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Preface

This book is designed to be a textbook for graduate-level courses in approximation algorithms.
After some experience teaching minicourses in the area in the mid-1990s, we sat down and wrote
out an outline of the book. Then one of us (DPW), who was at the time an IBM Research
Staff Member, taught several iterations of the course following the outline we had devised, in
Columbia University’s Department of Industrial Engineering and Operations Research in Spring
1998, in Cornell University’s School of Operations Research and Industrial Engineering in Fall
1998, and at the Massachusetts Institute of Technology’s Laboratory for Computer Science in
Spring 2000. The lecture notes from these courses were made available, and we got enough
positive feedback on them from students and from professors teaching such courses elsewhere
that we felt we were on the right track. Since then, there have been many exciting developments
in the area, and we have added many of them to the book; we taught additional iterations of
the course at Cornell in Fall 2006 and Fall 2009 in order to field test some of the writing of the
newer results.

The courses were developed for students who have already had a class, undergraduate or
graduate, in algorithms, and who were comfortable with the idea of mathematical proofs about
the correctness of algorithms. The book assumes this level of preparation. The book also
assumes some basic knowledge of probability theory (for instance, how to compute the expected
value of a discrete random variable). Finally, we assume that the reader knows something about
NP-completeness, at least enough to know that there might be good reason for wanting fast,
approximate solutions to NP-hard discrete optimization problems. At one or two points in the
book, we do an NP-completeness reduction to show that it can be hard to find approximate
solutions to such problems; we include a short appendix on the problem class NP and the notion
of NP-completeness for those unfamiliar with the concepts. However, the reader unfamiliar with
such reductions can also safely skip over such proofs.

In addition to serving as a graduate textbook, this book is a way for students to get the
background to read current research in the area of approximation algorithms. In particular, we
wanted a book that we could hand our own Ph.D. students just starting in the field and say,
“Here, read this.”

We further hope that the book will serve as a reference to the area of approximation al-
gorithms for researchers who are generally interested in the heuristic solution of discrete opti-
mization problems; such problems appear in areas as diverse as traditional operations research
planning problems (such as facility location and network design) to computer science prob-
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lems in database and programming language design to advertising issues in viral marketing.
We hope that the book helps researchers understand the techniques available in the area of
approximation algorithms for approaching such problems.

We have taken several particular perspectives in writing the book. The first is that we
wanted to organize the material around certain principles of designing approximation algo-
rithms, around algorithmic ideas that have been used in different ways and applied to different
optimization problems. The title The Design of Approzimation Algorithms was carefully cho-
sen. The book is structured around these design techniques. The introduction applies several
of them to a single problem, the set cover problem. The book then splits into two parts. In the
first part, each chapter is devoted to a single algorithmic idea (e.g., “greedy and local search
algorithms,” “rounding data and dynamic programming”), and the idea is then applied to sev-
eral different problems. The second part revisits all of the same algorithmic ideas, but gives
more sophisticated treatments of them; the results covered here are usually much more recent.
The layout allows us to look at several central optimization problems repeatedly throughout
the book, returning to them as a new algorithmic idea leads to a better result than the previous
one. In particular, we revisit such problems as the uncapacitated facility location problem, the
prize-collecting Steiner tree problem, the bin-packing problem, and the maximum cut problem
several times throughout the course of the book.

The second perspective is that we treat linear and integer programming as a central aspect
in the design of approximation algorithms. This perspective is from our background in the
operations research and mathematical programming communities. It is a little unusual in the
computer science community, and students coming from a computer science background may
not be familiar with the basic terminology of linear programming. We introduce the terms we
need in the first chapter, and we include a brief introduction to the area in an appendix.

The third perspective we took in writing the book is that we have limited ourselves to results
that are simple enough for classroom presentation while remaining central to the topic at hand.
Most of the results in the book are ones that we have taught ourselves in class at one point or
another. We bent this rule somewhat in order to cover the recent, exciting work by Arora, Rao,
and Vazirani [22] applying semidefinite programming to the uniform sparsest cut problem. The
proof of this result is the most lengthy and complicated of the book.

We are grateful to a number of people who have given us feedback about the book at various
stages in its writing. We are particularly grateful to James Davis, Lisa Fleischer, Isaac Fung,
Rajiv Gandhi, Igor Gorodezky, Nick Harvey, Anna Karlin, Vijay Kothari, Katherine Lai, Gwen
Spencer, and Anke van Zuylen for very detailed comments on a number of sections of the
book. Additionally, the following people spotted typos, gave us feedback, helped us understand
particular papers, and made useful suggestions: Bruno Abrahao, Hyung-Chan An, Matthew
Andrews, Eliot Anshelevich, Sanjeev Arora, Ashwinkumar B.V., Moses Charikar, Chandra
Chekuri, Joseph Cheriyan, Chao Ding, Dmitriy Drusvyatskiy, Michel Goemans, Sudipto Guha,
Anupam Gupta, Sanjeev Khanna, Lap Chi Lau, Renato Paes Leme, Jan Karel Lenstra, Roman
Rischke, Gennady Samorodnitsky, Daniel Schmand, Jiawei Qian, Yogeshwer Sharma, Viktor
Simjanoski, Mohit Singh, Eva Tardos, Mike Todd, Di Wang, and Ann Williamson. We also
thank a number of anonymous reviewers who made useful comments. Eliot Anshelevich, Joseph
Cheriyan, Lisa Fleischer, Michel Goemans, Nicole Immorlica, and Anna Karlin used various
drafts of the book in their courses on approximation algorithms and gave us useful feedback
about the experience of using the book. We received quite a number of useful comments from the
students in Anna’s class: Benjamin Birnbaum, Punyashloka Biswal, Elisa Celis, Jessica Chang,
Mathias Hallman, Alyssa Joy Harding, Trinh Huynh, Alex Jaffe, Karthik Mohan, Katherine
Moore, Cam Thach Nguyen, Richard Pang, Adrian Sampson, William Austin Webb, and Kevin
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Zatloukal. Frans Schalekamp generated the image on the cover; it is an illustration of the tree
metric algorithm of Fakcharoenphol, Rao, and Talwar [106] discussed in Section 8.5. Our editor
at Cambridge, Lauren Cowles, impressed us with her patience in waiting for this book to be
completed and gave us a good deal of useful advice.

We would like to thank the institutions that supported us during the writing of this book,
including our home institution, Cornell University, and the IBM T.J. Watson and Almaden
Research Centers (DPW), as well as TU Berlin (DPW) and the Sloan School of Management
at MIT and the Microsoft New England Research Center (DBS), where we were on sabbatical
leave when the final editing of the book occurred. We are grateful to the National Science
Foundation for supporting our research in approximation algorithms.

Additional materials related to the book (such as contact information and errata) can be
found at the website www.designofapproxalgs.com.

We are also grateful to our wives and children — to Ann, Abigail, Daniel, and Ruth, and
to Eva, Rebecca, and Amy — for their patience and support during the writing of this volume.

Finally, we hope the book conveys some of our enthusiasm and enjoyment of the area of
approximation algorithms. We hope that you, dear reader, will enjoy it too.

David P. Williamson
David B. Shmoys
January 2011
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CHAPTER 1

An introduction to approximation
algorithms

1.1 The whats and whys of approximation algorithms

Decisions, decisions. The difficulty of sifting through large amounts of data in order to make
an informed choice is ubiquitous in today’s society. One of the promises of the information
technology era is that many decisions can now be made rapidly by computers, from deciding
inventory levels, to routing vehicles, to organizing data for efficient retrieval. The study of how
to make decisions of these sorts in order to achieve some best possible goal, or objective, has
created the field of discrete optimization.

Unfortunately, most interesting discrete optimization problems are NP-hard. Thus, unless
P = NP, there are no efficient algorithms to find optimal solutions to such problems, where
we follow the convention that an efficient algorithm is one that runs in time bounded by a
polynomial in its input size. This book concerns itself with the answer to the question “What
should we do in this case?”

An old engineering slogan says, “Fast. Cheap. Reliable. Choose two.” Similarly, if P # NP,
we can’t simultaneously have algorithms that (1) find optimal solutions (2) in polynomial time
(3) for any instance. At least one of these requirements must be relaxed in any approach to
dealing with an NP-hard optimization problem.

One approach relaxes the “for any instance” requirement, and finds polynomial-time algo-
rithms for special cases of the problem at hand. This is useful if the instances one desires to
solve fall into one of these special cases, but this is not frequently the case.

A more common approach is to relax the requirement of polynomial-time solvability. The
goal is then to find optimal solutions to problems by clever exploration of the full set of possible
solutions to a problem. This is often a successful approach if one is willing to take minutes,
or even hours, to find the best possible solution; perhaps even more importantly, one is never
certain that for the next input encountered, the algorithm will terminate in any reasonable
amount of time. This is the approach taken by those in the field of operations research and
mathematical programming who solve integer programming formulations of discrete optimiza-
tion problems, or those in the area of artificial intelligence who consider techniques such as A*
search or constraint programming.
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14 An introduction to approximation algorithms

By far the most common approach, however, is to relax the requirement of finding an
optimal solution, and instead settle for a solution that is “good enough,” especially if it can be
found in seconds or less. There has been an enormous study of various types of heuristics and
metaheuristics such as simulated annealing, genetic algorithms, and tabu search, to name but
a few. These techniques often yield good results in practice.

The approach of this book falls into this third class. We relax the requirement of finding an
optimal solution, but our goal is to relax this as little as we possibly can. Throughout this book,
we will consider approzximation algorithms for discrete optimization problems. We try to find a
solution that closely approximates the optimal solution in terms of its value. We assume that
there is some objective function mapping each possible solution of an optimization problem to
some nonnegative value, and an optimal solution to the optimization problem is one that either
minimizes or maximizes the value of this objective function. Then we define an approximation
algorithm as follows.

Definition 1.1: An a-approximation algorithm for an optimization problem is a polynomial-
time algorithm that for all instances of the problem produces a solution whose value is within a
factor of a of the value of an optimal solution.

For an a-approximation algorithm, we will call « the performance guarantee of the algorithm.
In the literature, it is also often called the approzimation ratio or approximation factor of the
algorithm. In this book we will follow the convention that « > 1 for minimization problems,
while o < 1 for maximization problems. Thus, a %—approximation algorithm for a maximization
problem is a polynomial-time algorithm that always returns a solution whose value is at least
half the optimal value.

Why study approximation algorithms? We list several reasons.

e Because we need algorithms to get solutions to discrete optimization problems. As we
mentioned above, with our current information technology there are an increasing number
of optimization problems that need to be solved, and most of these are NP-hard. In some
cases, an approximation algorithm is a useful heuristic for finding near-optimal solutions
when the optimal solution is not required.

e Because algorithm design often focuses first on idealized models rather than the “real-
world” application. In practice, many discrete optimization problems are quite messy,
and have many complicating side constraints that make it hard to find an approximation
algorithm with a good performance guarantee. But often approximation algorithms for
simpler versions of the problem give us some idea of how to devise a heuristic that will
perform well in practice for the actual problem. Furthermore, the push to prove a theorem
often results in a deeper mathematical understanding of the problem’s structure, which
then leads to a new algorithmic approach.

e Because it provides a mathematically rigorous basis on which to study heuristics. Typi-
cally, heuristics and metaheuristics are studied empirically; they might work well, but we
might not understand why. The field of approximation algorithms brings mathematical
rigor to the study of heuristics, allowing us to prove how well the heuristic performs on
all instances, or giving us some idea of the types of instances on which the heuristic will
not perform well. Furthermore, the mathematical analyses of many of the approximation
algorithms in this book have the property that not only is there an a priori guarantee for
any input, but there is also an a fortiori guarantee that is provided on an input-by-input
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1.1 The whats and whys of approximation algorithms 15

basis, which allows us to conclude that specific solutions are in fact much more nearly
optimal than promised by the performance guarantee.

e Because it gives a metric for stating how hard various discrete optimization problems
are. Over the course of the twentieth century, the study of the power of computation
has steadily evolved. In the early part of the century, researchers were concerned with
what kinds of problems could be solved at all by computers in finite time, with the
halting problem as the canonical example of a problem that could not be solved. The
latter part of the century concerned itself with the efficiency of solution, distinguishing
between problems that could be solved in polynomial time, and those that are NP-hard
and (perhaps) cannot be solved efficiently. The field of approximation algorithms gives
us a means of distinguishing between various optimization problems in terms of how well
they can be approximated.

e Because it’s fun. The area has developed some very deep and beautiful mathematical
results over the years, and it is inherently interesting to study these.

It is sometimes objected that requiring an algorithm to have a near-optimal solution for all
instances of the problem — having an analysis for what happens to the algorithm in the worst
possible instance — leads to results that are too loose to be practically interesting. After all,
in practice, we would greatly prefer solutions within a few percent of optimal rather than, say,
twice optimal. From a mathematical perspective, it is not clear that there are good alternatives
to this worst-case analysis. It turns out to be quite difficult to define a “typical” instance of any
given problem, and often instances drawn randomly from given probability distributions have
very special properties not present in real-world data. Since our aim is mathematical rigor in
the analysis of our algorithms, we must content ourselves with this notion of worst-case analysis.
We note that the worst-case bounds are often due to pathological cases that do not arise in
practice, so that approximation algorithms often give rise to heuristics that return solutions
much closer to optimal than indicated by their performance guarantees.

Given that approximation algorithms are worth studying, the next natural question is
whether there exist good approximation algorithms for problems of interest. In the case of
some problems, we are able to obtain extremely good approximation algorithms; in fact, these
problems have polynomial-time approximation schemes.

Definition 1.2: A polynomial-time approximation scheme (PTAS) is a family of algorithms
{Ac}, where there is an algorithm for each € > 0, such that Ac is a (1 + €)-approzimation
algorithm (for minimization problems) or a (1 — €)-approzimation algorithm (for maximization
problems).

Many problems have polynomial-time approximation schemes. In later chapters we will
encounter the knapsack problem and the Euclidean traveling salesman problem, each of which
has a PTAS.

However, there exists a class of problems that is not so easy. This class is called MAX SNP;
although we will not define it, it contains many interesting optimization problems, such as the
maximum satisfiability problem and the maximum cut problem, which we will discuss later in
the book. The following has been shown.

Theorem 1.3: For any MAX SNP-hard problem, there does not exist a polynomial-time ap-
prozimation scheme, unless P = NP.

Finally, some problems are very hard. In the mazimum clique problem, we are given as
input an undirected graph G = (V, E). The goal is to find a maximum-size clique; that is,
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16 An introduction to approximation algorithms

we wish to find S C V' that maximizes |S| so that for each pair 7,7 € S, it must be the case
that (i,7) € E. The following theorem demonstrates that almost any nontrivial approximation
guarantee is most likely unattainable.

Theorem 1.4: Let n denote the number of vertices in an input graph, and consider any constant
€ > 0. Then there does not exist an O(n~1)-approximation algorithm for the mazimum clique
problem, unless P = NP.

To see how strong this theorem is, observe that it is very easy to get an n~!-approximation
algorithm for the problem: just output a single vertex. This gives a clique of size 1, whereas the
size of the largest clique can be at most n, the number of vertices in the input. The theorem
states that finding something only slightly better than this completely trivial approximation
algorithm implies that P = NP!

1.2 An introduction to the techniques and to linear program-
ming: the set cover problem

One of the theses of this book is that there are several fundamental techniques used in the
design and analysis of approximation algorithms. The goal of this book is to help the reader
understand and master these techniques by applying each technique to many different problems
of interest. We will visit some problems several times; when we introduce a new technique, we
may see how it applies to a problem we have seen before, and show how we can obtain a better
result via this technique. The rest of this chapter will be an illustration of several of the central
techniques of the book applied to a single problem, the set cover problem, which we define below.
We will see how each of these techniques can be used to obtain an approximation algorithm,
and how some techniques lead to improved approximation algorithms for the set cover problem.

In the set cover problem, we are given a ground set of elements E = {ej,...,e,}, some
subsets of those elements 51,52, ...,S,, where each S; C F, and a nonnegative weight w; > 0
for each subset S;. The goal is to find a minimum-weight collection of subsets that covers all of
E; that is, we wish to find an I C {1,...,m} that minimizes Eje] w; subject to Uje[ S;=FE.
If wj =1 for each subset j, the problem is called the unweighted set cover problem.

The set cover problem is an abstraction of several types of problems; we give two examples
here. The set cover problem was used in the development of an antivirus product, which
detects computer viruses. In this case it was desired to find salient features that occur in
viruses designed for the boot sector of a computer, such that the features do not occur in
typical computer applications. These features were then incorporated into another heuristic for
detecting these boot sector viruses, a neural network. The elements of the set cover problem
were the known boot sector viruses (about 150 at the time). Each set corresponded to some
three-byte sequence occurring in these viruses but not in typical computer programs; there
were about 21,000 such sequences. Each set contained all the boot sector viruses that had the
corresponding three-byte sequence somewhere in it. The goal was to find a small number of
such sequences (much smaller than 150) that would be useful for the neural network. By using
an approximation algorithm to solve the problem, a small set of sequences was found, and the
neural network was able to detect many previously unanalyzed boot sector viruses. The set
cover problem also generalizes the vertex cover problem. In the vertex cover problem, we
are given an undirected graph G = (V, E) and a nonnegative weight w; > 0 for each vertex
1 € V. The goal is to find a minimum-weight subset of vertices C C V such that for each edge
(i,7) € E, either i € C or j € C. As in the set cover problem, if w; = 1 for each vertex 1,

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



1.2 An introduction to the techniques and to linear programming: the set cover problem 17

the problem is an unweighted vertex cover problem. To see that the vertex cover problem is a
special case of the set cover problem, for any instance of the vertex cover problem, create an
instance of the set cover problem in which the ground set is the set of edges, and a subset S; of
weight w; is created for each vertex ¢ € V' containing the edges incident to 4. It is not difficult
to see that for any vertex cover C, there is a set cover I = C of the same weight, and vice versa.

A second thesis of this book is that linear programming plays a central role in the design
and analysis of approximation algorithms. Many of the techniques introduced will use the
theory of integer and linear programming in one way or another. Here we will give a very brief
introduction to the area in the context of the set cover problem; we give a slightly less brief
introduction in Appendix A, and the notes at the end of this chapter provide suggestions of
other, more in-depth, introductions to the topic.

Each linear program or integer program is formulated in terms of some number of decision
variables that represent some sort of decision that needs to be made. The variables are con-
strained by a number of linear inequalities and equalities called constraints. Any assignment
of real numbers to the variables such that all of the constraints are satisfied is called a feasible
solution. In the case of the set cover problem, we need to decide which subsets S; to use in the
solution. We create a decision variable x; to represent this choice. In this case we would like x;
to be 1 if the set Sj is included in the solution, and 0 otherwise. Thus, we introduce constraints
x; < 1 for all subsets S;, and x; > 0 for all subsets S;. This is not sufficient to guarantee
that z; € {0,1}, so we will formulate the problem as an integer program to exclude fractional
solutions (that is, nonintegral solutions); in this case, we are also allowed to constrain the deci-
sion variables to be integers. Requiring x; to be integer along with the constraints x; > 0 and
xj <1 is sufficient to guarantee that z; € {0,1}.

We also want to make sure that any feasible solution corresponds to a set cover, so we
introduce additional constraints. In order to ensure that every element e; is covered, it must
be the case that at least one of the subsets S; containing e; is selected. This will be the case if

j:e; €S

foreache;, 1 =1,...,n.

In addition to the constraints, linear and integer programs are defined by a linear function of
the decision variables called the objective function. The linear or integer program seeks to find
a feasible solution that either maximizes or minimizes this objective function. Such a solution is
called an optimal solution. The value of the objective function for a particular feasible solution
is called the wvalue of that solution. The value of the objective function for an optimal solution
is called the value of the linear (or integer) program. We say we solve the linear program if we
find an optimal solution. In the case of the set cover problem, we want to find a set cover of
minimum weight. Given the decision variables z; and constraints described above, the weight
of a set cover given the x; variables is ZTzl wj;x;. Thus, the objective function of the integer
program is Z;n:l w;x;, and we wish to minimize this function.

Integer and linear programs are usually written in a compact form stating first the objec-

tive function and then the constraints. Given the discussion above, the problem of finding a
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18 An introduction to approximation algorithms

minimum-weight set cover is equivalent to the following integer program:

m
minimize Z W;T;
j=1
subject to Z x> 1, i=1,...,n, (1.1)
jie;€8;

z;€{0,1}, j=1,...,m.

Let Z7p denote the optimum value of this integer program for a given instance of the set cover
problem. Since the integer program exactly models the problem, we have that Z7, = OPT,
where OPT is the value of an optimum solution to the set cover problem.

In general, integer programs cannot be solved in polynomial time. This is clear because
the set cover problem is NP-hard, so solving the integer program above for any set cover input
in polynomial time would imply that P = NP. However, linear programs are polynomial-time
solvable. In linear programs we are not allowed to require that decision variables are integers.
Nevertheless, linear programs are still extremely useful: even in cases such as the set cover
problem, we are still able to derive useful information from linear programs. For instance, if we
replace the constraints x; € {0,1} with the constraints z; > 0, we obtain the following linear
program, which can be solved in polynomial time:

m

minimize ijxj
j=1

subject to Z ;> 1, i=1,...,n, (1.2)
jie; €S

We could also add the constraints x; < 1, for each j = 1,...,m, but they would be redundant:
in any optimal solution to the problem, we can reduce any x; > 1 to x; = 1 without affecting
the feasibility of the solution and without increasing its cost.

The linear program (1.2) is a relazation of the original integer program. By this we mean
two things: first, every feasible solution for the original integer program (1.1) is feasible for this
linear program; and second, the value of any feasible solution for the integer program has the
same value in the linear program. To see that the linear program is a relaxation, note that any
solution for the integer program such that z; € {0,1} for each j =1,...,m and Zj:eiesj xj>1
foreach ¢ =1,..., m will certainly satisfy all the constraints of the linear program. Furthermore,
the objective functions of both the integer and linear programs are the same, so that any feasible
solution for the integer program has the same value for the linear program. Let Z7 , denote the
optimum value of this linear program. Any optimal solution to the integer program is feasible
for the linear program and has value Z7p. Thus, any optimal solution to the linear program will
have value Z7 p < Z7p = OPT, since this minimization linear program finds a feasible solution
of lowest possible value. Using a polynomial-time solvable relaxation of a problem in order to
obtain a lower bound (in the case of minimization problems) or an upper bound (in the case
of maximization problems) on the optimum value of the problem is a concept that will appear
frequently in this book.

In the following sections, we will give some examples of how the linear programming re-
laxation can be used to derive approximation algorithms for the set cover problem. In the
next section, we will show that a fractional solution to the linear program can be rounded to
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1.3 A deterministic rounding algorithm 19

a solution to the integer program of objective function value that is within a certain factor
f of the value of the linear program Z7 . Thus, the integer solution will cost no more than
f - OPT. In the following section, we will show how one can similarly round the solution to
something called the dual of the linear programming relaxation. In Section 1.5, we will see
that in fact one does not need to solve the dual of the linear programming relaxation, but in
fact can quickly construct a dual feasible solution with the properties needed to allow a good
rounding. In Section 1.6, a type of algorithm called a greedy algorithm will be given; in this
case, linear programming need not be used at all, but one can use the dual to improve the
analysis of the algorithm. Finally, in Section 1.7, we will see how randomized rounding of the
solution to the linear programming relaxation can lead to an approximation algorithm for the
set cover problem.

Because we will frequently be referring to linear programs and linear programming, we will
often abbreviate these terms by the acronym LP. Similarly, IP stands for either integer program
or integer programming.

1.3 A deterministic rounding algorithm

Suppose that we solve the linear programming relaxation of the set cover problem. Let x*
denote an optimal solution to the LP. How then can we recover a solution to the set cover
problem? Here is a very easy way to obtain a solution: given the LP solution z*, we include
subset .S; in our solution if and only if 7 > 1 /f, where f is the maximum number of sets in
which any element appears. More formally, let f; = |{j : e; € S;}| be the number of sets in
which element e; appears, i = 1,...,n; then f = max;—1 ., f;. Let I denote the indices j of
the subsets in this solution. In effect, we round the fractional solution z* to an integer solution
& by setting #; = 1 if 2 > 1 /f, and Z; = 0 otherwise. We shall see that it is straightforward
to prove that Z is a feasible solution to the integer program, and I indeed indexes a set cover.

Lemma 1.5: The collection of subsets Sj, j € I, is a set cover.

Proof. Consider the solution specified by the lemma, and call an element e; covered if this
solution contains some subset containing e;. We show that each element e; is covered. Because
the optimal solution z* is a feasible solution to the linear program, we know that > jiei€S; z; > 1
for element e;. By the definition of f; and of f, there are f; < f terms in the sum, so at least
one term must be at least 1/f. Thus, for some j such that e; € S;, x7 > 1/f. Therefore, j € I,
and element e; is covered. ]

We can also show that this rounding procedure yields an approximation algorithm.

Theorem 1.6: The rounding algorithm is an f-approrimation algorithm for the set cover prob-
lem.

Proof. 1t is clear that the algorithm runs in polynomial time. By our construction, 1 < f -z

for each j € I. From this, and the fact that each term fw;x* is nonnegative for j = 1,...,m,

J
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20 An introduction to approximation algorithms

we see that

m
Swp < Ywy(fea))
jerI j=1
m
= f2_w
j=1
= [ Zip
where the final inequality follows from the argument above that Z7 , < OPT. 0

In the special case of the vertex cover problem, f; = 2 for each vertex ¢ € V, since each
edge is incident to exactly two vertices. Thus, the rounding algorithm gives a 2-approximation
algorithm for the vertex cover problem.

This particular algorithm allows us to have an a fortiori guarantee for each input. While
we know that for any input, the solution produced has cost at most a factor of f more than
the cost of an optimal solution, we can for any input compare the value of the solution we
find with the value of the linear programming relaxation. If the algorithm finds a set cover I,
let o = Zje[ w;/Z} p. From the proof above, we know that o < f. However, for any given
input, it could be the case that « is significantly smaller than f; in this case we know that
Zje] w; = aZip < aOPT, and the solution is within a factor of o of optimal. The algorithm
can easily compute «, given that it computes I and solves the LP relaxation.

1.4 Rounding a dual solution

Often it will be useful to consider the dual of the linear programming relaxation of a given
problem. Again, we will give a very brief introduction to the concept of the dual of a linear
program in the context of the set cover problem, and more in-depth introductions to the topic
will be cited in the notes at the end of this chapter.

To begin, we suppose that each element e; is charged some nonnegative price y; > 0 for its
coverage by a set cover. Intuitively, it might be the case that some elements can be covered
with low-weight subsets, while other elements might require high-weight subsets to cover them;
we would like to be able to capture this distinction by charging low prices to the former and
high prices to the latter. In order for the prices to be reasonable, it cannot be the case that the
sum of the prices of elements in a subset S; is more than the weight of the set, since we are
able to cover all of those elements by paying weight w;. Thus, for each subset S; we have the
following limit on the prices:

Z Yi < wj.

i:e; €85
We can find the highest total price that the elements can be charged by the following linear
program:

n
maximize Zyl
i=1
subject to Z Y < wj, j=1,...,m, (1.3)

i:e,€S8;

inO, i=1,...,n.
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1.4 Rounding a dual solution 21

This linear program is the dual linear program of the set cover linear programming relaxation
(1.2). We can in general derive a dual linear program for any given linear program, but we
will not go into the details of how to do so; see Appendix A or the references in the notes at
the end of the chapter. If we derive a dual for a given linear program, the given program is
sometimes called the primal linear program. For instance, the original linear programming
relaxation (1.2) of the set cover problem is the primal linear program of the dual (1.3). Notice
that this dual has a variable y; for each constraint of the primal linear program (that is, for
the constraint jieses; Ti > 1), and has a constraint for each variable x;j of the primal. This is
true of dual linear programs in general.

Dual linear programs have a number of very interesting and useful properties. For example,
let x be any feasible solution to the set cover linear programming relaxation, and let y be any
feasible set of prices (that is, any feasible solution to the dual linear program). Then consider
the value of the dual solution y:

Zyz WP

i=1  j:ie;€S;

since for any e;, > jieses; Ti > 1 by the feasibility of . Then rewriting the right-hand side of

this inequality, we have
Z Z L= ij Z Yi-

i=1  j:e;€S8; = 1:¢;€85;

Finally, noticing that since y is a feasible solution to the dual linear program, we know that
Zi:eiesj y; < wj for any j, so that

m m
ij Z Yi < ijwj.
j=1

j=1 i:e;€S5;

So we have shown that
n m
D v <Y w;
i=1 j=1

that is, any feasible solution to the dual linear program has a value no greater than any feasible
solution to the primal linear program. In particular, any feasible solution to the dual linear
program has a value no greater than the optimal solution to the primal linear program, so for
any feasible y, > "' v; < Z} p. This is called the weak duality property of linear programs.
Since we previously argued that Z; , < OPT, we have that for any feasible y, > "' ; y; < OPT.
This is a very useful property that will help us in designing approximation algorithms.
Additionally, there is a quite amazing strong duality property of linear programs. Strong
duality states that as long as there exist feasible solutions to both the primal and dual linear
programs, their optimal values are equal. Thus, if * is an optimal solution to the set cover
linear programming relaxation, and y* is an optimal solution to the dual linear program, then

Zw] Zyz

Information from a dual linear program solution can sometimes be used to derive good
approximation algorithms. Let y* be an optimal solution to the dual LP (1.3), and consider
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22 An introduction to approximation algorithms

the solution in which we choose all subsets for which the corresponding dual inequality is
tight; that is, the inequality is met with equality for subset S;, and ), ei€5; yF = wj. Let I
denote the indices of the subsets in this solution. We will prove that this algorithm also is an
f-approximation algorithm for the set cover problem.

Lemma 1.7: The collection of subsets S;, j € I, is a set cover.

Proof. Suppose that there exists some uncovered element ej. Then for each subset S; containing
ek, it must be the case that

Z Yl < wj. (1.4)

Let € be the smallest difference between the right-hand side and left-hand side of all constraints
involving ey; that is, € = minj.,es, (wj — Zi:eiesj yi‘) By inequality (1.4), we know that
€ > 0. Consider now a new dual solution ¢ in which y) = y; + € and every other component of
1y’ is the same as in y*. Then 9’ is a dual feasible solution since for each ;7 such that e; € Sj,

D vi= D vitesuy,
i:e,€S8; i:e,€S8;
by the definition of €. For each j such that e, ¢ S,
doyi= Y i <wy,
i:e;€S5; i:e; €85

as before. Furthermore, Y ;" y; > > | ¥, which contradicts the optimality of y*. Thus, it
must be the case that all elements are covered and I’ is a set cover. O

Theorem 1.8: The dual rounding algorithm described above is an f-approximation algorithm
for the set cover problem.

Proof. The central idea is the following “charging” argument: when we choose a set S; to be in
the cover, we “pay” for it by charging y; to each of its elements e;; each element is charged at
most once for each set that contains it (and hence at most f times), and so the total cost is at
most f > 7", yF, or f times the dual objective function.

More formally, since j € I’ only if w; = >, e:€8, y;, we have that the cost of the set cover

I is
dowio= D > u

Jer JjeI i:e;€8;
n
= Z:|{j€]’:e¢ESj}\-y;k
=1
n
> i
=1
n
< oy
i=1

< f-OPT.

IN

The second equality follows from the fact that when we interchange the order of summation,
the coefficient of ¥ is, of course, equal to the number of times that this term occurs overall.
The final inequality follows from the weak duality property discussed previously. O
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1.5 Constructing a dual solution: the primal-dual method 23

In fact, it is possible to show that this algorithm can do no better than the algorithm of
the previous section; to be precise, we can show that if I indexes the solution returned by the
primal rounding algorithm of the previous section, then I C I’. This follows from a property of
optimal linear programming solutions called complementary slackness. We showed earlier the
following string of inequalities for any feasible solution x to the set cover linear programming
relaxation, and any feasible solution y to the dual linear program:

n m

n m
DEd y Y =D w Yy <Y wuy
i=1 1 j=1

i=1 j:eiESj j= i:eZ-ESj

Furthermore, we claimed that strong duality implies that for optimal solutions z* and y*,
Yo yp = 5L wir;. Thus, for any optimal solutions * and y* the two inequalities in the
chain of inequalities above must in fact be equalities. The only way this can happen is that
whenever yf > 0 then Zj:eiesj z7 = 1, and whenever z7 > 0, then Zz‘:eiesj y; = w;. That
is, whenever a linear programming variable (primal or dual) is nonzero, the corresponding
constraint in the dual or primal is tight. These conditions are known as the complementary
slackness conditions. Thus, if z* and y* are optimal solutions, the complementary slackness
conditions must hold. The converse is also true: if x* and y* are feasible primal and dual
solutions, respectively, then if the complementary slackness conditions hold, the values of the
two objective functions are equal and therefore the solutions must be optimal.

In the case of the set cover program, if 2% > 0 for any primal optimal solution z*, then the
corresponding dual inequality for S; must be tight for any dual optimal solution y*. Recall that
in the algorithm of the previous section, we put j € I when z > 1/f. Thus, j € I implies that
jel, sothat I' D1I.

1.5 Constructing a dual solution: the primal-dual method

One of the disadvantages of the algorithms of the previous two sections is that they require
solving a linear program. While linear programs are efficiently solvable, and algorithms for
them are quick in practice, special purpose algorithms are often much faster. Although in this
book we will not usually be concerned with the precise running times of the algorithms, we will
try to indicate their relative practicality.

The basic idea of the algorithm in this section is that the dual rounding algorithm of the
previous section uses relatively few properties of an optimal dual solution. Instead of actually
solving the dual LP, we can construct a feasible dual solution with the same properties. In this
case, constructing the dual solution is much faster than solving the dual LP, and hence leads
to a much faster algorithm.

The algorithm of the previous section used the following properties. First, we used the fact
that >, y; < OPT, which is true for any feasible dual solution y. Second, we include j € I’
precisely when ) . eies; Yi = Wy, and I’ is a set cover. These two facts together gave the proof
that the cost of I’ is no more than f times optimal.

Importantly, it is the proof of Lemma 1.7 (that we have constructed a feasible cover) that
shows how to obtain an algorithm that constructs a dual solution. Consider any feasible dual
solution y, and let T" be the set of the indices of all tight dual constraints; that is, T = {j :
Zi:eiesj yi = w;}. If T is a set cover, then we are done. If T' is not a set cover, then some
item e; is uncovered, and as shown in the proof of Lemma 1.7 it is possible to improve the
dual objective function by increasing y; by some € > 0. More specifically, we can increase y;
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y <+ 0
I+ 0
while there exists e; ¢ |J;.; S; do
Increase the dual variable y; until there is some ¢ with e; € Sy such that
Zj:ejESg Yj = we
I+ Tu{t}

Algorithm 1.1: Primal-dual algorithm for the set cover problem.

by minj.,es; (wj — Zk:ekesj yk>, so that the constraint becomes tight for the subset S; that

attains the minimum. Additionally, the modified dual solution remains feasible. Thus, we can
add j to T', and element e; is now covered by the sets in T'. We repeat this process until 7" is a
set cover. Since an additional element e; is covered each time, the process is repeated at most
n times. To complete the description of the algorithm, we need to give only an initial dual
feasible solution. We can use the solution y; = 0 for each ¢ = 1, ..., n; this is feasible since each
wj, j = 1,...,m, is nonnegative. A formal description is given in Algorithm 1.1.

This yields the following theorem.

Theorem 1.9: Algorithm 1.1 is an f-approzimation algorithm for the set cover problem.

This type of algorithm is called a primal-dual algorithm by analogy with the primal-dual
method used in other combinatorial algorithms. Linear programming problems, network flow
problems, and shortest path problems (among others) all have primal-dual optimization algo-
rithms; we will see an example of a primal-dual algorithm for the shortest s-t path problem in
Section 7.3. Primal-dual algorithms start with a dual feasible solution, and use dual information
to infer a primal, possibly infeasible, solution. If the primal solution is indeed infeasible, the
dual solution is modified to increase the value of the dual objective function. The primal-dual
method has been very useful in designing approximation algorithms, and we will discuss it
extensively in Chapter 7.

We observe again that this particular algorithm allows us to have an a fortior: guarantee
for each input, since we can compare the value of the solution obtained with the value of the
dual solution generated by the algorithm. This ratio is guaranteed to be at most f by the proof
above, but it might be significantly better.

1.6 A greedy algorithm

At this point, the reader might be forgiven for feeling a slight sense of futility: we have exam-
ined several techniques for designing approximation algorithms for the set cover problem, and
they have all led to the same result, an approximation algorithm with performance guarantee
f. But, as in life, perseverance and some amount of cleverness often pay dividends in designing
approximation algorithms. We show in this section that a type of algorithm called a greedy
algorithm gives an approximation algorithm with a performance guarantee that is often signifi-
cantly better than f. Greedy algorithms work by making a sequence of decisions; each decision
is made to optimize that particular decision, even though this sequence of locally optimal (or
“greedy”) decisions might not lead to a globally optimal solution. The advantage of greedy
algorithms is that they are typically very easy to implement, and hence greedy algorithms are
a commonly used heuristic, even when they have no performance guarantee.

We now present a very natural greedy algorithm for the set cover problem. Sets are chosen
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1.6 A greedy algorithm 25

I+0
Sj — Sj Vj
while I is not a set cover do
. w5
{ + arg ming ¢ ﬁ
I+~ TU{l}

S’j(-gj—Sg Vj

Algorithm 1.2: A greedy algorithm for the set cover problem.

in a sequence of rounds. In each round, we choose the set that gives us the most bang for the
buck; that is, the set that minimizes the ratio of its weight to the number of currently uncovered
elements it contains. In the event of a tie, we pick an arbitrary set that achieves the minimum
ratio. We continue choosing sets until all elements are covered. Obviously, this will yield a
polynomial-time algorithm, since there can be no more than m rounds, and in each we compute
O(m) ratios, each in constant time. A formal description is given in Algorithm 1.2.

Before we state the theorem, we need some notation and a useful mathematical fact. Let
Hj. denote the kth harmonic number: that is, Hp =1 + % + % 4+ 4 % Note that H;, =~ Ink.
The following fact is one that we will use many times in the course of this book. It can be
proven with simple algebraic manipulations.

Fact 1.10: Given positive numbers aq,...,ar and by,..., by, then
k
.ag L ay a;
min — < % < ax —.
i=1,...k b; SoE b T i=lheok b;

Theorem 1.11: Algorithm 1.2 is an H,-approximation algorithm for the set cover problem.

Proof. The basic intuition for the analysis of the algorithm is as follows. Let OPT denote the
value of an optimal solution to the set cover problem. We know that an optimal solution covers
all n elements with a solution of weight OPT; therefore, there must be some subset that covers
its elements with an average weight of at most OPT /n. Similarly, after k& elements have been
covered, the optimal solution can cover the remaining n — k elements with a solution of weight
OPT, which implies that there is some subset that covers its remaining uncovered elements
with an average weight of at most OPT /(n — k). So in general the greedy algorithm pays
about OPT /(n — k + 1) to cover the kth uncovered element, giving a performance guarantee
of Y0, n%w = H,.

We now formalize this intuition. Let nj denote the number of elements that remain un-
covered at the start of the kth iteration. If the algorithm takes ¢ iterations, then ny = n, and
we set ngrq = 0. Pick an arbitrary iteration k. Let I denote the indices of the sets chosen
in iterations 1 through £ — 1, and for each j = 1,...,m, let S“j denote the set of uncovered
elements in S; at the start of this iteration; that is, S'j =5 -U Sp. Then we claim that
for the set j chosen in the kth iteration,

pEl}

w; < BT opT (1.5)
ng

Given the claimed inequality (1.5), we can prove the theorem. Let I contain the indices of the
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sets in our final solution. Then

VA
Y ML opT
n

dowj <
jel k=1 k
S 1 1
< OPT- — + +oo 1.6
;(nk ng —1 nk+1+1> (19)
1
= OPT- -
2
=1
= H, OPT,
where the inequality (1.6) follows from the fact that — W for each 0 < ¢ < ng.
To prove the claimed inequality (1.5), we shall ﬁrst argue that in the kth iteration,
j OPT
min < . (L.7)
e A L

If we let O contain the indices of the sets in an optimal solution, then inequality (1.7) follows
from Fact 1.10, by observing that
w; _ Yjeow;  OPT _ ort

min — <

3801551 e0lSil 2jeolSil T T

)

where the last inequality follows from the fact that since O is a set cover, the set | ico S’j must
include all remaining nj; uncovered elements. Let j index a subset that minimizes this ratio, so

that 22 | S | < OfT If we add the subset S; to our solution, then there will be |§]| fewer uncovered

elements, so that ngy1 = ng — |Sj|. Thus,
|S;|OPT

—nNn
wj < = ML OPT.,
Nk ng

O]

We can improve the performance guarantee of the algorithm slightly by using the dual of
the linear programming relaxation in the analysis. Let g be the maximum size of any subset
Sj; that is, ¢ = max;|S;|. Recall that Z7 ; is the optimum value of the linear programming
relaxation for the set cover problem. The following theorem immediately implies that the greedy
algorithm is an Hg-approximation algorithm, since Z7 , < OPT.

