, 185–186

local search algorithm, 239–243

primal-dual algorithm, 186–190

k-minimum spanning tree problem, 366
and prize-collecting Steiner tree problem,

366
Lagrangean relaxation, 366

k-outerplanar graph, 270–271
maximum independent set problem, 276–

277
treewidth, 274–277

k-path partition problem
primal-dual algorithm, 192–193

k-restricted Steiner tree problem, 318
k-suppliers problem, 57

hardness, 57
3-dimensional matching problem, 408
3-partition problem, 459

a fortiori guarantee, 14, 20, 24
approximate complementary slackness condi-

tions, 164
approximation algorithm

definition, 14
approximation factor, 14
approximation ratio, 14
APTAS, see asymptotic polynomial-time ap-

proximation scheme
arithmetic-geometric mean inequality, 112
asymptotic polynomial-time approximation scheme,

74
definition, 74
for bin-packing problem, 74–77

balanced cut, 208–211
definition, 208
deterministic rounding algorithm, 209–211

486

INDEX 487

linear programming relaxation, 208–209
basic feasible solution, 281
basic optimal solution, 281
bidirected cut formulation, 316–317
bin-packing problem, 73–77, 95–101, 138, 405,

448–449
asymptotic polynomial-time approximation

scheme, 74–77
configuration, 96
configuration IP, 96
definition, 73
dual of LP relaxation, 97
First-Fit algorithm, 73–74, 99, 138
First-Fit Decreasing algorithm, 73
hardness, 73
harmonic grouping, 97–101
linear grouping, 75–77
linear programming relaxation, 96, 101
randomized rounding algorithm, 138
solving LP relaxation, 405

bipartite graph
definition, 62

bipartite unique games conjecture, 440
bisection, 208
bounded-degree branching problem, 305–306
branch decomposition, 278
branching, 192, 305

bounded degree, 305–306
minimum-cost, 192

branchwidth, 278
buy-at-bulk network design problem, 216–220,

227
algorithm on trees, 217
definition, 216–217
reduction to tree metric, 218–220

capacitated dial-a-ride problem, 228
capacitated facility location problem, 449
characteristic vector, 290
check kiting, 47
Chernoff bounds, 128–131
Christofides’ algorithm, 46, 447
clause, 106

length, 106
satisfied, 106
size, 106
unit, 106

clique, 15

cluster centers, 38
clustering, 37

k-center, 37–38
k-median, 185
correlation, 150

coloring, 153–156, 340–344, 351, 450
∆-degree graph, 153, 156
δ-dense graph
random sampling algorithm, 134–135

2-colorable graph, 153, 156
edge, 54
greedy algorithm, 156
hardness, 134
in low treewidth graphs, 278
randomized rounding via SDP, 153–156,

341–344
vector programming relaxation, 153, 157
vertex, 54
via finding maximum independent sets, 340–

344
complementary slackness conditions, 23, 93, 163–

164
approximate, 164

complete matching, see matching, complete
completeness, 421
configuration IP, 96
congestion, 376
constraint

spreading, 221
tight, 162
violated, 169

constraint satisfaction problem, 344
constraints, 17
correlation clustering problem, 150–153

definition, 150
randomized rounding via SDP, 150–153

cut semimetric, 195
cut-tree, 379
cut-tree packing, 378–379

and tree metrics, 405
cut-tree packing algorithm

for minimum bisection problem, 382–384
for multicut problem, 405
for sparsest cut problem, 405

data rounding, 67
decision problem, 457
decision variables, 17

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

488 INDEX

demand graph, 352
dense graph, 133, 323
derandomization, 31, 105, 108–109

maximum cut problem, 136, 147
prize-collecting Steiner tree problem, 120
set cover problem, 136

deterministic rounding, 81–100, 282–307
for balanced cut, 209–211
for complete matching, 101–102
for generalized assignment problem, 283–

285, 306–307
for minimum spanning tree problem, 287–

288
for minimum-cost bounded-degree spanning

tree problem, 288–296
for multicut problem, 203–207
for prize-collecting Steiner tree, 88–91
for scheduling single machine, 82–86
for scheduling unrelated parallel machines,

304
for set cover problem, 19–20
for sparsest cut problem, 227
for survivable network design problem, 298–

303
for uncapacitated facility location problem,

93–95
pipage rounding, 102–103

dictator, 442
Dijkstra’s algorithm, 168, 170, 191
directed generalized Steiner tree problem, 433–

434
hardness, 433–434

directed Steiner tree problem, 31
distortion, 212, 370–371, 404
dominating set problem, 39
double-tree algorithm, 45–46
dual fitting, 26

for set cover problem, 26–27
for uncapacitated facility location problem,

247–252
dual linear program, see linear programming,

duality
dual of LP relaxation

for k-median problem, 186
for bin-packing problem, 97
for feedback vertex set problem, 165
for generalized Steiner tree problem, 171
for minimum knapsack problem, 179

for prize-collecting Steiner tree problem,
356

for set cover problem, 20, 162
for shortest s-t path problem, 168
for uncapacitated facility location problem,

92–93, 121, 181, 247–248, 310
dual of SDP relaxation

for maximum cut problem, 156
dual rounding

for set cover problem, 20–23
dynamic programming, 65

for coloring in low treewidth graphs, 278
for Euclidean traveling salesman problem,

258–269
for knapsack problem, 66–67
for maximum independent set in low treewidth

graphs, 272–274
for maximum independent set problem in

trees, 269–270
for minimum bisection in trees, 384–385
for scheduling identical machines, 70–71,

74
for the graphical traveling salesman prob-

lem, 278

earliest due date rule, 37, 62
EDD, see earliest due date rule
edge coloring, 54
edge coloring problem, 54–57

definition, 54
fan sequence, 55
greedy algorithm, 55–57
hardness, 54–55, 62
in bipartite graphs, 62
path recoloring, 57
shifting recoloring, 55

edge expansion, 387
edge-disjoint paths problem, 61, 410–412

definition, 61
greedy algorithm, 61
hardness, 410–412

eigenvalue, 141
ellipsoid method, 86–87, 103–104, 380–382

objective function cut, 103, 381
separation oracle, 87

embedding
distortion, 212, 370–371, 404
Fréchet, 373

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

INDEX 489

into ℓ1, 370–371, 373–376, 404

into ℓ2, 404

into ℓp, 404

into tree metric, 212–216

Eulerian graph

definition, 45

directed, 32

traversal, 45

expander graph, 404

exterior face, 270

extreme point, 32, 102, 281

facility location problem, see uncapacitated fa-
cility location problem

factor-revealing LP, 254–255

fan sequence, 55

feasible solution, 17

feedback vertex set problem, 164–167, 360–367

definition, 164

dual of LP relaxation, 165, 362

integer programming formulation, 164–165,
360–362

integrality gap, 167

linear programming relaxation, 165

primal-dual algorithm, 165–167, 362–367

First-Fit algorithm, 73–74, 99, 138

First-Fit Decreasing algorithm, 73

float, 47

float maximization problem, 47–49

definition, 47

greedy algorithm, 47–49

FPAS, see fully polynomial-time approxima-
tion scheme

FPTAS, see fully polynomial-time approxima-
tion scheme

Fréchet embedding, 373

full components, 316

fully polynomial-time approximation scheme,
78

definition, 67

for knapsack problem, 67–68

hardness, 78

fundamental cycle, 274

gap-preserving reduction, 424

generalized assignment problem, 282–285, 306–
307

definition, 282

deterministic rounding algorithm, 283–285,
306–307

integer programming formulation, 282
linear programming relaxation, 282–283,

306–307
generalized Steiner tree problem, 170–177, 192,

449–450
definition, 170
directed
hardness, 433–434

dual of LP relaxation, 171
integer programming formulation, 170–171
integrality gap, 177
linear programming relaxation, 171
primal-dual algorithm, 171–177

graph
δ-dense, 133
k-colorable, 133
k-edge-colorable, 54
k-outerplanar, 270–271
bipartite, 62
bisection, 208
complement, 269
dense, 133, 323
induced, 164
outerplanar, 270
planar, 270
tree decomposition, 272

graphical traveling salesman problem, see trav-
eling salesman problem, graphical

greedy algorithm, 24, 35
for k-center problem, 37–39
for k-median problem, 250
for coloring, 156
for edge coloring problem, 55–57
for edge-disjoint paths problem, 61
for float maximization problem, 47–49
for knapsack problem, 77
for maximum-weight matroid base, 61
for multiway cut problem, 196–197
for scheduling identical machines, 42–43
for scheduling single machine, 36–37
for set cover problem, 24–27
for traveling salesman problem, 44–45
for uncapacitated facility location problem,