Theorem 1.12: Algorithm 1.2 returns a solution indexed by I such that Eje[ w; < Hgy-Z7p.

Proof. To prove the theorem, we will construct an infeasible dual solution y such that > jer Wi =
> 1 yi. We will then show that 3 = H%,y is a feasible dual solution. By the weak duality
theorem, > 1" | yi < Z7p, so that 3 rw; = >0 yi = Hy )iy y; < Hy- OPT. We will see at
the end of the proof the reason we choose to divide the infeasible dual solution y by H,.

The name dual fitting has been given to this technique of constructing an infeasible dual
solution whose value is equal to the value of the primal solution constructed, and such that
scaling the dual solution by a single value makes it feasible. We will return to this technique in
Section 9.4.
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To construct the infeasible dual solution Yy, suppose we choose to add subset S; to our
solution in iteration k. Then for each e; € S, we set y; = w;/|S;|. Since each e¢; € S is
uncovered in iteration k, and is then covered for the remaining iterations of the algorithm
(because we added subset S; to the solution), the dual variable y; is set to a value exactly
once; in particular, it is set in the iteration in which element e; is covered. Furthermore,
wj = Zz‘:eieﬁj y;; that is, the weight of the subset S; chosen in the kth iteration is equal to
the sum of the duals y; of the uncovered elements that are covered in the kth iteration. This
immediately implies that Y., w; = >, yi.

It remains to prove that the dual solution ' = Higy is feasible. We must show that for each
subset Sj, Zi:eie s Y, < wj. Pick an arbitrary subset S;. Let aj be the number of elements
in this subset that are still uncovered at the beginning of the kth iteration, so that a; = |5}/,
and asy1 = 0. Let Ay be the uncovered elements of S; covered in the kth iteration, so that
|Ax| = ap — agq1. If subset S, is chosen in the kth iteration, then for each element e; € Ay
covered in the kth iteration,

Wp wj

— < )
Hy|Sy| Hya

vi =

where S, is the set of uncovered elements of S, at the beginning of the kth iteration. The
inequality follows because if S, is chosen in the kth iteration, it must minimize the ratio of its
weight to the number of uncovered elements it contains. Thus,

ZyQZZe:ZyQ

1:e;€85; k=11i:e;€A
l
< Z(ak—ak 1) W
- * Hgak
k=1
w4 —a
< wy Z ag k+1
Hy k=1
4
< W <1 + 1 + n 1 >
-~ H, — \ar  ap— 1 ap+1 + 1
551
w; 1
< -7 -
H, =i
W
= —LH,
H, 1551
< wy,

where the final inequality follows because |Sj| < g. Here we see the reason for scaling the dual
solution by Hy, since we know that Hg, < Hg for all sets j. O

It turns out that no approximation algorithm for the set cover problem with performance
guarantee better than H,, is possible, under an assumption slightly stronger than P % NP.

Theorem 1.13: If there exists a clnn-approrimation algorithm for the unweighted set cover
problem for some constant ¢ < 1, then there is an O(no(loglog"))—time deterministic algorithm
for each NP-complete problem.
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Theorem 1.14: There exists some constant ¢ > 0 such that if there exists a clnn-approximation
algorithm for the unweighted set cover problem, then P = NP.

We will discuss results of this sort at more length in Chapter 16; in Theorem 16.32 we show
how a slightly weaker version of these results can be derived. Results of this type are sometimes
called hardness theorems, as they show that it is NP-hard to provide near-optimal solutions for
a certain problem with certain performance guarantees.

The f-approximation algorithms for the set cover problem imply a 2-approximation algo-
rithm for the special case of the vertex cover problem. No algorithm with a better constant
performance guarantee is known at this point in time. Additionally, two hardness theorems,
Theorems 1.15 and 1.16 below, have been shown.

Theorem 1.15: If there exists an a-approrimation algorithm for the vertex cover problem with
a < 10v/5 — 21 ~ 1.36, then P = NP.

The following theorem mentions a conjecture called the unique games conjecture that we
will discuss more in Section 13.3 and Section 16.5. The conjecture is roughly that a particular
problem (called unique games) is NP-hard.

Theorem 1.16: Assuming the unique games conjecture, if there exists an «-approrimation
algorithm for the vertex cover problem with constant a < 2, then P = NP.

Thus, assuming P # NP and the NP-completeness of the unique games problem, we have
found essentially the best possible approximation algorithm for the vertex cover problem.

1.7 A randomized rounding algorithm

In this section, we consider one final technique for devising an approximation algorithm for
the set cover problem. Although the algorithm is slower and has no better guarantee than the
greedy algorithm of the previous section, we include it here because it introduces the notion of
using randomization in approximation algorithms, an idea we will cover in depth in Chapter 5.

As with the algorithm in Section 1.3, the algorithm will solve a linear programming relax-
ation for the set cover problem, and then round the fractional solution to an integral solution.
Rather than doing so deterministically, however, the algorithm will do so randomly using a
technique called randomized rounding. Let * be an optimal solution to the LP relaxation. We
would like to round fractional values of x* to either 0 or 1 in such a way that we obtain a solution
Z to the integer programming formulation of the set cover problem without increasing the cost
too much. The central idea of randomized rounding is that we interpret the fractional value x;
as the probability that #; should be set to 1. Thus, each subset S; is included in our solution
with probability «7, where these m events (that S; is included in our solution) are independent
random events. We assume some basic knowledge of probability theory throughout this text;
for those who need some additional background, see the notes at the end of the chapter for
suggested references.

Let X; be a random variable that is 1 if subset \S; is included in the solution, and 0 otherwise.
Then the expected value of the solution is

m
E Zu)ij :ijPY[Xj:H:ijx;: ZP,
Jj=1 j

or just the value of the linear programming relaxation, which is no more than OPT! As we will
see, however, it is quite likely that the solution is not a set cover. Nevertheless, this illustrates
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1.7 A randomized rounding algorithm 29

why randomized rounding can provide such good approximation algorithms in some cases, and
we will see further examples of this in Chapter 5.

Let us now calculate the probability that a given element e; is not covered by this procedure.
This is the probability that none of the subsets containing e; are included in the solution, or

I] a-=3).
j:e; €S

We can bound this probability by using the fact that 1 —x < e™* for any z, where e is the base
of the natural logarithm. Then

Prle; not covered] = H (1—2j)
Jie; €8

|
I] <~

J:ei €S

IN

= e
< et

where the final inequality follows from the LP constraint that > jieses, z; > 1. Although e lis
an upper bound on the probability that a given element is not covered, it is possible to approach
this bound arbitrarily closely, so in the worst case it is quite likely that this randomized rounding
procedure does not produce a set cover.

How small would this probability have to be in order for it to be very likely that a set cover
is produced? And perhaps even more fundamentally, what is the “right” notion of “very likely”?
The latter question has a number of possible answers; one natural way to think of the situation
is to impose a guarantee in keeping with our focus on polynomial-time algorithms. Suppose
that, for any constant ¢, we could devise a polynomial-time algorithm whose chance of failure
is at most an inverse polynomial n~¢; then we say that we have an algorithm that works with
high probability. To be more precise, we would have a family of algorithms, since it might be
necessary to give progressively slower algorithms, or ones with worse performance guarantees,
to achieve analogously more fail-safe results. If we could devise a randomized procedure such
that Prle; not covered] < -1 for some constant ¢ > 2, then

1

ne—1

n
Pr[there exists an uncovered element] < Z Pr[e; not covered] <
i=1

)

and we would have a set cover with high probability. In fact, we can achieve such a bound in
the following way: for each subset S;, we imagine a coin that comes up heads with probability
x;-, and we flip the coin clnn times. If it comes up heads in any of the cInn trials, we include
S; in our solution, otherwise not. Thus, the probability that S; is not included is (1 — x;‘-)d“".
Furthermore,

Prle; not covered] = H (1-— :L,;f)clnn

J:ei€5;

< H o~ (cinn)
j:eiESj

_ e_(clnn) Ej:eiesj :L’;k
1

< S

Sy
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30 An introduction to approximation algorithms

as desired.
We now need to prove only that the algorithm has a good expected value given that it
produces a set cover.

Theorem 1.17: The algorithm is a randomized O(Inn)-approzimation algorithm that produces
a set cover with high probability.

Proof. Let p; (xj) be the probability that a given subset S; is included in the solution as a
function of z7. By construction of the algorithm, we know that p;(z}) = 1 — (1 — :v;-)dn”.
Observe that if 27 € [0,1] and clnn > 1, then we can bound the derivative p;» at z by

p(x}) = (clnn)(1 - :C;f)(d“”)*l < (clnn).

Then since p;(0) = 0, and the slope of the function p; is bounded above by c¢lnn on the interval
0,1], pj(2}) < (cInn)x} on the interval [0,1]. If X is a random variable that is 1 if the subset
S; is included in the solution, and 0 otherwise, then the expected value of the random procedure
is

m m
E Zw]’X]’ = ZU}]‘ PI‘[Xj == ]_]
j=1 j=1
m
< ij(clnn)x;f
j=1

m
= (clnn)ijxj- = (clnn)Z; p.
j=1

However, we would like to bound the expected value of the solution given that a set cover
is produced. Let F' be the event that the solution obtained by the procedure is a feasible set
cover, and let F be the complement of this event. We know from the previous discussion that
Pr[F] > 1 — -1, and we also know that

ne—1»
m m m B B
E ) wX;| =E|> wX;|F|Pr[F]+ E | w;X;| F| Pr[F].
j=1 j=1 j=1
Since w; > 0 for all j,
m —
E ) wX;|F| >0.
j=1
Thus,
m 1 m m
E ;wjxj F| = T E ;wjxj —E ;wjxj F| Pr[F]

1 m
< B X,
= Pi[F] ; Wit

(clnn)Zi p
- 1— L
nc—1

< 2¢(lnn)Zip
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1.7 A randomized rounding algorithm 31

for n > 2 and ¢ > 2. OJ

While in this case there is a simpler and faster approximation algorithm that achieves a bet-
ter performance guarantee, we will see in Chapter 5 that sometimes randomized algorithms are
simpler to describe and analyze than deterministic algorithms. In fact, most of the randomized
algorithms we present in this book can be derandomized: that is, a deterministic variant of them
can be created that achieves the expected performance guarantee of the randomized algorithm.
However, these deterministic algorithms are sometimes more complicated to describe. In addi-
tion, there are some cases in which the deterministic variant is easy to state, but the only way
in which we know how to analyze the algorithm is by analyzing a corresponding randomized
algorithm.

This brings us to the end of our introduction to approximation algorithms. In subsequent
chapters, we will look at the techniques introduced here — as well as a few others — in greater
depth, and see their application to many other problems.

Exercises

1.1 In the set cover problem, the goal is to find a collection of subsets indexed by I that
minimizes ) .y w; such that

U s;| =1El.

J€eI
Consider the partial cover problem, in which one finds a collection of subsets indexed by
I that minimizes ) ;. w; such that

jel
where 0 < p < 1 is some constant.

(a) Give a polynomial-time algorithm to find a solution to the partial cover problem in
which the value is no more than ¢(p) - OPT, where ¢(p) is a constant that depends
on p, and OPT is the value of the optimal solution to the set cover problem.

(b) Give an f(p)-approximation algorithm for the partial cover problem, such that f is
non-decreasing in p and f(1) < H|g|.

1.2 In the directed Steiner tree problem, we are given as input a directed graph G = (V, A),
nonnegative costs ¢;; > 0 for arcs (i,j) € A, a root vertex r € V, and a set of terminals
T C V. The goal is to find a minimum-cost tree such that for each ¢ € T there exists a
directed path from r to .

Prove that for some constant ¢ there can be no clog|T|-approximation algorithm for the
directed Steiner tree problem, unless P = NP.

1.3 In the metric asymmetric traveling salesman problem, we are given as input a complete
directed graph G = (V, A) with costs ¢;; > 0 for all arcs (i,j) € A, such that the arc costs
obey the triangle inequality: for all 4,j,k € V, we have that c;; + cji > c¢jx. The goal is
to find a tour of minimum cost, that is, a directed cycle that contains each vertex exactly
once, such that the sum of the cost of the arcs in the cycle is minimized.
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One approach to finding an approximation algorithm for this problem is to first find a
minimum-cost strongly connected Fulerian subgraph of the input graph. A directed graph
is strongly connected if for any pair of vertices i, € V there is a path from ¢ to j and
a path from j to i. A directed graph is Eulerian if the indegree of each vertex equals its
outdegree. Given a strongly connected Eulerian subgraph of the input to the problem, it
is possible to use a technique called “shortcutting” (discussed in Section 2.4) to turn this
into a tour of no greater cost by using the triangle inequality.

One way to find a strongly connected Eulerian subgraph is as follows: We first find a
minimum mean-cost cycle in the graph. A minimum mean-cost cycle is a directed cycle
that minimizes the ratio of the cost of the arcs in the cycle to the number of arcs in the
cycle. Such a cycle can be found in polynomial time. We then choose one vertex of the
cycle arbitrarily, remove all other vertices of the cycle from the graph, and repeat. We do
this until only one vertex of the graph is left. Consider the subgraph consisting of all the
arcs from all the cycles found.

(a) Prove that the subgraph found by the algorithm is a strongly connected Eulerian
subgraph of the input graph.

(b) Prove that the cost of this subgraph is at most 2H,, - OPT, where n = |V| and OPT
is the cost of the optimal tour. Conclude that this algorithm is a 2H,-approximation
algorithm for the metric asymmetric traveling salesman problem.

1.4 In the wuncapacitated facility location problem, we have a set of clients D and a set of

facilities F'. For each client j € D and facility ¢ € I, there is a cost ¢;; of assigning client
j to facility ¢. Furthermore, there is a cost f; associated with each facility ¢ € F'. The goal
of the problem is to choose a subset of facilities F/ C F so as to minimize the total cost
of the facilities in F’ and the cost of assigning each client j € D to the nearest facility in
F'. In other words, we wish to find F’ so as to minimize ), p fi + ZjeD min;e pr ¢;j.

(a) Show that there exists some ¢ such that there is no (¢1n|D|)-approximation algorithm
for the uncapacitated facility location problem unless P = NP.

(b) Give an O(In|D|)-approximation algorithm for the uncapacitated facility location
problem.

1.5 Consider the vertex cover problem.

(a) Prove that any extreme point of the linear program

minimize Zwixi
eV
subject to x; +x; > 1, v(i,j) € E,
i > 07 (S V7

has the property that z; € {0, %, 1} for all i € V. (Recall that an extreme point x is

a feasible solution that cannot be expressed as Az! + (1 — A\)z? for 0 < A < 1 and
feasible solutions ! and 22 distinct from x.)

(b) Givea %—approximation algorithm for the vertex cover problem when the input graph
is planar. You may use the facts that polynomial-time LP solvers return extreme
points, and that there is a polynomial-time algorithm to 4-color any planar graph
(i.e., the algorithm assigns each vertex one of four colors such that for any edge
(i,7) € E, vertices i and j have been assigned different colors).
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1.6 In the node-weighted Steiner tree problem, we are given as input an undirected graph
G = (V, E), node weights w; > 0 for all i € V', edge costs c. > 0 for all e € E, and a set of
terminals T" C V. The cost of a tree is the sum of the weights of the nodes plus the sum
of the costs of the edges in the tree. The goal of the problem is to find a minimum-weight
tree that spans all the terminals in 7.

(a) Show that there exists some ¢ such that there is no (¢In |T'|)-approximation algorithm
for the node-weighted Steiner tree problem unless P = NP.

(b) Give a greedy O(In|T'|)-approximation algorithm for the node-weighted Steiner tree
problem.

Chapter Notes

The term “approximation algorithm” was coined by David S. Johnson [179] in an influential
and prescient 1974 paper. However, earlier papers had proved the performance guarantees of
heuristics, including a 1967 paper of Erdds [99] on the maximum cut problem (to be discussed
in Section 6.2), a 1966 paper of Graham [142] on a scheduling problem (to be discussed in
Section 2.3), and a 1964 paper of Vizing [284] on the edge coloring problem (to be discussed in
Section 2.7). Johnson’s paper gave an O(logn)-approximation algorithm for the unweighted set
cover problem, as well as approximation algorithms for the maximum satisfiability problem (to
be discussed in Section 5.1), vertex coloring (Sections 5.12, 6.5, and 13.2), and the maximum
clique problem. At the end of the paper, Johnson [179] speculates about the approximability
of these various problems:

The results described in this paper indicate a possible classification of optimization
problems as to the behavior of their approximation algorithms. Such a classification
must remain tentative, at least until the existence of polynomial-time algorithms
for finding optimal solutions has been proved or disproved. In the meantime, many
questions can be asked. Are there indeed O(logn) coloring algorithms? Are there
any clique finding algorithms better than O(n¢) for all € > 0?7 Where do other opti-
mization problems fit into the scheme of things? What is it that makes algorithms
for different problems behave in the same way? Is there some stronger kind of re-
ducibility than the simple polynomial reducibility that will explain these results,
or are they due to some structural similarity between the problems as we define
them? And what other types of behavior and ways of analyzing and measuring it
are possible? (p. 278)

There has been substantial work done in attempting to answer these questions in the decades
since Johnson’s paper appeared, with significant progress; for instance, Theorem 1.4 shows that
no clique algorithm of the kind Johnson mentions is possible unless P = NP.

Other books on approximation algorithms are available, including the textbooks of Ausiello,
Crescenzi, Gambosi, Kann, Marchetti-Spaccamela, and Protasi [27] and of Vazirani [283], and
the collection of surveys edited by Hochbaum [162]. Many books on algorithms and combina-
torial optimization now contain sections on approximation algorithms, including the textbooks
of Bertsimas and Tsitsiklis [47], Cook, Cunningham, Pulleyblank, and Schrijver [81], Cormen,
Leiserson, Rivest, and Stein [82], Kleinberg and Tardos [198], and Korte and Vygen [203].

For solid introductions to linear programming, we suggest the books of Bertsimas and Tsit-
siklis [47], Chvatal [79] and Ferris, Mangasarian, and Wright [112]. Bertsekas and Tsitsiklis
[45], Durrett [93, 94], and Ross [256] provide basic introductions to probability theory; the
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first few chapters of the book of Mitzenmacher and Upfal [226] provide a brief introduction to
probability theory in the context of computer algorithms.

The antivirus application of the set cover problem mentioned is due to Kephart, Sorkin,
Arnold, Chess, Tesauro, and White [188].

Theorem 1.3 on the non-existence of approximation schemes for problems in MAX SNP is
due to Arora, Lund, Motwani, Sudan, and Szegedy [19], building on earlier work of Feige, Gold-
wasser, Lovéasz, Safra, and Szegedy [108] and Arora and Safra [23]. Theorem 1.4 on the hardness
of approximating the maximum clique problem is due to Hastad [158], with a strengthening
due to Zuckerman [296].

The LP rounding algorithm of Section 1.3 and the dual rounding algorithm of Section 1.4
are due to Hochbaum [160]. The primal-dual algorithm of Section 1.5 is due to Bar-Yehuda and
Even [35]. The greedy algorithm and the LP-based analysis of Section 1.6 are due to Chvatal
[78]. The randomized rounding algorithm of Section 1.7 is apparently folklore. Johnson [179]
and Lovasz [218] give earlier greedy O(logn)-approximation algorithms for the unweighted set
cover problem.

Theorem 1.13 on the hardness of approximating the set cover problem is due to Lund and
Yannakakis [220], with a strengthening due to Bellare, Goldwasser, Lund, and Russell [43].
Theorem 1.14 on the hardness of the set cover problem is due to Feige [107]. Theorem 1.15 on
the hardness of the vertex cover problem is due to Dinur and Safra [91], while Theorem 1.16,
which uses the unique games conjecture, is due to Khot and Regev [194].

Exercise 1.3 is an unpublished result of Kleinberg and Williamson. The algorithm in Exercise
1.4 is due to Hochbaum [161]. Nemhauser and Trotter [231] show that all extreme points of
the linear programming relaxation of vertex cover have value {0, 3,1} (used in Exercise 1.5).
Exercise 1.6 is due to Klein and Ravi [196].
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CHAPTER 2

Greedy algorithms and local search

In this chapter, we will consider two standard and related techniques for designing algorithms
and heuristics, namely, greedy algorithms and local search algorithms. Both algorithms work
by making a sequence of decisions that optimize some local choice, though these local choices
might not lead to the best overall solution.

In a greedy algorithm, a solution is constructed step by step, and at each step of the
algorithm the next part of the solution is constructed by making some decision that is locally
the best possible. In Section 1.6, we gave an example of a greedy algorithm for the set cover
problem that constructs a set cover by repeatedly choosing the set that minimizes the ratio of
its weight to the number of currently uncovered elements it contains.

A local search algorithm starts with an arbitrary feasible solution to the problem, and then
checks if some small, local change to the solution results in an improved objective function.
If so, the change is made. When no further change can be made, we have a locally optimal
solution, and it is sometimes possible to prove that such locally optimal solutions have value
close to that of the optimal solution. Unlike other approximation algorithm design techniques,
the most straightforward implementation of a local search algorithm typically does not run in
polynomial time. The algorithm usually requires some restriction to the local changes allowed
in order to ensure that enough progress is made during each improving step so that a locally
optimal solution is found in polynomial time.

Thus, while both types of algorithm optimize local choices, greedy algorithms are typically
primal infeasible algorithms: they construct a solution to the problem during the course of
the algorithm. Local search algorithms are primal feasible algorithms: they always maintain a
feasible solution to the problem and modify it during the course of the algorithm.

Both greedy algorithms and local search algorithms are extremely popular choices for heuris-
tics for NP-hard problems. They are typically easy to implement and have good running times
in practice. In this chapter, we will consider greedy and local search algorithms for scheduling
problems, clustering problems, and others, including the most famous problem in combinatorial
optimization, the traveling salesman problem. Because greedy and local search algorithms are
natural choices for heuristics, some of these algorithms were among the very first approxima-
tion algorithms devised; in particular, the greedy algorithm for the parallel machine scheduling
problem in Section 2.3 and the greedy algorithm for edge coloring in Section 2.7 were both
given and analyzed in the 1960s, before the concept of NP-completeness was invented.

35
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Job 1 Job 2 Job 3

N :

0 2 3 7 Time

Figure 2.1: An instance of a schedule for the one-machine scheduling problem in which
pr=2,11=0,py=1,r9o =2, p3 =4, r3 = 1. In this schedule, C; = 2, Cy = 3, and
('3 = 7. If the deadlines for the jobs are such that dy = —1, do = 1, and ds = 10, then
Li=2—-(-1)=3,Ly=3—-1=2,and L3 =7 — 10 = —3, so that Ly.x = L1 = 3.

2.1 Scheduling jobs with deadlines on a single machine

One of the most common types of problems in combinatorial optimization is that of creating
a schedule. We are given some type of work that must be done, and some resources to do
the work, and from this we must create a schedule to complete the work that optimizes some
objective; perhaps we want to finish all the work as soon as possible, or perhaps we want to
make sure that the average time at which we complete the various pieces of work is as small
as possible. We will often consider the problem of scheduling jobs (the work) on machines (the
resources). We start this chapter by considering one of the simplest possible versions of this
problem.

Suppose that there are n jobs to be scheduled on a single machine, where the machine can
process at most one job at a time, and must process a job until its completion once it has begun
processing; suppose that each job j must be processed for a specified p; units of time, where
the processing of job j may begin no earlier than a specified release date rj, j =1,...,n. We
assume that the schedule starts at time 0, and each release date is nonnegative. Furthermore,
assume that each job j has a specified due date dj;, and if we complete its processing at time
Cj, then its lateness L; is equal to Cj — d;; we are interested in scheduling the jobs so as to
minimize the maximum lateness, Lyax = max;—1,..n L;. A sample instance of this problem is
shown in Figure 2.1.

Unfortunately, this problem is NP-hard, and in fact, even deciding if there is a schedule
for which Lyax < 0 (i.e., deciding if all jobs can be completed by their due date) is strongly
NP-hard (the reader unfamiliar with strong NP-hardness can consult Appendix B). Of course,
this is a problem that we often encounter in everyday life, and many of us schedule our lives
with the following simple greedy heuristic: focus on the task with the earliest due date. We will
show that in certain circumstances this is a provably good thing to do. However, we first argue
that as stated, this optimization problem is not particularly amenable to obtaining near-optimal
solutions. If there were a p-approximation algorithm, then for any input with optimal value
0, the algorithm must still find a schedule of objective function value at most p-0 = 0, and
hence (given the NP-hardness result stated above) this would imply that P = NP. (There is the
further complication of what to do if the objective function of the optimal solution is negative!)
One easy workaround to this is to assume that all due dates are negative, which implies that
the optimal value is always positive. We shall give a 2-approximation algorithm for this special
case.

We first provide a good lower bound on the optimal value for this scheduling problem. Let
S denote a subset of jobs, and let r(S) = minjesr;, p(S) = >_,esp), and d(S) = maxjeg d;.
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Let L*

max denote the optimal value.

Lemma 2.1: For each subset S of jobs,
L.« >7r(S)+p(S) —d(S).

max

Proof. Consider the optimal schedule, and view this simply as a schedule for the jobs in the
subset S. Let job j be the last job in S to be processed. Since none of the jobs in S can
be processed before r(S), and in total they require p(S) time units of processing, it follows
that job j cannot complete any earlier than time 7(S) + p(S). The due date of job j is d(5)
or earlier, and so the lateness of job j in this schedule is at least r(S) + p(S) — d(S); hence,
L > 1(8) + p(S) — d(S). 0

A job j is available at time t if its release date r; < ¢. We consider the following natural
algorithm: at each moment that the machine is idle, start processing next an available job with
the earliest due date. This is known as the earliest due date (EDD) rule.

Theorem 2.2: The EDD rule is a 2-approximation algorithm for the problem of minimizing
the maximum lateness on a single machine subject to release dates with negative due dates.

Proof. Consider the schedule produced by the EDD rule, and let job j be a job of maximum
lateness in this schedule; that is, Liax = Cj — d;. Focus on the time C; in this schedule; find
the earliest point in time ¢ < C} such that the machine was processing without any idle time
for the entire period [t, C;). Several jobs may be processed in this time interval; we require only
that the machine not be idle for some interval of positive length within it. Let S be the set of
jobs that are processed in the interval [t,C;). By our choice of ¢, we know that just prior to
t, none of these jobs were available (and clearly at least one job in S is available at time t);
hence, r(S5) = t. Furthermore, since only jobs in S are processed throughout this time interval,
p(S)=Cj —t=C; —r(S). Thus, C; < r(S) + p(S); since d(S) < 0, we can apply Lemma 2.1
to get that

Livae = 1(5) +p(S) — d(S) = 1(S) +p(S) = C. (2.1)

max

On the other hand, by applying Lemma 2.1 with S = {j},
Liax 275 +pj —dj = —dj. (22)

Adding inequalities (2.1) and (2.2), we see that the maximum lateness of the schedule computed
is

Lunax = Cj — d; < 2L,

max?

which completes the proof of the theorem. O

2.2 The k-center problem

The problem of finding similarities and dissimilarities in large amounts of data is ubiquitous:
companies wish to group customers with similar purchasing behavior, political consultants group
precincts by their voting behavior, and search engines group webpages by their similarity of
topic. Usually we speak of clustering data, and there has been extensive study of the problem
of finding good clusterings.

Here we consider a particular variant of clustering, the k-center problem. In this problem,
we are given as input an undirected, complete graph G = (V, E), with a distance d;; > 0
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Pick arbitrary i € V

S« {i}

while |S| < k do
J < argmaxjcy d(j,S)
S« SuU{j}

Algorithm 2.1: A greedy 2-approximation algorithm for the k-center problem.

2%

3
® 3+

Figure 2.2: An instance of the k-center problem where k = 3 and the distances are
given by the Euclidean distances between points. The execution of the greedy algorithm
is shown; the nodes 1, 2, 3 are the nodes selected by the greedy algorithm, whereas the
nodes 1%, 2%, 3* are the three nodes in an optimal solution.

between each pair of vertices i,j € V. We assume d;; = 0, d;; = dj; for each i,j € V, and
that the distances obey the triangle inequality: for each triple i,j,l € V, it is the case that
dij + dj; > dy. In this problem, distances model similarity: vertices that are closer to each
other are more similar, whereas those farther apart are less similar. We are also given a positive
integer k£ as input. The goal is to find k& clusters, grouping together the vertices that are most
similar into clusters together. In this problem, we will choose a set S C V, |S| = k, of k
cluster centers. Each vertex will assign itself to its closest cluster center, grouping the vertices
into k different clusters. For the k-center problem, the objective is to minimize the maximum
distance of a vertex to its cluster center. Geometrically speaking, the goal is to find the centers
of k different balls of the same radius that cover all points so that the radius is as small as
possible. More formally, we define the distance of a vertex ¢ from a set S C V of vertices to be
d(i,S) = minjeg d;j. Then the corresponding radius for S is equal to max;cy d(i, S), and the
goal of the k-center problem is to find a set of size k& of minimum radius.

In later chapters we will consider other objective functions, such as minimizing the sum of
distances of vertices to their cluster centers, that is, minimizing ). d(4,S). This is called
the k-median problem, and we will consider it in Sections 7.7 and 9.2. We shall also consider
another variant on clustering called correlation clustering in Section 6.4.

We give a greedy 2-approximation algorithm for the k-center problem that is simple and
intuitive. Our algorithm first picks a vertex ¢ € V arbitrarily, and puts it in our set S of cluster
centers. Then it makes sense for the next cluster center to be as far away as possible from
all the other cluster centers. Hence, while |S| < k, we repeatedly find a vertex j € V that
determines the current radius (or in other words, for which the distance d(j, S) is maximized)
and add it to S. Once |S| = k, we stop and return S. Our algorithm is given in Algorithm 2.1.

An execution of the algorithm is shown in Figure 2.2. We will now prove that the algorithm
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is a good approximation algorithm.

Theorem 2.3: Algorithm 2.1 is a 2-approximation algorithm for the k-center problem.

Proof. Let S* = {j1,...,jr} denote the optimal solution, and let r* denote its radius. This
solution partitions the nodes V into clusters V4, ..., Vi, where each point j € V is placed in V;
if it is closest to j; among all of the points in S* (and ties are broken arbitrarily). Each pair
of points j and j’ in the same cluster V; are at most 2r* apart: by the triangle inequality, the
distance d;;; between them is at most the sum of dj;,, the distance from j to the center j;, plus
dj,j, the distance from the center j; to j' (that is, d;j < djj, + dj,j); since dj;, and dj/;, are
each at most 7*, we see that d;; is at most 2r*.

Now consider the set S C V of points selected by the greedy algorithm. If one center in .S
is selected from each cluster of the optimal solution S*, then every point in V' is clearly within
2r* of some selected point in S. However, suppose that the algorithm selects two points within
the same cluster. That is, in some iteration, the algorithm selects a point j € V;, even though
the algorithm had already selected a point j/ € V; in an earlier iteration. Again, the distance
between these two points is at most 2r*. The algorithm selects j in this iteration because it is
currently the furthest from the points already in S. Hence, all points are within a distance of
at most 2r* of some center already selected for S. Clearly, this remains true as the algorithm
adds more centers in subsequent iterations, and we have proved the theorem. The instance in
Figure 2.2 shows that this analysis is tight. O

We shall argue next that this result is the best possible; if there exists a p-approximation
algorithm with p < 2, then P = NP. To see this, we consider the dominating set problem,
which is NP-complete. In the dominating set problem, we are given a graph G = (V, E) and an
integer k, and we must decide if there exists a set S C V of size k such that each vertex is either
in S, or adjacent to a vertex in S. Given an instance of the dominating set problem, we can
define an instance of the k-center problem by setting the distance between adjacent vertices to
1, and nonadjacent vertices to 2: there is a dominating set of size k if and only if the optimal
radius for this k-center instance is 1. Furthermore, any p-approximation algorithm with p < 2
must always produce a solution of radius 1 if such a solution exists, since any solution of radius
p < 2 must actually be of radius 1. This implies the following theorem.

Theorem 2.4: There is no a-approrimation algorithm for the k-center problem for a < 2
unless P = NP.

2.3 Scheduling jobs on identical parallel machines

In Section 2.1, we considered the problem of scheduling jobs on a single machine to minimize
lateness. Here we consider a variation on that problem, in which we now have multiple machines
and no release dates, but our goal is to minimize the time at which all jobs are finished. Suppose
that there are n jobs to be processed, and there are m identical machines (running in parallel)
to which each job may be assigned. Each job 7 = 1,...,n, must be processed on one of these
machines for p; time units without interruption, and each job is available for processing at time
0. Each machine can process at most one job at a time. The aim is to complete all jobs as soon
as possible; that is, if job j completes at a time C; (presuming that the schedule starts at time
0), then we wish to minimize Cpax = maxj—i ., Cj, which is often called the makespan or
length of the schedule. An equivalent view of the same problem is as a load-balancing problem:
there are n items, each of a given weight p;, and they are to be distributed among m machines;
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Figure 2.3: An example of a local move in the local search algorithm for scheduling
jobs on parallel machines. The gray job on machine 2 finishes last in the schedule on
the top, but the schedule can be improved by moving the gray job to machine 4. No
further local moves are possible after this one since again the gray job finishes last.

the aim is to assign each item to one machine so to minimize the maximum total weight assigned
to one machine.

This scheduling problem has the property that even the simplest algorithms compute rea-
sonably good solutions. In particular, we will show that both a local search algorithm and
a very simple greedy algorithm find solutions that have makespan within a factor of 2 of the
optimum. In fact, the analyses of these two algorithms are essentially identical.

Local search algorithms are defined by a set of local changes or local moves that change one
feasible solution to another. The simplest local search procedure for this scheduling problem
works as follows: Start with any schedule; consider the job ¢ that finishes last; check whether
or not there exists a machine to which it can be reassigned that would cause this job to finish
earlier. If so, transfer job ¢ to this other machine. We can determine whether to transfer job
¢ by checking if there exists a machine that finishes its currently assigned jobs earlier than
Cy—p¢. The local search algorithm repeats this procedure until the last job to complete cannot
be transferred. An illustration of this local move is shown in Figure 2.3.

In order to analyze the performance of this local search algorithm, we first provide some
natural lower bounds on the length of an optimal schedule, C} ... Since each job must be
processed, it follows that

C*

max

> max pj. (2.3)

7j=1,...n

On the other hand, there is, in total, P = Z;‘Zl pj units of processing to accomplish, and only
m machines to do this work. Hence, on average, a machine will be assigned P/m units of work,
and consequently, there must exist one machine that is assigned at least that much work. Thus,

Chrax = Y _pj/m- (2.4)
j=1
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Consider the solution produced by the local search algorithm. Let ¢ be a job that completes
last in this final schedule; the completion time of job £, Cy, is equal to this solution’s objective
function value. By the fact that the algorithm terminated with this schedule, every other
machine must be busy from time 0 until the start of job £ at time S, = Cyp—p,. We can partition
the schedule into two disjoint time intervals, from time 0 until Sy, and the time during which
job £ is being processed. By (2.3), the latter interval has length at most C ... Now consider
the former time interval; we know that each machine is busy processing jobs throughout this
period. The total amount of work being processed in this interval is m.Sy, which is clearly no

more than the total work to be done, Z?Zl p;. Hence,

Se < pi/m. (2.5)
j=1

By combining this with (2.4), we see that Sy < C}: ... But now, we see that the length of the
schedule before the start of job ¢ is at most C7 ., as is the length of the schedule afterward; in
total, the makespan of the schedule computed is at most 2C} ...
Now consider the running time of this algorithm. This local search procedure has the
property that the value of Chax for the sequence of schedules produced, iteration by iteration,
never increases (it can remain the same, but then the number of machines that achieve the
maximum value decreases). One natural assumption to make is that when we transfer a job to
another machine, then we reassign that job to the machine that is currently finishing earliest.
We will analyze the running time of this variant instead. Let Cl,;, be the completion time of a
machine that completes all its processing the earliest. One consequence of focusing on the new
variant is that Cyyi, never decreases (and if it remains the same, then the number of machines
that achieve this minimum value decreases). We argue next that this implies that we never
transfer a job twice. Suppose this claim is not true, and consider the first time that a job j
is transferred twice, say, from machine 7 to 7', and later then to i*. When job j is reassigned
from machine ¢ to machine 7/, it then starts at Cy, for the current schedule. Similarly, when
job j is reassigned from machine i’ to ¢*, it then starts at the current C/ . . Furthermore, no
change occurred to the schedule on machine i’ in between these two moves for job j. Hence,
! iy Must be strictly smaller than Ch, (in order for the transfer to be an improving move),
but this contradicts our claim that the Cl,i, value is non-decreasing over the iterations of the
local search algorithm. Hence, no job is transferred twice, and after at most n iterations, the

algorithm must terminate. We have thus shown the following theorem.
Theorem 2.5: The local search procedure for scheduling jobs on identical parallel machines is
a 2-approximation algorithm.

In fact, it is not hard to see that the analysis of the approximation ratio can be refined
slightly. In deriving the inequality (2.5), we included job ¢ among the work to be done prior to
the start of job . Hence, we actually derived that

SZ S Zp]/ma

J#L
and hence the total length of the schedule produced is at most
1 n
De —i—;p]/m = <1 - m) De +;pj/m.
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By applying the two lower bounds (2.3) and (2.4) to these two terms, we see that the schedule
has length at most (2— %)C;’;]ax. Of course, the difference between this bound and 2 is significant
only if there are very few machines.

Another natural algorithm to compute a schedule is a greedy algorithm that assigns the
jobs as soon as there is machine availability to process them: whenever a machine becomes idle,
then one of the remaining jobs is assigned to start processing on that machine. This algorithm
is often called the list scheduling algorithm, since one can equivalently view the algorithm as
first ordering the jobs in a list (arbitrarily), and the next job to be processed is the one at the
top of the list. Another viewpoint, from the load-balancing perspective, is that the next job
on the list is assigned to the machine that is currently the least heavily loaded. It is in this
sense that one can view the algorithm as a greedy algorithm. The analysis of this algorithm is
now quite trivial; if one uses this schedule as the starting point for the local search procedure,
that algorithm would immediately declare that the solution cannot be improved! To see this,
consider a job £ that is (one of the jobs) last to complete its processing. Each machine is busy
until Cy — py, since otherwise we would have assigned job £ to that other machine. Hence, no
transfers are possible.

Theorem 2.6: The list scheduling algorithm for the problem of minimizing the makespan on
m identical parallel machines is a 2-approrimation algorithm.

It is not hard to obtain a stronger result by improving this list scheduling algorithm. Not
all lists yield the same schedule, and it is natural to use an additional greedy rule that first
sorts the jobs in non-increasing order. One way to view the results of Theorems 2.5 and 2.6 is
that the relative error in the length of the schedule produced is entirely due to the length of
the last job to finish. If that job is short, then the error is not too big. This greedy algorithm
is called the longest processing time rule, or LPT.

Theorem 2.7: The longest processing time rule is a 4/3-approzimation algorithm for scheduling
jobs to minimize the makespan on identical parallel machines.

Proof. Suppose that the theorem is false, and consider an input that provides a counterexample
to the theorem. For ease of notation, assume that p; > --- > p,,. First, we can assume that the
last job to complete is indeed the last (and smallest) job in the list. This follows without loss
of generality: any counterexample for which the last job ¢ to complete is not the smallest can
yield a smaller counterexample, simply by omitting all of the jobs £+ 1,...,n; the length of the
schedule produced is the same, and the optimal value of the reduced input can be no larger.
Hence the reduced input is also a counterexample.