247–252

Hamiltonian cycle, 43

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

490 INDEX

Hamiltonian path, 50, 60
hardness, 28

of k-center problem, 39
of k-median problem, 190, 420
of k-suppliers problem, 57
of bin-packing problem, 73
of directed generalized Steiner tree prob-

lem, 433–434
of directed Steiner tree problem, 31
of edge coloring problem, 54–55, 62
of edge-disjoint paths problem, 410–412
of label cover problem
(d1, d2)-regular maximization version, 426–
427

d-regular maximization version, 427–429
d-regular minimization version, 432–433
maximization version, 425–426

of MAX 2SAT, 413, 425
of MAX E3SAT, 423–424
of maximum clique problem, 269
of maximum coverage problem, 60
of maximum cut problem, 147, 440–444
of maximum independent set problem, 269,

415, 417–418
of maximum satisfiability problem, 107
of minimum-degree spanning tree problem,

49–50, 60
of multicut problem, 207–208, 438–440
of node-weighted Steiner tree, 33
of scheduling identical machines, 72
of scheduling unrelated parallel machines,

408–410
of set cover problem, 27–28, 429–432
of sparsest cut problem, 376
of Steiner tree problem, 417
of survivable network design problem, 434–

437
of traveling salesman problem, 43, 47
of uncapacitated facility location problem,

32, 95, 418–420
of unique games problem, 351
of vertex coloring problem, 134
of vertex cover problem, 28

harmonic grouping, 97–101
harmonic number, 25, 99
hierarchical cut decomposition, 212, 222
high probability, 29, 132
Hoeffding’s inequality, 323

Hoffman’s circulation theorem, 331

independent set
in graphs, 269
in matroids, 61

induced graph, 164
inequality

arithmetic-geometric mean, 112
Hoeffding’s, 323
Jensen’s, 352
Markov’s, 129

instance, 457
integer programming, 17–19, 453–454

definition, 17
relaxation, 124

integer programming formulation
for k-median problem, 185
for bin-packing problem, 96
for feedback vertex set problem, 164–165
for generalized assignment problem, 282
for generalized Steiner tree problem, 170–

171
for maximum directed cut problem, 136
for maximum satisfiability problem, 111–

112
for minimum knapsack problem, 178
for minimum-capacity multicommodity flow

problem, 132
for minimum-cost bounded-degree spanning

tree problem, 286
for multicut problem, 203
for multiway cut problem, 197–198
for prize-collecting generalized Steiner tree

problem, 367
for prize-collecting Steiner tree problem,

88–89, 355–356
for set cover problem, 18, 162
for shortest s-t path problem, 168
for Steiner tree problem, 317
for survivable network design problem, 297
for uncapacitated facility location problem,

91–92
for uniform labeling problem, 138
for uniform sparsest cut problem, 387
for unique games problem, 346
of minimum knapsack problem, 178–179

integrality gap, 117–118, 120, 164
definition, 117

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

INDEX 491

for feedback vertex set problem, 167

for generalized Steiner tree problem, 177

for maximum satisfiability problem, 117–
118

for minimum knapsack problem, 178

for prize-collecting Steiner tree problem,
120

interior-point methods, 86

intersecting sets, 290

IP, see integer programming

isolating cut, 196

iterated rounding, 299

Jackson’s rule, see earliest due date rule

Jensen’s inequality, 352

knapsack problem, 65–68, 77, see also mini-
mum knapsack problem, 457–458

connection to bin-packing problem, 97

definition, 65–66

dynamic programming algorithm, 66–67

fully polynomial-time approximation scheme,
67–68

greedy algorithm, 77

L-reduction, 413–414

definition, 413–414

hardness theorems, 414

label cover problem, 425–437, 445

(d1, d2)-regular, 425

d-regular, 425

and unique games problem, 425

definition, 425

gap-preserving reduction fromMAX E3SAT,
425–426

hardness

of (d1, d2)-regular maximization version,
426–427

of d-regular maximization version, 427–
429

of d-regular minimization version, 432–
433

of maximization version, 425–426

reduction to directed generalized Steiner
tree problem, 433–434

reduction to set cover problem, 429–432

reduction to survivable network design prob-
lem, 434–437

Lagrangean multiplier preserving algorithms,
190, 250, 366

Lagrangean relaxation, 185–186
for k-median problem, 185–186

laminar collection of sets, 290
lateness, 36
linear arrangement problem, 220–223

definition, 220
linear programming relaxation, 220–221
reduction to tree metric, 221–223

linear grouping, 75–77
linear programming, 17–19, 453–456

basic feasible solution, 281, 456
basic optimal solution, 281, 456
bounded, 456
canonical form, 453
complementary slackness conditions, 23, 93,

455–456
constraints, 17, 453
decision variables, 17
definition, 17
dual, 21
duality, 20–21, 454–455
ellipsoid method, 86–87, 103–104
extreme point, 32
feasibility, 453
feasible solution, 17, 453
fractional solution, 17
infeasibility, 453
interior-point methods, 86
objective function, 17, 453
optimal solution, 17, 453
primal, 21
relaxation, 18
simplex method, 86, 87, 456
strong duality, 21, 455
unbounded, 456
value, 17
variable, 453
weak duality, 21, 455

linear programming relaxation
for k-median problem, 185–186
for balanced cut, 208–209
for bin-packing problem, 96
for complete matching, 101–102
for feedback vertex set problem, 165
for generalized assignment problem, 282–

283, 306–307

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

492 INDEX

for generalized Steiner tree problem, 171
for linear arrangement problem, 220–221
for maximum coverage problem, 137
for maximum cut problem, 102
for maximum satisfiability problem, 112
for minimum knapsack problem, 178, 179
for minimum-capacity multicommodity flow

problem, 132, 139
for minimum-cost bounded-degree spanning

tree problem, 286
for multicut problem, 203
for multiway cut problem, 198
for prize-collecting Steiner tree problem,

89, 118, 356, 366
for scheduling single machine, 85, 124–125
for set cover problem, 18, 162
for shortest s-t path problem, 168
for sparsest cut problem, 227, 371
for Steiner tree problem, 316–319, 330
for survivable network design problem, 297–

298
for traveling salesman problem, 305
for uncapacitated facility location problem,

92, 121, 181, 310
for vertex cover problem, 32

linear unique games conjecture, 437
list scheduling algorithm

for identical machines, 42–43, 59
for related machines, 59

literal, 106
negative, 106
positive, 106

local change, 40
local move, 40
local ratio algorithm

for set cover problem, 191–192
local ratio technique, 191–192, 368
local ratio theorem, 191
local search algorithm, 35

for k-median problem, 239–243
for maximum-weight matroid base, 61
for minimum-degree spanning tree prob-

lem, 50–53, 243–246
for scheduling identical machines, 40–42
for uncapacitated facility location problem,

234–239
for uniform labeling problem, 252–253
polynomial time, 239

locality gap, 252
definition, 252
for uncapacitated facility location problem,

252
locally optimal solution, 35, 234
long code, 442
longest path problem, 60
longest processing time rule, 42–43, 59
Lovász theta function, 156

semidefinite program, 157
LP, see linear programming
LPT, see longest processing time rule

machine configuration, 71
makespan, 39
Markov’s inequality, 129
matching

complete, 101–102, 283
deterministic rounding algorithm, 101–
102

integer programming formulation, 101–
102, 283

linear programming formulation, 283
linear programming relaxation, 101–102

perfect, 46
matroid, 61

base, 61
definition, 61
greedy algorithm, 61
independent set, 61
local search algorithm, 61
uniform, 61

MAX 2LIN(k), 437–440
definition, 437
reduction to multicut problem, 438–440

MAX 2SAT, 156, 158, 412–414
balanced, 158
gap-preserving reduction from odd/even con-

straint satisfaction problem, 424–425
hardness, 413–414, 425
L-reduction from MAX E3SAT, 412–414
randomized rounding via SDP, 156, 158

MAX CUT, see maximum cut problem
MAXDICUT, see maximum directed cut prob-

lem
MAX E3SAT, 107, 412–414

gap-preserving reduction from odd/even con-
straint satisfaction problem, 423–424

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

INDEX 493

gap-preserving reduction to label cover prob-
lem, 425–426

hardness, 423–424
L-reduction from odd/even constraint sat-

isfaction problem, 423
L-reduction to MAX 2SAT, 412–414
L-reduction to maximum independent set

problem, 414–415
MAX SAT, see maximum satisfiability prob-

lem
MAX SNP, 15, 444
maximum k-cut problem, 135

randomized algorithm, 135
maximum clique problem, 15–16, 269

and the maximum independent set prob-
lem, 269

hardness, 269
unweighted, 269

maximum coverage problem, 60, 137
hardness, 60
linear programming relaxation, 137
nonlinear integer programming formulation,