So we know that the last job to complete in the schedule is job n. If this is a counterexample,
what do we know about p,(= p¢)? If py < Cf../3, then the analysis of Theorem 2.6 implies
that the schedule length is at most (4/3)C} .., and so this is not a counterexample. Hence,
we know that in this purported counterexample, job n (and therefore all of the jobs) has a
processing requirement strictly greater than C} .. /3. This has the following simple corollary.
In the optimal schedule, each machine may process at most two jobs (since otherwise the total
processing assigned to that machine is more than C} ).

However, we have now reduced our assumed counterexample to the point where it simply
cannot exist. For inputs of this structure, we have the following lemma.

Lemma 2.8: For any input to the problem of minimizing the makespan on identical parallel
machines for which the processing requirement of each job is more than one-third the optimal
makespan, the longest processing time rule computes an optimal schedule.
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This lemma can be proved by some careful case checking, and we defer this to an exercise
(Exercise 2.2). However, the consequence of the lemma is clear; no counterexample to the
theorem can exist, and hence the theorem must be true. O

In Section 3.2, we will see that it is possible to give a polynomial-time approximation scheme
for this problem.

2.4 The traveling salesman problem

In the traveling salesman problem, or TSP, there is a given set of cities {1,2,...,n}, and the
input consists of a symmetric n by n matrix C' = (¢;;) that specifies the cost of traveling from
city ¢ to city j. By convention, we assume that the cost of traveling from any city to itself is
equal to 0, and costs are nonnegative; the fact that the matrix is symmetric means that the cost
of traveling from city i to city j is equal to the cost of traveling from j to i. (The asymmetric
traveling salesman problem, where the restriction that the cost matrix be symmetric is relaxed,
has already made an appearance in Exercise 1.3.) If we instead view the input as an undirected
complete graph with a cost associated with each edge, then a feasible solution, or tour, consists
of a Hamiltonian cycle in this graph; that is, we specify a cyclic permutation of the cities or,
equivalently, a traversal of the cities in the order k(1), k(2), ..., k(n), where each city j is listed
as a unique image k(7). The cost of the tour is equal to

n—1

Ch(n)k(1) T Z Ch(i)k(i+1)-
i=1

Observe that each tour has n distinct representations, since it does not matter which city is
selected as the one in which the tour starts.

The traveling salesman problem is one of the most well-studied combinatorial optimization
problems, and this is certainly true from the point of view of approximation algorithms as
well. There are severe limits on our ability to compute near-optimal tours, and we start with
a discussion of these results. It is NP-complete to decide whether a given undirected graph
G = (V, E) has a Hamiltonian cycle. An approximation algorithm for the TSP can be used to
solve the Hamiltonian cycle problem in the following way: Given a graph G = (V, E), form an
input to the TSP by setting, for each pair 4, j, the cost ¢;; equal to 1 if (i,5) € E, and equal
to n + 2 otherwise. If there is a Hamiltonian cycle in G, then there is a tour of cost n, and
otherwise each tour costs at least 2n + 1. If there were to exist a 2-approximation algorithm
for the TSP, then we could use this algorithm to distinguish graphs with Hamiltonian cycles
from those without any: run the approximation algorithm on the new TSP input, and if the
tour computed has cost at most 2n, then there exists a Hamiltonian cycle in GG, and otherwise
there does not. Of course, there is nothing special about setting the cost for the “non-edges” to
be n + 2; setting the cost to be an + 2 has a similarly inflated consequence, and we obtain an
input to the TSP of polynomial size provided that, for example, « = O(2"). As a result, we
obtain the following theorem.

Theorem 2.9: For any o > 1, there does not exist an a-approximation algorithm for the
traveling salesman problem on n cities, provided P # NP. In fact, the existence of an O(2")-
approximation algorithm for the TSP would similarly imply that P = NP.

But is this the end of the story? Clearly not. A natural assumption to make about the input to
the TSP is to restrict attention to those inputs that are metric; that is, for each triple ¢, j, k € V,
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Figure 2.4: Illustration of a greedy step of the nearest addition algorithm.

we have that the triangle inequality
Cik < Cij + Cjk

holds. This assumption rules out the construction used in the reduction for the Hamiltonian
cycle problem above; the non-edges can be given cost at most 2 if we want the triangle inequality
to hold, and this value is too small to yield a nontrivial nonapproximability result. We next
give three approximation algorithms for this metric traveling salesman problem.

Here is a natural greedy heuristic to consider for the traveling salesman problem; this is
often referred to as the nearest addition algorithm. Find the two closest cities, say, ¢ and j, and
start by building a tour on that pair of cities; the tour consists of going from ¢ to j and then
back to i again. This is the first iteration. In each subsequent iteration, we extend the tour on
the current subset S by including one additional city, until we include the full set of cities. In
each iteration, we find a pair of cities 7 € S and j € S for which the cost ¢;; is minimum; let &
be the city that follows ¢ in the current tour on .S. We add j to .S, and insert j into the current
tour between ¢ and k. An illustration of this algorithm is shown in Figure 2.4.

The crux of the analysis of this algorithm is the relationship of this algorithm to Prim’s
algorithm for the minimum spanning tree in an undirected graph. A spanning tree of a connected
graph G = (V, E) is a minimal subset of edges F' C E such that each pair of nodes in G is
connected by a path using edges only in F. A minimum spanning tree is a spanning tree for
which the total edge cost is minimized. Prim’s algorithm computes a minimum spanning tree by
iteratively constructing a set S along with a tree T', starting with S = {v} for some (arbitrarily
chosen) node v € V and T = (S, F) with F' = (). In each iteration, it determines the edge (3, j)
such that ¢ € S and j ¢ S is of minimum cost, and adds the edge (i,7) to F. Clearly, this is
the same sequence of vertex pairs identified by the nearest addition algorithm. Furthermore,
there is another important relationship between the minimum spanning tree problem and the
traveling salesman problem.

Lemma 2.10: For any input to the traveling salesman problem, the cost of the optimal tour is
at least the cost of the minimum spanning tree on the same input.
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Proof. The proof is quite simple. For any input with n > 2, start with the optimal tour. Delete
any one edge from the tour. The result is a spanning tree (albeit a very special one), and this
costs no more than the optimal tour. But the minimum spanning tree must cost no more than
this special tree. Hence, the cost of the minimum spanning tree is at most the cost of the
optimal tour. O

By combining these observations, we can obtain the following result with just a bit more
work.

Theorem 2.11: The nearest addition algorithm for the metric traveling salesman problem is a
2-approximation algorithm.

Proof. Let S9,Ss,...,S, = {1,...,n} be the subsets identified at the end of each iteration
of the nearest addition algorithm (where |Sy| = ¢), and let F' = {(i2,j2), (13,73),- - -, (insJn)},
where (ig, j¢) is the edge identified in iteration ¢ — 1 (with iy € Sy_1, £ =3,...,n). As indicated
above, we also know that ({1,...,n}, F) is a minimum spanning tree for the original input,
when viewed as a complete undirected graph with edge costs. Thus, if OPT is the optimal
value for the TSP input, then

n
oprPT > Z Cipgo-

(=2
The cost of the tour on the first two nodes 72 and js is exactly 2c¢;,;,. Consider an iteration
in which a city j is inserted between cities ¢ and k in the current tour. How much does the
length of the tour increase? An easy calculation gives c;; + cji — ¢ By the triangle inequality,
we have that cj, < ¢j; + ¢ or, equivalently, c;i, — c; < ¢j;. Hence, the increase in cost in this
iteration is at most ¢;; + ¢j; = 2¢;. Thus, overall, we know that the final tour has cost at most

n
2> ¢, < 20PT,
(=2

and the theorem is proved. ]

In fact, this algorithm can be viewed from another perspective. Although this new perspec-
tive deviates from viewing the algorithm as a “greedy” procedure, this approach ultimately leads
to a better algorithm. First we need some graph-theoretic preliminaries. A graph is said to be
Eulerian if there exists a permutation of its edges of the form (i, 1), (41,72), ..., (ix—1, %), (ig, 20);
we will call this permutation a traversal of the edges, since it allows us to visit every edge exactly
once. A graph is Eulerian if and only if it is connected and each node has even degree (where
the degree of a node v is the number of edges with v as one of its endpoints). Furthermore, if a
graph is Eulerian, one can easily construct the required traversal of the edges, given the graph.

To find a good tour for a TSP input, suppose that we first compute a minimum spanning
tree (for example, by Prim’s algorithm). Suppose that we then replace each edge by two copies
of itself. The resulting (multi)graph has cost at most 2 OPT and is Eulerian. We can construct
a tour of the cities from the Eulerian traversal of the edges, (o, 1), (i1,%2), .-, ({k—1, %), (ik, %0)-
Consider the sequence of nodes, ig,%1,...,1, and remove all but the first occurrence of each
city in this sequence. This yields a tour containing each city exactly once (assuming we then
return to ip at the end). To bound the length of this tour, consider two consecutive cities in
this tour, iy and ¢,,. We have omitted ip41,...,%,—1 because these cities have already been
visited “earlier” in the tour. However, by the triangle inequality, the cost of the edge ¢;, ;,, can
be upper bounded by the total cost of the edges traversed in the Eulerian traversal between
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ip and i,,, that is, the total cost of the edges (ig,ip41),- .., (im—1,%m). In total, the cost of the
tour is at most the total cost of all of the edges in the Eulerian graph, which is at most 2 OPT.
Hence, we have also analyzed this double-tree algorithm.

Theorem 2.12: The double-tree algorithm for the metric traveling salesman problem is a 2-
approrimation algorithm.

This technique of “skipping over” previously visited cities and bounding the cost of the
resulting tour in terms of the total cost of all the edges is sometimes called shortcutting.

The bigger message of the analysis of the double-tree algorithm is also quite useful; if we
can efficiently construct an Eulerian subgraph of the complete input graph, for which the total
edge cost is at most « times the optimal value of the TSP input, then we have derived an a-
approximation algorithm as well. This strategy can be carried out to yield a 3/2-approximation
algorithm.

Consider the output from the minimum spanning tree computation. This graph is certainly
not Eulerian, since any tree must have nodes of degree one, but it is possible that not many
nodes have odd degree. Let O be the set of odd-degree nodes in the minimum spanning tree. For
any graph, the sum of its node degrees must be even, since each edge in the graph contributes 2
to this total. The total degree of the even-degree nodes must also be even (since we are adding
a collection of even numbers), but then the total degree of the odd-degree nodes must also be
even. In other words, we must have an even number of odd-degree nodes; |O| = 2k for some
positive integer k.

Suppose that we pair up the nodes in O: (i1,1i2), (i3,44), ..., (i2k—1,2k). Such a collection
of edges that contain each node in O exactly once is called a perfect matching of O. One of the
classic results of combinatorial optimization is that given a complete graph (on an even number
of nodes) with edge costs, it is possible to compute the perfect matching of minimum total cost
in polynomial time. Given the minimum spanning tree, we identify the set O of odd-degree
nodes with even cardinality, and then compute a minimum-cost perfect matching on O. If we
add this set of edges to our minimum spanning tree, we have constructed an Eulerian graph on
our original set of cities: it is connected (since the spanning tree is connected) and has even
degree (since we added a new edge incident to each node of odd degree in the spanning tree).
As in the double-tree algorithm, we can shortcut this graph to produce a tour of no greater
cost. This algorithm is known as Christofides’ algorithm.

Theorem 2.13: Christofides’ algorithm for the metric traveling salesman problem is a 3/2-
approrimation algorithm.

Proof. We want to show that the edges in the Eulerian graph produced by the algorithm have
total cost at most %OPT . We know that the minimum spanning tree edges have total cost at
most OPT. So we need only show that the perfect matching on O has cost at most OPT /2.
This is surprisingly simple.

First observe that there is a tour on just the nodes in O of total cost at most OPT. This
again uses the shortcutting argument. Start with the optimal tour on the entire set of cities,
and if for two cities ¢ and j, the optimal tour between ¢ and j contains only cities that are not
in O, then include edge (7,7) in the tour on O. Each edge in the tour corresponds to disjoint
paths in the original tour, and hence by the triangle inequality, the total length of the tour on
O is no more than the length of the original tour.

Now consider this “shortcut” tour on the node set O. Color these edges red and blue,
alternating colors as the tour is traversed. This partitions the edges into two sets, the red set
and the blue set; each of these is a perfect matching on the node set O. In total, these two
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S0

while |S| < k do
i < argmax;ep v(S U {i}) — v(S)
S+ Su{i}

return S

Algorithm 2.2: A greedy approximation algorithm for the float maximization problem.

edge sets have cost at most OPT. Thus, the cheaper of these two sets has cost at most OPT /2.
Hence, there is a perfect matching on O of cost at most OPT /2. Therefore, the algorithm to
find the minimum-cost perfect matching must find a matching of cost at most OPT /2, and this
completes the proof of the theorem. O

Remarkably, no better approximation algorithm for the metric traveling salesman problem
is known. However, substantially better algorithms might yet be found, since the strongest
negative result is as follows.

Theorem 2.14: Unless P = NP, for any constant a < % =~ 1.0045, no a-approximation

algorithm for the metric TSP exists.

We can give better approximation algorithms for the problem in special cases. In Section
10.1, we will see that it is possible to obtain a polynomial-time approximation scheme in the
case that cities correspond to points in the Euclidean plane and the cost of traveling between
two cities is equal to the Euclidean distance between the corresponding two points.

2.5 Maximizing float in bank accounts

In the days before quick electronic check clearing, it was often advantageous for large corpora-
tions to maintain checking accounts in various locations in order to maximize float. The float is
the time between making a payment by check and the time that the funds for that payment are
deducted from the company’s banking account. During that time, the company can continue to
accrue interest on the money. Float can also be used by scam artists for check kiting: covering
a deficit in the checking account in one bank by writing a check against another account in
another bank that also has insufficient funds — then a few days later covering this deficit with
a check written against the first account.

We can model the problem of maximizing float as follows. Suppose we wish to open up to k
bank accounts so as to maximize our float. Let B be the set of banks where we can potentially
open accounts, and let P be the set of payees to whom we regularly make payments. Let v;; > 0
be the value of the float created by paying payee j € P from bank account ¢ € Bj; this may
take into account the amount of time it takes for a check written to j to clear at 4, the interest
rate at bank 7, and other factors. Then we wish to find a set S C B of banks at which to
open accounts such that |S| < k. Clearly we will pay payee j € P from the account ¢ € S that
maximizes v;;. So we wish to find S C B, |S| < k, that maximizes ZjeP max;eg vij. We define
v(S) to be the value of this objective function for S C B.

A natural greedy algorithm is as follows: we start with S = @, and while |S| < k, find
the bank ¢ € B that most increases the objective function, and add it to S. This algorithm is
summarized in Algorithm 2.2.

We will show that this algorithm has a performance guarantee of 1 — % To do this, we
require the following lemma. We let O denote an optimal solution, so that O C B and |O| < k.
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Lemma 2.15: Let S be the set of banks at the start of some iteration of Algorithm 2.2, and let
1 € B be the bank chosen in the iteration. Then

o(S UL} = u(S) 2 £(1(0) — u(S)).

To get some intuition of why this is true, consider the optimal solution O. We can allocate
shares of the value of the objective function v(O) to each bank i € O: the value v;; for each
J € P can be allocated to a bank i € O that attains the maximum of max;co v;;. Since |O| < k,
some bank i € O is allocated at least v(O)/k. So after choosing the first bank i to add to S, we
have v({i}) > v(O)/k. Intuitively speaking, there is also another bank ¢’ € O that is allocated
at least a 1/k fraction of whatever wasn’t allocated to the first bank, so that there is an i’ such
that v(S U {i'}) — v(S) > £ (v(0) — v(S)), and so on.

Given the lemma, we can prove the performance guarantee of the algorithm.

Theorem 2.16: Algorithm 2.2 gives a (1 — 7) -approximation algorithm for the float maximiza-
tion problem.

Proof. Let S* be our greedy solution after ¢ iterations of the algorithm, so that S° = () and
S = S*. Let O be an optimal solution. We set v(f)) = 0. Note that Lemma 2.15 implies that
v(Sh) > %’U(O) + (1 — %) v(S*1). By applying this inequality repeatedly, we have

v(S) =
- o (i
> 0+ (1-3) (0 (1-5) )
z <+< e (od) e ()
_wo) 1-(0-p"
-
— (0) <1—<1—2>k>
> v(0) <1—i>,
where in the final inequality we use the fact that 1 — z < e~%, setting = = 1/k. O

To prove Lemma 2.15, we first prove the following.

Lemma 2.17: For the objective function v, for any X CY and any ¢ ¢ Y,
v(YU{l}) —v(Y) <o(X U{l}) —v(X).

Proof. Consider any payee j € P. Either j is paid from the same bank account in both X U {¢}
and X, or it is paid by ¢ from X U {¢} and some other bank in X. Consequently,

U(Xu{e})v(X):;(&%}% %@;%) J%;max{ ( ggvm)} (2.6)
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Similarly,
v(Y U{l}) — o ;max { < — max U”) } (2.7)

Now since X C Y for a given j € P, max;cy v;; > max;ex vjj, so that

max ¢ 0, | vg; — maxwv; < max< 0, | vp; — maxv;; .

By summing this inequality over all j € P and using the equalities (2.6) and (2.7), we obtain
the desired result. O

The property of the value function v that we have just proved is one that plays a central
role in a number of algorithmic settings, and is often called submodularity, though the usual
definition of this property is somewhat different (see Exercise 2.10). This definition captures
the intuitive property of decreasing marginal benefits: as the set includes more elements, the
marginal value of adding a new element decreases.

Finally, we prove Lemma 2.15.

Proof of Lemma 2.15.  Let O — S = {iy,...,4,}. Note that since |O — S| < |O| < k, then
p < k. Since adding more bank accounts can only increase the overall value of the solution, we
have that

v(0) <v(OUS),

and a simple rewriting gives
P
v(OUS) =v(S)+ > [p(SU{ir,...,i}) —vo(SU{ir,....i-1})].
J=1
By applying Lemma 2.17, we can upper bound the right-hand side by
p
)+ > (S Uiz} —v(S)].
J=1
Since the algorithm chooses i € B to maximize v(S U {i}) — v(S), we have that for any j,
v(SU{i}) —v(S) > v(SU{i;}) —v(S). We can use this bound to see that

v(0) <v(0US) <v(8) +plu(SU{i}) —v(S)] < v(S) + klo(SU{i}) —v(S)].

This inequality can be rewritten to yield the inequality of the lemma, and this completes the
proof. O

This greedy approximation algorithm and its analysis can be extended to similar problems in
which the objective function v(.S) is given by a set of items S, and is monotone and submodular.
We leave the definition of these terms and the proofs of the extensions to Exercise 2.10.

2.6 Finding minimum-degree spanning trees

We now turn to a local search algorithm for the problem of minimizing the maximum degree
of a spanning tree. The problem we consider is the following: given a graph G = (V, E) we
wish to find a spanning tree T of G so as to minimize the maximum degree of nodes in 7. We
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Figure 2.5: Illustration of a local move for minimizing the maximum degree of a
spanning tree. The bold solid lines are in the tree, and the dashed lines are graph edges
not in the tree.

will call this the minimum-degree spanning tree problem. This problem is NP-hard. A special
type of spanning tree of a graph is a path that visits all nodes of the graph; this is called a
Hamiltonian path. A spanning tree has maximum degree two if and only if it is a Hamiltonian
path. Furthermore, deciding if a graph G has a Hamiltonian path is NP-complete. Thus, we
have the following theorem.

Theorem 2.18: [t is NP-complete to decide whether or not a given graph has a minimum-degree
spanning tree of maximum degree two.

For a given graph G, let T* be the spanning tree that minimizes the maximum degree, and
let OPT be the maximum degree of T*. We will give a polynomial-time local search algorithm
that finds a tree T with maximum degree at most 2 OPT +[log, n|, where n = |V is the number
of vertices in the graph. To simplify notation, throughout this section we will let £ = [log, n].

The local search algorithm starts with an arbitrary spanning tree 7. We will give a local
move to change T into another spanning tree in which the degree of some vertex has been
reduced. Let dr(u) be the degree of w in T'. The local move picks a vertex u and tries to reduce
its degree by looking at all edges (v, w) that are not in 7" but if added to T create a cycle C
containing u. Suppose max(dr(v),dr(w)) < dr(u) — 2. For example, consider the graph in
Figure 2.5, in which the edges of the tree T are shown in bold. In this case, the degree of node
u is 5, but those of v and w are 3. Let T” be the result of adding (v, w) and removing an edge
from C incident to uw. In the example, if we delete edge (u,y), then the degrees of u, v, and
w will all be 4 after the move. The conditions ensure that this move provides improvement in
general; the degree of u is reduced by one in 7" (that is, dy(u) = dr(u)—1) and the degrees of v
and w in 7" are not greater than the reduced degree of u; that is, max(dg (v), dp(w)) < dp (u).

The local search algorithm carries out local moves on nodes that have high degree. It makes
sense for us to carry out a local move to reduce the degree of any node, since it is possible that
if we reduce the degree of a low-degree node, it may make possible another local move that
reduces the degree of a high-degree node. However, we do not know how to show that such an
algorithm terminates in polynomial time. To get a polynomial-time algorithm, we apply the
local moves only to nodes whose degree is relatively high. Let A(T") be the maximum degree
of T; that is, A(T) = maxyecy dr(u). The algorithm picks a node in T' that has degree at least
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A(T) — ¢ and attempts to reduce its degree using the local move. If there is no move that can
reduce the degree of any node having degree between A(T') — £ and A(T), then the algorithm
stops. We say that the algorithm has found a locally optimal tree. By applying local moves
only to nodes whose degree is between A(T) — ¢ and A(T'), we will be able to show that the
algorithm runs in polynomial time.

We now need to prove two things. First, we need to show that any locally optimal tree has
maximum degree at most 2 OPT +¢. Second, we need to show that we can find a locally optimal
tree in polynomial time. For most approximation algorithms, the proof that the algorithm runs
in polynomial time is relatively straightforward, but this is often not the case for local search
algorithms. In fact, we usually need to restrict the set of local moves in order to prove that
the algorithm converges to a locally optimal solution in polynomial time. Here we do this by
restricting the local moves to apply only to nodes with high degree.

Theorem 2.19: Let T be a locally optimal tree. Then A(T) < 20PT 44, where £ = [logyn].

Proof. We first explain how we will obtain a lower bound on OPT. Suppose that we remove
k edges of the spanning tree. This breaks the tree into k + 1 different connected components.
Suppose we also find a set of nodes S such that each edge in G connecting two of the k + 1
connected components is incident on a node in S. For example, consider the graph in Figure 2.6
that shows the connected components remaining after the bold edges are deleted, along with
an appropriate choice of the set S. Observe that any spanning tree of the graph must have at
least k edges with endpoints in different components. Thus, the average degree of nodes in S
is at least k/|S| for any spanning tree, and OPT > k/|S]|.

Now we show how to find the set of edges to remove and the set of nodes S so that we
can apply this lower bound. Let S; be the nodes of degree at least ¢ in the locally optimal
tree T. We claim that for each S;, where i > A(T') — £ + 1, there are at least (i — 1)|.S;] + 1
distinct edges of T" incident on the nodes of S;, and after removing these edges, each edge that
connects distinct connected components is incident on a node of S;_1. Furthermore, we claim
there exists an 4 such that [S;—1| < 2|S;|, so that the value of OPT implied by removing these
edges with S = .5;_1 is

(i — 1)|Si‘ +1 > (Z — 1)‘SZ‘| +1

OPT >
- |Si1] - 2|Si|

> (i—1)/2 > (A(T) - 0)/2.

Rearranging terms proves the desired inequality.

We turn to the proofs of the claims. We first show that there must exist some ¢ > A(T")—¢+1
such that |S;—1| < 2[S;|. Suppose not. Then clearly [Sa(r)—¢| > QZ‘SA(T)‘ or [Sa(ry—el >
n|Sa(r)| = n since [Sa(ry| > 1. This is a contradiction, since any S; can have at most n nodes.

Now we show that there are at least (i — 1)]5;| + 1 distinct edges of T incident on the nodes
of S;, and after removing these edges, any edge connecting different connected components is
incident on a node of S;_1. Figure 2.6 gives an example of this construction for ¢ = 4. Each
edge that connects distinct connected components after removing the edges of T incident on
nodes of 5; either must be one of the edges of T" incident on S;, or must close a cycle C in T
containing some node in S;. Because the tree is locally optimal, it must be the case that at
least one of the endpoints has degree at least ¢ — 1, and so is in S;—1. In removing the edges in
T incident on nodes in S;, there are at least i|.S;| edges incident on nodes in S;, since each node
has degree at least i. At most |\S;| — 1 such edges can join two nodes in S; since T is a spanning
tree. Thus, there are at least i|S;| — (|S;| — 1) distinct edges of T incident on the nodes S;, and
this proves the claim. ]
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Figure 2.6: Illustration of lower bound on OPT. The vertices in S have white centers.
If the bold edges are deleted, every potential edge for joining the resulting connected
components has an endpoint in S.
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Theorem 2.20: The algorithm finds a locally optimal tree in polynomial time.

Proof. To prove that the algorithm runs in polynomial time, we will use a potential function
argument. The idea of such an argument is that the function captures the current state of the
algorithm, and that we can determine upper and lower bounds on this function for any feasible
solution, as well as a lower bound on the amount that the function must decrease after each
move. In this way, we can bound the number of moves possible before the algorithm must
terminate, and of course, the resulting tree must therefore be locally optimal.

For a tree T', we let the potential of T, ®(T'), be ®(T) = > 391("), Note that ®(T) <
n32(T) and so the initial potential is at most n3". On the other hand, the lowest possible
potential is for a Hamiltonian path, which has potential 2 -3 + (n — 2)3% > n. We will show
that for each move, the potential function of the resulting tree is at most 1 — ﬁ times the
potential function previously.

After %n‘l In 3 local moves, the conditions above imply that the potential of the resulting
tree is at most

2 %n‘l In3
(1 2t ) ((n3") < e (n3") =,
n

using the fact that 1 —2 < e~*. Since the potential of a tree is greater than n, after O(n?) local
moves there must be no further local moves possible, and the tree must be locally optimal.

We must still prove the claimed potential reduction in each iteration. Suppose the algorithm
reduces the degree of a vertex u from i to ¢ — 1, where i > A(T') — ¢, and adds an edge (v, w).
Then the increase in the potential function due to increasing the degree of v and w is at most
2. (371 - 372) = 4.372 since the degree of v and w can be increased to at most i — 1.
The decrease in the potential function due to decreasing the degree of u is 3* — 371 = 2. 37~1,
Observe that

3€ <3. 310g2n <3. 2210g2n — 3n2'

Therefore, the overall decrease in the potential function is at least

. . 2 2 2
-1 -2 _ A(T)—£ A(T
2371 =437 = 037 > (38T > 3t > ().

NaJ i )

Thus, for the resulting tree 7' we have that ®(7") < (1 — ﬁ)@(T) This completes the
proof. O

By slightly adjusting the parameters within the same proof outline, we can actually prove
a stronger result. Given some constant b > 1, suppose we perform local changes on nodes of
degree at least A(T) — [log,n]|. Then it is possible to show the following.

Corollary 2.21: The local search algorithm runs in polynomial time and results in a spanning
tree T' such that A(T) < bOPT +[log, n].

In Section 9.3, we will prove a still stronger result: we can give a polynomial-time algorithm
that finds a spanning tree 7" with A(T) < OPT +1. Given that it is NP-hard to determine
whether a spanning tree has degree exactly OPT, this is clearly the best possible result that
can be obtained. In the next section, we give another result of this type for the edge coloring
problem. In Section 11.2, we will show that there are interesting extensions of these results to
the case of spanning trees with costs on the edges.
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Figure 2.7: A graph with a 3-edge-coloring.

Figure 2.8: The Petersen graph. This graph is not 3-edge-colorable.

2.7 Edge coloring

To conclude this chapter, we give an algorithm that has the elements of both a greedy algorithm
and a local search algorithm: it attempts to make progress in a greedy way, but when blocked
it makes local changes until progress can be made again.

The algorithm is for the problem of finding an edge coloring of a graph. An undirected
graph is k-edge-colorable if each edge can be assigned exactly one of k colors in such a way that
no two edges with the same color share an endpoint. We call the assignment of colors to edges
a k-edge-coloring. For example, Figure 2.7 shows a graph with a 3-edge-coloring. An analogous
notion of wvertex coloring will be discussed in Sections 5.12, 6.5, and 13.2.

For a given graph, we would like to obtain a k-edge-coloring with k as small as possible.
Let A be the maximum degree of a vertex in the given graph. Clearly, we cannot hope to find
a k-edge-coloring with k& < A, since at least A different colors must be incident to any vertex
of maximum degree. Note that this shows that the coloring given in Figure 2.7 is optimal. On
the other hand, consider the example in Figure 2.8, which is called the Petersen graph; it is not
too hard to show that this graph is not 3-edge-colorable, and yet it is easy to color it with four
colors. Furthermore, the following has been shown.

Theorem 2.22: For graphs with A = 3, it is NP-complete to decide whether the graph is
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3-edge-colorable or not.

In this section, we give a polynomial-time algorithm that will find a (A + 1)-edge-coloring
for any graph. Given the NP-completeness result, it is clearly the best we can hope to do unless
P = NP.

We give the algorithm and its analysis in the proof of the theorem below. We repeatedly
find an uncolored edge (u,v) and attempt to color it with one of the A + 1 colors. If no color is
available such that coloring (u, v) would result in a (A + 1)-edge-coloring, then we show that it
is possible to locally change some of the edge colors in such a way that we can correctly color

(u,v).

Theorem 2.23: There is a polynomial-time algorithm to find a (A+1)-edge-coloring of a graph.

Proof. Our algorithm will start with a completely uncolored graph. In each iteration of the
algorithm we will take some uncolored edge and color it. This will be done in such a way that
the algorithm maintains a legal coloring of the graph at the beginning of each iteration of the
main loop; that is, for any vertex v in the graph, no two colored edges incident on v have the
same color, and at most A+ 1 distinct colors have been used. Clearly this is true initially, when
the entire graph is uncolored. We show that this invariant is maintained throughout the course
of each iteration. In the argument that follows, we say that a vertex v lacks color ¢ if an edge
of color ¢ is not incident on v.

We summarize the algorithm in Algorithm 2.3, and now explain it in detail. Let (u,vp)
be the selected uncolored edge. We then construct a sequence of edges (u,vp), (u,v1),... and
colors cg, c1,... . We will use this sequence to do some local recoloring of edges so that we can
correctly color the uncolored edge. Note that since we are maintaining a legal coloring of A + 1
colors, and the maximum degree is A, each vertex must lack at least one of the A+ 1 colors. To
build this sequence of edges, consider the current vertex v;, starting initially with vg; if v; lacks
a color that u also lacks, then we let ¢; be this color, and the sequence is complete. If not, then
choose the color ¢; arbitrarily from among those that v; lacks; note that u will not lack this
color. If this color has not appeared in the sequence cg, c1, . .. to this point, then we let v; ;1 be
the vertex such that (u,v;41) is the edge incident to u of color ¢;, and this extends our sequence
(sometimes called a fan sequence) one edge further. If we have that ¢; = ¢;, where j < 4, then
we also stop building our sequence. (See Figure 2.9 for an example of this construction.)

We need to argue that this process terminates either in the case that u and v; lack the same
color ¢;, or that we have ¢; = ¢; for some j < i. Let d be the number of edges incident to u that
are currently colored. Suppose the sequence reaches vertex vy without terminating. If there is
no color ¢4 that both v and vy lack, then any color that vy lacks is one that v does not lack,
which must be one of the colors on the edges (u,v1),..., (u,v4_1). Hence, the color we choose
for ¢4 must be the same as one of the previous colors cg, ..., c4—1.

Suppose we complete the sequence because we find some ¢; that both u and v; lack. This
case is easy: we recolor edges (u,v;) with color ¢; for j = 0,...,4; call this shifting recoloring.
This situation and the resulting recoloring are depicted in Figure 2.10. In effect, we shift the
uncolored edge to (u,v;) and color it with ¢; since both w and v; lack ¢;. The recoloring is
correct since we know that each v; lacks ¢; and for j < 7, ¢; was incident on u previously via
the edge (u,v;41), which we now give another color.

Now consider the remaining case, where we complete the sequence because ¢; = ¢; for some
j < i. This situation and its recoloring are given in Figure 2.11. We shift the uncolored edge
to (u,v;) by recoloring edges (u,vy) with color ¢; for 0 < k < j and uncoloring edge (u,v;);
this is correct by the same argument as above. Now v; and v; lack the same color ¢ = ¢; = ¢;.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



56 Greedy algorithms and local search

Figure 2.9: An example of building the fan sequence. Edge (u, vp) is uncolored. Vertex
vo lacks gray, but u does not lack gray due to (u,v1), so ¢ is gray. Vertex vy lacks black,
but u does not lack black due to (u,v2), so ¢ is black. Vertex vq lacks the dashed color,
but v does not lack dashed due to (u,v3), so ¢o is dashed. Vertex vz lacks black, so c3
is black, and the sequence repeats a color.

w3

Figure 2.10: A slightly different fan sequence and its recoloring. As before, edge (u, vg)
is uncolored. Vertex wvg lacks black, but u does not lack black due to (u,v1), so ¢ is
black. Vertex vy lacks gray, but u does not lack gray due to (u,v2), so ¢; is gray. Vertex
vy lacks dashed, but u does not lack dashed due to (u,vs), so ¢z is dashed. Vertex vg
lacks dotted, and u also lacks dotted, and thus cg is dotted. Therefore, we shift colors
as shown and color the edge (u,vs) with dotted.
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Figure 2.11: The fan sequence from Figure 2.9. We start by shifting the uncolored
edge to (u,v1). Now both v; and vz lack black. The dotted color can be the color ¢,
that u lacks but that v1 and vg do not lack.

We let ¢, be a color that u lacks; by our selection (and the fact that we did not fall in the first
case), we know that both v; and v; do not lack c,.

Consider the subgraph induced by taking all of the edges with colors ¢ and ¢,; since we
have a legal coloring, this subgraph must be a collection of paths and simple cycles. Since each
of u, v;, and v; has exactly one of these two colors incident to it, each is an endpoint of one
of the path components, and since a path has only two endpoints, at least one of v; and v;
must be in a different component than u. Suppose that v; is in a different component than w.
Suppose we recolor every edge of color ¢ with color ¢, and every edge of color ¢, with color ¢
in the component containing wu; call this path recoloring. Afterward, u now lacks ¢ (and this
does not affect the colors incident to v; at all), and so we may color the uncolored edge (u, v;)
with c. See Figure 2.12 for an example. Finally, suppose that u and v; are endpoints of the
same path, and so v; must be in a different component. In this case, we can apply the previous
shifting recoloring technique to first uncolor the edge (u, v;). We then apply the path recoloring
technique on the u-v; path to make u lack c¢; this does not affect any of the colors incident on
v;, and it allows us to color edge (u,v;) with c.

Clearly we color a previously uncolored edge in each iteration of the algorithm, and each
iteration can be implemented in polynomial time. O

Exercises

2.1 The k-suppliers problem is similar to the k-center problem given in Section 2.2. The input
to the problem is a positive integer k, and a set of vertices V, along with distances d;;
between any two vertices 4, j that obey the same properties as in the k-center problem.
However, now the vertices are partitioned into suppliers F' C V and customers D =V —F.
The goal is to find k suppliers such that the maximum distance from a supplier to a
customer is minimized. In other words, we wish to find S C F, |S| < k, that minimizes
max;jep d(j,5).

(a) Give a 3-approximation algorithm for the k-suppliers problem.

(b) Prove that there is no a-approximation algorithm for o < 3 unless P = NP.
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Figure 2.12: The example of Figure 2.11 continued, now showing the components of
black and dotted edges containing u, v1, and v3. Since u and v3 are at endpoints of the
same black/dotted path, we switch the colors black and dotted on this path, then color
(u,v1) black.

while G is not completely colored do
Pick uncolored edge (u,vp)
14 —1
repeat // Build fan sequence
14 1+1
if there is a color v; lacks and u lacks then
Let ¢; be this color
else
Pick some color ¢; that v; lacks
Let v;+1 be the edge (u,v;+1) of color ¢;
until ¢; is a color u lacks or ¢; = ¢; for some j <14
if v and v; lack color ¢; then
Shift uncolored edge to (u,v;) and color (u,v;) with ¢;
else
Let j <@ be such that ¢; = ¢;
Shift uncolored edge to (u,v;)
Pick color ¢, that u lacks
Let ¢ =¢;
Let E’ be edges colored c or ¢,
if u and v; in different connected components of (V, E') then
Switch colors ¢, and ¢ in component containing u of (V, E’)
Color (u,v;) with color ¢
else // u and v; in different components of (V,E’)
Shift uncolored edge to (u,v;)
Switch colors ¢, and ¢ in component containing u of (V, E’)
Color (u,v;) with color ¢

Algorithm 2.3: A greedy algorithm to compute a (A + 1)-edge-coloring of a graph.
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2.2

2.3

24

2.5

Prove Lemma 2.8: show that for any input to the problem of minimizing the makespan on
identical parallel machines for which the processing requirement of each job is more than
one-third the optimal makespan, the longest processing time rule computes an optimal
schedule.

We consider scheduling jobs on identical machines as in Section 2.3, but jobs are now
subject to  precedence constraints. We say ¢ < j if in any feasible schedule, job i
must be completely processed before job j begins processing. A natural variant on the
list scheduling algorithm is one in which whenever a machine becomes idle, then any
remaining job that is available is assigned to start processing on that machine. A job j
is available if all jobs ¢ such that ¢ < j have already been completely processed. Show
that this list scheduling algorithm is a 2-approximation algorithm for the problem with
precedence constraints.

In this problem, we consider a variant of the problem of scheduling on parallel machines
so as to minimize the length of the schedule. Now each machine i has an associated speed
s;, and it takes p;/s; units of time to process job j on machine i. Assume that machines
are numbered from 1 to m and ordered such that s; > s9 > --- > s,,. We call these
related machines.

(a) A p-relaxed decision procedure for a scheduling problem is an algorithm such that
given an instance of the scheduling problem and a deadline D either produces a
schedule of length at most p - D or correctly states that no schedule of length D
is possible for the instance. Show that given a polynomial-time p-relaxed decision
procedure for the problem of scheduling related machines, one can produce a p-
approximation algorithm for the problem.

(b) Consider the following variant of the list scheduling algorithm, now for related ma-
chines. Given a deadline D, we label every job j with the slowest machine ¢ such
that the job could complete on that machine in time D; that is, p;/s; < D. If there
is no such machine for a job j, it is clear that no schedule of length D is possible.
If machine ¢ becomes idle at a time D or later, it stops processing. If machine ¢
becomes idle at a time before D, it takes the next job of label 7 that has not been
processed, and starts processing it. If no job of label ¢ is available, it looks for jobs
of label 7 + 1; if no jobs of label i + 1 are available, it looks for jobs of label i 4+ 2, and
so on. If no such jobs are available, it stops processing. If not all jobs are processed
by this procedure, then the algorithm states that no schedule of length D is possible.

Prove that this algorithm is a polynomial-time 2-relaxed decision procedure.

In the minimum-cost Steiner tree problem, we are given as input a complete, undirected
graph G = (V, E) with nonnegative costs ¢;; > 0 for all edges (i,j) € E. The set of
vertices is partitioned into terminals R and nonterminals (or Steiner vertices) V — R.
The goal is to find a minimum-cost tree containing all terminals.

(a) Suppose initially that the edge costs obey the triangle inequality; that is, ¢;; <
ik + ¢ for all 4,5,k € V. Let G[R] be the graph induced on the set of terminals;
that is, G[R] contains the vertices in R and all edges from G that have both endpoints
in R. Consider computing a minimum spanning tree in G[R]. Show that this gives
a 2-approximation algorithm for the minimum-cost Steiner tree problem.
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2.6

2.7

2.8

2.9

2.10

2.11

(b) Now we suppose that edge costs do not obey the triangle inequality, and that the
input graph G is connected but not necessarily complete. Let cgj be the cost of
the shortest path from ¢ to j in G using input edge costs ¢. Consider running the
algorithm above in the complete graph G’ on V' with edge costs ¢’ to obtain a tree T".
To compute a tree T in the original graph G, for each edge (i, j) € T’, we add to T all
edges in a shortest path from ¢ to j in G using input edge costs ¢. Show that this is
still a 2-approximation algorithm for the minimum-cost Steiner tree problem on the
original (incomplete) input graph G. G’ is sometimes called the metric completion
of G.