137
pipage rounding algorithm, 137

maximum cut problem, 107–108, 135–136, 143–
147, 156, 322–327, 450–451

definition, 107
derandomization, 136, 147
dual of SDP relaxation, 156
greedy algorithm, 135–136
hardness, 147, 440–444
in unweighted dense graphs
polynomial-time approximation scheme,
322–327

linear programming relaxation, 102
nonlinear integer programming formulation,

102, 143
random sampling algorithm, 107–108
randomized rounding via SDP, 143–147
semidefinite programming relaxation, 143
unweighted, 107
vector programming relaxation, 143
with constraint on size of parts, 102–103

maximum directed cut problem, 136, 157, 158
balanced, 158
definition, 136
integer programming formulation, 136
polynomial-time approximation scheme

in unweighted dense graphs, 328
randomized algorithm, 136
randomized rounding algorithm, 136
randomized rounding via SDP, 157, 158

maximum independent set problem, 269–274,
414–415, 417–418

and coloring, 340–344
and the maximum clique problem, 269
definition, 269
hardness, 269, 415, 417–418
in k-outerplanar graphs, 276–277
in low treewidth graphs
dynamic programming algorithm, 272–
274

in planar graphs, 270–272
polynomial-time approximation scheme,
271–272

in trees
dynamic programming algorithm, 269–
270

L-reduction from MAX E3SAT, 414–415
unweighted, 269

maximum satisfiability problem, 106–107, 110–
118, 136–137, 156

definition, 106
hardness, 107
integer programming formulation, 111–112
integrality gap, 117–118
linear programming relaxation, 112
MAX 2SAT, see MAX 2SAT
MAX E3SAT, see MAX E3SAT
method of conditional expectations, 108–

109
random sampling algorithm, 106–107, 110–

111
randomized rounding algorithm, 111–114,

116–117, 136
mean value theorem, 206–207
measurable set, 402
method of conditional expectations, 105, 108–

109, 136, 193
for maximum satisfiability problem, 108–

109
for set cover problem, 136

metric, 195
ℓ1, 198
ℓ1-embeddable, 369–370, 404
embedding, 370

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

494 INDEX

distortion, 212, 370–371, 404
Fréchet, 373
into ℓ1, 370–371, 373–376, 404
into ℓ2, 404
into ℓp, 404
into tree metric, 212–216

probabilistic approximation by tree met-
ric, 212–216

spreading, 220, 221
tree, 195, 211–212, 221–222, 227, 404, 405

metric completion, 60
minimum k-edge-connected subgraph problem,

306
minimum bisection problem, 208, 382–385

cut-tree packing algorithm, 382–384
in trees, 384–385

minimum cut linear arrangement problem, 226
minimum knapsack problem, 178–180

dual of LP relaxation, 179
integer programming formulation, 178–179
integrality gap, 178
linear programming relaxation, 178, 179
primal-dual algorithm, 179–180

minimum mean-cost cycle problem, 32
minimum spanning tree problem, 44

definition, 44
deterministic rounding algorithm, 287–288
Prim’s algorithm, 44

minimum-capacity multicommodity flow prob-
lem, 132–133, 139

application to chip design, 132
definition, 132
integer programming formulation, 132
linear programming relaxation, 132, 139
randomized rounding algorithm, 132–133

minimum-cost bounded-degree spanning tree
problem, 286–296

definition, 286
deterministic rounding algorithm, 288–296
integer programming formulation, 286
linear programming relaxation, 286

minimum-cost branching problem, 192
primal-dual algorithm, 192

minimum-degree spanning tree problem, 49–
53, 60, 243–246

definition, 49–50
hardness, 49–50, 60
local search algorithm, 50–53, 243–246

moats, 168, 173

monotone function, 60

multicommodity flow, see minimum-capacity
multicommodity flow problem

multicommodity rent-or-buy problem, 328

multicut problem, 203–208, 226, 351–353, 405

cut-tree packing algorithm, 405

definition, 203

deterministic rounding algorithm, 203–207

hardness, 207–208, 438–440

in trees

primal-dual algorithm, 191

integer programming formulation, 203

linear programming relaxation, 203

randomized rounding via SDP, 351–353

vector programming relaxation, 351–353

multiway cut problem, 196–202, 225

application to distributed computing, 196

definition, 196

greedy algorithm, 196–197

integer programming formulation, 197–198

linear programming relaxation, 198

randomized rounding algorithm, 198–202

nearest addition algorithm, 44–45

no-wait flowshop scheduling problem, 448

nonlinear integer programming formulation

for maximum coverage problem, 137

maximum cut problem, 102, 143

nonpreemptive scheduling, 82

normal distribution

bounds on tail, 340, 342–343, 392–393

cumulative distribution function, 339, 392

density function, 339, 392

multivariate

properties of, 144

NP, 457–460

binary NP-complete, 459

definition, 458

NP-completeness, 458–459

definition, 458

NP-hard, 459–460

strongly NP-complete, 459

unary NP-complete, 459

weakly NP-complete, 459

objective function, 14, 17

objective function cut, 103, 381

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

INDEX 495

oblivious routing problem, 376–382
definition, 376

odd/even constraint satisfaction problem, 422–
424

gap-preserving reduction to MAX 2SAT,
424–425

gap-preserving reduction to MAX E3SAT,
423–424

hardness, 423
L-reduction to MAX E3SAT, 423

online facility location problem, 253–254
optimal solution, 14, 17
outerplanar graph, 270