Prove that there can be no a-approximation algorithm for the minimum-degree spanning
tree problem for a < 3/2 unless P = NP.

Suppose that an undirected graph G has a Hamiltonian path. Give a polynomial-time
algorithm to find a path of length at least Q(logn/(loglogn)).

Consider the local search algorithm of Section 2.6 for finding a minimum-degree spanning
tree, and suppose we apply a local move to a node whenever it is possible to do so; that
is, we don’t restrict local moves to nodes with degrees between A(T') — ¢ and A(T). What
kind of performance guarantee can you obtain for a locally optimal tree in this case?

As given in Exercise 2.5, in the Steiner tree problem we are given an undirected graph
G = (V,E) and a set of terminals R C V. A Steiner tree is a tree in G in which all the
terminals are connected; a nonterminal need not be spanned. Show that the local search
algorithm of Section 2.6 can be adapted to find a Steiner tree whose maximum degree
is at most 20OPT +[logy n|, where OPT is the maximum degree of a minimum-degree
Steiner tree.

Let E be a set of items, and for S C E, let f(.S) give the value of the subset S. Suppose
we wish to find a maximum value subset of E of at most k items. Furthermore, suppose
that f(0) = 0, and that f is monotone and submodular. We say that f is monotone if for
any S and T with S C T C E, then f(S) < f(T'). We say that f is submodular if for any
S, T C E, then

fS)+(T) = f(SUT)+ f(SNT).

Show that the greedy (1 — %)—approximation algorithm of Section 2.5 extends to this
problem.

In the mazimum coverage problem, we have a set of elements F, and m subsets of elements
S1,...,Sn C E, each with a nonnegative weight w; > 0. The goal is to choose k elements
such that we maximize the weight of the subsets that are covered. We say that a subset
is covered if we have chosen some element from it. Thus we want to find S C E such that
|S| = k and that we maximize the total weight of the subsets j such that S N.S; # 0.

(a) Give a (1 — 1)-approximation algorithm for this problem.

(b) Show that if an approximation algorithm with performance guarantee better than
1-— % + € exists for the maximum coverage problem for some constant ¢ > 0, then
every NP-complete problem has an O(n®(°81°8m)) time algorithm. (Hint: Recall
Theorem 1.13.)
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2.12 A matroid (E,7) is a set E of ground elements together with a collection Z of subsets of

FE; that is, if S € Z,then S C E. A set S € T is said to be independent. The independent
sets of a matroid obey the following two axioms:

e If S is independent, then any S’ C S is also independent.

e If S and T are independent, and |S| < |T'|, then there is some e € T'— S such that
S U{e} is also independent.

An independent set S is a base of the matroid if no set strictly containing it is also
independent.

(a) Given an undirected graph G = (V, E), show that the forests of G form a matroid;
that is, show that if E is the ground set, and Z the set of forests of G, then the
matroid axioms are obeyed.

(b) Show that for any matroid, every base of the matroid has the same number of ground
elements.

(c) For any given matroid, suppose that for each e € E, we have a nonnegative weight
we > 0. Give a greedy algorithm for the problem of finding a maximum-weight base
of a matroid.

2.13 Let (E,Z) be a matroid as defined in Exercise 2.12, and let f be a monotone, submodular

function as defined in Exercise 2.10 such that f(0) = 0. Consider the following local
search algorithm for finding a maximum-value base of the matroid: First, start with an
arbitrary base S. Then consider all pairs e € S and ¢’ ¢ S. If SU{e} — {¢'} is a base,
and f(SU{e'} —{e}) > f(9), then set S «+— SU{e'} — {e}. Repeat until a locally optimal
solution is reached. The goal of this problem is to show that a locally optimal solution
has value at least half the optimal value.

(a) We begin with a simple case: suppose that the matroid is a uniform matroid; that
is, S C F is independent if |S| < k for some fixed k. Prove that for a locally optimal
solution S, f(S) > 1 OPT.

(b) To prove the general case, it is useful to know that for any two bases of a matroid, X
and Y, there exists a bijection g : X — Y such that for any e € X, S —{e} U{g(e)}
is independent. Use this to prove that for any locally optimal solution S, f(S) >
$ OPT.

(¢) For any € > 0, give a variant of this algorithm that is a (% — ¢€)-approximation
algorithm.

2.14 In the edge-disjoint paths problem in directed graphs, we are given as input a directed

graph G = (V, A) and k source-sink pairs s;,t; € V. The goal of the problem is to find
edge-disjoint paths so that as many source-sink pairs as possible have a path from s; to
t;. More formally, let S C {1,...,k}. We want to find S and paths P; for all i € S such
that |S| is as large as possible and for any 4,5 € S, i # j, P, and P; are edge-disjoint
(PZ N Pj = @)

Consider the following greedy algorithm for the problem. Let ¢ be the maximum of /m
and the diameter of the graph (where m = |A| is the number of input arcs). For each i
from 1 to k, we check to see if there exists an s;-t; path of length at most ¢ in the graph.
If there is such a path F;, we add i to S and remove the arcs of P; from the graph.
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Show that this greedy algorithm is an Q(1/f)-approximation algorithm for the edge-
disjoint paths problem in directed graphs.

2.15 Prove that there is no a-approximation algorithm for the edge coloring problem for o <
4/3 unless P = NP.

2.16 Let G = (V, E) be a bipartite graph; that is, V' can be partitioned into two sets A and B,
such that each edge in F has one endpoint in A and the other in B. Let A be the maximum
degree of a node in G. Give a polynomial-time algorithm for finding a A-edge-coloring of

G.

Chapter Notes

As discussed in the introduction to this chapter, greedy algorithms and local search algorithms
are very popular choices for heuristics for discrete optimization problems. Thus it is not sur-
prising that they are among the earliest algorithms analyzed for a performance guarantee. The
greedy edge coloring algorithm in Section 2.7 is from a 1964 paper due to Vizing [284]. To the
best of our knowledge, this is the earliest polynomial-time algorithm known for a combinatorial
optimization problem that proves that its performance is close to optimal, with an additive per-
formance guarantee. In 1966, Graham [142] gave the list scheduling algorithm for scheduling
identical parallel machines found in Section 2.3. To our knowledge, this is the first appearance
of a polynomial-time algorithm with a relative performance guarantee. The longest processing
time algorithm and its analysis is from a 1969 paper of Graham [143].

Other early examples of the analysis of greedy approximation algorithms include a 1977
paper of Cornuejols, Fisher, and Nemhauser [83], who introduce the float maximization problem
of Section 2.5, as well as the algorithm presented there. The analysis of the algorithm presented
follows that given in Nemhauser and Wolsey [232]. The earliest due date rule given in Section
2.1 is from a 1955 paper of Jackson [174], and is sometimes called Jackson’s rule. The analysis
of the algorithm in the case of negative due dates was given by Kise, Ibaraki, and Mine [195]
in 1979. The nearest addition algorithm for the metric traveling salesman problem given in
Section 2.4 and the analysis of the algorithm are from a 1977 paper of Rosenkrantz, Stearns,
and Lewis [255]. The double-tree algorithm from that section is folklore, while Christofides’
algorithm is due, naturally enough, to Christofides [73]. The hardness result of Theorem 2.9 is
due to Sahni and Gonzalez [257] while the result of Theorem 2.14 is due to Papadimitriou and
Vempala [239).

There is an enormous literature on the traveling salesman problem. For book-length treat-
ments of the problem, see the book edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys [211]
and the book of Applegate, Bixby, Chvétal, and Cook [9].

Of course, greedy algorithms for polynomial-time solvable discrete optimization problems
have also been studied for many years. The greedy algorithm for finding a maximum-weight
base of a matroid in Exercise 2.12 was given by Rado [246] in 1957, Gale [121] in 1968, and
Edmonds [96] in 1971; matroids were first defined by Whitney [285].

Analysis of the performance guarantees of local search algorithms has been relatively rare,
at least until some work on facility location problems from the late 1990s and early 2000s that
will be discussed in Chapter 9. The local search algorithm for scheduling parallel machines
given in Section 2.3 is a simplification of a local search algorithm given in a 1979 paper of Finn
and Horowitz [113]; Finn and Horowitz show that their algorithm has performance guarantee
of at most 2. The local search algorithm for finding a maximum-value base of Exercise 2.13 was
given by Fisher, Nemhauser, and Wolsey [114] in 1978. The local search algorithm for finding
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a minimum-degree spanning tree in Section 2.6 is from 1992 and can be found in Fiirer and
Raghavachari [118].

Now to discuss the other results presented in the chapter: The algorithm and analysis of
the k-center problem in Section 2.2 is due to Gonzalez [141]. An alternative 2-approximation
algorithm for the problem is due to Hochbaum and Shmoys [163]. Theorem 2.4, which states
that getting a performance guarantee better than 2 is NP-hard, is due to Hsu and Nemhauser
[172]. Theorem 2.22, which states that deciding if a graph is 3-edge-colorable or not is NP-
complete, is due to Holyer [170].

The k-supplier problem of Exercise 2.1, as well as a 3-approximation algorithm for it, were
introduced in Hochbaum and Shmoys [164]. The list scheduling variant for problems with
precedence constraints in Exercise 2.3 is due to Graham [142]. The idea of a p-relaxed deci-
sion procedure in Exercise 2.4 is due to Hochbaum and Shmoys [165]; the 2-relaxed decision
procedure for related machines in that exercise is due to Shmoys, Wein, and Williamson [265].
Exercise 2.7 was suggested to us by Nick Harvey. Exercise 2.9 is due to Fiirer and Raghavachari
[118]. Exercises 2.10 and 2.11 are due to Nemhauser, Wolsey, and Fisher [233]. The hardness
result of Exercise 2.11 is due to Feige [107]; Feige also shows that the same result can be ob-
tained under the assumption that P # NP. Kleinberg [199] gives the greedy algorithm for the
edge-disjoint paths problem in directed graphs given in Exercise 2.14. Kénig [201] shows that
it is possible to A-edge-color a bipartite graph as in Exercise 2.16.
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CHAPTER 3

Rounding data and dynamic
programming

Dynamic programming is a standard technique in algorithm design in which an optimal solution
for a problem is built up from optimal solutions for a number of subproblems, normally stored
in a table or multidimensional array. Approximation algorithms can be designed using dynamic
programming in a variety of ways, many of which involve rounding the input data in some way.

For instance, sometimes weakly NP-hard problems have dynamic programming algorithms
that run in time polynomial in the input size if the input is represented in unary rather than
in binary (so, for example, the number 7 would be encoded as 1111111). If so, we say that the
algorithm is pseudopolynomial. Then by rounding the input values so that the number of distinct
values is polynomial in the input size and an error parameter € > 0, this pseudopolynomial
algorithm can be made to run in time polynomial in the size of the original instance. We can
often show that the rounding does not sacrifice too much in the quality of the solution produced.
We will use this technique in discussing the knapsack problem in Section 3.1.

For other problems, such as scheduling problems, we can often make distinctions between
“large” and “small” parts of the input instance; for instance, in scheduling problems, we dis-
tinguish between jobs that have large and small processing times. We can then show that by
rounding the sizes of the large inputs so that, again, the number of distinct, large input values
is polynomial in the input size and an error parameter, we can use dynamic programming to
find an optimal solution on just the large inputs. Then this solution must be augmented to a
solution for the whole input by dealing with the small inputs in some way. Using these ideas,
we will devise polynomial-time approximation schemes for the problem of scheduling parallel
machines introduced in the last chapter, and for a new problem of packing bins.

3.1 The knapsack problem

A traveler with a knapsack comes across a treasure hoard. Unfortunately, his knapsack can hold
only so much. What items should he place in his knapsack in order to maximize the value of the
items he takes away? This unrealistic scenario gives the name to the knapsack problem. In the
knapsack problem, we are given a set of n items I = {1,...,n}, where each item ¢ has a value v;
and a size s;. All sizes and values are positive integers. The knapsack has capacity B, where B
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A(l) — {<07 0), (31, wl)}
for j + 2 ton do
A(j) « Al - 1)
for each (t,w) € A(j —1) do
if £ +s; < B then
Add (t + sj,w + v;) to A(j)
Remove dominated pairs from A(j)

return max ,)eA(n) W

Algorithm 3.1: A dynamic programming algorithm for the knapsack problem.

is also a positive integer. The goal is to find a subset of items S C I that maximizes the value
> ics ¥i of items in the knapsack subject to the constraint that the total size of these items is
no more than the capacity; that is, >, ¢s; < B. We assume that we consider only items that
could actually fit in the knapsack (by themselves), so that s; < B for each ¢ € I. Although
the application stated above is unlikely to be useful in real life, the knapsack problem is well
studied because it is a simplified model of a problem that arises in many realistic scenarios.

We now argue that we can use dynamic programming to find the optimal solution to the
knapsack problem. We maintain an array entry A(j) for j = 1,...,n. Each entry A(j) is a
list of pairs (t,w). A pair (t,w) in the list of entry A(j) indicates that there is a set S from
the first j items that uses space exactly t < B and has value exactly w; that is, there exists a
set S C {1,...,7}, such that > ,.¢s; =t < B and ) ,.qv; = w. Each list does not contain
all possible such pairs, but instead keeps track of only the most efficient ones. To do this, we
introduce the notion of one pair dominating another one; a pair (¢, w) dominates another pair
(t',w') if t <t and w > w'; that is, the solution indicated by the pair (¢, w) uses no more space
than (#',w’), but has at least as much value. Note that domination is a transitive property;
that is, if (¢,w) dominates (#',w’) and (¢, w’) dominates (¢, w"), then (¢,w) also dominates
(t",w"). We will ensure that in any list, no pair dominates another one; this means that we
can assume each list A(j) is of the form (¢1,w1),..., (tk, wg) with t; < to < -+- < t; and
wy < wy < --- < wg. Since the sizes of the items are integers, this implies that there are at
most B + 1 pairs in each list. Furthermore, if we let V' = Y | v; be the maximum possible
value for the knapsack, then there can be at most V + 1 pairs in the list. Finally, we ensure
that for each feasible set S C {1,...,j} (with ) ;.gs; < B), the list A(j) contains some pair
(t,w) that dominates (D;cq Si» 2 icg Vi)-

In Algorithm 3.1, we give the dynamic program that constructs the lists A(j) and solves the
knapsack problem. We start out with A(1) = {(0,0), (s1,w1)}. For each j = 2,...,n, we do
the following. We first set A(j) < A(j —1), and for each (t,w) € A(j — 1), we also add the pair
(t+sj,w+wv;) to the list A(j) if t+s; < B. We finally remove from A(j) all dominated pairs by
sorting the list with respect to their space component, retaining the best value for each space
total possible, and removing any larger space total that does not have a corresponding larger
value. One way to view this process is to generate two lists, A(j — 1) and the one augmented
by (sj,w;), and then perform a type of merging of these two lists. We return the pair (¢, w)
from A(n) of maximum value as our solution. Next we argue that this algorithm is correct.

Theorem 3.1: Algorithm 3.1 correctly computes the optimal value of the knapsack problem.

Proof. By induction on j we prove that A(j) contains all non-dominated pairs corresponding
to feasible sets S C {1,...,7}. Certainly this is true in the base case by setting A(1) to
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{(0,0), (s1,w1)}. Now suppose it is true for A(j—1). Let S C {1,...,j},andlet t =3, ¢s; <
B and w = ) ,.gv;. We claim that there is some pair (t',w") € A(j) such that ¢’ < ¢ and
w' > w. First, suppose that j ¢ S. Then the claim follows by the induction hypothesis and
by the fact that we initially set A(j) to A(j — 1) and removed dominated pairs. Now suppose
j € S. Then for S’ = S — {j}, by the induction hypothesis, there is some (£,1) € A(j — 1) that
dominates (D, cg S, D ieg Vi), SO that t < Y ics siand @ > ), o v;. Then the algorithm will
add the pair (f + s, + v;) to A(j), where  +s; <t < B and % + v; > w. Thus, there will
be some pair (¢, w’) € A(j) that dominates (¢, w). O

Algorithm 3.1 takes O(nmin(B,V)) time. This is not a polynomial-time algorithm, since
we assume that all input numbers are encoded in binary; thus, the size of the input number
B is essentially log, B, and so the running time O(nB) is exponential in the size of the input
number B, not polynomial. If we were to assume that the input is given in unary, then O(nB)
would be a polynomial in the size of the input. It is sometimes useful to make this distinction
between problems.

Definition 3.2: An algorithm for a problem 11 is said to be pseudopolynomial if its running
time is polynomial in the size of the input when the numeric part of the input is encoded in
unary.

If the maximum possible value V' were some polynomial in n, then the running time would
indeed be a polynomial in the input size. We now show how to get a polynomial-time approxi-
mation scheme for the knapsack problem by rounding the values of the items so that V' is indeed
a polynomial in n. The rounding induces some loss of precision in the value of a solution, but
we will show that this does not affect the final value by too much. Recall the definition of an
approximation scheme from Chapter 1.

Definition 3.3: A polynomial-time approximation scheme (PTAS) is a family of algorithms
{Ac}, where there is an algorithm for each € > 0, such that Ac is a (1 + €)-approzimation
algorithm (for minimization problems) or a (1 — €)-approzimation algorithm (for maximization
problems).

Note that the running time of the algorithm A, is allowed to depend arbitrarily on 1/e: this
dependence could be exponential in 1/e, or worse. We often focus attention on algorithms for
which we can give a good bound of the dependence of the running time of Ac on 1/e. This
motivates the following definition.

Definition 3.4: A fully polynomial-time approximation scheme (FPAS, FPTAS) is an approz-
imation scheme such that the running time of A. is bounded by a polynomial in 1/e.

We can now give a fully polynomial-time approximation scheme for the knapsack problem.
Suppose that we measure value in (integer) multiples of 1 (where we shall set p below), and
convert each value v; by rounding down to the nearest integer multiple of p; more precisely,
we set v] to be |v;/p] for each item i. We can then run the dynamic programming algorithm
of Figure 3.1 on the items with sizes s; and values v}, and output the optimal solution for the
rounded data as a near-optimal solution for the true data. The main idea here is that we wish
to show that the accuracy we lose in rounding is not so great, and yet the rounding enables
us to have the algorithm run in polynomial time. Let us first do a rough estimate; if we used
values 0; = vjp instead of v;, then each value is inaccurate by at most p, and so each feasible
solution has its value changed by at most nu. We want the error introduced to be at most €
times a lower bound on the optimal value (and so be sure that the true relative error is at most
€). Let M be the maximum value of an item; that is, M = max;c; v;. Then M is a lower bound
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M + max;cry U;

W< eM/n

vl < |vi/p] for all i € T

Run Algorithm 3.1 for knapsack instance with values v}

Algorithm 3.2: An approximation scheme for the knapsack problem.

on OPT, since one possible solution is to pack the most valuable item in the knapsack by itself.
Thus, it makes sense to set p so that nu = eM or, in other words, to set p = eM/n.

Note that with the modified values, V' = > vl = > | L] = O(n?/e). Thus, the
running time of the algorithm is O(nmin(B,V’)) = O(n?/e) and is bounded by a polynomial
in 1/e. We can now prove that the algorithm returns a solution whose value is at least (1 — ¢€)
times the value of an optimal solution.

Theorem 3.5: Algorithm 3.2 is a fully polynomial-time approzimation scheme for the knapsack
problem.

Proof. We need to show that the algorithm returns a solution whose value is at least (1 — ¢)
times the value of an optimal solution. Let .S be the set of items returned by the algorithm. Let
O be an optimal set of items. Certainly M < OPT, since one possible solution is to put the most
valuable item in a knapsack by itself. Furthermore, by the definition of v}, pv; < v; < p(v;+1),
so that v, > v; — p. Applying the definitions of the rounded data, along with the fact that S
is an optimal solution for the values v}, we can derive the following chain of inequalities:

LI
€S €S
b3

€0
5" i~ 10k
€0
S -
€0
= Z v; — eM
€0
OPT —eOPT = (1 —¢) OPT.

v

v

v

v

3.2 Scheduling jobs on identical parallel machines

We return to the problem of scheduling a collection of n jobs on m identical parallel machines;
in Section 2.3 we presented a result that by first sorting the jobs in order of non-increasing
processing requirement, and then using a list scheduling rule, we find a schedule of length
guaranteed to be at most 4/3 times the optimum. In this section, we will show that this result
contains the seeds of a polynomial-time approximation scheme: for any given value of p > 1,
we give an algorithm that runs in polynomial time and finds a solution of objective function
value at most p times the optimal value.
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As in Section 2.3, we let the processing requirement of job j be pj, j = 1,...,n, and let Cpax
denote the length (or makespan) of a given schedule with job completion times C;, j = 1,...,n;
the optimal value is denoted C} ... We shall assume that each processing requirement is a
positive integer. The key idea of the analysis of the list scheduling rule was that its error
can be upper bounded by the processing requirement of the last job to complete. The 4/3-
approximation algorithm was based on this fact, combined with the observation that when
each job’s processing requirement is more than C} /3, this natural greedy-type algorithm
actually finds the optimal solution. We present an approximation scheme for this problem
based on a similar principle: we focus on a specified subset of the longest jobs, and compute the
optimal schedule for that subset; then we extend that partial schedule by using list scheduling
on the remaining jobs. We will show that there is a trade-off between the number of long jobs
and the quality of the solution found.

More precisely, let k be a fixed positive integer; we will derive a family of algorithms, and
focus on the algorithm A; among them. Suppose that we partition the job set into two parts:
the long jobs and the short jobs, where a job £ is considered short if p, < ﬁ Z?Zl pj. Note
that this implies that there are at most km long jobs. Enumerate all possible schedules for
the long jobs, and choose one with the minimum makespan. Extend this schedule by using list
scheduling for the short jobs; that is, given an arbitrary order of the short jobs, schedule these
jobs in order, always assigning the next job to the machine currently least loaded.

Consider the running time of algorithm Ag. To specify a schedule for the long jobs, we
simply indicate to which of the m machines each long job is assigned; thus, there are at most
mF™ distinct assignments (since the order of processing on each machine is unimportant). If we
focus on the special case of this problem in which the number of machines is a constant (say,
100, 1,000, or even 1,000,000), then this number is also a constant, not depending on the size
of the input. Thus, we can check each schedule, and determine the optimal length schedule in
polynomial time in this special case.

As in the analysis of the local search algorithm in Section 2.3, we focus on the last job ¢ to
finish. Recall that we derived the equality that

Crmax < P+ Y _pj/m; (3.1)
J#L

the validity of this inequality relied only on the fact that each machine is busy up until the
time that job /¢ starts. To analyze the algorithm that starts by finding the optimal schedule
for the long jobs, we distinguish now between two cases. If the last job to finish (in the entire
schedule), job ¢, is a short job, then this job was scheduled by the list scheduling rule, and it
follows that inequality (3.1) holds. Since job ¢ is short, and hence py < Z?Zl p;j/(mk), it also
follows that

" 1) — 1\ .
Cmax < Zp]/(mk) + ij/m < <1 + k) jzlpj/m < (1 + k) Crnax'

=1 L

If job £ is a long job, then the schedule delivered by the algorithm is optimal, since its
makespan is equal to the length of the optimal schedule for just the long jobs, which is clearly
no more than C} . for the entire input. The algorithm Ay can easily be implemented to run in
polynomial time (treating m as a constant), and hence we have obtained the following theorem.

Theorem 3.6: The family of algorithms { Ay} is a polynomial-time approximation scheme for

the problem of minimizing the makespan on any constant number of identical parallel machines.
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Of course, it is a significant limitation of this theorem that the number of machines is
restricted to be a constant. In fact, it is not too hard to extend these techniques to obtain
a polynomial-time approximation scheme even if the number of machines is allowed to be an
input parameter (and hence the algorithm must also have running time polynomially bounded
in the number of machines m). The key idea is that we didn’t really need the schedule for the
long jobs to be optimal. We used the optimality of the schedule for the long jobs only when
the last job to finish was a long job. If we had found a schedule for the long jobs that had
makespan at most 1+ % times the optimal value, then that clearly would have been sufficient.
We will show how to obtain this near-optimal schedule for long jobs by rounding input sizes
and dynamic programming, as we saw in the previous section on the knapsack problem.

It will be convenient to first set a target length T" for the schedule. As before, we also fix
a positive integer k; we will design a family of algorithms {Bj} where By either proves that
no schedule of length T" exists, or else finds a schedule of length (1 + %)T . Later we will show
how such a family of algorithms also implies the existence of a polynomial-time approximation
scheme. We can assume that T > % Z?Zl pj, since otherwise no feasible schedule exists.

The algorithm By, is quite simple. We again partition the jobs into long and short jobs, but
in this case, we require that p; > T'/k for job j to be considered long. We round down the
processing requirement of each long job to its nearest multiple of T'/k%. We will determine in
polynomial time whether or not there is a feasible schedule for these rounded long jobs that
completes within time 7. If there is such a schedule, we then interpret it as a schedule for
the long jobs with their original processing requirements. If not, we conclude that no feasible
schedule of length T exists for the original input. Finally, we extend this schedule to include
the short jobs by using the list scheduling algorithm for the short jobs.

We need to prove that the algorithm Bj always produces a schedule of length at most
(1+ %)T whenever there exists a schedule of length at most 1. When the original input has a
schedule of length T', then so does the reduced input consisting only of the rounded long jobs
(which is why we rounded down the processing requirements); in this case, the algorithm does
compute a schedule for the original input. Suppose that a schedule is found. It starts with a
schedule of length at most 1" for the rounded long jobs. Let S be the set of jobs assigned by
this schedule to one machine. Since each job in S is long, and hence has rounded size at least
T/k, it follows that |S| < k. Furthermore, for each job j € S, the difference between its true
processing requirement and its rounded one is at most 7'/k%. Hence,

> ST +k(T/K?) = (1 + D T.

jes

Now consider the effect of assigning the short jobs: each job £, in turn, is assigned to a machine
for which the current load is smallest. Since Z?zl pj/m < T, we also know that ) j£0Dj /m<T.
Since the average load assigned to a machine is less than T, there must exist a machine that
is currently assigned jobs of total processing requirement less than 7. So, when we choose the
machine that currently has the lightest load, and then add job ¢, this machine’s new load is at
most

1
pet+ > pi/m<T/k+T= <1+k> T.
it

Hence, the schedule produced by list scheduling will also be of length at most (1 + %)T
To complete the description of the algorithm By, we must still show that we can use dynamic
programming to decide if there is a schedule of length T' for the rounded long jobs. Clearly if
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there is a rounded long job of size greater than 7', then there is no such schedule. Otherwise,
we can describe an input by a k?-dimensional vector, where the ith component specifies the
number of long jobs of rounded size equal to i7/k?, for each i = 1,...,k?. (In fact, we know
that for ¢ < k, there are no such jobs, since that would imply that their original processing
requirement was less than 7'/k, and hence not long.) So there are at most n** distinct inputs
— a polynomial number!

How many distinct ways are there to feasibly assign long jobs to one machine? Each rounded
long job still has processing time at least T'/k. Hence, at most k jobs are assigned to one machine.
Again, an assignment to one machine can be described by a k?-dimensional vector, where again
the ith component specifies the number of long jobs of rounded size equal to iT/k? that are
assigned to that machine. Consider the vector (si,s2,...,s;2); we shall call it a machine

configuration if
k‘2

> si-iT/R < T.
=1

Let C denote the set of all machine configurations. Note that there are at most (k+ 1)k2 distinct
configurations, since each machine must process a number of rounded long jobs that is in the
set {0,1,...,k}. Since k is fixed, this means that there are a constant number of configurations.

Let OPT(ny,...,n;2) denote the minimum number of (identical) machines sufficient to
schedule this arbitrary input. This value is governed by the following recurrence relation, based
on the idea that a schedule consists of assigning some jobs to one machine, and then using as
few machines as possible for the rest:

OPT(ni,...,np2) =1+ min  OPT(ny — s1,...,np2 — sp2).
(51,---,8,2)€C
This can be viewed as a table with a polynomial number of entries (one for each possible
input type), and to compute each entry, we need to find the minimum over a constant number
of previously computed values. The desired schedule exists exactly when the corresponding
optimal value is at most m.

Finally, we need to show that we can convert the family of algorithms { By } into a polynomial-
time approximation scheme. Fix the relative error € > 0. We use a bisection search procedure
to determine a suitable choice of the target value T' (which is required as part of the input for
each algorithm Bj). We know that the optimal makespan for our scheduling input is within
the interval [Lg, Up], where

n
Lo = max E pj/m ,jlrllaxnpj
j=1 Ly

and

n
Up = jzz:lpj/m +jirll?§npj.
(We strengthen the lower bound with the [-] by relying on the fact that the processing require-
ments are integral.) Throughout the bisection search, we maintain such an interval [L, U], with
the algorithmic invariants (1) that L < C} .., and (2) that we can compute a schedule with
makespan at most (1 4 ¢)U. This is clearly true initially: by the arguments of Section 2.3, Lg
is a lower bound on the length of an optimal schedule, and using a list scheduling algorithm we
can compute a schedule of length at most Up.
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In each iteration where the current interval is [L, U], we set T'= | (L + U)/2], and run the
algorithm By, where k = [1/€]. If the algorithm By produces a schedule, then update U < T
otherwise, update L <— T'+1. The bisection continues until L = U, at which point the algorithm
outputs the schedule associated with U (of length at most (1 + €)U).

It is easy to see that the claimed invariant is maintained: (1) when we update the lower
limit L, the algorithm Bj has just shown that no feasible schedule of length T exists, and by
the integrality of the processing times, we know then that 7"+ 1 is a valid lower bound; (2)
when we update the upper limit U, the algorithm Bj has just produced the schedule of length
at most (1 + €)7', which is exactly what is required to justify this update.

The difference between the upper and lower limits is initially at most max;—1 ., p;, and is
halved in each iteration. Hence, after a polynomial number of iterations, the difference becomes
less than 1 and, by integrality, is therefore 0. Since both invariants must still hold for this trivial
interval [L, L], then we know that C .. > L, and that the final schedule output by the algorithm

max
is of length at most (1+¢€)L < (1+¢€)C} .. The algorithm is a (1 + €)-approximation algorithm.

max-*
Theorem 3.7: There is a polynomial-time approximation scheme for the problem of minimizing
the makespan on an input number of identical parallel machines.

Note that since we consider (k + 1)* configurations and k = [1/€], the running time
in the worst case is exponential in O(1/€%). Thus, in this case, we did not obtain a fully
polynomial-time approximation scheme (in contrast to the knapsack problem). This is for a
fundamental reason. This scheduling problem is strongly NP-complete; that is, even if we
require that the processing times be restricted to values at most g(n), a polynomial function of
the number of jobs, this special case is still NP-complete. We claim that if a fully polynomial-
time approximation scheme exists for this problem, it could be used to solve this special case
in polynomial time, which would imply that P = NP.

How can we use a fully polynomial-time approximation scheme to solve the special case
with polynomially bounded processing times? Let P be the maximum processing time for
an input satisfying this special structure. This implies that the optimal makespan is at most
nP < ng(n). If there were a fully polynomial-time approximation scheme {Ay}, suppose that
we use the algorithm Ay that guarantees a solution with relative error at most 1/k where
k = [2nq(n)]. This implies that the algorithm finds a solution of makespan at most

1 N N 1
<1 + k’) Cmax < Cmax + 5

But since any feasible schedule is simply an assignment of jobs to machines, the makespan is
clearly integer, and hence the algorithm must find the optimal assignment. We know that ¢(n)
is a polynomial; the requirements of a fully polynomial-time approximation scheme imply that
the running time must be bounded by a polynomial in k, and hence we have computed this
optimal schedule in polynomial time. Therefore, the existence of such a scheme implies that
P = NP. This result is one special case of a much more general result; we know that (with very
mild assumptions on the nature of the objective function) for any optimization problem, if the
problem is strongly NP-complete, then it does not have a fully polynomial-time approximation
scheme. We give this as an exercise (Exercise 3.9).
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3.3 The bin-packing problem

In the bin-packing problem, we are given n pieces (or items) with specified sizes a1, aq, ..., an,
such that
1>a1>ay>--->ay >0

we wish to pack the pieces into bins, where each bin can hold any subset of pieces of total size
at most 1, so as to minimize the number of bins used.

The bin-packing problem is related to a decision problem called the partition problem. In
the partition problem, we are given n positive integers by,...,b, whose sum B = > | b; is
even, and we wish to know if we can partition the set of indices {1,...,n} into sets S and T'
such that ) . ¢ b; = >, b;. The partition problem is well known to be NP-complete. Notice
that we can reduce this problem to a bin-packing problem by setting a; = 2b;/B and checking
whether we can pack all the pieces into two bins or not. This gives the following theorem.

Theorem 3.8: Unless P = NP, there cannot exist a p-approximation algorithm for the bin-
packing problem for any p < 3/2.

However, consider the First-Fit-Decreasing algorithm, where the pieces are packed in order
of non-increasing size, and the next piece is always packed into the first bin in which it fits; that
is, we first open bin 1, and we start bin k£ + 1 only when the current piece does not fit into any
of the bins 1,...,k. If FFD(I) denotes the number of bins used by this algorithm on input I,
and OPT(I) denotes the number of bins used in the optimal packing, then a celebrated classic
result shows that that FFD(I) < (11/9) OPT(I) + 4 for any input I.

Thus, significantly stronger results can be obtained by relaxing the notion of the performance
guarantee to allow for small additive terms. In fact, it is completely consistent with our current
understanding of complexity theory that there is an algorithm that always produces a packing
with at most OPT(I) + 1 bins.

Why is it that we have bothered to mention hardness results of the form “there does not exist
a p-approximation algorithm unless P = NP” if such a result can be so easily circumvented? The
reason is that for all of the weighted problems that we have discussed, any distinction between
the two types of guarantees disappears; any algorithm guaranteed to produce a solution of value
at most p OPT +c¢ can be converted to a p-approximation algorithm. Each of these problems
has a natural rescaling property: for any input I and any value k, we can construct an essentially
identical instance I’ such that the objective function value of any feasible solution is rescaled
by . For example, for the scheduling problem of Section 3.2, if one simply multiplies each
processing time p; by &, one can accomplish this rescaling, or for a combinatorial problem such
as the unweighted vertex cover problem, one can consider an input with « disjoint copies of the
original input graph. Such rescaling makes it possible to blunt the effect of any small additive
term ¢ < k in the guarantee, and make it effectively 0. Observe that the bin-packing problem
does not have this rescaling property; there is no obvious way to “multiply” the instance in a way
that does not blur the combinatorial structure of the original input. (Think about what happens
if you construct a new input that contains two copies of each piece of I'!) Thus, whenever we
consider designing approximation algorithms for a new combinatorial optimization problem, it
is important to consider first whether the problem does have the rescaling property, since that
will indicate what sort of performance guarantee one might hope for.

Although we will not prove the performance guarantee for the First-Fit-Decreasing algorithm
for the bin-packing problem, we shall show that an exceedingly simple algorithm does perform
reasonably well. Consider the First-Fit algorithm, which works exactly as First-Fit-Decreasing,
except that we don’t first sort the pieces in non-increasing size order. We can analyze its
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performance in the following way. If we pair up bins 1 and 2, then 3 and 4, and so forth, then
any such pair must have the property that the total piece size in them is at least 1: in fact, the
first item placed in bin 2k is put there only because it did not fit in bin 2k — 1. Thus, if we
used ¢ bins, then the total size of the pieces in the input, SIZE(I) = Y"1 | a;, is at least [£/2].
However, it is clear that OPT(I) > SIZE(I), and hence, the number of bins used by First-Fit
is FF(I) = ¢ < 2SIZE(I) + 1 < 20PT(I) + 1. Of course, this analysis did not use practically
any information about the algorithm; we used only that there should not be two bins whose
contents can be feasibly combined into one bin.

We shall present a family of polynomial-time approximation algorithms parameterized by
€ > 0, where each algorithm has the performance guarantee of computing a packing with at
most (1 4 €) OPT(I) + 1 bins for each input I. Throughout this discussion, we shall view €
as a positive constant. Note that this family of algorithms does not meet the definition of a
polynomial-time approximation scheme because of the additive constant. This motivates the
following definition.

Definition 3.9: An asymptotic polynomial-time approximation scheme (APTAS) is a family
of algorithms {A¢} along with a constant ¢ where there is an algorithm A, for each € > 0 such
that A returns a solution of value at most (14 €) OPT +c for minimization problems.

One of the key ingredients of this asymptotic polynomial-time approximation scheme is
the dynamic programming algorithm used in the approximation scheme for scheduling jobs
on identical parallel machines, which was presented in Section 3.2. As stated earlier, that
algorithm computed the minimum number of machines needed to assign jobs, so that each
machine was assigned jobs of total processing requirement at most 7. However, by rescaling
each processing time by dividing by T, we have an input for the bin-packing problem. The
dynamic programming algorithm presented solves the bin-packing problem in polynomial time
in the special case in which there are only a constant number of distinct piece sizes, and only
a constant number of pieces can fit into one bin. Starting with an arbitrary input to the
bin-packing problem, we first construct a simplified input of this special form, which we then
solve by dynamic programming. The simplified input will also have the property that we can
transform the resulting packing into a packing for the original input, without introducing too
many additional bins.

As in the scheduling result of Section 3.2, the first key observation is that one may ignore
small pieces of size less than any given threshold, and can analyze its effect in a relatively simple
way.

Lemma 3.10: Any packing of all pieces of size greater than - into £ bins can be extended to a
packing for the entire input with at most max{¢, ﬁ SIZE(I) + 1} bins.

Proof. Suppose that one uses the First-Fit algorithm, starting with the given packing, to com-
pute a packing that also includes these small pieces. If First-Fit never starts a new bin in
packing the small pieces, then clearly the resulting packing has ¢ bins. If it does start a new
bin, then each bin in the resulting packing (with the lone exception of the last bin started) must
not have been able to fit one additional small piece. Let k + 1 denote the number of bins used
in this latter case. In other words, each of the first k bins must have pieces totaling at least
1 —+, and hence SIZE(I) > (1 — v)k. Equivalently, k¥ < SIZE(I)/(1 — v), which completes the

proof of the lemma. O

Suppose that we were aiming to design an algorithm with a performance guarantee that is
better than the one proved for First-Fit (which is truly a modest goal); in particular, we are
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trying to design an algorithm with performance guarantee 1+ € with € < 1. If we apply Lemma
3.10 by setting v = €/2, then since 1/(1 — €¢/2) < 1 + ¢, we see that the composite algorithm
produces a packing with at most max{¢, (1+ ¢) OPT(I) + 1} bins.

The elimination of the small pieces from the input also enforces one of our requirements
for the special case solvable by dynamic programming: if each piece has size greater than €/2,
then each bin must contain fewer than 2/¢ pieces in total. We shall assume for the rest of the
discussion that our input I does not have such small pieces to begin with.

The last element of the algorithm is a technique to reduce the number of distinct piece sizes,
which is accomplished by a linear grouping scheme. This scheme works as follows, and is based
on a parameter k, which will be set later. Group the pieces of the given input I as follows: the
first group consists of the k largest pieces, the next group consists of the next k largest pieces,
and so on, until all pieces have been placed in a group. The last group contains h pieces, where
h < k. The rounded instance I’ is constructed by discarding the first group, and for each other
group, rounding the size of its pieces up to the size of its largest piece. An input I and its
transformed version I’ are shown in Figure 3.1. We can prove the following lemma relating the
optimal number of bins needed to pack I to the optimal number of bins needed to pack I’.

Lemma 3.11: Let I' be the input obtained from an input I by applying linear grouping with
group size k. Then
OPT(I') < OPT(I) < OPT(I') + k,

and furthermore, any packing of I' can be used to gemerate a packing of I with at most k
additional bins.

Proof. For the first inequality, observe that any packing of the input I yields a packing of the
input I’: for I, pack its k largest pieces wherever the k largest pieces of I were packed. (There
is a one-to-one correspondence between these two sets of k pieces, and each piece in the group
from I’ is no larger than the piece to which it corresponds in I.) The second k largest pieces
of I' are packed wherever the second group of I were packed, and so forth. It is clear that this
yields a feasible packing of I’, and the first inequality follows.

To obtain the second inequality, we show how to take a packing of I’, and use it to obtain
a packing of I. This is also quite simple. To pack I, we pack each of the k largest pieces in
its own bin. Now, the next largest group of k pieces in I can be packed wherever the largest
group of pieces in I’ are packed. Again, to do this, we use the fact that one can construct
a one-to-one mapping between these two sets of k pieces, where each piece in I is no larger
than its corresponding piece in I’. The fact that this last inequality is proved algorithmically
is important, since this means that if we do obtain a good packing for I’, then we can use it to
obtain an “almost-as-good” packing for I. O

It is relatively straightforward to complete the derivation of an asymptotic polynomial-
time approximation scheme for the bin-packing problem. If we consider the input I’, then the
number of distinct piece sizes is at most n/k, where n is the number of pieces in I. Since
there are no small pieces in I, SIZE(I) > en/2. If we set k = |eSIZE(I)], then we see that
n/k < 2n/(eSIZE(I)) < 4/€%, where we crudely bound |[a| > a/2 when a > 1; we can assume
e SIZE(I) > 1 since otherwise there are at most (1/¢)/(e/2) = 2/€e? (large) pieces and we could
apply the dynamic programming algorithm to solve the input optimally without applying the
linear grouping scheme. Consequently, after performing the linear grouping, we are left with
a bin-packing input in which there are a constant number of distinct piece sizes, and only a
constant number of pieces can fit in each bin; hence, we can obtain an optimal packing for the
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Figure 3.1: An input before and after linear grouping with group size k = 4.
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input I’ by the dynamic programming algorithm of Section 3.2. This packing for I’ can then
be used to get a packing for the ungrouped input, and then be extended to include all of the
small pieces with at most (1 + €) OPT(I) + 1 bins, as we show next.

Theorem 3.12: For any e > 0, there is a polynomial-time algorithm for the bin-packing problem
that computes a solution with at most (1 + €) OPT(I) + 1 bins; that is, there is an APTAS for
the bin-packing problem.

Proof. As we discussed earlier, the algorithm will open max{¢, (1+¢) OPT(I)+1} bins, where ¢ is
the number of bins used to pack the large pieces. By Lemma 3.11, we use at most OPT(I')+k <
OPT(I)+k bins to pack these pieces, where k = |e SIZE([) ], so that ¢ < OPT(I)+¢eSIZE(I) <
(14 ¢) OPT(I), which completes the proof. O

It is possible to improve both the running time of this general approach, and its performance
guarantee; we shall return to this problem in Section 4.6.

Exercises

3.1 Consider the following greedy algorithm for the knapsack problem. We initially sort all the
items in order of non-increasing ratio of value to size so that v1/s; > va/se > -+ > v, /sp.
Let ¢* be the index of an item of maximum value so that v; = max;crv;. The greedy
algorithm puts items in the knapsack in index order until the next item no longer fits;
that is, it finds k such that Zle s; < B but Zfill s; > B. The algorithm returns
either {1,...,k} or {i*}, whichever has greater value. Prove that this algorithm is a
1/2-approximation algorithm for the knapsack problem.

3.2 One key element in the construction of the fully polynomial-time approximation scheme
for the knapsack problem was the ability to compute lower and upper bounds for the
optimal value that are within a factor of n of each other (using the maximum value piece
that fits in the knapsack to get the lower bound). Use the result of the previous exercise
to derive a refined approximation scheme that eliminates one factor of n in the running
time of the algorithm.

3.3 Consider the following scheduling problem: there are n jobs to be scheduled on a single
machine, where each job j has a processing time p;, a weight w;, and a due date d;,
j=1,...,n. The objective is to schedule the jobs so as to maximize the total weight of
the jobs that complete by their due date. First prove that there always exists an optimal
schedule in which all on-time jobs complete before all late jobs, and the on-time jobs
complete in an earliest due date order; use this structural result to show how to solve this
problem using dynamic programming in O(nW) time, where W = ) ;jwj. Now use this
result to derive a fully polynomial-time approximation scheme.

3.4 Instead of maximizing the total weight of the on-time set of jobs, as in the previous
exercise, one could equivalently minimize the total weight of the set of jobs that complete
late. This equivalence is only valid when one thinks of optimization, not approximation,
since if only one job needs to be late then our approximation for the minimization problem
can make only a small error, whereas for the maximization problem the situation is quite
different. Or even worse, suppose that all jobs can complete on time. The good news is
that there is an O(n?) algorithm to solve the following problem: minimize the weight of
the maximum-weight job that completes late. First devise this algorithm, and then show
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3.5

3.6

3.7

3.8

3.9

how to use it to derive a fully polynomial-time approximation scheme for the problem of
minimizing the total weight of the jobs that complete late.

Consider the following scheduling problem: there are n jobs to be scheduled on a constant
number of machines m, where each job j has a processing time p; and a weight wj,
7 = 1,...,n; once started, each job must be processed to completion on that machine
without interruption. For a given schedule, let C; denote the completion time of job j,
j=1,...,n, and the objective is to minimize ) j w;C; over all possible schedules. First
show that there exists an optimal schedule where, for each machine, the jobs are scheduled
in non-decreasing p;/w; order. Then use this property to derive a dynamic programming
algorithm that can then be used to obtain a fully polynomial-time approximation scheme.

Suppose we are given a directed acyclic graph with specified source node s and sink node
t, and each arc e has an associated cost ¢, and length /.. We are also given a length
bound L. Give a fully polynomial-time approximation scheme for the problem of finding
a minimum-cost path from s to ¢ of total length at most L.

In the proof of Theorem 3.7, we rounded down each processing time to the nearest multiple
of T/k?. Suppose that instead of constructing identical length intervals that get rounded
to the same value, we have intervals that are geometrically increasing in length. Design an

alternative polynomial-time approximation scheme, where the term in the running that
is O(n(1/%)*) is reduced to O(n(/m)1os(1/k)y,

The makespan minimization problem discussed in Section 3.2 can be viewed as minimiz-
ing the Lo, norm of the machine loads. One can instead minimize the Lo norm of the
machine loads or, equivalently, the sum of the squares of the machine loads. To extend the
framework discussed for the makespan objective, first give a dynamic programming algo-
rithm that solves, in polynomial time, the special case in which there are only a constant
number of job lengths, and each job length is at least a constant fraction of the average
machine load (that is, }; p;j/m, where m is the number of machines). Then use this to
derive a polynomial-time approximation scheme. (One additional idea might be useful:
for some notion of a “small” job, clump the small jobs into relatively “small” clumps of
jobs that are then assigned to machines together.)

Suppose we have a strongly NP-hard minimization problem II with the following two
properties. First, any feasible solution has a nonnegative, integral objective function
value. Second, there is a polynomial p, such that if it takes n bits to encode the input
instance I in unary, OPT(I) < p(n). Prove that if there is a fully polynomial-time
approximation scheme for II, then there is a pseudopolynomial algorithm for II. Since
there is no pseudopolynomial algorithm for a strongly NP-hard problem unless P = NP,
conclude that this would imply P = NP.

Chapter Notes

The approach to describing the dynamic program for the knapsack problem in Section 3.1 is
due to Lawler [210], as is Exercise 3.2. The approximation scheme is due to Ibarra and Kim

[173)].

Exercises 3.3 and 3.5 are due to Sahni [258]. Gens and Levner [129] proved the result

stated in Exercise 3.4. Throughout the 1970s much of the work in this area was being done in
parallel in both the United States and the Soviet Union (although not recognized at the time);
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Gens and Levner [128] give a detailed comparison of the evolution of this area at that time.
Exercise 3.6 is due to Hassin [157].

The approximation scheme for scheduling parallel machines with a constant number of
machines given in Section 3.2 is due to Graham [143]. The approximation scheme for the case
in which the number of machines is part of the input is due to Hochbaum and Shmoys [165].
Exercise 3.8 is due to Alon, Azar, Woeginger, and Yadid [6].

Fernandez de la Vega and Lueker [111] gave the first approximation scheme for the bin-
packing problem. The approximation scheme given here is a variant of theirs. The analysis of
the First-Fit-Decreasing algorithm, showing it to be an 11/9-approximation algorithm, is in the
Ph.D. thesis of Johnson [178]. The analysis of First-Fit we give is also in this thesis, although
we use the analysis there of another algorithm called Next-Fit.

Exercise 3.9 is due to Garey and Johnson [122].
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CHAPTER 4

Deterministic rounding of linear
programs

In the introduction, we said that one of the principal theses of this book is the central role played
by linear programming in the design and analysis of approximation algorithms. In the previous
two chapters, we have not used linear programming at all, but starting with this chapter we
will be using it extensively.

In this chapter, we will look at one of the most straightforward uses of linear programming.
Given an integer programming formulation of a problem, we can relax it to a linear program.
We solve the linear program to obtain a fractional solution, then round it to an integer solution
via some process.

The easiest way to round the fractional solution to an integer solution in which all values are
0 or 1 is to take variables with relatively large values and round them up to 1, while rounding all
other variables down to 0. We saw this technique in Section 1.3 applied to the set cover problem,
in which we chose sets whose corresponding linear programming variables were sufficiently large.
We will see another application of this technique when we introduce the prize-collecting Steiner
tree problem in Section 4.4. We will revisit this problem several times in the course of the book.
For this problem we give an integer programming relaxation in which there are 0-1 variables
for both nodes and edges. We round up the node variables that are sufficiently large in order to
decide which nodes should be spanned in a solution; we then find a tree spanning these nodes.

In Sections 4.1 and 4.2, we consider a single-machine scheduling problem, and see another
way of rounding fractional solutions to integer solutions. We will see that by solving a relaxation,
we are able to get information on how the jobs might be ordered. Then we construct a solution
in which we schedule jobs in the same order as given by the relaxation, and we are able to show
that this leads to a good solution. In the first section, we use a relaxation of the problem to a
preemptive scheduling problem, rather than a linear program. The analysis of this algorithm
gives some ideas for an algorithm in the next section that uses a linear programming relaxation
for a scheduling problem with a more general objective function.

In Section 4.5, we introduce the uncapacitated facility location problem, another problem
that we will revisit several times in the course of this book. In this problem we have clients and
facilities; we must choose a subset of facilities to open, and every client must be assigned to
some open facility. Here the rounding procedure is much more complex than simply choosing
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Job 1 Job 2 Job 3

. >

0 2 4 5 9 Time

Figure 4.1: An example of a nonpreemptive schedule, in which p1 =2, r; =0, po =1,
ro = 4, ps = 4, r3 = 1. In this schedule, C; = 2, Cs = 5, and C3 = 9, so that
chj =2454+9=16.

large values and rounding up. The fractional values indicate to us which facilities we might
consider opening and which assignments we might think about making.

Finally, in Section 4.6, we revisit the bin-packing problem. We give an integer programming
formulation in which we have an integer variable to indicate how many bins should be packed
in a certain way. Then we round variables down, in the sense that we take the integer part of
each variable and pack bins as indicated, then take all the pieces corresponding to the fractional
part and iterate.

In several cases in this chapter and later in the book, we will need to solve very large linear
programs in which the number of constraints is exponential in the input size of the problem.
These linear programs can be solved in polynomial time using an algorithm called the ellipsoid
method. We introduce the ellipsoid method in Section 4.3, and discuss the cases in which it
can be used to solve exponentially large linear programs in polynomial time.

4.1 Minimizing the sum of completion times on a single ma-
chine

In this section, we consider the problem of scheduling jobs on a single machine so as to minimize
the sum of the job completion times. In particular, we are given as input n jobs, each of which
has a processing time p; and release date r;. The values p; and r; are integers such that r; > 0
and p; > 0. We must construct a schedule for these jobs on a single machine such that at
most one job is processed at each point in time, no job is processed before its release date,
and each job must be processed nonpreemptively; that is, once a job begins to be processed, it
must be processed completely before any other job begins its processing. See Figure 4.1 for an
example. If C; denotes the time at which job j is finished processing, then the goal is to find
the schedule that minimizes 2?21 C;. Observe that this objective is equivalent to the problem
of minimizing the average completion time, since the average completion time just rescales the
objective function for each feasible solution by a factor of 1/n.

Below we will show that we can convert any preemptive schedule into a nonpreemptive
schedule in such a way that the completion time of each job at most doubles. In a preemptive
schedule, we can still schedule only one job at a time on the machine, but we do not need to
complete each job’s required processing consecutively; we can interrupt the processing of a job
with the processing of other jobs. In the preemptive version of this problem, the goal is to find
a preemptive schedule that minimizes the sum of the completion times.

An optimal solution to the preemptive version of the scheduling problem can be found in
polynomial time via the shortest remaining processing time (SRPT) rule, which is as follows.
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Job1l Job3 Job?2

_ .

0 2 4 5 7 Time

Figure 4.2: An example of a preemptive schedule created using the SRPT rule, with
the same instance as in Figure 4.1. In this schedule, C; = 2, C5, = 5, and C3 = 7, so
that Zj C; = 2+ 5+ 7 = 14. Note that we do not interrupt the processing of job 1
when job 3 arrives at time 1, since job 1 has less remaining processing time, but we do
interrupt the processing of job 3 when job 2 arrives.

We start at time 0 and schedule the job with the smallest amount of remaining processing time
as long as the job is past its release date and we have not already completed it. We schedule
it until either it is completed or a new job is released. We then iterate. See Figure 4.2 for an
example.

Let CJP be the completion time of job j in an optimal preemptive schedule, and let OPT
be the sum of completion times in an optimal nonpreemptive schedule. We have the following
observation.

Observation 4.1:
n

> cf <OPT.

j=1

Proof. This immediately follows from the fact that an optimal nonpreemptive schedule is fea-
sible for the preemptive scheduling problem. ]

Now consider the following scheduling algorithm. Find an optimal preemptive schedule
using SRPT. We schedule the jobs nonpreemptively in the same order that they complete in
this preemptive schedule. To be more precise, suppose that the jobs are indexed such that
C’f < C’f <-... < C’f. Then we schedule job 1 from its release date r; to time r1 + p;. We
schedule job 2 to start as soon as possible after job 1; that is, we schedule it from max(r;+p1,72)
to max(r; + p1,72) + p2. The remaining jobs are scheduled analogously. If we let CJN denote
the completion time of job j in the nonpreemptive schedule that we construct, for j =1,...,n,
then job j is processed from max{Cinl,rj} to max{Cj]\Ll, ri} +Dpj.

We show below that scheduling nonpreemptively in this way does not delay the jobs by too
much.

Lemma 4.2: For each job j =1,...,n,
N P
C;h <205 .

Proof. Let us first derive some easy lower bounds on CJP . Since we know that j is processed in
the optimal preemptive schedule after jobs 1,...,7 — 1, we have

J
CcP > max r, and CF > .
N K J _;pk
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By construction it is also the case that

CJN > krznlaxj Tk.

Consider the nonpreemptive schedule constructed by the algorithm, and focus on any period
of time that the machine is idle; idle time occurs only when the next job to be processed has not
yet been released. Consequently, in the time interval from max;—; ;i to CJN , there cannot
be any point in time at which the machine is idle. Therefore, this interval can be of length at
most chzl pi since otherwise we would run out of jobs to process. This implies that

J
C’JN < kinlaxjrk + g e < 2C]P,
T k=1

where the last inequality follows from the two lower bounds on CJJ.D derived above. O

This leads easily to the following theorem.

Theorem 4.3: Scheduling in order of the completion times of an optimal preemptive schedule
is a 2-approximation algorithm for scheduling a single machine with release dates to minimize
the sum of completion times.

Proof. We have that

n n

N P
Y cl <2y Cf <20PT,
j=1 j=1

where the first inequality follows by Lemma 4.2 and the second by Observation 4.1. 0

4.2 Minimizing the weighted sum of completion times on a sin-
gle machine

We now consider a generalization of the problem from the previous section. In this generaliza-
tion, each job has a weight w; > 0, and our goal is to minimize the weighted sum of completion
times. If C; denotes the time at which job j is finished processing, then the goal is to find
a schedule that minimizes Z;-lzl w;C;. We will call the problem of the previous section the
unweighted case, and the problem in this section the weighted case.

Unlike the unweighted case, it is NP-hard to find an optimal schedule for the preemptive
version of the weighted case. Although the algorithm and analysis of the previous section give
us a way to round any preemptive schedule to one whose sum of weighted completion times is
at most twice more, we cannot use the same technique of finding a lower bound on the cost of
the optimal nonpreemptive schedule by finding an optimal preemptive schedule.

Nevertheless, we can still get a constant approximation algorithm for this problem by using
some of the ideas from the previous section. To obtain the 2-approximation algorithm in the
previous section, we used that C'JN < QCJP ; if we look at the proof of Lemma 4.2, to prove
this inequality we used only that the completion times C']]-D satisfied C']P > maxg—1,. ;I and
C’}D > Zi:l pr (assuming that jobs are indexed such that Cf:' < Cf <. < Cf ). Furthermore,

in order to obtain an approximation algorithm, we needed that Z?Zl CJP < OPT. We will show
below that we can give a linear programming relaxation of the problem with variables C; such
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4.2 Minimizing the weighted sum of completion times on a single machine 85

that these inequalities hold within a constant factor, which in turn will lead to a constant factor
approximation algorithm for the problem.

To construct our linear programming relaxation, we will let the variable C; denote the
completion time of job j. Then our objective function is clear: we want to minimize Z?Zl w;Cj.

We now need to give constraints. The first set of constraints is easy: for each job j =1,...,n,
job j cannot complete before it is released and processed, so that C; > r; + p;.
In order to introduce the second set of constraints, consider some set S C {1,...,n} of jobs.

Consider the sum jes p;jC;. This sum is minimized when all the jobs in S have a release date
of zero and all the jobs in S finish first in the schedule. Assuming these two conditions hold,
then any completion time C; for j € S is equal to p; plus the sum of all the processing times
of the jobs in S that preceded j in the schedule. Then in the product p;C}, p; multiplies itself
and the processing times of all jobs in S preceding j in the schedule. The sum jes p;C; must
contain the term p;py for all pairs j,k € S, since either k precedes j or j precedes k in the
schedule. Thus,

2

DN | =

2
1 1
dpiCi= > pipk=5|D_p; +§ZP?Z§ >

jes j.k€S:i<k jes jes jes

Simplifying notation somewhat, let N = {1,...,n}, and let p(S) = EjeSpj7 so that the
inequality above becomes ZjGS p;iC; > %p(S)Q. As we said above, the sum ZjGS p;jC; can be
greater only if the jobs in S have a release date greater than zero or do not finish first in the
schedule, so the inequality must hold unconditionally for any S C N. Thus, our second set of
constraints is 1

> _0iC = 5p(8)°

JES
for each S C N.

This gives our linear programming relaxation for the scheduling problem:

minimize ijCj (4.1)
j=1
subject to C; > rj +pj, Vj €N, (4.2)
1
> piCi = gp(S)?,  VSCN. (4.3)
JES

By the arguments above, this LP is a relaxation of the problem, so that for an optimal LP
solution C*, Z?Zl ij; < OPT, where OPT denotes the value of the optimal solution to the
problem. There are an exponential number of the second type of constraint (4.3), but we will
show in Section 4.3 that we can use an algorithm called the ellipsoid method to solve this linear
program in polynomial time.

Let C* be an optimal solution for the relaxation that we obtain in polynomial time. Our
algorithm is then almost the same as in the previous section: we schedule the jobs nonpreemp-
tively in the same order as of the completion times of C*. That is, suppose that the jobs are
reindexed so that C] < C5 < --- < Cr. Then, as in the previous section, we schedule job 1
from its release date 1 to time ry 4+ p;. We schedule job 2 to start as soon as possible after job
1; that is, we schedule it from max(r; + pi1,72) to max(ry + p1,r2) + p2. The remaining jobs are
scheduled similarly. We claim that this gives a 3-approximation algorithm for the problem.
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Theorem 4.4: Scheduling in order of the completion time of C* is a 3-approzimation algorithm
for scheduling jobs on a single machine with release dates to minimize the sum of weighted
completion times.

Proof. Again, assume that the jobs are reindexed so that C} < C5 < ... < Cy. Let CJN be the
completion time of job j in the schedule we construct. We will show that CJN < SC}'-‘ for each
j=1,...,n. Then we have that >\, ijjN <337 w;C; < 30PT, which gives the desired
result.

As in the proof of Lemma 4.2, there cannot be any idle time between maxy—; . ; ry and C]N,
and therefore it must be the case that CJN < maxp—1, ;i + Zizl pr. Let £ € {1,...,7} be
the index of the job that maximizes maxy—1, ;i so that ry = maxj—q ;7. By the indexing
of the jobs, C7 > €7, and C} > r¢ by the LP constraint (4.2); thus, Cr > maxy—,. ;7. Let
[j] denote the set {1,...,j}. We will argue that C} > 30([5]), and from these simple facts, it
follows that

o < () + Jmax < 207 + Cf = 3C}.

Let S = [j]. From the fact that C* is a feasible LP solution, we know that

1
ZPkCI;k > QP(S)Q-
kesS

However, by our relabeling, C; > ... > (Y, and hence

Cr> p=C5p(8) = 3 piCi
kesS kes

By combining these two inequalities and rewriting, we see that

C; () 2 5p(S)*

Dividing both sides by p(S) shows that C7 > p(S) = 2p([5]) O

In Section 5.9, we will show how randomization can be used to obtain a 2-approximation
algorithm for this problem.

4.3 Solving large linear programs in polynomial time via the
ellipsoid method

We now turn to the question of how to solve the linear program (4.1) in polynomial time.
The most popular and practical algorithm for solving linear programs is known as the simplex
method. Although the simplex method is quite fast in practice, there is no known variant of the
algorithm that runs in polynomial time. Interior-point methods are a class of algorithms for
solving linear programs; while typically not as fast or as popular as the simplex method, interior-
point methods do solve linear programs in polynomial time. However, this isn’t sufficient for
solving the linear program above because the size of the linear program is exponential in the
size of the input scheduling instance. Therefore, we will use a linear programming algorithm
called the ellipsoid method. Because we will use this technique frequently, we will discuss the
general technique before turning to how to solve our particular linear program.
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4.3 Solving large linear programs in polynomial time via the ellipsoid method 87

Suppose we have the following general linear program:

n
minimize Z djx; (4.4)
j=1

n
subject to Zaijmj > by, 1=1,....,m,
j=1
l’j Z O, \V/_]

Suppose that we can give a bound ¢ on the number of bits needed to encode any inequality
Z?Zl a;;x; > b;. Then the ellipsoid method for linear programming allows us to find an optimal
solution to the linear program in time polynomial in n (the number of variables) and ¢, given a
polynomial-time separation oracle (which we will define momentarily). It is sometimes desirable
for us to obtain an optimal solution that has an additional property of being a basic solution;
we do not define basic solutions here, but the ellipsoid method will return such basic optimal
solutions (see Chapter 11 or Appendix A for a definition). Note that this running time does
not depend on m, the number of constraints of the linear program. Thus, as in the case of the
previous linear program for the single-machine scheduling problem, we can solve linear programs
with exponentially many constraints in polynomial time given that we have a polynomial-time
separation oracle.

A separation oracle takes as input a supposedly feasible solution x to the linear program,
and either verifies that x is indeed a feasible solution to the linear program or, if it is infeasible,
produces a constraint that is violated by x. That is, if it is not the case that 2?21 a;jxj > b; for
each 1 = 1,...,m, then the separation oracle returns some constraint ¢ such that Z;‘:l aj;jrj <
b;.

In the notes at the end of the chapter, we sketch how a polynomial-time separation oracle
leads to a polynomial-time algorithm for solving LPs with exponentially many constraints. It
is truly remarkable that such LPs are efficiently solvable. Here, however, efficiency is a relative
term: the ellipsoid method is not a practical algorithm. For exponentially large LPs that
we solve via the ellipsoid method, it is sometimes the case that the LP can be written as a
polynomially sized LP, but it is more convenient to discuss the larger LP. We will indicate
when this is the case. Even if there is no known way of rewriting the exponentially sized LP,
one can heuristically find an optimal solution to the LP by repeatedly using any LP algorithm
(typically the simplex method) on a small subset of the constraints and using the separation
oracle to check if the current solution is feasible. If it is feasible, then we have solved the LP,
but if not, we add the violated constraints to the LP and resolve. Practical experience shows
that this approach is much more efficient than can be theoretically justified, and should be in
the algorithm designer’s toolkit.

We now turn to the scheduling problem at hand, and give a polynomial-time separation
oracle for the constraints (4.3). Given a solution C, let us reindex the variables so that C; <
Cy <. <Cp. Let S1 ={1}, So ={1,2}, ..., S, ={1,...,n}. We claim that it is sufficient to
check whether the constraints are violated for the n sets Sy, ..., S,. If any of these n constraints
are violated, then we return the set as a violated constraint. If not, we show below that all
constraints are satisfied.

Lemma 4.5: Given variables C;, if constraints (4.3) are satisfied for the n sets Si,..., Sy,
then they are satisfied for all S C N.

Proof. Let S be a constraint that is not satisfied; that is, Zjes p;Cj < %p(5)2. We will show
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that then there must be some set .S; that is also not satisfied. We do this by considering changes
to S that decrease the difference ;¢ p;Cj — $p(S)2. Any such change will result in another
set S” that also does not satisfy the constraint. Note that removing a job k from S decreases
this difference if

1
—prCr +prp(S — k) + 5]3% <0,

orif Cp > p(S —k) + %pk. Adding a job k to S decreases this difference if

piCr — prp(S) — %p% <0,
or if Cy < p(S) + pi.

Now let ¢ be the highest indexed job in S. We remove ¢ from S if Cp > p(S —¢) + %pg; by
the reasoning above the resulting set .S — ¢ also does not satisfy the corresponding constraint
(4.3). We continue to remove the highest indexed job in the resulting set until finally we have
a set S’ such that its highest indexed job ¢ has C; < p(S' — €) + 3p; < p(S’) (using p; > 0).
Now suppose S' # Sy = {1,...,¢}. Then there is some k < ¢ such that k ¢ S’. Then since
C < Cp < p(8') < p(S') + 3pk, adding k to S can only decrease the difference. Thus, we can
add all k£ < £ to S’, and the resulting set Sy will also not satisfy the constraint (4.3). O

4.4 The prize-collecting Steiner tree problem

We now turn to a variation of the Steiner tree problem introduced in Exercise 2.5. This variation
is called the prize-collecting Steiner tree problem. As input, we are given an undirected graph
G = (V, E), an edge cost ¢, > 0 for each e € E, a selected root vertexr € V, and a penalty m; > 0
for each ¢ € V. The goal is to find a tree T' that contains the root vertex r so as to minimize
the cost of the edges in the tree plus the penalties of all vertices not in the tree. In other words,
if V(T)) is the set of vertices in the tree T', the goal is to minimize Y cpce + D ;cv_vy (1) -
The Steiner tree problem of Exercise 2.5 is a special case of the problem in which for every
i € V either m; = oo (and thus ¢ must be included in the tree) or m; = 0 (and thus ¢ may be
omitted from the tree with no penalty). The vertices that must be included in the solution in
the Steiner tree problem are called terminals.

One application of the prize-collecting Steiner tree problem is deciding how to extend cable
access to new customers. In this case, each vertex represents a potential new customer, the cost
of edge (7, j) represents the cost of connecting i to j by cable, the root vertex r represents a site
that is already connected to the cable network, and the “penalties” m; represent the potential
profit to be gained by connecting customer ¢ to the network. Thus, the goal is to minimize
the total cost of connecting new customers to the network plus the profits lost by leaving the
unconnected customers out of the network.

The prize-collecting Steiner tree problem can be modeled as an integer program. We use a
0-1 variable y; for each i € V and z. for each e € E. Variable y; is set to 1 if 7 is in the solution
tree and 0 if it is not, while z. is set to 1 if e is in the solution tree and 0 if it is not. Obviously,
then, the objective function is

minimize Z CeTe + Z (1 —y;).
ecE S%

We now need constraints to enforce that the tree connects the root r to each vertex i with
y; = 1. Given a nonempty set of vertices S C V, let §(S) denote the set of edges in the cut
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4.4 The prize-collecting Steiner tree problem 89

defined by S; that is, §(5) is the set of all edges with exactly one endpoint in S. We will
introduce the constraints
Z Te 2 Yi

e€d(S)

for each 7 € S, and each S C V — r. To see that these constraints enforce that the tree
connects the root to each vertex ¢ with y; = 1, take any feasible solution x and consider the
graph G’ = (V, E') with E' = {e € E: z. = 1}. Pick any i such that y; = 1. The constraints
ensure that for any r-i cut S, there must be at least one edge of E’ in §(S): that is, the size of
the minimum r-i cut in G’ must be at least one. Thus, by the max-flow/min-cut theorem the
maximum 7-i flow in G’ is at least one, which implies that there is a path from r to i in G’.
Similarly, if x is not feasible, then there is some r-i cut S for which there are no edges of E’ in
§(S), which implies that the size of minimum r-i cut is zero, and thus the maximum r-i flow is
zero. Hence, there is a path from r to ¢ with y; = 1 if and only if these constraints are satisfied,
and if they are all satisfied, there will be a tree connecting r to all 4 such that y; = 1. Thus,
the following integer program models the prize-collecting Steiner tree problem:

minimize Z CeTe + Z mi(1 —y;)
c€E eV
subject to Z Te > Yis VSCV —r,S#£0,Vies, (4.5)
)
yr =1,
y; € {0,1}, VieV,
z. €{0,1}, Ve€E.

In order to apply deterministic rounding to the problem, we relax the integer programming
formulation to a linear programming relaxation by replacing the constraints y; € {0,1} and
ze € {0,1} with y; > 0 and z. > 0. We can now apply the ellipsoid method, introduced
in Section 4.3, to solve the linear program in polynomial time. The separation oracle for the
constraints Eee 5(S) Te > y; is as follows: given a solution (z,y), we construct a network flow
problem on the graph G in which the capacity of each edge e is set to x.. For each vertex
i, we check whether the maximum flow from ¢ to the root r is at least y;. If not, then the
minimum cut S separating ¢ from r gives a violated constraint such that 2665(5) Te < y; for
1€ 85,5 CV —r. If the flow is at least y;, then for all cuts S separating ¢ from r, i € S,
SCV —r, 2665(5) xe > y; by the max-flow/min-cut theorem. Hence, given a solution (z,y),
we can find a violated constraint, if any exists, in polynomial time.

Given an optimal solution (z*,y*) to the linear programming relaxation, there is a very
simple deterministic rounding algorithm for the problem, which we give in Algorithm 4.1. It is
similar to the deterministic rounding algorithm for the set cover problem given in Section 1.3:
for some value a € [0,1), let U be the set of all vertices such that y; > «a. Since y, = 1, the
root 7 is in U. Now build a tree on the vertices in U in the graph G. Since we want to build
a tree with cost as low as possible, this is just a Steiner tree problem on the graph G in which
the terminals are the set U. We could apply the algorithm given in Exercise 2.5. Instead, we
use another algorithm, given in Exercise 7.6 of Chapter 7, whose analysis will be very easy once
we have studied the primal-dual method of that chapter. Let T" be the tree produced by that
algorithm.

We now begin the analysis of the algorithm in terms of the parameter o. Later we will fix
the value of a to give the best possible performance guarantee for the deterministic rounding
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Solve LP, get optimal primal solution (z*,y*)
U—{ieV: yf>a}

Use algorithm of Exercise 7.6 to build tree T on U
return T

Algorithm 4.1: Deterministic rounding algorithm for the prize-collecting Steiner tree problem.

algorithm. We will analyze the cost of the constructed tree T' and the penalties on the vertices
not in 7" separately, comparing them to their contribution to the objective function of the linear
programming relaxation. We use the result of Exercise 7.6 to analyze the cost of the tree T

Lemma 4.6 (Exercise 7.6): The tree T returned by the algorithm of Exercise 7.6 has cost

The analysis for the penalties is simple.

S oms i Y m- )

i€V -V (T) i€V

Lemma 4.7:

Proof. If ¢ is not in the tree T, then clearly it was not in the set of vertices U, and so y; < a.
Thus, 1 -y’ >1-a, and yl > 1. The lemma statement follows. O

Combining the two lemmas immediately gives the following theorem and corollary.
Theorem 4.8: The cost of the solution produced by Algorithm 4.1 is

Zce+ Z Wigzzcex +7Z7Tll_yz

eeT 1eV-V(T) eck eV

Corollary 4.9: Using Algorithm 4.1 with a = % gives a 3-approximation algorithm for the
prize-collecting Steiner tree problem.

Proof. Clearly the algorithm runs in polynomial time. We can bound the performance guarantee
by the max{2/a,1/(1 — a)}. We can minimize this maximum by setting 2 = —L—; thus, we
obtain a = % Then by Theorem 4.8, the cost of the tree obtained is

Zce—i- Z m§3(Zcem:+Zm(l—y;‘)>§3OPT,

ecT eV-v(T ecE eV

since ) o cei + oy mi(1—y;) is the objective function of the linear programming relaxation
of the problem. O

In Algorithm 4.1, we choose a set of vertices U such that y’ > a = 2/3 and construct a
Steiner tree on that set of vertices. A very natural idea is to try all possible values a: since
there are |V| variables y, there are at most |V| distinct values of y. Thus, we can construct

|V| sets U; = {z eV:iy > yj*} For each j € V, construct a Steiner tree 7; on the vertices U},

and return the best overall solution out of the |V| solutions constructed. Unfortunately, we do
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not know how to analyze such an algorithm directly. However, we will see in Chapter 5 that
this algorithm can be analyzed as a deterministic variant of a randomized algorithm. We will
return to the prize-collecting Steiner tree problem in Section 5.7.

4.5 The uncapacitated facility location problem

We now start our consideration of the uncapacitated facility location problem. We will return
to this problem many times, since many of the techniques we discuss in this book are useful
for devising approximation algorithms for this problem. In the uncapacitated facility location
problem, we have a set of clients or demands D and a set of facilities F'. For each client j € D
and facility 7 € F', there is a cost ¢;; of assigning client j to facility ¢. Furthermore, there is a
cost f; associated with each facility ¢ € F. The goal of the problem is to choose a subset of
facilities F” C F so as to minimize the total cost of the facilities in F’ and the cost of assigning
each client j € D to the nearest facility in F’. In other words, we wish to find F’ so as to
minimize ) ;. fi + ZjeD min;ecpr ¢;5. We call the first part of the cost the facility cost and the
second part of the cost the assignment cost or service cost. We say that we open the facilities
in F.

The uncapacitated facility location problem is a simplified variant of a problem that arises
in many different contexts. In one large computer company, a version of this problem occurs
in deciding where to build or lease facilities to warehouse expensive parts needed for computer
repair. The clients represent customers with service agreements that might require the use of
the part. The facility cost is the cost of building or leasing the warehouse, and the assignment
cost is the distance from the warehouse to the customer. In this problem it is also important
to ensure that almost all of the customers are within a four-hour trip of a facility containing
the needed part. Other typical complications include limits on the number of clients that can
be served by a given facility (the capacitated facility location problem), and multiple types
of facilities (for example, both distribution centers and warehouses, with clients assigned to
warehouses, and warehouses assigned to distribution centers).

In its full generality, the uncapacitated facility location problem is as hard to approximate
as the set cover problem (see Exercise 1.4). However, it is relatively common for facilities and
clients to be points in a metric space, with assignment costs ¢;; representing the distance from
facility ¢ to client j. For this reason, we will from here on consider the metric uncapacitated
facility location problem, in which clients and facilities correspond to points in a metric space,
and assignment costs obey the triangle inequality. More precisely, given clients 7, ! and facilities
i, k, we have that ¢;; < ¢;;+ e+ cgj (see Figure 4.3). Since the clients and facilities correspond
to points in a metric space, we assume that we have distances c;;; between two facilities ¢ and
i', and ¢;j» between two clients j and j'; we will not need this assumption in this section, but it
will prove useful in later sections. We are able to give much better approximation algorithms
for the metric version of the problem than we can for the more general version.

Our first approach to this problem will be to apply a deterministic rounding technique,
from which we will get a 4-approximation algorithm. In subsequent chapters we will get im-
proved performance guarantees by applying randomized rounding, the primal-dual method,
local search, and greedy techniques. We begin by defining an integer programming formulation
for the problem. We will have decision variables y; € {0, 1} for each facility i € F'; if we decide
to open facility ¢, then y; = 1 and y; = 0 otherwise. We also introduce decision variables
zij € {0,1} for all ¢ € F and all j € D; if we assign client j to facility ¢, then z;; = 1 while
x;; = 0 otherwise. Then the objective function is relatively simple: we wish to minimize the
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Figure 4.3: An illustration of the inequality obeyed by the assignment costs. The
circles represent clients, and the squares represent facilities. For clients j,[ and facilities
ik, cij < ¢+ cgg + ey

total facility cost plus the total assignment cost. This can be expressed as

minimize E fivi + E CijTij-

i€F i€F,jeD

We need to ensure that each client j € D is assigned to exactly one facility. This can be
expressed via the following constraint:

inj =1.

1€EF
Finally, we need to make sure that clients are assigned to facilities that are open. We achieve
this by introducing the constraint z;; < y; for all ¢ € F' and j € D; this ensures that whenever
z;; = 1 and client j is assigned to facility 7, then y; = 1 and the facility is open. Thus, the integer
programming formulation of the uncapacitated facility location problem can be summarized as
follows:

minimize Z fiyi + Z CijTij (4.6)
i€F icF,jeD
subject to D ay =1, Vj e D, (4.7)
ieF
Tij < Y, Vie F,j€ D, (48)

zi; € {0,1}, Vie F,jeD,
y; €{0,1}, VieF.

As usual, we obtain a linear programming relaxation from the integer program by replacing
the constraints z;; € {0,1} and y; € {0,1} with z;; > 0 and y; > 0.

It will be useful for us to consider the dual of the linear programming relaxation. Although
one can derive the dual in a purely mechanical way, we will instead motivate it as a natural
lower bound on the uncapacitated facility location problem. The most trivial lower bound for
this problem is to ignore the facility costs entirely (that is, to pretend that the cost f; = 0, for
each ¢ € F'). In that case, the optimal solution is to open all facilities and to assign each client
to its nearest facility: if we set v; = min;cp ¢;;, then this lower bound is > jeD V5- How can this
be improved? Suppose that each facility takes its cost f;, and divides it into shares apportioned
among the clients: f; =) jeD Wijs where each w;; > 0. The meaning of this share is that client
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j needs to pay this share only if it uses facility <. In this way, we no longer charge explicitly for
opening a facility, but still recoup some of its cost. But in this way, we still have the situation
that all of the (explicit) facility costs are 0, and so the optimal solution is to assign each client
to the facility where the net cost is minimum; that is, we now can set v; = min;er(c;j + wij),
and then ) jepVj is a lower bound on the true optimal value. Of course, we did not specify
a way to determine each client’s share of facility cost f;; we can make this an optimization
problem by setting the shares so as to maximize the value of the resulting lower bound. If we
allow v; to be any value for which v; < ¢;; + w;; and maximize ) jep Vj, then at the optimum
v; will be set to the smallest such right-hand side. Thus, we have derived the following form
for this lower bound, which is the dual linear program for the primal linear program (4.6):

maximize g vj

JjED
subject to Zwij < fi, Vi € F,
Jj€D
v — wij < ¢, Vie F,j€ D,
wi; > 0, Vie F,jeD.

If Z7 p is the optimal value of the primal linear program (4.6) and OPT is the value of the
optimal solution to the instance of the uncapacitated facility location problem, then for any
feasible solution (v,w) to the dual linear program, by weak duality we have that Zje pv; <
Z7 p < OPT.

Of course, as with any primal-dual linear programming pair, we have a correspondence
between primal constraints and dual variables, and vice versa. For example, the dual variable
wj; corresponds to the primal constraint z;; < ¥;, and the primal variable x;; corresponds to
the dual constraint v; — w;; < ¢;5.

We would like to use the information from an optimal solution (z*,y*) to the primal LP
to determine a low-cost integral solution. In particular, if a client j is fractionally assigned to
some facility ¢ — that is, :U;‘j > 0 — then perhaps we should also consider assigning j to i. We
formalize this by saying that i is a neighbor of j (see Figure 4.4).

Definition 4.10: Given an LP solution x*, we say that facility i neighbors client j if l’;kj > 0.
We let N(j) ={i € F: xj; > 0}.

The following lemma shows a connection between the cost of assigning j to a neighboring
facility and the value of the dual variables.

Lemma 4.11: If (z*,y*) is an optimal solution to the facility location LP and (v*,w*) is an
optimal solution to its dual, then z7; > 0 implies ¢;j < v3.

Proof. By complementary slackness, x;“j > 0 implies v; — w;kj = ¢;j. Furthermore, since w;‘j >0,
we have that ¢;; < v;-“. ]

The following is an intuitive argument about why neighboring facilities are useful. If we
open a set of facilities S such that for all clients j € D, there exists an open facility i € N(j),
and then the cost of assigning j to ¢ is no more than vj by Lemma 4.11. Thus, the total
assignment cost is no more than 3 jepV; < OPT, since this is the dual objective function.