P, 457
partial cover problem, 31
partition problem, 73, 459
partition system, 429–432
path recoloring, 57
PCP, see probabilistically checkable proof
PCP theorem, 421, 444–445
perfect matching, see matching, perfect
performance guarantee, 14
Petersen graph, 54
pipage rounding, 102–103

for maximum coverage problem, 137
for maximum cut problem, 102–103

pipe system, 203
planar embedding, 270
planar graph, 270

exterior face, 270
polynomial time

definition, 457
polynomial-time approximation scheme, 15, 67

definition, 15
for Euclidean k-median problem, 277
for Euclidean Steiner tree problem, 277
for Euclidean traveling salesman problem,

258–269
for maximum cut problem in unweighted

dense graphs, 322–327
for maximum directed cut problem in un-

weighted dense graphs, 328
for maximum independent set problem in

planar graphs, 271–272
for scheduling identical machines, 68–72
for vertex cover in planar graphs, 277
hardness of MAX SNP, 15

polynomial-time reduction, 458
positive semidefinite matrix, 141–142
potential function, 53
precedence constraints, 59, 101
preemptive scheduling, 82
Prim’s algorithm, 44, 315
primal feasible algorithm, 35
primal infeasible algorithm, 35
primal linear program, see linear programming,

primal
primal-dual algorithm

for k-median problem, 186–190
for k-path partition problem, 192–193
for feedback vertex set problem, 165–167,

362–367
for generalized Steiner tree problem, 171–

177
for minimum knapsack problem, 179–180
for minimum-cost branching problem, 192
for multicut problem in trees, 191
for prize-collecting generalized Steiner tree

problem, 367
for prize-collecting Steiner tree problem,

356–359
for set cover problem, 23–24, 161–164
for shortest s-t path problem, 168–170
for uncapacitated facility location problem,

181–184
primal-dual method, 24, 161–184

dual fitting, 26
standard analysis, 163

prize-collecting generalized Steiner tree prob-
lem, 367

prize-collecting Steiner tree problem, 88–91, 118–
120, 192, 355–359

and k-minimum spanning tree problem, 366
application to cable access, 88
definition, 88
derandomization, 120
deterministic rounding algorithm, 88–91
dual of LP relaxation, 356
integer programming formulation, 88–89,

355–356
integrality gap, 120
Lagrangean multiplier preserving, 366
linear programming relaxation, 89, 118, 356,

366
primal-dual algorithm, 356–359

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

496 INDEX

randomized rounding algorithm, 118–120

probabilistic approximation of a metric, 212–
216

probabilistically checkable proof, 420–425

and hardness, 422

completeness, 421

long code, 442

PCP theorem, 421

soundness, 421

verifier, 421

psd, see positive semidefinite matrix

pseudo-approximation algorithm, 208

pseudopolynomial algorithm, 65, 78

definition, 67

PTAS, see polynomial-time approximation scheme

quadratic programming problem, 147–150, 334–
340

equivalence of linear and integer, 335–336

randomized rounding via SDP, 147–150,
336–340

vector programming relaxation, 147, 336

random hyperplane, 144

random hyperplane algorithm

for coloring, 153–156

for correlation clustering problem, 150–153

for MAX 2SAT, 156

for maximum cut problem, 143–147

for maximum directed cut problem, 157,
158

for quadratic programming problem, 147–
150

for uniform sparsest cut problem, 388–404

random hyperplanealgorithm

for MAX 2SAT, 158

random sampling algorithm

for coloring δ-dense graph, 134–135

for maximum cut problem, 107–108

for maximum satisfiability problem, 106–
107, 110–111

for multicommodity rent-or-buy problem,
328

for single-source rent-or-buy problem, 314–
316

random vector, 144

randomized rounding, 28, 111–133

definition, 28

for coloring, 153–156, 341–344
for correlation clustering problem, 150–153
for MAX 2SAT, 156, 158
for maximum cut problem, 143–147
for maximum directed cut problem, 136,

157, 158
for maximum satisfiability problem, 111–

114, 116–117, 136
for minimum-capacity multicommodity flow

problem, 132–133
for multiway cut problem, 198–202
for prize-collecting generalized Steiner tree

problem, 367
for prize-collecting Steiner tree problem,

118–120
for quadratic programming problem, 147–

150, 336–340
for scheduling single machine, 125–128
for set cover problem, 28–31
for Steiner tree problem, 319–322
for uncapacitated facility location problem,