Unfortunately, such a set of facilities S might have a very high facility cost. What can we
do to have a good facility cost? Here is an idea: suppose we can partition some subset F’ C F
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o’
e

Figure 4.4: A representation of the neighborhoods N (j) and N2(j). The circles repre-
sent clients, the squares represent facilities, and the edges are drawn between facilities
1 and clients k£ such that x;z > 0. The central client is j. The surrounding facilities are
the facilities N(j). The shaded clients are in N2(j).

of the facilities into sets F} such that each F = N(ji) for some client ji. Then if we open the
cheapest facility ix in N(ji), we can bound the cost of iy by

i€N (ji) i€N(jk)

where the equality follows from constraint (4.7) of the linear program, and the inequality follows
from the choice of iy, as the cheapest facility in F}. Using the LP constraints (4.8) that z;; < y;,

we see that
fi <) fag, <Y fur

i€N (Ji) i€N (jr)

If we sum this inequality over all facilities that we open, then we have

DI <Y D L= fwi <> S

k k ie€N(jr) ek i€F

where the equality follows since the N (ji) partition F’. This scheme bounds the facility costs
of open facilities by the facility cost of the linear programming solution.

Opening facilities in this way does not guarantee us that every client will be a neighbor of
an open facility. However, we can take advantage of the fact that assignment costs obey the
triangle inequality and make sure that clients are not too far away from an open facility. We
first define an augmented version of neighborhood (see also Figure 4.4).

Definition 4.12: Let N2(j) denote all neighboring clients of the neighboring facilities of client
j; that is, N%(j) = {k € D : client k neighbors some facility i € N(j)}.

Consider Algorithm 4.2. The algorithm loops until all clients are assigned to some facility.
In each loop it picks the client ji that minimizes v}; we will see in a little bit why this is
helpful. It then opens the cheapest facility i in the neighborhood of N(j), and assigns jj and
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Solve LP, get optimal primal solution (z*,y*) and dual solution (v*,w*)
C<+D
k<0
while C # () do
k—k+1

Choose jj, € C' that minimizes v} over all j € C

Choose i € N(ji) to be the cheapest facility in N (ji)
Assign j; and all unassigned clients in N2(j;,) to iy,
C « C— {jx} — N*(jr)

Algorithm 4.2: Deterministic rounding algorithm for the uncapacitated facility location problem.

all previously unassigned clients in N2(jj) to i,. Note that by assigning the clients in N?(j)
to i, we ensure that the neighborhoods N(ji) form a partition of a subset of the facilities:
because no client in the neighborhood of any facility of N(jx) is unassigned after iteration k,
no facility of N(jx) is a neighbor of some client j; chosen in later iterations (I > k).

We can now analyze the performance of this algorithm.

Theorem 4.13: Algorithm 4.2 is a 4-approximation algorithm for the uncapacitated facility
location problem.

Proof. We have shown above that », fi;, < > ..p fiy7 < OPT. Fix an iteration k, and let
J = Jjr and ¢ = ;. By Lemma 4.11, the cost of assigning j to 7 is ¢;; < v}. As depicted in Figure
4.4, consider the cost of assigning an unassigned client I € N?(j) to facility i, where client I
neighbors facility h that neighbors client j; then, applying the triangle inequality and Lemma
4.11, we see that

* * *
it < Cij + ¢chj +com S v+ vy

Recall that we have selected client j in this iteration because, among all currently unassigned
clients, it has the smallest dual variable U;-‘. However, [ is also still unassigned, and so we
know that v; < v/. Thus, we can conclude that ¢; < 3v;]". Combining all of these bounds, we
see that the solution constructed has facility cost at most OPT and assignment cost at most
3 Zje pvj <30PT (by weak duality), for an overall cost of at most 4 times optimal. O

In Section 5.8, we will see how randomization can help us improve this algorithm to a 3-
approximation algorithm. In subsequent chapters we will improve the performance guarantee
still further. The following is known about the hardness of approximating the metric uncapac-
itated facility location problem via a reduction from the set cover problem.

Theorem 4.14: There is no a-approrimation algorithm for the metric uncapacitated facility
location problem with constant o < 1.463 unless each problem in NP has an O(nC1og1081)) time
algorithm.

We will prove this theorem in Section 16.2.

4.6 The bin-packing problem

We return to the bin-packing problem, for which we gave an asymptotic polynomial-time ap-
proximation scheme in Section 3.3. Recall that in the bin-packing problem, we are given a
collection of n items (or pieces), where item j is of size a; € (0,1], 7 = 1,...,n, and we wish
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to assign each item to a bin, so that the total size assigned to each bin is at most 1; the ob-
jective is to use as few bins as possible. We showed previously that for each € > 0, there is a
polynomial-time algorithm that computes a solution with at most (1 +¢) OPTgp(I) + 1 bins,
where OPTpp(I) is the optimal value for instance I of the problem. We shall improve on that
result significantly; we shall give a polynomial-time algorithm that finds a solution that uses at
most OPTgp(I) + O(log?(OPTgp(I))) bins. In obtaining this new bound, there will be three
key components: an integer programming formulation to replace the dynamic programming for-
mulation, and the integer program will be approximately solved by rounding its LP relaxation;
an improved grouping scheme, which we call the harmonic grouping scheme; and an ingenious
recursive application of the previous two components.

We first present the integer programming formulation on which the new algorithm will be
based. Suppose that we group pieces of identical size, so that there are b; pieces of the largest
size s1, by of the second largest size so, ..., by, pieces of the smallest size s,,. Consider the ways
in which a single bin can be packed. The contents of each bin can be described by an m-tuple
(t1,...,tm), where t; indicates the number of pieces of size s; that are included. We shall call
such an m-tuple a configuration if ), t;s; < 1; that is, the total size of the contents of the bin
is at most 1, and so each configuration corresponds to one feasible way to pack a bin. There
might be an exponential number of configurations. Let N denote the number of configurations,
and let T7,...,Tn be a complete enumeration of them, where ¢;; denotes the ith component of
T;. We introduce a variable x; for each T} that specifies the number of bins packed according
to configuration Tj; that is, z; is an integer variable. The total number of bins used can be
computed by summing these variables. If we pack x; bins according to configuration T}, then
this packs t;;x; pieces of size s;, i = 1,...,m. In this way, we can restrict attention to feasible
solutions by requiring that we pack at least b; pieces of size s;, in total. This leads to the
following integer programming formulation of the bin-packing problem; this is sometimes called
the configuration integer program:

N
minimize Y x; (4.9)
j=1

N
subject to Ztijxj > b, i1=1,...,m,
=1

:IZ]‘GN, j=1,...,N.

This formulation was introduced in the context of designing practical algorithms to find optimal
solutions to certain bin-packing problems.

Our algorithm is based on solving the linear programming relaxation of this integer program;
we let OPTp(I) denote the optimal value of this linear program. If we recall that SIZE(I) =
> it sib;, then clearly we have that

SIZE(I) < OPT.p(I) < OPTpp(I).

Recall from Section 4.3 that the ellipsoid method is a polynomial-time algorithm for linear
programs that have a polynomial number of variables, and for which there is a polynomial-time
separation oracle to find a violated constraint. The configuration LP has few constraints, but
an exponential number of variables. However, its dual linear program will then have m variables
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and an exponential number of constraints, and is as follows:

m
maximize E biyi
i=1

m

subject to Ztijyi <1, j=1,...,N,
i=1

inO, i:1,...,m.

We observe that the problem of deciding whether or not there is a violated dual constraint
given dual variables y is simply a knapsack problem. If we view y; as the value of piece i, then
the dual constraints say that for all possible ways of packing pieces into a bin (or knapsack)
of size 1, the total value is at most 1. Hence, to obtain a separation oracle, we can use an
algorithm for the knapsack problem to decide, given values y, whether or not there is a way of
packing pieces into a bin of size 1 that has value more than 1; such a packing will correspond
to a violated dual constraint. Since the knapsack problem is NP-hard, it would seem that it
is not possible to obtain a polynomial-time separation oracle. However, by delving deeper into
the analysis of the ellipsoid method, one can show that a fully polynomial-time approximation
scheme for the knapsack problem (as given in Section 3.1) is sufficient to ensure the polynomial-
time convergence of the ellipsoid method; we defer the details of how this can be done until
Section 15.3, after which we give the problem as an exercise (Exercise 15.8). Hence, one can
approximately solve the configuration linear program, within an additive error of 1, in time
bounded by a polynomial in m and log(n/s.,).

In Section 3.3, one of the key ingredients for the asymptotic polynomial-time approximation
scheme is a result that enables us to ignore pieces smaller than a given threshold . By applying
this result, Lemma 3.10, we can assume, without loss of generality, that the smallest piece size
Sm > 1/ SIZE(I), since smaller pieces can again be packed later without changing the order of
magnitude of the additive error.

The harmonic grouping scheme works as follows: process the pieces in order of decreasing
size, close the current group whenever its total size is at least 2, and then start a new group
with the next piece. Let r denote the number of groups, let GG; denote the ith group, and let
n; denote the number of pieces in ;. Observe that since we sort the pieces from largest to
smallest, it follows that for ¢ = 2,...,r — 1, we have that n; > n;—;. (For i = r, the group
G, need not have total size at least 2.) As in the proof of Lemma 3.11, from a given input I
we form a new instance I’, where a number of pieces are discarded and packed separately. For

each ¢ = 2,3,...,7r — 1, we put n;_1 pieces in I’ of size equal to the largest piece in G; and
discard the remaining pieces. In effect, we discard G, G, and the n; — n;,_1 smallest pieces in
G, 1=2,...,7r — 1, while increasing the size of the remaining pieces in a group to be equal to

the largest one. Figure 4.5 shows the effect of the harmonic grouping on one input.

First of all, it should be clear that any packing of the rounded instance I’ can be used to
pack those pieces of the original instance that were not discarded; there is a natural mapping
from any nondiscarded piece in the original instance to a piece at least as large in I’. The
following lemma gives two key properties of the harmonic grouping scheme.

Lemma 4.15: Let I’ be the bin-packing input obtained from an input I by applying the harmonic
grouping scheme. The number of distinct piece sizes in I' is at most SIZE(I)/2; the total size
of all discarded pieces is O(log SIZE()).

Proof. The first claim of the lemma is easy: each distinct piece size in I’ corresponds to one
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Figure 4.5: An input before and after harmonic grouping.
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BINPACK([)

if SIZE(I) < 10 then
Pack remaining pieces using First Fit
else
Apply harmonic grouping scheme to create instance I’; pack discards in
O(log SIZE(I)) bins using First Fit
Let z be optimal solution to configuration LP for instance I’
Pack [z;] bins in configuration T} for j = 1,..., N; call the packed pieces instance Iy
Let Is be remaining pieces from I’
Pack Iy via BINPACK(I2)

Algorithm 4.3: Deterministic rounding algorithm for packing large pieces of the bin-packing problem.

of the groups Go,...,G,_1; each of these groups has size at least 2, and so there are at most
SIZE(I)/2 of them. To prove the second property, suppose, for the moment, that each group
G; has at most one more piece than the previous group G;_1,7 = 2,...,r— 1. Consequently, we
discard at most one item from each of the groups Ga,...,G,_1. To bound the total size of the
discarded pieces, the total size of each group is at most 3, and so the total size of G; and G,
is at most 6. Furthermore, the size of the smallest piece in group Gj; is at most 3/n;. Since we
discard a piece from Gj, ¢ = 2,...,r — 1, only when G; is the first group that has n; pieces and
we discard its smallest piece, the total size of these discarded pieces is at most E?;l 3/7. Recall
from Section 1.6 that the kth harmonic number, Hy, is defined to be Hy = 1+%+%+‘ . -+% and
that Hi = O(log k). Since each piece has size at least 1/ SIZE(I), we have that n, < 3SIZE(I),
and so we see that the total size of the discarded pieces is O(log SIZE([)).

Now consider the general case in which each group need not be only one larger than the
previous one. Consider any group G; that contains more pieces than G;_1, i = 2,...,7r — 1;
more precisely, suppose that it contains k = n; — n;—1 more pieces. The k discarded pieces are
of size at most 3(k/n;) since they are the k smallest of n; pieces of total at most 3. We can
upper bound this value by adding k terms, each of which is at least 3/n;; that is, the total
size of these discarded pieces is at most Z;ini,l 4+13/j. Adding these terms together (for all
groups), we get that the total size of the discarded pieces is at most Z?;l 3/, which we have
already seen is O(log SIZE([)). O

The harmonic grouping scheme can be used to design an approximation algorithm that
always finds a packing with OPTzp(I) + O(log?(SIZE(I))) bins. This algorithm uses the har-
monic scheme recursively. The algorithm applies the grouping scheme, packs the discarded
pieces using the First-Fit algorithm (or virtually any other simple algorithm), and solves the
linear program for the rounded instance. The fractional variables of the LP are rounded down
to the nearest integer to obtain a packing of a subset of the pieces. This leaves some pieces
unpacked, and these are handled by a recursive call until the total size of the remaining pieces is
less than a specified constant (say, for example, 10). The algorithm is summarized in Algorithm
4.3.

We shall use I to denote the original instance, I’ to denote the instance on which the first
linear program is solved, and I; and I> to denote the pieces packed based on the integer part
of the fractional solution and those left over for the recursive call, respectively. The key to the
analysis of this algorithm is the following lemma.

Lemma 4.16: For any bin-packing input I, from which the harmonic grouping scheme produces
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an input I', which is then partitioned into Iy and I, based on the integer and fractional parts
of an optimal solution to the configuration linear program, we have that

OPTLP(Il) + OPTLP(IQ) < OPTLP(I/) < OPTLP(I). (4.10)

Proof. The crucial property of the harmonic grouping scheme is that each piece in the input
I’ can be mapped to a distinct piece in the original input I of no lesser size. By inverting this
mapping, any feasible solution for I can be interpreted as a feasible solution for I’ (where each
piece in I that is not the image of a piece in I’ is simply deleted). Hence, the optimal value for
the bin-packing problem for I’ is at most the optimal value for I. Similarly, each configuration
for I induces a corresponding configuration for I’, and so we see that

OPT.p(I') < OPTp(I).

By definition, if x is an optimal solution to the configuration LP for I’ used to construct I; and
I, we have that |z;], j =1,..., N, is a feasible solution for the configuration LP for I; (which
is even integer!), and z; — |x;], j =1,..., N, is a feasible solution for the configuration LP for
I>. Hence, the sum of the optimal values for these two LPs is at most E;vzl z; = OPTp(I').
In fact, one can prove that OPTp(I1) + OPTrp(I2) = OPTp(I), but this is not needed. [

Each level of the recursion partitions the pieces into one of three sets: those pieces packed
by the integer part of the LP solution, those pieces packed after having been discarded by the
grouping scheme, and those pieces packed by a recursive call of the algorithm. (So, for the
top level of the recursion, the first corresponds to I; and the last corresponds to I5.) If one
focuses on those pieces that fall in the first category over all recursive calls of the algorithm, the
inequality (4.10) implies that the sum of the LP values of these inputs is at most OPTp(I).

This implies that the only error introduced in each level of recursion is caused by the
discarded pieces. We have bounded the total size of the pieces discarded in one level of recursion,
and so we need to bound the number of levels of recursion. We will do this by showing that the
total size of the input called in the recursive call is at most half the total size of the original
input.

The recursive input I is the leftover that corresponds to the fractional part of the optimal
configuration LP solution z; hence, we can bound its total size by the sum of the fractions
Z;V: 1 2j — |xj]. A very crude upper bound on this sum is to count the number of nonzeroes
in the optimal LP solution x. We claim that the number of nonzeroes in the optimal solution
x can be bounded by the number of constraints in the configuration LP. We leave this as an
exercise to the reader (Exercise 4.5), though it follows directly from the properties of basic
optimal solutions, which we discuss in Chapter 11 and Appendix A. The number of constraints
is the number of distinct piece sizes in I’. By Lemma 4.15, this is at most SIZE(I)/2.

By combining all of these arguments, we see that the total size of I, that is, SIZE(I5),
is at most SIZE(I)/2. Hence, the size of the instance decreases by a factor of 2 in each level
of recursion; the recursion terminates when the total size remaining is less than 10, and so
there are O(log SIZE([)) levels. In each of these levels, we use O(log SIZE(/)) bins to pack the
discarded pieces; since SIZE(I) < OPTp(I) < OPTpp(I), we obtain the following theorem.

Theorem 4.17: The recursive application of the harmonic grouping scheme yields a polynomial-
time approzimation algorithm for the bin-packing problem that uses OPTgp(I)+O0(log?(OPT gp(I)))
bins.

It is an important open question whether this result can be improved; it is possible that the
bin-packing problem can be approximated within an additive error of 1; however, showing that
this is impossible would also be a striking advance.
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Exercises

4.1

4.2

4.3

4.4

4.5

4.6

The following problem arises in telecommunications networks, and is known as the SONET
ring loading problem. The network consists of a cycle on n nodes, numbered 0 through
n — 1 clockwise around the cycle. Some set C' of calls is given; each call is a pair (i, 7)
originating at node ¢ and destined to node j. The call can be routed either clockwise or
counterclockwise around the ring. The objective is to route the calls so as to minimize
the total load on the network. The load L; on link (4,74 1(mod n)) is the number of calls
routed through link (7,7 + 1(mod n)), and the total load is maxi<j<yn L;.

Give a 2-approximation algorithm for the SONET ring loading problem.

Consider the scheduling problem of Section 4.2, but without release dates. That is, we
must schedule jobs nonpreemptively on a single machine to minimize the weighted sum
of completion times 2?21 w;Cj. Suppose that jobs are indexed such that w—ll > % >
Sl > %. Then show it is optimal to schedule job 1 first, job 2 second, and so on. This

scheduﬁng rule is called Smith’s rule.

Recall from Exercise 2.3 the concept of precedence constraints between jobs in a scheduling
problem: We say ¢ < j if in any feasible schedule, job ¢ must be completely processed
before job j begins processing. Consider a variation of the single-machine scheduling
problem from Section 4.2 in which we have precedence constraints but no release dates.
That is, we are given n jobs with processing times p; > 0 and weights w; > 0, and the
goal is to find a nonpreemptive schedule on a single machine that is feasible with respect
to the precedence constraints < and that minimizes the weighted sum of completed times
Z?Zl w;Cj. Use the ideas of Section 4.2 to give a 2-approximation algorithm for this
problem.

In the algorithm for the bin-packing problem, we used harmonic grouping in each iter-
ation of the algorithm to create an instance I’ from I. Consider the following group-
ing scheme: for i = 0,..., [logy SIZE(I)], create a group G; such that all pieces from
I of size (2*(”1),2*"] are placed in group G;. In each group Gj;, create subgroups
Gi1,Giz2,-..,Gik, by arranging the pieces in G; from largest to smallest and putting the
4-2% largest in the first subgroup, the next 4-2% in the next subgroup, and so on. Now cre-
ate instance I’ from I in the following manner: for each i = 0,. .., [logy SIZE(I)], discard
subgroups G; 1 and Gj i, (i.e., the first and last subgroups of G;), and for j =2,... ,k; —1
round each piece of subgroup Gj ; to the size of the largest piece in G; ;.

Prove that by using this grouping scheme within the bin-packing algorithm, we obtain an
algorithm that uses at most OPTgp(I) + O(log?(OPTpp(I))) for all instances I.

Show that there exists an optimal solution = to the linear programming relaxation of the
integer program (4.9) that has at most m nonzero entries, where m is the number of
different piece sizes.

Let G = (A, B, E) be a bipartite graph; that is, each edge (i,7) € E hasi € A and j € B.
Assume that |A| < |B| and that we are given nonnegative costs ¢;; > 0 for each edge
(i,j) € E. A complete matching of A is a subset of edges M C E such that each vertex in
A has exactly one edge of M incident on it, and each vertex in B has at most one edge of
M incident on it. We wish to find a minimum-cost complete matching. We can formulate
an integer program for this problem in which we have an integer variable x;; € {0, 1} for
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102 Deterministic rounding of linear programs

each edge (i,7) € E, where x;; = 1 if (4, j) is in the matching, and 0 otherwise. Then the
integer program is as follows:

minimize Z CijTij
(i.j)ek
subject to Z x5 =1, Vi€ A,
jEB:(4,§)EE

Z T4 <1, Vj e B,
i€A:(i,j)EE
Tij € {O, 1} V(Z,]) e k.

Consider the linear programming relaxation of the integer program in which we replace
the integer constraints x;; € {0,1} with z;; > 0 for all (i,5) € E.

(a) Show that given any fractional solution to the linear programming relaxation, it is
possible to find in polynomial time an integer solution that costs no more than the
fractional solution. (Hint: Given a set of fractional variables, find a way to modify
their values repeatedly such that the solution stays feasible, the overall cost does
not increase, and at least one additional fractional variable becomes 0 or 1.) Con-
clude that there is a polynomial-time algorithm for finding a minimum-cost complete
matching.

(b) Show that any extreme point of the linear programming relaxation has the property
that x;; € {0,1} for all (i,5) € E. (Recall that an extreme point z is a feasible
solution that cannot be expressed as Az! + (1 — A\)z? for 0 < A < 1 and feasible
solutions z! and z? distinct from x.)

4.7 This exercise introduces a deterministic rounding technique called pipage rounding, which
builds on ideas similar to those used in Exercise 4.6. To illustrate this technique, we will
consider the problem of finding a maximum cut in a graph with a constraint on the size
of each part. In the maximum cut problem, we are given as input an undirected graph
G = (V, E) with nonnegative weights w;; > 0 for all (,5) € E. We wish to partition the
vertex set into two parts U and W =V — U so as to maximize the weight of the edges
whose two endpoints are in different parts. We will also assume that we are given an
integer k£ < |V|/2, and we must find a partition such that |U| = k (we will consider the
maximum cut problem without this constraint in Sections 5.1 and 6.2).

(a) Show that the following nonlinear integer program models the maximum cut problem
with a constraint on the size of the parts:

maximize Z Wij (l’z +x; — 2$Z‘£Uj)
(i.j)eE
subject to le =k,
1%
x; € {0,1}, VieV.
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4.6 The bin-packing problem 103

(b) Show that the following linear program is a relaxation of the problem:

maximize Z WyjZij
(i,J)eE
subject to zij < wi + xj, v(i,j) € E,
zij < 2 —x; — xj, V(i,j) € E,

ZSCZ' = k,

i€V
0< Zij <1, V(Z,]) e F,
0<xz <1, VieV.

(c) Let F(z) = 3 ; jyep wij(zi+x; —2x;x;) be the objective function from the nonlinear
integer program. Show that for any (z,z) that is a feasible solution to the linear
programming relaxation, F'(z) > % Z(i,j)eE WijZij.

(d) Argue that given a fractional solution z, for two fractional variables x; and x;, it is
possible to increase one by € > 0 and decrease the other by e such that F(x) does
not decrease and one of the two variables becomes integer.

(e) Use the arguments above to devise a %—approximation algorithm for the maximum

cut problem with a constraint on the size of the parts.

Chapter Notes

Early deterministic LP rounding algorithms include the set cover algorithm given in Section 1.3
due to Hochbaum [160] and the bin-packing algorithm of Section 4.6 due to Karmarkar and Karp
[187]. Both of these papers appeared in 1982. Work on deterministic rounding approximation
algorithms did not precede this date by much because the first polynomial-time algorithms for
solving linear programs did not appear until the late 1970s with the publication of the ellipsoid
method.

As discussed in the introduction to the chapter, the easiest way to round a fractional solution
is to round some variables up to 1 and others down to 0. This is the case for the prize-collecting
Steiner tree problem introduced in Section 4.4. The prize-collecting Steiner tree problem is a
variant of a problem introduced by Balas [31]. This version of the problem and the algorithm
of this section are due to Bienstock, Goemans, Simchi-Levi, and Williamson [48].

The ellipsoid method discussed in Section 4.3 as a polynomial-time algorithm for solving
linear programs was first given by Khachiyan [189], building on earlier work for non-linear
programs by Shor [267]. The algorithm that uses a separation oracle for solving linear programs
with an exponential number of constraints is due to Grétschel, Lovész, and Schrijver [144]. An
extended treatment of the topic can be found in the book of Grotschel, Lovész, and Schrijver
[145]; a survey-level treatment can be found in Bland, Goldfarb, and Todd [50].

At a high level, the ellipsoid method works as follows. Suppose we are trying to solve
the linear program (4.4) from Section 4.3. Initially, the algorithm finds an ellipsoid in R"
containing all basic feasible solutions for the linear program (see Chapter 11 or Appendix
A for discussion of basic feasible and basic optimal solutions). Let & be the center of the
ellipsoid. The algorithm calls the separation oracle with Z. If Z is feasible, it creates a constraint
> iy djzy < D7%, djFy, since a basic optimal solution must have objective function value no
greater than the feasible solution Z (this constraint is sometimes called an objective function
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cut). If Z is not feasible, the separation oracle returns a constraint Z?:l a;jrj > b; that is
violated by Z. In either case, we have a hyperplane through z such that a basic optimal
solution to the linear program (if one exists) must lie on one side of the hyperplane; in the case
of a feasible Z the hyperplane is 2?21 djx; < 2?21 d;Z;, and in the case of an infeasible
the hyperplane is >, a;;z; > 377 a;;@;. The hyperplane containing # splits the ellipsoid in
two. The algorithm then finds a new ellipsoid containing the appropriate half of the original
ellipsoid, and then considers the center of the new ellipsoid. This process repeats until the
ellipsoid is sufficiently small that it can contain at most one basic feasible solution, if any; this
then must be a basic optimal solution if one exists. The key to the proof of the running time of
the algorithm is to show that after O(n) iterations, the volume of the ellipsoid has dropped by
a constant factor; then by relating the size of the initial to the final ellipsoid, the polynomial
bound on the running time can be obtained.

As we saw in the chapter, sometimes rounding algorithms are more sophisticated than
simply choosing large fractional variables and rounding up. The algorithm for the unweighted
single-machine scheduling problem in Section 4.1 is due to Phillips, Stein, and Wein [241].
The algorithm for the weighted case in Section 4.2 is due to Hall, Schulz, Shmoys, and Wein
[155]; the linear programming formulation used in the section was developed by Wolsey [292]
and Queyranne [243], and the separation oracle for the linear program in Section 4.3 is due to
Queyranne [243]. The algorithm for the uncapacitated facility location problem in Section 4.5 is
due to Chudak and Shmoys [77], building on earlier work of Shmoys, Tardos, and Aardal [264].
The hardness result of Theorem 4.14 is due to Guha and Khuller [146]. The pipage rounding
technique in Exercise 4.7 for the maximum cut problem with size constraints is due to Ageev
and Sviridenko [3, 2].

Smith’s rule in Exercise 4.2 is due to Smith [270]. The result of Exercise 4.3 is due to Hall,
Schulz, Shmoys, and Wein [155]. Exercise 4.4 is due to Karmarkar and Karp [187]. Exercise
4.6 is essentially due to Birkhoff [49].

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



CHAPTER 5

Random sampling and randomized
rounding of linear programs

Sometimes it turns out to be useful to allow our algorithms to make random choices; that is, the
algorithm can flip a coin, or flip a biased coin, or draw a value uniformly from a given interval.
The performance guarantee of an approximation algorithm that makes random choices is then
the expected value of the solution produced relative to the value of an optimal solution, where
the expectation is taken over the random choices of the algorithm.

At first this might seem like a weaker class of algorithm. In what sense is there a perfor-
mance guarantee if it only holds in expectation? However, in most cases we will be able to
show that randomized approximation algorithms can be derandomized: that is, we can use a
certain algorithmic technique known as the method of conditional expectations to produce a
deterministic version of the algorithm that has the same performance guarantee as the random-
ized version. Of what use then is randomization? It turns out that it is often much simpler
to state and analyze the randomized version of the algorithm than to state and analyze the
deterministic version that results from derandomization. Thus randomization gains us simplic-
ity in our algorithm design and analysis, while derandomization ensures that the performance
guarantee can be obtained deterministically.

In a few cases, it is easy to state the deterministic, derandomized version of an algorithm,
but we only know how to analyze the randomized version. Here the randomized algorithm
allows us to analyze an algorithm that we are unable to analyze otherwise. We will see an
example of this when we revisit the prize-collecting Steiner tree problem in Section 5.7.

It is also sometimes the case that we can prove that the performance guarantee of a random-
ized approximation algorithm holds with high probability. By this we mean that the probability
that the performance guarantee does not hold is one over some polynomial in the input size of
the problem. Usually we can make this polynomial as large as we want (and thus the probability
as small as we want) by weakening the performance guarantee by some constant factor. Here
derandomization is less necessary, though sometimes still possible by using more sophisticated
techniques.

We begin the chapter by looking at very simple randomized algorithms for two problems, the
maximum satisfiability problem and the maximum cut problem. Here we show that sampling
a solution uniformly at random from the set of all possible solutions gives a good randomized
approximation algorithm. For the maximum satisfiability problem, we are able to go still further
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106 Random sampling and randomized rounding of linear programs

and show that biasing our choice yields a better performance guarantee. We then revisit the
idea of using randomized rounding of linear programming relaxations introduced in Section 1.7,
and show that it leads to still better approximation algorithms for the maximum satisfiability
problem, as well as better algorithms for other problems we have seen previously, such as the
prize-collecting Steiner tree problem, the uncapacitated facility location problem, and a single
machine scheduling problem.

We then give Chernoff bounds, which allow us to bound the probability that a sum of random
variables is far away from its expected value. We show how these bounds can be applied to an
integer multicommodity flow problem, which is historically the first use of randomized rounding.
We end with a much more sophisticated use of drawing a random sample, and show that this
technique can be used to 3-color certain kinds of dense 3-colorable graphs with high probability.

5.1 Simple algorithms for MAX SAT and MAX CUT

Two problems will play an especially prominent role in our discussion of randomization in the
design and analysis of approximation algorithms: the maximum satisfiability problem, and the
maximum cut problem. The former will be highlighted in this chapter, whereas the central
developments for the latter will be deferred to the next chapter. However, in this section we
will give a simple randomized %—approximation algorithm for each problem.

In the maximum satisfiability problem (often abbreviated as MAX SAT), the input consists
of n Boolean variables 1, ..., x, (each of which may be set to either true or false), m clauses
Cy,...,Cy (each of which consists of a disjunction (that is, an “or”) of some number of the
variables and their negations — for example, 23V Z5 V 211, where Z; is the negation of z;), and a
nonnegative weight w; for each clause C;. The objective of the problem is to find an assignment
of true/false to the z; that maximizes the weight of the satisfied clauses. A clause is said to be
satisfied if one of the unnegated variables is set to true, or one of the negated variables is set
to false. For example, in the clause x3 V T5 V x11, the clause is not satisfied only if z3 is set to
false, x5 to true, and 17 to false.

Some terminology will be useful in discussing the MAX SAT problem. We say that a variable
x; or a negated variable T; is a literal, so that each clause consists of some number of literals. A
variable x; is called a positive literal and a negated variable z; is called a negative literal. The
number of literals in a clause is called its size or length. We will denote the length of a clause
C; by l;. Clauses of length one are sometimes called wunit clauses. Without loss of generality,
we assume that no literal is repeated in a clause (since this does not affect the satisfiability of
the instance), and that at most one of xz; and Z; appears in a clause (since if both z; and z;
are in a clause, it is trivially satisfiable). Finally, it is natural to assume that the clauses are
distinct, since we can simply sum the weights of two identical clauses.

A very straightforward use of randomization for MAX SAT is to set each x; to true inde-
pendently with probability 1/2. An alternate perspective on this algorithm is that we choose
a setting of the variables uniformly at random from the space of all possible settings. It turns
out that this gives a reasonable approximation algorithm for this problem.

Theorem 5.1: Setting each x; to true with probability 1/2 independently gives a randomized

%—appmmmation algorithm for the mazximum satisfiability problem.

Proof. Consider a random variable Y; such that Y} is 1 if clause j is satisfied and 0 otherwise.
Let W be a random variable that is equal to the total weight of the satisfied clauses, so that
W = Z;’;l w;Y;. Let OPT denote the optimum value of the MAX SAT instance. Then, by
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5.1 Simple algorithms for MAX SAT and MAX CUT 107

linearity of expectation, and the definition of the expectation of a 0-1 random variable, we know
that

E[W] = Z w;EY;] = ij Priclause C; satisfied].
j=1 j=1

For each clause C}, j = 1,...,n, the probability that it is not satisfied is the probability that
each positive literal in Cj is set to false and each negative literal in C} is set to true, each of
which happens with probability 1/2 independently; hence

1\%) _ 1
Priclause C; satisfied] = [ 1 — <2) > 3

where the last inequality is a consequence of the fact that [; > 1. Hence,

1 — 1
E[W] > Q;wj > - OPT,

where the last inequality follows from the fact that the total weight is an easy upper bound on
the optimal value, since each weight is assumed to be nonnegative. O

Observe that if [; > k for each clause j, then the analysis above shows that the algorithm is a
(1 — (%)k>—approximation algorithm for such instances. Thus the performance of the algorithm
is better on MAX SAT instances consisting of long clauses. This observation will be useful to
us later on.

Although this seems like a pretty naive algorithm, a hardness theorem shows that this is
the best that can be done in some cases. Consider the case in which /; = 3 for all clauses j; this
restriction of the problem is sometimes called MAX E3SAT, since there are exactly 3 literals in
each clause. The analysis above shows that the randomized algorithm gives an approximation

algorithm with performance guarantee <1 — (%)3> = %. A truly remarkable result shows that
nothing better is possible for these instances unless P = NP.

Theorem 5.2: If there is an (%—i—e)—approm’mation algorithm for MAX E3SAT for any constant
€ >0, then P = NP.

We discuss this result further in Section 16.3.

In the maximum cut problem (sometimes abbreviated MAX CUT), the input is an undi-
rected graph G = (V, E), along with a nonnegative weight w;; > 0 for each edge (i,j) € E.
The goal is to partition the vertex set into two parts, U and W =V — U, so as to maximize
the weight of the edges whose two endpoints are in different parts, one in U and one in W. We
say that an edge with endpoints in both U and W is in the cut. In the case w;; = 1 for each
edge (i,7) € E, we have an unweighted MAX CUT problem.

It is easy to give a %—approximation algorithm for the MAX CUT problem along the same
lines as the previous randomized algorithm for MAX SAT. Here we place each vertex v € V into
U independently with probability 1/2. As with the MAX SAT algorithm, this can be viewed
as sampling a solution uniformly from the space of all possible solutions.

Theorem 5.3: If we place each vertex v € V into U independently with probability 1/2, then
we obtain a randomized %—approximation algorithm for the mazximum cut problem.
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Proof. Consider a random variable X;; that is 1 if the edge (4, j) is in the cut, and 0 otherwise.
Let Z be the random variable equal to the total weight of edges in the cut, so that Z =
Z(i,j)e g wi;Xi;. Let OPT denote the optimal value of the maximum cut instance. Then, as
before, by linearity of expectation and the definition of expectation of a 0-1 random variable,
we get that
E[Z] = Z wii B[ X5] = Z w;j Pr{Edge (7,7) in cut].
(1,)€EE (i,))eE

In this case, the probability that a specific edge (i, j) is in the cut is easy to calculate: since the
two endpoints are placed in the sets independently, they are in different sets with probability
equal to % Hence,

1 1
ElZ) = > wy > 5 OPT,
(i.j)€E
where the inequality follows directly from the fact that the sum of the (nonnegative) weights
of all edges is obviously an upper bound on the weight of the edges in an optimal cut. O

We will show in Section 6.2 that by using more sophisticated techniques we can get a
substantially better performance guarantee for the MAX CUT problem.

5.2 Derandomization

As we mentioned in the introduction to the chapter, it is often possible to derandomize a
randomized algorithm; that is, to obtain a deterministic algorithm whose solution value is as
good as the expected value of the randomized algorithm.

To illustrate, we will show how the algorithm of the preceding section for the maximum
satisfiability problem can be derandomized by replacing the randomized decision of whether to
set x; to true with a deterministic one that will preserve the expected value of the solution.
These decisions will be made sequentially: the value of x; is determined first, then x2, and so
on.

How should z1 be set so as to preserve the expected value of the algorithm? Assume for the
moment that we will make the choice of z1 deterministically, and all other variables will be set
true with probability 1/2 as before. Then the best way to set x; is that which will maximize
the expected value of the resulting solution; that is, we should determine the expected value of
W, the weight of satisfied clauses, given that x; is set to true, and the expected weight of W
given that x1 is set to false, and set 1 to whichever value maximizes the expected value of W.
It makes intuitive sense that this should work, since the maximum is always greater than an
average, and the expected value of W is the average of its expected value given the two possible
settings of x1. In this way, we maintain an algorithmic invariant that the expected value is at
least half the optimum, while having fewer random variables left.

More formally, if E[W |z < true] > E[W |z < false], then we set z; true, otherwise we set
it to false. Since by the definition of conditional expectations,

EW] = E[W|x1 < true] Pr[z) < true] + E[W|z; < false] Prx; < false]

1
= 3 (E[W|z1 < true] + E[W|x; < false]),

if we set x1 to truth value b; so as to maximize the conditional expectation, then E[W|x; «+
b1] > E[W]; that is, the deterministic choice of how to set z; guarantees an expected value no
less than the expected value of the completely randomized algorithm.
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Assuming for the moment that we can compute these conditional expectations, the deter-
ministic decision of how to set the remaining variables is similar. Assume that we have set
variables x1,...,z; to truth values by,...,b; respectively. How shall we set variable x;417
Again, assume that the remaining variables are set randomly. Then the best way to set
Zit+1 is so as to maximize the expected value given the previous settings of x1,...,z;. So if
E[W‘l’l — bl, R 7 bi,xi-i,-l — true] > E[W|.%'1 — bl, RN 73 bi,xiﬂ — false] we set Tit+1
to true (thus setting b;+1 to true), otherwise we set x;41 to false (thus setting b;y; to false).
Then since

E[W|SC1 — bl, o, Iy bz]
= E[Wlzy < b1,..., 2z < bi,xiq1 < true] Pr[z;pq < true]
+ E[Wlxy < b1,...,2; ¢ bj,xit1 < false] Prx; 1 «+ false]
1
= 3 (E[W|£C1 — by, T b, a1 — true] + E[W!wl — b1, .., & b, xiq — false]) ,

setting x;41 to truth value b; 1 as described above ensures that
E[W’l’l — bl, v, Ty bi,xiJrl — bi+1] > E[W|$1 — bl, R A bz]

By induction, this implies that E[W |z < by, ..., z; < b, xiy1 « bip1] > E[W].

We continue this process until all n variables have been set. Then since the conditional
expectation given the setting of all n variables, E[W|x1 < b1, ..., 2,  by], is simply the value
of the solution given by the deterministic algorithm, we know that the value of the solution
returned is at least E[W] > 2 OPT. Therefore, the algorithm is a -approximation algorithm.

2
These conditional expectations are not difficult to compute. By definition,

E[W|.€C1 — by, — bl] = Zw]‘ED/j|SC1 —by,...,;; bz]

j=1
m
= ij Priclause C; satisfied|zq < by, ..., z; < bl
j=1
Furthermore, the probability that clause Cj is satisfied given that x1 < by,...,x; < b; is easily
seen to be 1 if the settings of 1, ..., z; already satisfy the clause, and is 1 — (1/2)* otherwise,

where k is the number of literals in the clause that remain unset by this procedure. For example,
consider the clause z3 V T5 V T7. It is the case that

Pr[clause satisfied|z, < true, zo < false, x5 < true] = 1,

since setting x3 to true satisfies the clause. On the other hand,

2
Pr[clause satisfied|z; < true, zo < false, z3 < false] = 1 — (;) = %,
since the clause will be unsatisfied only if x5 and x; are set true, an event that occurs with
probability 1/4.

This technique for derandomizing algorithms works with a wide variety of randomized algo-
rithms in which variables are set independently and the conditional expectations are polynomial-
time computable. It is sometimes called the method of conditional expectations, due to its use of
conditional expectations. In particular, an almost identical argument leads to a derandomized
version of the randomized %—approximation algorithm for the MAX CUT problem. Most of
the randomized algorithms we discuss in this chapter can be derandomized via this method.
The randomized versions of the algorithms are easier to present and analyze, and so we will
frequently not discuss their deterministic variants.
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5.3 Flipping biased coins

How might we improve the randomized algorithm for MAX SAT? We will show here that biasing
the probability with which we set x; is actually helpful; that is, we will set z; true with some
probability not equal to 1/2. To do this, it is easiest to start by considering only MAX SAT
instances with no unit clauses Z;, that is, no negated unit clauses. We will later show that
we can remove this assumption. Suppose now we set each x; to be true independently with
probability p > 1/2. As in the analysis of the previous randomized algorithm, we will need to
analyze the probability that any given clause is satisfied.

Lemma 5.4: If each x; is set to true with probability p > 1/2 independently, then the probability
that any given clause is satisfied is at least min(p, 1—p?) for MAX SAT instances with no negated
unit clauses.

Proof. If the clause is a unit clause, then the probability the clause is satisfied is p, since it
must be of the form z;, and the probability x; is set true is p. If the clause has length at least
two, then the probability that the clause is satisfied is 1 — p®(1 — p)®, where @ is the number
of negated variables in the clause and b is the number of unnegated variables in the clause, so
that a+b=1; > 2. Since p > % > 1 — p, this probability is at least 1 — p®t® =1 —pli > 1 —p?,
and the lemma is proved. ]
We can obtain the best performance guarantee by setting p = 1 — p?.
3(v/5 — 1) ~ .618. The lemma immediately implies the following theorem.

This yields p =

Theorem 5.5: Setting each x; to true with probability p independently gives a randomized
min(p, 1 — p?)-approximation algorithm for MAX SAT instances with no negated unit clauses.

Proof. This follows since

m
E[W ij Pr[clause C} satisfied] > min(p, 1 — Z > min(p, 1 — p?) OPT.
Jj=1 j=1

O]

We would like to extend this result to all MAX SAT instances. To do this, we will use a
better bound on OPT than Z;”Zl w;. Assume that for every ¢ the weight of the unit clause
x; appearing in the instance is at least the weight of the unit clause z;; this is without loss of
generality since we could negate all occurrences of x; if the assumption is not true. Let v; be
the weight of the unit clause Z; if it exists in the instance, and let v; be zero otherwise.

Lemma 5.6: OPT < 37" | w; — >0, ;.
Proof. For each ¢, the optimal solution can satisfy exactly one of x; and z;. Thus the weight of

the optimal solution cannot include both the weight of the clause z; and the clause Z;. Since
v; is the smaller of these two weights, the lemma follows. O

We can now extend the result.

Theorem 5.7: We can obtain a randomized 5 (\f 1)-approzimation algorithm for MAX SAT.
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Proof. Let U be the set of indices of clauses of the instance excluding unit clauses of the form
Z;. As above, we assume without loss of generality that the weight of each clause Z; is no
greater than the weight of clause ;. Thus 3~y w; = >0, wyj — Y1 v;. Then set each x; to

be true independently with probability p = $(v/5 — 1). Then

m
EW] = ij Pr[clause C} satisfied]
j=1
> Z w; Pr[clause C; satisfied]
JjeUu
> p- Z wj (5.1)

jeu
m n
= p-| Y wj—) v | >=p-OPT,
j=1 i1

where (5.1) follows by Theorem 5.5 and the fact that p = min(p, 1 — p?). O

This algorithm can be derandomized using the method of conditional expectations.

5.4 Randomized rounding

The algorithm of the previous section shows that biasing the probability with which we set z;
true yields an improved approximation algorithm. However, we gave each variable the same
bias. In this section, we show that we can do still better by giving each variable its own bias. We
do this by returning to the idea of randomized rounding, which we examined briefly in Section
1.7 in the context of the set cover problem.

Recall that in randomized rounding, we first set up an integer programming formulation of
the problem at hand in which there are 0-1 integer variables. In this case we will create an
integer program with a 0-1 variable y; for each Boolean variable x; such that y; = 1 corresponds
to x; set true. The integer program is relaxed to a linear program by replacing the constraints
yi € {0,1} with 0 < y; < 1, and the linear programming relaxation is solved in polynomial
time. Recall that the central idea of randomized rounding is that the fractional value y; is
interpreted as the probability that y; should be set to 1. In this case, we set each z; to true
with probability y; independently.

We now give an integer programming formulation of the MAX SAT problem. In addition
to the variables y;, we introduce a variable z; for each clause C; that will be 1 if the clause is
satisfied and 0 otherwise. For each clause Cj let P; be the indices of the variables z; that occur
positively in the clause, and let N; be the indices of the variables x; that are negated in the
clause. We denote the clause C; by

VAR
iEPj iENj

Then the inequality

vty (l-y) >z

iEPj iENj

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



112 Random sampling and randomized rounding of linear programs

must hold for clause C; since if each variable that occurs positively in the clause is set to false
(and its corresponding y; is set to 0) and each variable that occurs negatively is set to true
(and its corresponding y; is set to 1), then the clause is not satisfied, and z; must be 0. This
inequality yields the following integer programming formulation of the MAX SAT problem:

maximize Z Wjz;
subject to Z yi + Z(l — i) > 2, VC; = \/ T V \/ Zi,
i€P; i€EN; 1€EP; €N,
in{O,l}, 7;:17""”7
0<2; <1, j=1....m

If Z7p is the optimal value of this integer program, then it is not hard to see that Z7, = OPT.

The corresponding linear programming relaxation of this integer program is

maximize Z Wjzj
subject to Z Yi + Z — i) > 2, vC; = \/ z; V \/ X,
icP; ieN; icP; iEN;
0<y <1, i=1,...,n,
0<z <1, j=1,...,m.

It Z7 p is the optimal value of this linear program, then clearly 27, > Z7p = OPT.

Let (y*,z*) be an optimal solution to the linear programming relaxation. We now consider
the result of using randomized rounding, and setting x; to true with probability y; indepen-
dently. Before we can begin the analysis, we will need two facts. The first is commonly called
the arithmetic-geometric mean inequality, because it compares the arithmetic and geometric
means of a set of numbers.

Fact 5.8 (Arithmetic-geometric mean inequality): For any nonnegative ay, ..., ay,
k 1/k 1 k
() =iz
=1 i=1
Fact 5.9: If a function f(x) is concave on the interval [0,1] (that is, f"(x) <0 on [0,1]), and
f(0)=a and f(1) =b+ a, then f(x) > bx + a for x € [0,1] (see Figure 5.1).

Theorem 5.10: Randomized rounding gives a randomized (1 — %)—approximation algorithm for
MAX SAT.

Proof. As in the analyses of the algorithms in the previous sections, the main difficulty is
analyzing the probability that a given clause Cj is satisfied. Pick an arbitrary clause C;. Then,
by applying the arithmetic-geometric mean inequality, we see that

Lj
Pr[clause C; not satisfied] = H (1—-y;) H yr < Z(l -y + Z yr

i€p; iEN; 7 \iep; iEN;
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Figure 5.1: An illustration of Fact 5.9.

By rearranging terms, we can derive that

L L

S DI R D78 N [ B S RE) SYe s

7 \ieP; iEN; i€P; iEN;

Q.\"}—‘

By invoking the corresponding inequality from the linear program,

Doyt -y =z,

iEPj iENj
we see that

*\ Uj

2\ "
Pr[clause C; not satisfied] < <1 - /) :
J

z*

l.
The function f(27) =1— (1 — —7) " is concave for l[; > 1. Then by using Fact 5.9,

L

x\ lj
Z¥\ Y
Priclause C; satisfied] > 1— < — J>

vV
[ —
—
|
VR
—_
|
S ‘ =
N———
<.
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Therefore the expected value of the randomized rounding algorithm is

EW] = ij Prclause C; satisfied]
j=1

m i} 1 lj
ijzj 1_<1_lj>
7j=1
1\ | &
> 11?211{1 [1_<1_k‘> ]Z;wjzj.
]:

Note that [1 — (1 — %)k} is a nonincreasing function in k£ and that it approaches (1 — %) from

above as k tends to infinity. Since ZT:1 w;z; = Z7p > OPT, we have that

1\*| & 1
> mi —(1-= 2> 11— - .
EW] > min [1 <1 k) ] 2 wjz; > (1 e) OPT

Y

O]

This randomized rounding algorithm can be derandomized in the standard way using the
method of conditional expectations.

5.5 Choosing the better of two solutions

In this section we observe that choosing the best solution from the two given by the randomized
rounding algorithm of the previous section and the unbiased randomized algorithm of the first
section gives a better performance guarantee than that of either algorithm. This happens
because, as we shall see, the algorithms have contrasting bad cases: when one algorithm is far
from optimal, the other is close, and vice versa. This technique can be useful in other situations,
and does not require using randomized algorithms.

In this case, consider a given clause C; of length /;. The randomized rounding algorithm of

l .
Section 5.4 satisfies the clause with probability at least [1 — (1 — %) ]} z;, while the unbiased

randomized algorithm of Section 5.1 satisfies the clause with probability 1 —27% > (1 —27% )%;-
Thus when the clause is short, it is very likely to be satisfied by the randomized rounding
algorithm, though not by the unbiased randomized algorithm, and when the clause is long the
opposite is true. This observation is made precise and rigorous in the following theorem.

Theorem 5.11: Choosing the better of the two solutions given by the randomized rounding al-

gorithm and the unbiased randomized algorithm yields a randomized %-appm:m’mation algorithm

for MAX SAT.
Proof. Let Wi be a random variable denoting the value of the solution returned by the random-

ized rounding algorithm, and let W5 be a random variable denoting the value of the solution
returned by the unbiased randomized algorithm. Then we wish to show that

Elmax(Wy, Wa)] > zOPT.
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1
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Figure 5.2: Illustration of the proof of Theorem 5.11. The “randomized rounding”
line is the function 1 — (1 — %)k The “fipping coins” line is the function 1 —27%. The
“average” line is the average of these two functions, which is at least % for all integers
k> 1.

To obtain this inequality, observe that

1 1
E[max(W;,Ws)] > E [2W1 + 2W2:|
= Lpmm+ Ly
D I D S
1, N\ 1& y
> Q;wjzj [1—(1—l]) +2j§::1wj(1—2 J)

vV
()=
E
bl\z

| —— |
N |
7
—_
|
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—
|
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We claim that

Lo (1o ’ 42 (1 2—la‘) >3
2 lj 2 — 4
for all positive integers ;. We will prove this shortly, but this can be seen in Figure 5.2. Given

the claim, we have that

3¢~ ., 3.. _3
Elmax (W, Wa)] > 4;wjzj = Zip > J OPT.

Now to prove the claim. Observe that the claim holds for /; = 1, since

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press
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and the claim holds for I; = 2, since

l.
For all [; > 3, <1— (1—1)]> >1—Land (1-27%) > 1 and

so the claim is proven. O

Notice that taking the best solution of the two derandomized algorithms gives at least
max(E[W1], E[Wa]) > $E[W1] + S E[Wa]. The proof above shows that this quantity is at least
3 OPT. Thus taking the best solution of the two derandomized algorithms is a deterministic
J-approximation algorithm.

5.6 Non-linear randomized rounding

Thus far in our applications of randomized rounding, we have used the variable y; from the
linear programming relaxation as a probability to decide whether to set y; to 1 in the integer
programming formulation of the problem. In the case of the MAX SAT problem, we set x;
to true with probability y;. There is no reason, however, that we cannot use some function
f:10,1] — [0,1] to set x; to true with probability f(y;). Sometimes this yields approximation
algorithms with better performance guarantees than using the identity function, as we will see
in this section.

In this section we will show that a %-approximation algorithm for MAX SAT can be obtained
directly by using randomized rounding with a non-linear function f. In fact, there is considerable
freedom in choosing such a function f: let f be any function such that f : [0,1] — [0, 1] and

1-47% < f(zx) <4*7L (5.2)

See Figure 5.3 for a plot of the bounding functions. We will see that this ensures that the
probability a clause C} is satisfied is at least 1—4"% > %z}‘, which will give the %-approximation
algorithm.

Theorem 5.12: Randomized rounding with the function f is a randomized %-approximation
algorithm for MAX SAT.

Proof. Once again, we only need analyze the probability that a given clause Cj is satisfied. By
the definition of f,

Priclause C; not satisfied] = H (1= f(y))) H flyh) < H 47Yi H q¥i -1,

iCP; i€N; icP; iE€N;
Rewriting the product and using the linear programming constraint for clause C; gives us
. % *_ — . * X 1—q* =
Pr[clause C; not satisfied] < H 47 H 4vi—t =4 <ZZ€PJ‘ vt Xien; yl)> <475,
iEPj ’iGNj
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05 1

Figure 5.3: A plot of the functions of (5.2). The upper curve is 4*~! and the lower
curve is 1 — 477,

Then using Fact 5.9 and observing that the function g(z) = 1 —477 is concave on [0,1], we have

* 3
Pr[clause C} satisfied] > 1—-4"% > (1 — 4_1)2; = ZZ;
It follows that the expected performance of the algorithm is
3
EW Zw] Pr[clause C; satisfied] > ij j* > Z PT.

7=1
O

Once again, the algorithm can be derandomized using the method of conditional expecta-
tions.

There are other choices of the function f that also lead to a %-approximation algorithm for
MAX SAT. Some other possibilities are presented in the exercises at the end of the chapter.

Is it possible to get an algorithm with a performance guarantee better than % by using some
more complicated form of randomized rounding? It turns out that the answer is no, at least
for any algorithm that derives its performance guarantee by comparing its value to that of the
linear programming relaxation. To see this, consider the instance of the maximum satisfiability
problem with two variables x1 and x9 and four clauses of weight one each, x1 V x3, 1 V Zo,
T1Vxa, and T1VZo. Any feasible solution, including the optimal solution, satisfies exactly three
of the four clauses. However, if we set y; = y2 = % and z; = 1 for all four clauses C;, then this
solution is feasible for the linear program and has value 4. Thus the value to any solution to
the MAX SAT instance can be at most %z;n:l w;z;. We say that this integer programming

. . . ey . . 3
formulation of the maximum satisfiability problem has an integrality gap of 3.

Definition 5.13: The integrality gap of an integer program is the worst-case ratio over all
instances of the problem of value of an optimal solution to the integer programming formulation
to value of an optimal solution to its linear programming relaxation.
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The example above shows that the integrality gap is at most %, whereas the proof of Theo-
rem 5.12 shows that it is at least %. If an integer programming formulation has integrality gap
p, then any algorithm for a maximization problem whose performance guarantee « is proven by
showing that the value of its solution is at least « times the value of the linear programming re-
laxation can have performance guarantee at most p. A similar statement holds for minimization
problems.

5.7 The prize-collecting Steiner tree problem

We now consider other problems for which randomized techniques are useful. In particular, in
the next few sections, we revisit some of the problems we studied earlier in the book and show
that we can obtain improved performance guarantees by using the randomized methods that
we have developed in this chapter.

We start by returning to the prize-collecting Steiner tree problem we discussed in Section 4.4.
Recall that in this problem we are given an undirected graph G = (V, E), an edge cost ¢, > 0
for each e € F, a selected root vertex r € V', and a penalty m; > 0 for each ¢ € V. The goal is to
find a tree T that contains the root vertex r so as to minimize ) ., cc + Zieva(T) m;, where
V(T) is the set of vertices in the tree. We used the following linear programming relaxation
of the problem:

minimize Z CeTe + Z mi(1 —y;)
eck eV
subject to Z Te > Vi, VSCV —r,S8#£0,Vies,
e€d(S)

In the 3-approximation algorithm given in Section 4.4, we found an optimal LP solution (z*, y*),
and for a specified value of «, built a Steiner tree on all nodes such that y; > o. We claimed
that the cost of the edges in the tree is within a factor of 2/« of the fractional cost of the tree
edges in the LP solution, while the cost of the penalties is within a factor of 1/(1 — «) of the
cost of the penalties in the LP solution. Thus if « is close to 1, the cost of the tree edges is
within a factor of two of the corresponding cost of the LP, while if « is close to 0, our penalty
cost is close to the corresponding cost of the LP.

In the previous section we set o = 2/3 to trade off the costs of the tree edges and the
penalties, resulting in a performance guarantee of 3. Suppose instead that we choose the value
of o randomly rather than considering just one value of . We will see that this improves the
performance guarantee from 3 to about 2.54.

Recall Lemma 4.6 from Section 4.4, which allowed us to bound the cost of the spanning tree
T constructed in terms of a and the LP solution (z*,y*).

Lemma 5.14 (Lemma 4.6):
2 *
OUEES
ecT eck

Because the bound becomes infinite as a tends to zero, we don’t want to choose a too
close to zero. Instead, we will choose « uniformly from the range [v, 1], and will later decide
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5.7 The prize-collecting Steiner tree problem 119

how to set 7. Recall that in computing the expected value of a continuous random variable
X, if that variable has a probability density function f(x) over the domain [a,b] (specifying
the probability that X = x), then we compute the expectation of X by integrating f(z)zdx
over that interval. The probability density function for a uniform random variable over [y, 1] is
the constant 1/(1 — 7). We can then analyze the expected cost of the tree for the randomized
algorithm below.

Lemma 5.15:

)Z@

ecE

E Zce]§<

ecT

Proof. Using simple algebra and calculus, we obtain

EZC] < E

ecT

The expected penalty for the vertices not in the tree is also easy to analyze.
Lemma 5.16:
Bl Y m| <y Emt-u)
1eV-V(T) ZEV

Proof. Let U = {i € V : yf > a}; any vertex not in the tree must not be in U, so we have
that ZieV_V(T) m < ZigU mi. Observe that if y* > ~, then the probability that i ¢ U is
(1—y)/(1 —7). If yf <, then i ¢ U with probability 1. But then 1 < (1 —y})/(1 —~), and
so the lemma statement follows. ]

Thus we have the following theorem and corollary.

Theorem 5.17: The expected cost of the solution produced by the randomized algorithm is

2 0s Y K g(lf Ini>ZcexZ+1_1727ri(1yf)~

ecT eV-v(T v ecE eV

Corollary 5.18: Using the randomized rounding algorithm with v = e~1/2 gives a (1—6*1/2)*1—

approximation algorithm for the prize-collecting Steiner tree problem, where (1 — 6_1/2)_1 R
2.54.
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Proof. We want to ensure that the maximum of the coefficients of the two terms in the bound

of Theorem 5.17 is as small as possible. The first coefficient is a decreasing function of v, and

the second is an increasing function. We can minimize the maximum by setting them equal.
1

By setting % ln% = 1, we obtain v = e~ /2. Then by Theorem 5.17, the expected cost of

the tree obtained is no greater than

1
_1/2 (Zce:v +Z7TZ 1—y; ) < T .in -OPT.

eV

The derandomization of the algorithm is straightforward: since there are |V| variables y,
there are at most |V| distinct values of y. Thus, consider the |V| sets U; = {2 eV:iy > y;‘}

Any possible value of a corresponds to one of these |V| sets. Thus if a random choice of a has a
certain expected performance guarantee, the algorithm which tries each set U; and chooses the
best solution generated will have a deterministic performance guarantee at least as good as that
of the expectation of the randomized algorithm. Interestingly, the use of randomization allows
us to analyze this natural deterministic algorithm, whereas we know of no means of analyzing
the deterministic algorithm directly.

Recall from the end of the previous section that we defined the integrality gap of an integer
programming formulation to be the worst-case ratio, over all instances of a problem, of the
value of an optimal solution to the integer programming formulation to the value of an optimal
solution to the linear programming relaxation. We also explained that the integrality gap
bounds the performance guarantee that we can get via LP rounding arguments. Consider a
graph G that is a cycle on n nodes, and let the penalty for each node be infinite and the cost
of each edge by 1. Then there is a feasible solution to the linear programming relaxation of
cost n/2 by setting each edge variable to 1/2, while there is an optimal integral solution of cost
n — 1 by taking every edge of the cycle except one (see Figure 5.4). Hence the integrality gap
for this instance of the problem is at least (n — 1)/(n/2) = 2 — 2/n. Thus we cannot expect
a performance guarantee for the prize-collecting Steiner tree problem better than 2 — % using
LP rounding arguments with this formulation. In Chapter 14, we will return to the prize-
collecting Steiner tree problem and show that the primal-dual method can be used to obtain a
2-approximation algorithm for the problem. The argument there will show that the integrality
gap of the integer programming formulation is at most 2.

5.8 The uncapacitated facility location problem

In this section, we revisit the metric uncapacitated facility location problem introduced in
Section 4.5. Recall that in this problem we are given a set of clients D and a set of facilities F’,
along with facility costs f; for all facilities ¢« € F', and assignment costs ¢;; for all facilities i € F
and clients j € D. All clients and facilities are points in a metric space, and given clients j, [
and facilities 7, k, we have that ¢;; < ¢; + cp + cj. The goal of the problem is to select a subset
of facilities to open and an assignment of clients to open facilities so as to minimize the total
cost of the open facilities plus the assignment costs. We used the following linear programming
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5.8 The uncapacitated facility location problem 121

Figure 5.4: Example of integrality gap of the integer programming formulation for
the prize-collecting Steiner tree problem. On the left is a feasible solution for the linear
program in which each edge has value 1/2. On the right is an optimal solution for the
integer programming formulation in which each edge shown has value 1.

relaxation of the problem:
minimize Z fiyi + Z CijTij
i€F i€FjeD
subject to inj =1, Vje D,
el
l’ijZO, Vie F,j €D,
Yi > 07 Vi € F?

where the variable z;; indicates whether client j is assigned to facility ¢, and the variable y;
indicates whether facility 4 is open or not. We also used the dual of the LP relaxation:

maximize E v

jeb
subject to Z wi; < fi, Vi€ F,
Jje€D
vj—wijgcl-j, Vie F,jeD,
wij > 0, Vie F,j€D.

Finally, given an LP solution (z*,y*), we said that a client j neighbors a facility i if z; > 0.
We denote the neighbors of j as N(j) = {i € F': j; > 0}, and the neighbors of the neighbors
of j as N2(j) = {k € D : 3i € N(j),x}, > 0}. Recall that we showed in Lemma 4.11 that if
(v*,w*) is an optimal dual solution and ¢ € N(j) then the cost of assigning j to 4 is bounded
by v} (that is, ¢;; < vj).

We gave a 4-approximation algorithm in Algorithm 4.2 of Section 4.5 that works by choosing
an unassigned client j that minimizes the value of v; among all remaining unassigned clients,
opening the cheapest facility in the neighborhood of N(j), and then assigning j and all clients
in N2(j) to this facility. We showed that for an optimal LP solution (z*,%*) and optimal dual
solution v*, this gave a solution of cost at most ), p fiy +3 EjeD v; <4-O0PT.
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Solve LP, get optimal primal solution (z*,y*) and dual solution (v*,w*)
C<+D
k<0
while C # () do
k+—k+1
Choose ji € C' that minimizes v} + C7 over all j € C

*
Yk

Choose i, € N(ji) according to the probability distribution z

Assign j, and all unassigned clients in N2(j;) to iy
C + C —{jx} — N*(ji)

Algorithm 5.1: Randomized rounding algorithm for the uncapacitated facility location problem.

..

Figure 5.5: Illustration of proof of Theorem 5.19.

This analysis is a little unsatisfactory in the sense that we bound ) ;. - fiy; by OPT, whereas
we know that we have the stronger bound .. fiy: + zieF,jeD CijTy; < OPT. In this section,
we show that by using randomized rounding we can modify the algorithm of Section 4.5 slightly
and improve the analysis to a 3-approximation algorithm.

The basic idea is that once we have selected a client j in the algorithm, instead of opening
the cheapest facility in N(j), we use randomized rounding to choose the facility, and open
facility ¢ € N(j) with probability «; (note that >, y(; #7; = 1). This improves the analysis
since in the previous version of the algorithm we had to make worst-case assumptions about
how far away the cheapest facility would be from the clients assigned to it. In this algorithm
we can amortize the costs over all possible choices of facilities in N (j).

In order to get our analysis to work, we modify the choice of client selected in each iteration
as well. We define C7 = Y ik cijxy;; that is, the assignment cost incurred by client j in the
LP solution (z*,y*). We now choose the unassigned client that minimizes vy + C5 over all
unassigned clients in each iteration. Our new algorithm is given in Algorithm 5.1. Note that
the only changes from the previous algorithm of Section 4.5 (Algorithm 4.2) are in the third to
the last and second to the last lines.

We can now analyze this new algorithm.
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Theorem 5.19: Algorithm 5.1 is a randomized 3-approzimation algorithm for the uncapacitated
facility location problem.

Proof. In an iteration k, the expected cost of the facility opened is
> fal < D fwi
i€N (jk) i€N (jk)

using the LP constraint z7; < y/. As we argued in Section 4.5, the neighborhoods N(jj) form
a partition of a subset of the facilities so that the overall expected cost of facilities opened is at

most
E E fiyi < E fivi -
k ieN(jx) i€F

We now fix an iteration k and let j denote the client jj selected and let ¢ denote the facility
i, opened. The expected cost of assigning j to ¢ is

* *
1eN(J)

As can be seen from Figure 5.5, the expected cost of assigning an unassigned client [ € N?(5)
to i, where the client [ neighbors facility h which neighbors client j is at most
Chl + Chj + Z Cijxfj = Cpl T Chj + C;.
iEN(H)

By Lemma 4.11, ¢ < v and ¢ < v;‘, so that this cost is at most v} + v;f + C’;‘. Then since
we chose j to minimize v;-‘ + CJ’-‘ among all unassigned clients, we know that v7 + C’;‘ <wv +Cf.
Hence the expected cost of assigning [ to 4 is at most

v + i+ CF < 20 + CF.

Thus we have that our total expected cost is no more than

S fyi 4> (20 +Ch) Dofwi Y eyrli w2 v

i€F jED i€F i€F,jED jE€D
30PT.

IN

O

Note that we were able to reduce the performance guarantee from 4 to 3 because the random
choice of facility allows us to include the assignment cost C in the analysis; instead of bounding
only the facility cost by OPT, we can bound both the facility cost and part of the assignment
cost by OPT.

One can imagine a different type of randomized rounding algorithm: suppose we obtain an
optimal LP solution (z*,y*) and open each facility i € F with probability y;. Given the open
facilities, we then assign each client to the closest open facility. This algorithm has the nice
feature that the expected facility cost is ) ;. fiy;. However, this simple algorithm clearly has
the difficulty that with non-zero probability, the algorithm opens no facilities at all, and hence
the expected assignment cost is unbounded. We consider a modified version of this algorithm
later in the book, in Section 12.1.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



124 Random sampling and randomized rounding of linear programs

5.9 Scheduling a single machine with release dates

In this section, we return to the problem considered in Section 4.2 of scheduling a single machine
with release dates so as to minimize the weighted sum of completion times. Recall that we are
given as input n jobs, each of which has a processing time p; > 0, weight w; > 0, and release
date r; > 0. The values pj,r;, and w; are all nonnegative integers. We must construct a
schedule for these jobs on a single machine such that at most one job is processed at any point
in time, no job is processed before its release date, and once a job begins to be processed, it
must be processed nonpreemptively; that is, it must be processed completely before any other
job can be scheduled. If C'; denotes the time at which job j is finished processing, then the goal
is to find the schedule that minimizes Y7, w;C;.

In Section 4.2, we gave a linear programming relaxation of the problem. In order to apply

randomized rounding, we will use a different integer programming formulation of this problem.

In fact, we will not use an integer programming formulation of the problem, but an inte-
ger programming relazation. Solutions in which jobs are scheduled preemptively are feasible;
however, the contribution of job j to the objective function is less than w;C; unless job j is
scheduled nonpreemptively. Thus the integer program is a relaxation since for any solution
corresponding to a nonpreemptive schedule, the objective function value is equal to the sum of
weighted completion times of the schedule.

Furthermore, although this relaxation is an integer program and has a number of constraints
and variables exponential in the size of the problem instance, we will be able to find a solution
to it in polynomial time.

We now give the integer programming relaxation. Let T equal max; r; + Z?Zl pj, which is
the latest possible time any job can be processed in any schedule that processes a job nonpre-
emptively whenever it can. We introduce variables y;; for j =1,...,n,t=1,...,T, where

1 if job j is processed in time [t —1,1)
Yit 0 otherwise

We derive a series of constraints for the integer program to capture the constraints of the
scheduling problem. Since at most one job can be processed at any point in time, for each time
t=1,...,T we impose the constraint

n
Z yje < L.
j=1

Since each job j must be processed for p; units of time, for each job j = 1,...,n we impose the

constraint
T
Z Yjt = Pj-
t=1

Since no job j can be processed before its release date, we set

Yt =0
for each job j =1,...,n and each time t =1,...,r;. Fort =r; +1,...,T, obviously we want
Yjt € {0,1}.

Note that this integer program has size that is exponential in the size of the scheduling instance
because T' is exponential in the number of bits used to encode r; and p;.
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5.9 Scheduling a single machine with release dates 125

Finally, we need to express the completion time of job j in terms of the variables i,
j=1,...,n. Given a nonpreemptive schedule, suppose that job j completes at time D. If we
set the variables y;; to indicate the times at which jobs are processed in the schedule, and so
yjt = Lfort =D —p;j+1,...,D, whereas y;; = 0 otherwise. Observe that if we take the average
of the midpoints of each unit of time at which job j is processed (t—% fort=D—-p;+1,,...,D),
we get the midpoint of the processing time of the job, namely D — %. Thus

1 & 1 ;i

- t—=)=p-%,

bj 2 2
t=D—p;+1

Given the settings of the variables y;;, we can rewrite this as

T
1 1 D
Ny (t—-)=D-2.
P yﬁ( 2) 2

We wish to have variable C; represent the completion time of job j. Rearranging terms, then,
we set the variable C; as follows:

1 & 1\ p;
ci=— y-t<t—>+].
T p; ; / 2 2

This variable C; underestimates the completion time of job j when all of the variables y;;
that are set to 1 are not consecutive in time. To see this, first start with the case above in which
yjt = 1fort =D —p;+1,...,D for a completion time D. By the arguments above, C; = D. If
we then modify the variables y;; by successively setting y;; = 0 for some t € [D —p; +1,D —1]
and y;; = 1 for some ¢ < D — pj, it is clear that the variable C; only decreases.

The overall integer programming relaxation of the problem we will use is

n
minimize ijCj (5.3)
j=1
n
subject to Zyjtgl, t=1,...,T, (5.4)
j=1
T
> it =i, j=1,...n, (5.5)
t=1
yit = 0, j=1...,nt=1,...,7j,
yjt € {0,1}, j=1....nyt=1,...,T,
1 & 1\ p;
Cj=— s(t—=)+2 j=1,...,n. 5.6
: pj;y”t< D)% it >0

Even though we restrict the variables y;; to take on integer values, the corresponding linear
programming relaxation is well-known to have optimal solutions for which these variables have
integer values (for a simpler case of this phenomenon, see Exercise 4.6).

We can now consider a randomized rounding algorithm for this problem. Let (y*,C*) be
an optimal solution to the integer programming relaxation. For each job j, let X; be a random

variable which is ¢ — 3 with probability Y5:/pj; observe that by (5.5), Zthl %’5 = 1 so that
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the y7, /pj give a probability distribution on time ¢ for each job j. We defer for the moment a
discussion on how to make this run in randomized polynomial time, since T is exponential in
the input size and we need to solve the integer program in order to perform the randomized
rounding. As in the algorithms of Sections 4.1 and 4.2, we now schedule the jobs as early as
possible in the same relative order as the value of the X;. Without loss of generality, suppose
that X; < X9 <--- < X,,. Then we schedule job 1 as early as possible (that is, not before r1),
then job 2, and in general schedule job j to start at the maximum of the completion time of
job j —1 and r;. Let C’j be a random variable denoting the completion time of job j in this
schedule.

We begin the analysis of this algorithm by considering the expected value of C’j given a
fixed value of X.

Lemma 5.20: E[C’j|Xj =z] < p; + 2.

Proof. As we argued in the proof of Lemma 4.2, there cannot be any idle time between
maxg—1,..; Tk and C’], and therefore it must be the case that C < maxp—1,. Tk + Zk 1Dj-
Because the ordering of the jobs results from randomized rounding, we let R be a random
variable such that R = maxj—; . ;rg, and let random variable P = Zk 1 Pj, so that the bound
on C’j becomes (jj <R+P +pj.

First, we bound the value of R given that X; = x. Note that since y;;, = 0 for ¢t < ry, it
must be the case that Xy > r + % for any job k. Thus,

1 1 1

R< max 7, < max Xp—-<Xj—-=ov— .
kX, <X K kX <X K 2~ 2 2

Now we bound the expected value of P given that X; = x. We can bound it as follows:

EP|X;=2] = Z pi Prjob k is processed before j|X; = z]
k:k#£j
= > e Pr[Xe < XGlX; =1
k:k#£j
x+% 1
= Y nY b [Xk:t—Q] .
k:k+#j t=1

Since we set Xy =t — % with probability y;,/p, then

x+2 x+2 x+2
E[P|X; = 2] = Z Pk Z ykt Z Zykt Z Z Yiet-
kik#£j k:k#j t=1 t=1 k:k+#£j

Constraint (5.4) of the integer programming relaxation imposes that » ., 2 Ukt < 1 for all

times ¢, so then
$+7

EPIX;=2]=) > ykt<x+

t=1 k:k+#j

Therefore,

A 1 1
ElC;|X; =z <p; + E[R|X; = 2]+ E[P|X; =2] <p; + (w - 2) + <m~|— 2) = p;j +2x.

O]
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5.9 Scheduling a single machine with release dates 127

Given the lemma above, we can prove the following theorem.

Theorem 5.21: The randomized rounding algorithm is a randomized 2-approrimation algo-
rithm for the single machine scheduling problem with release dates minimizing the sum of
wetghted completion times.

Proof. Using the lemma above, we have that

ElC;] = Z E [CJ

1
i =t— - |Pr|X;=t—
3| 7=
1 1
- )p[ _t—]
2 2
t— )yﬁ
t
T-1
1
pi - <t >yjt
Pj 5%

= 203, (5.7)

IN

T

pj+22<
t=1
T

p]+22<

1

where equation (5.7) follows from the definition of C7 in the integer programming relaxation
(equation (5.6)). Thus we have that

Zn:wjé’j Zw] ] < 2210]0* <20PT,
j=1

7j=1

since Z;‘:l w;C7 s the objective function of the integer programming relaxation and thus a
lower bound on OPT. O

Unlike the previous randomized algorithms of the section, we do not know directly how
to derandomize this algorithm, although a deterministic 2-approximation algorithm for this
problem does exist.

We now show that the integer programming relaxation can be solved in polynomial time,
and that the randomized rounding algorithm can be made to run in polynomial time. First,
sort the jobs in order of non-increasing ratio of weight to processing time; we assume jobs are
then indexed in this order so that “’11 > > ... > “’". Now we use the following rule to
create a (possibly preemptive) schedule: we always schedule the job of minimum index which
is available but not yet completely processed. More formally, as t varies from 1 to T, let j be
the smallest index such that r; < ¢ —1 and ZZ 1Yj, < pj, it such a job j exists. Then set
y}-‘t = 1 for job j and y;, = 0 for all jobs k # j. If no such j exists, we set y}‘t = 0 for all jobs j.
Since in creating this schedule there are only n points in time corresponding to release dates r;
and n points in time at which a job has finished being processed, there are at most 2n point in
time at which the index attaining the minimum might change. Thus we can actually give the
schedule as a sequence of at most 2n intervals of time, specifying which job (if any) is scheduled
for each interval. It is not hard to see that we can compute this set of intervals in polynomial
time without explicitly enumerating each time ¢. Furthermore, from the discussion above in
which we explained how to express the variable C; in terms of the y;;, we know that if y;; = 1
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for t =a+1 to b, then Zi’:a_ﬂ yit (t— 1) = (b—a)(b— 5(b— a)), so that we can compute the
values of the variables C'F from these intervals.

The randomized rounding algorithm can be made to run in polynomial time because it is
equivalent to the following algorithm: for each job j, choose a value «; € [0, 1] independently
and uniformly. Let X; be the «j-point of job j: that is, the time when «;p; units of job
7 have been processed in the preemptive schedule. Observe that it is easy to compute this
point in time from the intervals describing the preemptive schedule. Then schedule the jobs
according to the ordering of the X; as in the randomized rounding algorithm. To see why this
is equivalent to the original algorithm, consider the probability that X; € [t —1,¢). This is
simply the probability that a;p; units of job j have finished processing in this interval, which
is the probability that

t—1 t
D v <agpi <Yyl
s=1 s=1

This, then, is the probability that o; € [p% Zi;ll Yiss p% St Ys); since oy is chosen uniformly,
this probability is y;-‘t/pj. So the probability that X; € [t — 1,t) in the a;-point algorithm is
the same as in the original algorithm, and the proof of the performance guarantee goes through
with some small modifications.

Interestingly, one can also prove that if a single value of « is chosen uniformly from [0, 1],
and X is the a-point of job j, then scheduling jobs according to the ordering of the X is also a
2-approximation algorithm. Proving this fact is beyond the scope of this section. However, the
algorithm in which a single value of « is chosen is easy to derandomize, because it is possible to
show that at most n different schedules can result from all possible choices of o € [0,1]. Then
to derive a deterministic 2-approximation algorithm, we need only enumerate the n different
schedules, and choose the one that minimizes the weighted sum of the completion times.

We need only show that the constructed solution (y*, C*) is in fact optimal. This is left to
the reader to complete by a straightforward interchange argument in Exercise 5.11.

Lemma 5.22: The solution (y*,C*) given above to the integer program is an optimal solution.

5.10 Chernoff bounds

This section introduces some theorems that are extremely useful for analyzing randomized
rounding algorithms. In essence, the theorems say that it is very likely that the sum of n
independent 0-1 random variables is not far away from the expected value of the sum. In the
subsequent two sections, we will illustrate the usefulness of these bounds.

We begin by stating the main theorems.

Theorem 5.23: Let Xy,...,X,, be n independent 0-1 random variables, not necessarily iden-
tically distributed. Then for X =" | X; and p= E[X], L< pu<U, and § > 0,

65 v
and

e 0 L
Pr[X < (1-6)L] < ((1—6)(1‘”> .
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5.10 Chernoff bounds 129

The second theorem generalizes the first by replacing 0-1 random variables with 0-a; random
variables, where 0 < a; < 1.

Theorem 5.24: Let X1,..., X, be n independent random variables, not necessarily identically
distributed, such that each X; takes either the value 0 or the value a; for some 0 < a; < 1.
Then for X =3"" 1 X; and p=E[X]), L<pu<U, and § >0,

66 v
mm>uka<unm>,

and

_5 L
mmga_®u<Qszw).

These theorems are generalizations of results due to Chernoff and are sometimes called
Chernoff bounds, since they bound the probability that the sum of variables is far away from
its mean.

To prove the bounds, we will need the following commonly used inequality known as
Markov’s inequality.

Lemma 5.25 (Markov’s inequality): If X is a random variable taking on nonnegative values,
then Pr[X > a] < E[X]/a for a > 0.

Proof. Since X takes on nonnegative values, E[X] > a Pr[X > a] and the inequality follows. [

Now we can prove Theorem 5.24.

Proof of Theorem 5.24. We only prove the first bound in the theorem; the proof of the other
bound is analogous. Note that if E[X] = 0, then X = 0 and the bound holds trivially, so we can
assume E[X] > 0 and E[X;] > 0 for some i. We ignore all i such that E[X;] = 0 since X; =0
for such i. Let p; = Pr[X; = q@;]. Since E[X;] > 0, p; > 0. Then p = E[X]| = Y"1 pija; < U.
For any ¢t > 0,

Pr[X > (14 6)U] = Pr[e!X > !(1H0)U],

By Markov’s inequality,

Pr[etX > et(l-‘ré)U]

IN

Now

BN = B [¢5H%) = 5

I}ﬂi:HEMW, (5.9)
=1 =1

where the last equality follows by the independence of the X;. Then for each 1,
Ele™] = (1 — p;) + pie'™ =1+ pi(e! —1).

We will later show that e?® — 1 < a;(e! — 1) for ¢ > 0, so that E[e!] < 1+ p;a;(e? —1). Using
that 1 + z < e* for x > 0, and that ¢, a;, p; > 0, we obtain

E[etXZ'] < epiai(etfl)'
Plugging these back into equation (5.9), we have
n
E[etX] < Hepiai(@t—l) — eliypiai(e’=1) < eUlet=1).
i=1
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Then putting this back into inequality (5.8) and setting ¢ = In(1 + §) > 0, we see that

tX
Pr[X > (1+0)U] < jﬁié)}]
eUlef=1)
< T
66 v
B <<1+6)<l+5>> ’

as desired.