120–123, 310–313
for uniform labeling problem, 138
for uniform sparsest cut problem, 388–404
for unique games problem, 347–351
non-linear, 116–117

region growing, 196, 204, 223
related machines, 59
relaxation, 18

integer programming, 124
Lagrangean, 185–186
linear programming, 18

relaxed decision procedure, 59
release date, 36
rent-or-buy problem

multicommodity, 328
single-source, 313–316

rescaling, 238–239
rescaling property, 73
reverse deletion, 173
routing problems, 376

sample-and-augment algorithm, 314
for multicommodity rent-or-buy problem,

328
for single-source rent-or-buy problem, 314–

316
satisfied clause, see clause, satisfied

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

INDEX 497

scheduling

α-point, 128

earliest due date rule, 37

identical machines, 39–43, 59, 68–72, 78

dynamic programming algorithm, 70–71

greedy algorithm, 42–43

hardness, 72

list scheduling algorithm, 42–43

local search algorithm, 40–42

polynomial-time approximation scheme,
68–72

to minimize L2 norm, 78

to minimize weighted completion time,
78

lateness, 36

length, 39

list scheduling algorithm, 59

longest processing time rule, 42–43, 59

machine configuration, 71

makespan, 39

nonpreemptive, 82

precedence constraints, 59, 101

preemptive, 82

related parallel machines, 59, 450

release date, 36

shortest remaining processing time rule, 82

single machine

linear programming relaxation, 85, 124–
125

randomized rounding algorithm, 125–128

to maximize weighted ontime jobs, 77

to minimize average completion time, 82–
84

to minimize lateness, 36–37

to minimize weighted completion time,
84–86, 101, 124–128

to minimize weighted late jobs, 77–78

unrelated parallel machines, 450

deterministic rounding algorithm, 304

hardness, 408–410

Schur product theorem, 148

SDP, see semidefinite programming

SDP-based algorithm

for coloring, 153–156, 341–344

for correlation clustering problem, 150–153

for MAX 2SAT, 156, 158

for maximum cut problem, 143–147

for maximum directed cut problem, 157,
158

for multicut problem, 351–353
for quadratic programming problem, 147–

150, 336–340
for uniform sparsest cut problem, 388–404
for unique games problem, 347–351

semicoloring, 154–156
definition, 154

semidefinite matrix, see positive semidefinite
matrix

semidefinite programming, 141–142, 158–159
duality, 156
strong duality, 158
weak duality, 158

semidefinite programming relaxation, see also
vector programming relaxation

for maximum cut problem, 143
semimetric, 195

cut, 195
separation oracle, 87

definition, 87
set cover problem, 16–31, 136, 161–163, 191–

192
and vertex cover, 16, 20
application to antivirus product, 16
definition, 16
derandomization, 136
deterministic rounding algorithm, 19–20
dual fitting algorithm, 26–27
dual of LP relaxation, 20, 162
dual rounding algorithm, 20–23
greedy algorithm, 24–27
hardness, 27–28, 429–432
integer programming formulation, 18, 162
linear programming relaxation, 18, 162
local ratio algorithm, 191–192
partial cover problem, 31
primal-dual algorithm, 23–24, 161–164
randomized rounding algorithm, 28–31
unweighted, 16

shifting recoloring, 55
shortcutting, 32, 46
shortest s-t path problem, 78, 168–170, 191

definition, 168
Dijkstra’s algorithm, 168, 170, 191
dual of LP relaxation, 168
integer programming formulation, 168

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

498 INDEX

linear programming relaxation, 168

primal-dual algorithm, 168–170

shortest remaining processing time rule, 82

simplex method, 86, 87

single-source rent-or-buy problem, 313–316

sample-and-augment algorithm, 314–316

Slater conditions, 158

Smith’s rule, 101

SONET ring loading problem, 101

soundness, 421

spanning tree, 44

sparsest cut problem, 226–227, 371–373, 385–
405

cut-tree packing algorithm, 405

deterministic rounding algorithm, 227

hardness, 376

LP relaxation, 227, 371

metric embedding algorithm, 371–373

uniform, 385–404

integer programming formulation, 387

randomized rounding via SDP, 388–404

vector programming relaxation, 388

spreading constraint, 221

spreading metric, 220, 221

SRPT, see shortest remaining processing time

standard primal-dual analysis, 163

Steiner k-cut problem, 225–226

Steiner forest problem, see generalized Steiner
tree problem

Steiner tree problem, 59, 60, 88, 89, 192, 252,
277, 314, 316–322, 415–417

k-restricted, 318

bidirected cut formulation, 316–317

definition, 59

directed, 31

Euclidean

polynomial-time approximation scheme,
277

full components, 316, 330

hardness, 33, 417

integer programming formulation, 317

L-reduction from vertex cover problem, 415–
416

linear programming relaxation, 316–319,
330

minimum degree, 60, 252

node-weighted, 33

prize-collecting, see prize-collecting Steiner
tree problem

randomized rounding algorithm, 319–322
Steiner vertices, 59

Steiner vertices, 59
strict vector chromatic number, 157
strong duality

linear programming, 21
semidefinite programming, 158

strongly NP-complete, 459
subadditive function, 217
submodular function, 49, 60
survivable network design problem, 297–304,

449–450
application to telecommunications, 297
definition, 297
deterministic rounding algorithm, 298–303
integer programming formulation, 297
linear programming relaxation, 297–298
vertex-connectivity version, 434–437
hardness, 434–437

tight
constraint, 162, 290
set, 290

tour, 31, 43
traveling salesman problem, 43–47, 305, 447–

448
asymmetric, 31, 43, 329–330, 448
Christofides’ algorithm, 46
definition, 43
double-tree algorithm, 45–46
Euclidean, 257–269
definition, 257–258
dynamic programming algorithm, 258–
269

polynomial-time approximation scheme,
258–269

graphical, 278
in low branchwidth graphs, 278

greedy algorithm, 44–45
hardness, 43, 47
linear programming relaxation, 305, 447
metric, 44–47, 447–448
nearest addition algorithm, 44–45
universal, 227

traversal
of Eulerian graph, 45

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

INDEX 499

tree decomposition, 272

tree metric, 195, 211–212, 221–222, 227, 404

and ℓ1-embeddable metrics, 404

and buy-at-bulk network design problem,
217–220

and cut-tree packing, 405

and linear arrangement problem, 221–223

definition, 212

lower bound on distortion, 227

treewidth, 272

of k-outerplanar graphs, 274–277

triangle inequality, 31, 38, 195

TSP, see traveling salesman problem

UGC, see unique games conjecture

uncapacitated facility location problem, 32, 91–
95, 120–123, 180–184, 193, 234–239,
247–252, 310–313, 328, 418–420

and k-median problem, 185–186

and set cover problem, 32

capacitated version, 449

definition, 91

deterministic rounding algorithm, 93–95

dual fitting algorithm, 247–252

dual of LP relaxation, 92–93, 121, 181,
247–248, 310

greedy algorithm, 247–252

hardness, 32, 95, 418–420

integer programming formulation, 91–92

linear programming relaxation, 92, 121, 181,
310

local search algorithm, 234–239

locality gap, 252

maximal dual solution, 181

metric, 91

nonmetric, 32

online variant, 253–254

primal-dual algorithm, 181–184

randomized rounding algorithm, 120–123,
310–313

uniform labeling problem, 138, 252–253

integer programming formulation, 138

local search algorithm, 252–253

randomized rounding algorithm, 138

unique games conjecture, 28, 345, 437–445, 447

bipartite, 440

definition, 345

hardness of maximum cut problem, 147,
440–444

hardness of multicut problem, 207–208, 438–
440

hardness of sparsest cut problem, 376

hardness of vertex coloring problem, 134

hardness of vertex cover problem, 28

linear, 437

unique games problem, 344–351, 437–445

as graph problem, 345

definition, 344–345

hardness, 351

integer programming formulation, 346

randomized rounding via SDP, 347–351

reduction to multicut problem, 438–440

vector programming relaxation, 346–347

unit clause, see clause, unit

universal traveling salesman problem, 227

vector chromatic number, 157

strict, 157

vector programming, 142

vector programming relaxation

for coloring, 153, 157

for maximum cut problem, 143

for quadratic programming, 147

for quadratic programming problem, 336

for uniform sparsest cut problem, 388

for unique games problem, 346–347

verifier, 421

vertex coloring, 54

vertex cover problem, 16, 32

and set cover, 16, 20

definition, 16

deterministic rounding algorithm, 20

hardness, 28

in planar graphs, 32, 277

polynomial-time approximation scheme,
277

L-reduction to Steiner tree problem, 415–
416

linear programming relaxation, 32

unweighted, 17

violated constraints, 169

weak duality

linear programming, 21

semidefinite programming, 158

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

500 INDEX

weakly NP-complete, 459
weakly supermodular functions, 298
with high probability, see high probability

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