Finally, to see that e®! —1 < a;(e* — 1) for t > 0, let f(t) = a;(e’ — 1) — e%* — 1. Then
f'(t) = ajet — a;e®t > 0 for any ¢ > 0 given that 0 < a; < 1; thus f(¢) is nondecreasing for
t > 0. Since f(0) = 0 and the function f is nondecreasing, the inequality holds. O

The right-hand sides of the inequalities in Theorems 5.23 and 5.24 are a bit complicated,
and so it will be useful to consider variants of the results in which the right-hand side is simpler,
at the cost of restricting the results somewhat.

Lemma 5.26: For 0 < 0 <1, we have that

e’ v —Us2/3
((1 +6)<1+5>> =¢

and for 0 < § < 1, we have that

e’ - —L82/2
(=) <™

Proof. For the first inequality, we take the logarithm of both sides. We would like to show that
U6 — (1+0)In(1 +6)) < -U§?/3.

We observe that the inequality holds for § = 0; if we can show that the derivative of the left-
hand side is no more than that of the right-hand side for 0 < § < 1, the inequality will hold for
0 < 0 < 1. Taking derivatives of both sides, we need to show that

—Uln(1+6) < —206/3.

Letting f(6) = —UlIn(1 + 9) + 2U§/3, we need to show that f(J) < 0 on [0,1]. Note that
f(0)=0and f(1) <0since —In2 ~ —0.693 < —2/3. As long as the function f(¢) is convex on
[0,1] (that is, f”(6) > 0), we may conclude that f(§) < 0 on [0,1], in the convex analog of Fact
5.9. We observe that f/(§) = —U/(1+6)+2U/3 and f"(6) = U/(1 + )2, so that f”(5) > 0 for
d € [0,1], and the inequality is shown.

We turn to the second inequality for the case 0 < § < 1. Taking the logarithm of both sides,
we would like to show that

L(—=6 — (1 —8)In(1 — §)) < —L§?/2.

The inequality holds for = 0, and will hold for 0 < § < 1 if the derivative of the left-hand side
is no more than the derivative of the right-hand side for 0 < § < 1. Taking derivatives of both

sides, we would like to show that
Lln(l—-¢)<—-LJ
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for 0 < 0 < 1. Again the inequality holds for § = 0 and will hold for 0 < § < 1 if the derivative
of the left-hand side is no more than the derivative of the right-hand side for 0 < § < 1. Taking
derivatives of both sides again, we obtain

_L(1-8) <L,
which holds for 0 < § < 1. ]

It will sometimes be useful to provide a bound on the probability that X < (1 —J)L in the
case 6 = 1. Notice that since the variables X; are either 0-1 or 0-a; this is asking for a bound
on the probability that X = 0. We can give a bound as follows.

Lemma 5.27: Let X1,...,X,, be n independent random variables, not necessarily identically
distributed, such that each X; takes either the value 0 or the value a; for some 0 < a; < 1.
Then for X =>"" | X; and p = E[X], L < p,

Proof. We assume p = E[X] > 0 since otherwise X = 0 and L < g = 0 and the bound holds
trivially. Let p; = Pr[X; = a;]. Then p=>"7" | a;p; and

n

Prlx = 0] = [J(1 - p).

i=1

Applying the arithmetic/geometric mean inequality from Fact 5.8, we get that
n 1 n n 1 n n
q(l—pi) < [n ;(1—]92')] = ll—n;pz’] :
i= i= i=

Since each a; < 1, we then obtain
n n
1 R I
ll_nzpi] < ll—nzami] z[l—nu} :
=1 =1
Then using the fact that 1 —x < e™™ for x > 0, we get
" _ _L
1——p| <et<e ™
n

O]

As a corollary, we can then extend the bound of Lemma 5.26 to the case § = 1. In fact,
since the probability that X < (1 — )L for 6 > 1 and L > 0 is 0, we can extend the bound to
any positive 6.

Corollary 5.28: Let X1,..., X, ben independent random variables, not necessarily identically
distributed, such that each X; takes either the value 0 or the value a; for some a; < 1. Then
for X =377 X, and p=FE[X],0< L <p, and 6 >0,

Pr[X < (1—6)L] < e 10°/2,
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5.11 Integer multicommodity flows

To see how Chernoff bounds can be used in the context of randomized rounding, we will apply
them to the minimum-capacity multicommodity flow problem. In this problem, we are given as
input an undirected graph G = (V, E) and k pairs of vertices s;,t; € V,i=1,...,k. The goal is
to find, for each i = 1,..., k, a single simple path from s; to ¢; so as to minimize the maximum
number of paths containing the same edge. This problem arises in routing wires on chips. In
this problem, k wires need to be routed, each wire from some point s; on the chip to another
point ¢; on the chip. Wires must be routed through channels on the chip, which correspond to
edges in a graph. The goal is to route the wires so as minimize the channel capacity needed;
that is, the number of wires routed through the same channel. The problem as stated here is
a special case of a more interesting problem, since often the wires must join up three or more
points on a chip.

We give an integer programming formulation of the problem. Let P; be the set of all possible
simple paths P in G from s; to t;, where P is the set of edges in the path. We create a 0-1
variable x p for each path P € P; to indicate when path P from s; to ¢; is used. Then the total
number of paths using an edge e € E' is simply > p... p zp. We create another decision variable
W to denote the maximum number of paths using an edge, so that our objective function is to
minimize W. We have the constraint that

for each edge e € E. Finally, we need to choose some path P € P; for every s;-t; pair, so that
S apei
PeP;

for each ¢ = 1,...,k. This gives us the following integer programming formulation of the
minimum-capacity multicommodity flow problem:

minimize W (5.10)
subject to przl, i=1,...,k,
PePp;
d ap<W, eckE, (5.11)
P:ecP

xp € {0,1}, VPeP,i=1,... k.

The integer program can be relaxed to a linear program by replacing the constraints xp €
{0,1} with zp > 0. We claim for now that this linear program can be solved in polynomial
time and that most a polynomial number of variables xp of an optimal solution can be nonzero.

We now apply randomized rounding to obtain a solution to the problem. Fori=1,... k, we
choose exactly one path P € P; according to the probability distribution % on paths P € P;,
where z* is an optimal solution of value W*.

Assuming W* is large enough, we can show that the total number of paths going through
any edge is close to W* by using the Chernoff bound from Theorem 5.23. Let n be the number
of vertices in the graph. Recall that in Section 1.7 we said that a probabilistic event happens
with high probability if the probability that it does not occur is at most n~°¢ for some integer
c>1.
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Theorem 5.29: If W* > clnn for some constant c, then with high probability, the total number
of paths using any edge is at most W* 4+ v/ cW*Inn.

Proof. For each e € E, define random variables X!, where X! = 1 if the chosen s;-t; path uses

edge e, and X! = 0 otherwise. Then the number of paths using edge e is Y, = Zle Xi. We
want to bound max.cp Y, and show that this is close to the LP value W*. Certainly

k
BlY]=), >, ap=) ap<W,

i=1 PcP;:eeP P:ecP

by constraint (5.11) from the LP. For a fixed edge e, the random variables X! are independent,
so we can apply the Chernoff bound of Theorem 5.23. Set § = /(clnn)/W*. Since W* > clnn
by assumption, it follows that § < 1. Then by Theorem 5.23 and Lemma 5.26 with U = W*,

Pr[Y, > (14 §)W*] < e W0°/3 = =(cln)/3 _ %
nc

Also (1 +0)W* = W* 4+ vcW*Inn. Since there can be at most n? edges,

> * < > *
Pr Iglez%(Ye_(l—i—&W] < eEZEPr[Y;_(1—!—(5)1/1/]

1
2 _ ,2—c/3
vl n .

For a constant ¢ > 12, this ensures that the theorem statement fails to hold with probability at

most 77127 and by increasing ¢ we can make the probability as small as we like. O

Observe that since W* > clnn, the theorem above guarantees that the randomized al-
gorithm produces a solution of no more than 2W* < 20OPT. However, the algorithm might
produce a solution considerably closer to optimal if W* > clnn. We also observe the following
corollary.

Corollary 5.30: If W* > 1, then with high probability, the total number of paths using any
edge is O(logn) - W*.

Proof. We repeat the proof above with U = (cIlnn)W* and 6 = 1. O

In fact, the statement of the corollary can be sharpened by replacing the O(logn) with
O(logn/loglogn) (see Exercise 5.13).

To solve the linear program in polynomial time, we show that it is equivalent to a polynomially-
sized linear program; we leave this as an exercise to the reader (Exercise 5.14, to be precise).

5.12 Random sampling and coloring dense 3-colorable graphs

In this section we turn to another application of Chernoff bounds. We consider coloring a §-
dense 3-colorable graph. We say that a graph is dense if for some constant « the number of
edges in the graph is at least a(g); in other words, some constant fraction of the edges that
could exist in the graph do exist. A d-dense graph is a special case of a dense graph. A graph
is d-dense if every node has at least dn neighbors for some constant §; that is, every node has
some constant fraction of neighbors it could have. Finally, a graph is k-colorable if each of the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



134 Random sampling and randomized rounding of linear programs

nodes can be assigned exactly one of k colors in such a way that no edge has its two endpoints
assigned the same color. In general, it is NP-complete to decide whether a graph is 3-colorable;
in fact, the following is known.

Theorem 5.31: It is NP-hard to decide if a graph can be colored with only 8 colors, or needs
at least & colors.

Theorem 5.32: Assuming a variant of the unique games congjecture, for any constant k > 3,
it ©s NP-hard to decide if a graph can be colored with only 3 colors, or needs at least k colors.

In Sections 6.5 and 13.2 we will discuss approximation algorithms for coloring any 3-colorable
graph. Here we will show that with high probability we can properly color any é-dense 3-
colorable graph in polynomial time. While this is not an approximation algorithm, it is a useful
application of Chernoff bounds, which we will use again in Section 12.4.

In this case, we use the bounds to show that if we know the correct coloring for a small,
randomly chosen sample of a d-dense graph, we can give a polynomial-time algorithm that with
high probability successfully colors the rest of the graph. This would seem to pose a problem,
though, since we do not know the coloring for the sample. Nevertheless, if the sample is no
larger than O(logn), we can enumerate all possible colorings of the sample in polynomial time,
and run the algorithm above for each coloring. Since one of the colorings of the sample will be
the correct one, for at least one of the possible colorings of the sample the algorithm will result
in a correct coloring of the graph with high probability.

More specifically, given a d-dense graph, we will select a random subset S C V of O((lnn)/d)
vertices by including each vertex in the subset with probability (3cInn)/dén for some constant c.
We will show first that the set size is no more than (6¢lnn)/0 with high probability, and then
that with high probability, every vertex has at least one neighbor in S. Thus given a correct
coloring of S, we can use the information about the coloring of S to deduce the colors of the
rest of the vertices. Since each vertex has a neighbor in S, its color is restricted to be one of
the two remaining colors, and this turns out to be enough of a restriction that we can infer the
remaining coloring. Finally, although we do not know the correct coloring of S we can run this
algorithm for each of the 3(6¢nn)/0 — n0(¢/9) pogsible colorings of S. One of the colorings of
S will be the correct coloring, and thus in at least one run of the algorithm we will be able to
color the graph successfully.

Lemma 5.33: With probability at most n=%/%, the set S has size |S| > (6clnn) /5.

Proof. We use the Chernoff bound (Theorem 5.23 and Lemma 5.26). Let X; be a 0-1 random
variable indicating whether vertex ¢ is included in S. Then since each vertex is included with
probability 3clnn/én, p = E[Y_" | X;] = (3clnn)/d. Applying the lemma with U = (3¢Inn)/d,
the probability that S| > 2U is at most e #/3 = n=¢/3 O

Lemma 5.34: The probability that a given vertex v ¢ S has no neighbor in S is at most n=3.

Proof. Let X; be a 0-1 random variable indicating whether the ith neighbor of v is in .S or not.

Then p = E[Y, X;] > 3clnn, since v has at least dn neighbors. Then applying Lemma 5.27

with L = 3clnn, the probability that v has no neighbors in S is no more than Pr[} ., X; = 0] <
—L —3c

e " =n""" O

Corollary 5.35: With probability at least 1 — 2n=(¢=D _|S| < (6¢lnn)/d and every v & S has
at least one neighbor in S.
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Proof. This follows from Lemmas 5.33 and 5.34. The probability that both statements of the
lemma are true is at least one minus the sum of the probabilities that either statement is false.
The probability that every v ¢ S has no neighbor in S is at worst n times the probability that
a given vertex v ¢ S has no neighbor in S. Since § < 1, the overall probability that both
statements are true is at least

1—n"¢% —p.p3¢>1_2p ()
d

Now we assume we have some coloring of the vertices in S, not necessarily one that is
consistent with the correct coloring of the graph. We also assume that every vertex not in S
has at least one neighbor in .S. We further assume that the coloring of S is such that every edge
with both endpoints in S has differently colored endpoints, since otherwise this is clearly not a
correct coloring of the graph. Assume we color the graph with colors {0, 1,2}. Given a vertex
v ¢ S, because it has some neighbor in S colored with some color n(v) € {0, 1,2}, we know that
v cannot be colored with color n(v). Possibly v has other neighbors in .S with colors other than
n(v). Either this forces the color of v or there is no way we can successfully color v; in the latter
case our current coloring of S must not have been correct, and we terminate. If the color of v
is not determined, then we create a binary variable z:(v), which if true indicates that we color v
with color n(v)+1 (mod 3), and if false indicates that we color v with color n(v) —1 (mod 3).
Now every edge (u,v) € E for u,v ¢ S imposes the constraint n(u) # n(v). To capture this,
we create an instance of the maximum satisfiability problem such that all clauses are satisfiable
if and only if the vertices not in S can be correctly colored. For each possible setting of the
Boolean variables z(u) and x(v) that would cause n(u) = n(v), we create a disjunction of z(u)
and x(v) that is false if it implies n(u) = n(v); for example, if z(u) = true and x(v) = false
implies that n(u) = n(v), then we create a clause (z(u) V z(v)). Since G is 3-colorable, given a
correct coloring of S, there exists a setting of the variables x(v) which satisfies all the clauses.
Since each clause has two variables, it is possible to determine in polynomial time whether the
instance is satisfiable or not; we leave it as an exercise to the reader to prove this (Exercise
6.3). Obviously if we find a setting of the variables that satisfies all constraints, this implies a
correct coloring of the entire graph, whereas if the constraints are not satisfiable, our current
coloring of S must not have been correct.

In Section 12.4, we’ll revisit the idea from this section of drawing a small random sample of
a graph and using it to determine the overall solution for the maximum cut problem in dense
graphs.

Exercises

5.1 In the mazimum k-cut problem, we are given an undirected graph G = (V, E), and non-
negative weights w;; > 0 for all (¢, j) € E. The goal is to partition the vertex set V into k
parts Vi, ..., Vi so as to maximize the weight of all edges whose endpoints are in different
parts (i.e., max(; jyemicv, jeviazb Wij)-

Give a randomized kgl—approximation algorithm for the MAX k-CUT problem.

5.2 Consider the following greedy algorithm for the maximum cut problem. We suppose the
vertices are numbered 1,...,n. In the first iteration, the algorithm places vertex 1 in U.
In the kth iteration of the algorithm, we will place vertex k in either U or in W. In order to
decide which choice to make, we will look at all the edges F' that have the vertex k as one
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endpoint and whose other endpoint is 1,...,k—1,sothat F' = {(j,k) e E: 1 < j <k —1}.
We choose to put vertex k in U or W depending on which of these two choices maximizes
the number of edges of F' being in the cut.
(a) Prove that this algorithm is a 1/2-approximation algorithm for the maximum cut
problem.
(b) Prove that this algorithm is equivalent to the derandomization of the maximum cut
algorithm of Section 5.1 via the method of conditional expectations.

5.3 In the mazimum directed cut problem (sometimes called MAX DICUT) we are given as
input a directed graph G = (V, A). Each directed arc (i,j) € A has nonnegative weight
w;; > 0. The goal is to partition V' into two sets U and W =V — U so as to maximize the
total weight of the arcs going from U to W (that is, arcs (¢,7) with ¢ € U and j € W).
Give a randomized %—approximation algorithm for this problem.

5.4 Consider the non-linear randomized rounding algorithm for MAX SAT as given in Section
5.6. Prove that using randomized rounding with the linear function f(y;) = 1y; + 1 also
gives a %—approximation algorithm for MAX SAT.

5.5 Consider the non-linear randomized rounding algorithm for MAX SAT as given in Section
5.6. Prove that using randomized rounding with the piecewise linear function

Syi+ 1 forggyig%é
fly) =4 1/2 for 3 <y; <3
Sy for £ <y; <1
also gives a %—approximation algorithm for MAX SAT.

5.6 Consider again the maximum directed cut problem from Exercise 5.3.

(a) Show that the following integer program models the maximum directed cut problem:

maximize Z WijZi5
(i,j)€A
subject to 25 < x, V(i,j) € A,
szg]-_xp V(Z>])€A7
x; € {0,1}, VieV,
0< Zij < 1, \V/(Z,]) € A.

(b) Consider a randomized rounding algorithm for the maximum directed cut prob-
lem that solves a linear programming relaxation of the integer program and puts
vertex ¢ € U with probability 1/4 + x;/2. Show that this gives a randomized 1/2-
approximation algorithm for the maximum directed cut problem.

5.7 In this exercise, we consider how to derandomize the randomized rounding algorithm

for the set cover problem given in Section 1.7. We would like to apply the method of
conditional expectations, but we need to ensure that at the end of the process we obtain
a valid set cover. Let X; be a random variable indicating whether set S; is included in
the solution. Then if w; is the weight of set Sj, let W be the weight of the set cover
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5.8

5.9

obtained by randomized rounding, so that W = Z;n:1 w;X;. Let Z be a random variable
such that Z = 1 if randomized rounding does not produce a valid set cover, and Z = 0 if
it does. Then consider applying the method of conditional expectations to the objective
function W + AZ for some choice of A > 0. Show that for the proper choice of A, the
method of conditional expectations applied to the randomized rounding algorithm yields
an O(Inn)-approximation algorithm for the set cover problem that always produces a set
cover.

Consider a variation of the maximum satisfiability problem in which all variables occur
positively in each clause, and there is an additional nonnegative weight v; > 0 for each
Boolean variable x;. The goal is now to set the Boolean variables to maximize the total
weight of the satisfied clauses plus the total weight of variables set to be false. Give
an integer programming formulation for this problem, with 0-1 variables y; to indicate
whether z; is set true. Show that a randomized rounding of the linear program in which
variable x; is set true with probability 1 — A + Ay’ gives a 2(v/2 — 1)-approximation
algorithm for some appropriate setting of \; note that 2(v/2 — 1) ~ .828.

Recall the maximum coverage problem from Exercise 2.11; in it, we are given a set of
elements E/, and m subsets of elements S1,...,S,, C F with a nonnegative weight w; > 0
for each subset S;. We would like to find a subset S C E of size k£ that maximizes the
total weight of the subsets covered by S, where S covers S; if SN .S; # 0.

(a) Show that the following nonlinear integer program models the maximum coverage
problem:

maximize Z w; | 1— H (1—z)

jE€[m] e€sS;

subject to Z Te =k,
eclk
ze € {0,1}, Ve e E.

(b) Show that the following linear program is a relaxation of the maximum coverage
problem:

maximize E wjz;

j€[m]
subject to Z Te 2> Zj, Vi € [m]
GGS]'
> we=k,
eekE
OSZ]'SL \V/jG[m],
0<z, <1, Veec F.

(c) Using the pipage rounding technique from Exercise 4.7, give an algorithm that de-
terministically rounds the optimal LP solution to an integer solution and has a
performance guarantee of 1 — %
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5.10 In the uniform labeling problem, we are given a graph G = (V, E), costs ¢, > 0 for

all e € E, and a set of labels L that can be assigned to the vertices of V. There is a
nonnegative cost ¢! > 0 for assigning label i € L to vertex v € V, and an edge e = (u,v)
incurs cost ¢, if u and v are assigned different labels. The goal of the problem is to assign
each vertex in V a label so as to minimize the total cost.

We give an integer programming formulation of the problem. Let the variable 2 € {0,1}
be 1 if vertex v is assigned label i € L, and 0 otherwise. Let the variable 2% be 1 if exactly
one of the two endpoints of the edge e is assigned label i, and 0 otherwise. Then the
integer programming formulation is as follows:

minimize B Ce Ze + CyTy,

e€E i€l veVyiel
subject to Za:f, =1, Yo eV,
i€l
20> gl — a1l Y(u,v) € E\Vi€ L,
28>l — a2l V(u,v) € E\Vi€ L,
2t e {0,1}, Ve € E.Vi € L,
xy € {0,1}, Yv e V,Vie L.

(a) Prove that the integer programming formulation models the uniform labeling prob-
lem.

Consider now the following algorithm. First, the algorithm solves the linear programming
relaxation of the integer program above. The algorithm then proceeds in phases. In each
phase, it picks a label ¢ € L uniformly at random, and a number « € [0, 1] uniformly at
random. For each vertex v € V' that has not yet been assigned a label, we assign it label
tif a < .

(b) Suppose that vertex v € V has not yet been assigned a label. Prove that the
probability that v is assigned label i € L in the next phase is exactly x!/|L|, and
the probability that it is assigned a label in the next phase is exactly 1/|L|. Further
prove that the probability that v is assigned label i by the algorithm is exactly ¢ .

(c) We say that an edge e is separated by a phase if both endpoints were not assigned
labels prior to the phase, and exactly one of the endpoints is assigned a label in
this phase. Prove that the probability that an edge e is separated by a phase is

1 )
] D ier Ze-

(d) Prove that the probability that the endpoints of edge e receive different labels is at
most >, 2L.

(e) Prove that the algorithm is a 2-approximation algorithm for the uniform labeling
problem.

5.11 Prove Lemma 5.22, and show that the integer programming solution (y*, C*) described

at the end of Section 5.9 must be optimal for the integer program (5.3).

5.12 Using randomized rounding and first fit, give a randomized polynomial-time algorithm

for the bin-packing problem that uses p - OPT(I) 4 k bins for some p < 2 and some small
constant k. One idea is to consider the linear program from Section 4.6.
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5.13 Show that the O(logn) factor in Corollary 5.30 can be replaced with O(logn/loglogn)
by using Theorem 5.23.

5.14 Show that there is a linear programming relaxation for the integer multicommodity flow
problem of Section 5.10 that is equivalent to the linear program (5.10) but has a number
of variables and constraints that are bounded by a polynomial in the input size of the
flow problem.

Chapter Notes

The textbooks of Mitzenmacher and Upfal [226] and Motwani and Raghavan [228] give more
extensive treatments of randomized algorithms.

A 1967 paper of Erdés [99] on the maximum cut problem showed that sampling a solution
uniformly at random as in Theorem 5.3 gives a solution whose expected value is at least half the
sum of the edge weights. This is one of the first randomized approximation algorithms of which
we are aware. This algorithm can also be viewed as a randomized version of a deterministic
algorithm given by Sahni and Gonzalez [257] (the deterministic algorithm of Sahni and Gonzalez
is given in Exercise 5.2).

Raghavan and Thompson [247] were the first to introduce the idea of the randomized round-
ing of a linear programming relaxation. The result for integer multicommodity flows in Section
5.11 is from their paper.

Random sampling and randomized rounding are most easily applied to unconstrained prob-
lems, such as the maximum satisfiability problem and the maximum cut problem, in which any
solution is feasible. Even problems such as the prize-collecting Steiner tree problem and the un-
capacitated facility location problem can be viewed as unconstrained problems: we merely need
to select a set of vertices to span or facilities to open. Randomized approximation algorithms
for constrained problems exist, but are much rarer.

The results for the maximum satisfiability problem in this chapter are due to a variety of
authors. The simple randomized algorithm of Section 5.1 is given by Yannakakis [293] as a ran-
domized variant of an earlier deterministic algorithm introduced by Johnson [179]. The “biased
coins” algorithm of Section 5.3 is a similar randomization of an algorithm of Lieberherr and
Specker [216]. The randomized rounding, “better of two”, and non-linear randomized rounding
algorithms in Sections 5.4, 5.5, and 5.6 respectively are due to Goemans and Williamson [137].

The derandomization of randomized algorithms is a major topic of study. The method of
conditional expectations given in Section 5.2 is implicit in the work of Erdés and Selfridge [101],
and has been developed by Spencer [271].

The randomized algorithm for the prize-collecting Steiner tree problem in Section 5.7 is an
unpublished result of Goemans.

The algorithm of Section 5.8 for uncapacitated facility location is due to Chudak and Shmoys
[77].

The scheduling algorithm of Section 5.9 is due to Schulz and Skutella [261]. The algorithm
for solving the integer programming relaxation of this problem is due to Goemans [132], and
the a-point algorithm that uses a single value of « is also due to Goemans [133].

Chernoff [71] gives the general ideas used in the proof of Chernoff bounds. Our proofs of
these bounds follow those of Mitzenmacher and Upfal [226] and Motwani and Raghavan [228].

The randomized algorithm for 3-coloring a dense 3-colorable graph is due to Arora, Karger,
and Karpinski [16]; a deterministic algorithm for the problem had earlier been given by Edwards
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[97]. Theorems 5.31 and 5.32 are due to Khanna, Linial and Safra [190] (see also Guruswami
and Khanna [152]) and Dinur, Mossel, and Regev [90] respectively.

Exercises 5.4 and 5.5 are due to Goemans and Williamson [137]. Exercise 5.6 is due to
Trevisan [279, 280]. Exercise 5.7 is due to Norton [237]. Ageev and Sviridenko [1] gave the
algorithm and analysis in Exercise 5.8, while Exercise 5.9 is also due to Ageev and Sviridenko
[2, 3]. The algorithm for the uniform labeling problem in Exercise 5.10 is due to Kleinberg
and Tardos [197]; the uniform labeling problem models a problem arising in image processing.
Exercise 5.12 is an unpublished result of Williamson.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



CHAPTER 6

Randomized rounding of
semidefinite programs

We now turn to a new tool which gives substantially improved performance guarantees for some
problems. So far we have used linear programming relaxations to design and analyze various
approximation algorithms. In this section, we show how nonlinear programming relaxations can
give us better algorithms than we know how to obtain via linear programming; in particular we
use a type of nonlinear program called a semidefinite program. Part of the power of semidefinite
programming is that semidefinite programs can be solved in polynomial time.

We begin with a brief overview of semidefinite programming. Throughout the chapter we
assume some basic knowledge of vectors and linear algebra; see the notes at the end of the
chapter for suggested references on these topics. We then give an application of semidefinite
programming to approximating the maximum cut problem. The algorithm for this problem
introduces a technique of rounding the semidefinite program by choosing a random hyperplane.
We then explore other problems for which choosing a random hyperplane, or multiple random
hyperplanes, is useful, including approximating quadratic programs, approximating clustering
problems, and coloring 3-colorable graphs.

6.1 A brief introduction to semidefinite programming

Semidefinite programming uses symmetric, positive semidefinite matrices, so we briefly review
a few properties of these matrices. In what follows, X7 is the transpose of the matrix X, and
vectors v € RN" are assumed to be column vectors, so that v’ v is the inner product of v with
itself, while vo” is an n by n matrix.

Definition 6.1: A matriz X € R"¥" is positive semidefinite iff for all y € R", yT Xy > 0.

Sometimes we abbreviate “positive semidefinite” as “psd.” Sometimes we will write X > 0 to
denote that a matrix X is positive semidefinite. Symmetric positive semidefinite matrices have
some special properties which we list below. From here on, we will generally assume (unless
otherwise stated) that any psd matrix X is also symmetric.

Fact 6.2: If X € R™"*"™ is a symmetric matriz, then the following statements are equivalent:

1. X is psd;
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142 Randomized rounding of semidefinite programs

2. X has non-negative eigenvalues;
3. X =VTV for some V€ R™*™ where m < n;
4. X =S Xiw;wl for some A\; > 0 and vectors w; € R" such that wlw; = 1 and
=1 7 %
wlwj =0 fori#j.

A semidefinite program (SDP) is similar to a linear program in that there is a linear objective
function and linear constraints. In addition, however, a square symmetric matrix of variables
can be constrained to be positive semidefinite. Below is an example in which the variables are
x5 for 1 <4, 5 < n.

maximize or minimize Z CijTij (6.1)
i?j
subject to Z AijkTij = by, Vk,
i,
Tij = Tji, Vi, j,

Given some technical conditions, semidefinite programs can be solved to within an additive
error of € in time that is polynomial in the size of the input and log(1/€). We explain the
technical conditions in more detail in the notes at the end of the chapter. We will usually
ignore the additive error when discussing semidefinite programs and assume that the SDPs can
be solved exactly, since the algorithms we will use do not assume exact solutions, and one can
usually analyze the algorithm that has additive error in the same way with only a small loss in
performance guarantee.

We will often use semidefinite programming in the form of wvector programming. The vari-
ables of vector programs are vectors v; € R", where the dimension n of the space is the number
of vectors in the vector program. The vector program has an objective function and constraints
that are linear in the inner product of these vectors. We write the inner product of v; and v;
as v; - vj, or sometimes as v} v;. Below we give an example of a vector program.

maximize or minimize Z cij(vi - vj) (6.2)
0,
subject to Z a;ji(vi - vj) = by, vk,
?:7‘7‘
v; € R", 1=1,...,n.

We claim that in fact the SDP (6.1) and the vector program (6.2) are equivalent. This follows
from Fact 6.2; in particular, it follows since a symmetric X is psd if and only if X = VTV for
some matrix V. Given a solution to the SDP (6.1), we can take the solution X, compute in
polynomial time a matrix V for which X = V7V (to within small error, which we again will
ignore), and set v; to be the ith column of V. Then z;; = viij = v; - vj, and the v; are a
feasible solution of the same value to the vector program (6.2). Similarly, given a solution v; to
the vector program, we construct a matrix V whose ith column is v;, and let X = VTV. Then
X is symmetric and psd, with x;; = v; - v;, so that X is a feasible solution of the same value
for the SDP (6.1).
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6.2 Finding large cuts

In this section, we show how to use semidefinite programming to find an improved approximation
algorithm for the maximum cut problem, or MAX CUT problem, which we introduced in Section
5.1. Recall that for this problem, the input is an undirected graph G = (V, E'), and nonnegative
weights w;; > 0 for each edge (i,j) € E. The goal is to partition the vertex set into two parts,
U and W =V — U, so as to maximize the weight of the edges whose two endpoints are in
different parts, one in U and one in W. In Section 5.1, we gave a %—approximation algorithm
for the maximum cut problem.

We will now use semidefinite programming to give a .878-approximation algorithm for the
problem in general graphs. We start by considering the following formulation of the maximum

cut problem:

1
maximize 5 Z wi;i (1 — yiy;) (6-3)
(4.J)EE

subject to y; € {—1,+1}, i=1,...,n.

We claim that if we can solve this formulation, then we can solve the MAX CUT problem.

Lemma 6.3: The program (6.3) models the mazimum cut problem.

Proof. Consider the cut U = {i:y; = —1} and W = {i: y; = +1}. Note that if an edge (i, )
is in this cut, then y;y; = —1, while if the edge is not in the cut, y;y; = 1. Thus

1
5 2 wii(l—wi;)

(3,7)EE

gives the weight of all the edges in the cut. Hence finding the setting of the y; to +1 that
maximizes this sum gives the maximum-weight cut. O

We can now consider the following vector programming relaxation of the program (6.3):

o1
maximize Z wij (1 — v; - vj) (6.4)
(i.g)€E
subject to v; v =1, i=1,...,n,
v; € R", 1=1,...,n.

This program is a relaxation of (6.3) since we can take any feasible solution y and produce
a feasible solution to this program of the same value by setting v; = (y;,0,0,...,0): clearly
v; -v; = 1 and v; - v; = y;y; for this solution. Thus if Zy p is the value of an optimal solution to
the vector program, it must be the case that Zyp > OPT.

We can solve (6.4) in polynomial time. We would now like to round the solution to obtain
a near-optimal cut. To do this, we introduce a form of randomized rounding suitable for vector
programming. In particular, we pick a random vector r = (r1,...,7,) by drawing each compo-
nent from N (0, 1), the normal distribution with mean 0 and variance 1. The normal distribution
can be simulated by an algorithm that draws repeatedly from the uniform distribution on [0,1].
Then given a solution to (6.4), we iterate through all the vertices and put i € U if v; -7 > 0 and
1 € W otherwise.
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Figure 6.1: An illustration of a random hyperplane.

Another way of looking at this algorithm is that we consider the hyperplane with normal
r containing the origin. All vectors v; lie on the unit sphere, since v; - v; = 1 and they are
unit vectors. The hyperplane with normal r containing the origin splits the sphere in half; all
vertices in one half (the half such that v; - r > 0) are put into U, and all vertices in the other
half are put into W (see Figure 6.1). As we will see below, the vector r/||r|| is uniform over the
unit sphere, so this is equivalent to randomly splitting the unit sphere in half. For this reason,
this technique is sometimes called choosing a random hyperplane.

To prove that this is a good approximation algorithm, we need the following facts.

Fact 6.4: The normalization of r, r/||r||, is uniformly distributed over the n-dimensional unit
sphere.

Fact 6.5: The projections of r onto two unit vectors ey and eo are independent and are normally
distributed with mean 0 and variance 1 iff e1 and es are orthogonal.

Corollary 6.6: Let 1’ be the projection of r onto a two-dimensional plane. Then the normal-
ization of ', v’ /||7'||, is uniformly distributed on a unit circle in the plane.

We now begin the proof that choosing a random hyperplane gives a .878-approximation
algorithm for the problem. We will need the following two lemmas.

Lemma 6.7: The probability that edge (i, ) is in the cut is * arccos(v; - v;).

Proof. Let r’ be the projection of r onto the plane defined by v; and v;. If r = r' + 7", then r”
is orthogonal to both v; and vj, and v; - r = v; - (' +7") = v; - /. Similarly v; - r = vj - /.
Consider Figure 6.2, where line AC is perpendicular to the vector v; and line BD is per-
pendicular to the vector vj. By Corollary 6.6, the vector r’ with its tail at the origin O is
oriented with respect to the vector v; by an angle o chosen uniformly from [0, 27). If 7/ is to
the right of the line AC, v; will have a nonnegative inner product with 7/, otherwise not. If 7/
is above the line BD, v; will have nonnegative inner product with r’, otherwise not. Thus we
have i € W and j € U if v/ is in the sector AB and i € U and j € W if 7/ is in the sector
CD. If the angle formed by v; and v; is 6 radians, then the angles ZAOB and ZCOD are also
6 radians. Hence the fraction of values for which «, the angle of v/, corresponds to the event
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Figure 6.2: Figure for proof of Lemma 6.7.

in which (4,7) is in the cut is 26/2w. Thus the probability that (i,7) is in the cut is % We
know that v; - v; = ||vs||||v;]| cos €. Since v; and v; are both unit length vectors, we have that
§ = arccos(v; - v;), which completes the proof of the lemma.

O
Lemma 6.8: For x € [-1,1],
! arccos(z) > 0.878 - 1(1 —x).
s 2
Proof. The proof follows from simple calculus. See Figure 6.3 for an illustration. O

Theorem 6.9: Rounding the vector program (6.4) by choosing a random hyperplane is a .878-
approximation algorithm for the maximum cut problem.

Proof. Let X;; be a random variable for edge (7, j) such that X;; = 1 if (4, j) is in the cut given
by the algorithm, and 0 otherwise. Let W be a random variable which gives the weight of the
cut; that is, W = Z(i,j)GE w;;X;;. Then by Lemma 6.7,

1
EW] = Z w;j - Prledge (4, ) is in cut] = Z wij - — arccos(v; - vj).
(i,9)€eE (i,9)€eE

By Lemma 6.8, we can bound each term < arccos(v; - v;) below by 0.878 - (1 — v; - v;), so that
1
E[W] > 0878 - o > wii(1—vi-v) = 0878 Zyp > 0.878 - OPT.

(i,j)EE
Ul

We know that Zy p > OPT. The proof of the theorem above shows that there is a cut of value
at least 0.878 - Zy p, so that OPT > 0.878 - Zy/p. Thus we have that OPT < Zyp < Wlm OPT.
It has been shown that there are graphs for which the upper inequality is met with equality.

This implies that we can get no better performance guarantee for the maximum cut problem
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Figure 6.3: Illustration of Lemma 6.8. The upper figure shows plots of the functions

% arccos(z) and %(1 — ). The lower figure shows a plot of the ratio of the two functions.
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by using Zy p as an upper bound on OPT. Currently, .878 is the best performance guarantee
known for the maximum cut problem problem. The following theorems show that this is either
close to, or exactly, the best performance guarantee that is likely attainable.

Theorem 6.10: If there is an a-approximation algorithm for the maximum cut problem with
a > 18 ~0.941, then P = NP.

Theorem 6.11: Given the unique games conjecture there is no a-approrimation algorithm for
the maximum cut problem with constant

L arccos(z)

a > min > 878

—1<e<1t (1 —z)

unless P = NP.

We sketch the proof of the second theorem in Section 16.5.

So far we have only discussed a randomized algorithm for the maximum cut problem. It
is possible to derandomize the algorithm by using a sophisticated application of the method
of conditional expectations that iteratively determines the various coordinates of the random
vector. The derandomization incurs a loss in the performance guarantee that can be made as
small as desired (by increasing the running time).

6.3 Approximating quadratic programs

We can extend the algorithm above for the maximum cut problem to the following more general
problem. Suppose we wish to approximate the quadratic program below:

maximize Z AT % (6.5)
1<i,j<n
subject to x; € {—1,+1}, i=1,...,n.

We need to be slightly careful in this case since as stated it is possible that the value of an
optimal solution is negative (for instance, if the values of a;; are negative and all other a;; are
zero). Thus far we have only been considering problems in which all feasible solutions have
nonnegative value so that the definition of an a-approximation algorithm makes sense. To see
that the definition might not make sense in the case of negative solution values, suppose we have
an a-approximation algorithm for a maximization problem with a < 1 and suppose we have
a problem instance in which OPT is negative. Then the approximation algorithm guarantees
the value of our solution is at least « - OPT, which means that the value of our solution will
be greater than that of OPT. In order to get around this difficulty, in this case we will restrict
the objective function matrix A = (a;;) in (6.5) to itself be positive semidefinite. Observe then
that for any feasible solution x, the value of the objective function will be 27 Az and will be
nonnegative by the definition of positive semidefinite matrices.

As in the case of the maximum cut problem, we can then have the following vector pro-
gramming relaxation:

maximize Z a;ij(vi - v;j) (6.6)
1<i,j<n
subject to v -v =1, 1=1,...,n,
'UZ'E%”, 1=1,....n
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Let Zy p be the value of an optimal solution for this vector program. By the same argument as
in the previous section, Zyp > OPT.

We can also use the same algorithm as we did for the maximum cut problem. We solve the
vector program (6.6) in polynomial time and obtain vectors v;. We choose a random hyperplane
with normal r, and generate a solution z for the quadratic program (6.5) by setting z; = 1 if
r-v; > 0 and ¥; = —1 otherwise. We will show below that this gives a %—approximation
algorithm for the quadratic program (6.5).

Lemma 6.12:

Elz;z;] = — arcsin(v; - vj)
™
Proof. Recall from Lemma 6.7 that the probability v; and v; will be on different sides of the
random hyperplane is % arccos(v; - v;). Thus the probability that Z; and z; have different values
is %arccos(vz- -vj). Observe that if Z; and Z; have different values, then their product must be
—1, while if they have the same value, their product must be 1. Thus the probability that the

product is 1 must be 1 — £ arccos(v; - v;). Hence

Elz;z;)] = Pr[z;z; =1] — Pr[z;z;

i=
1

= (1 — — arccos(v ) ( arccos(vj - vj)>
7r

2
= 1— —arccos(v; - vj).
T

Using arcsin(x) + arccos(z) = 5, we get

o 2w . 2 .
Elz,z;)=1- — [5 — arcsin(v; - vj)} = arcsin(v; - vj).

O

We would like to make the same argument as we did for the maximum cut problem in
Theorem 6.9, but there is a difficulty with the analysis. Let
. Zarcsin(z)
o= min ==,
—1<z<L1 T

Then we would like to argue that the expected value of the solution is

E Qi T; T = E am .%'Z.%'J

i7j
= = E a;j arcsin(v; - v;)
>« g az] v]

> a-OPT

by the same reasoning as in Theorem 6.9. However, the penultimate inequality is not necessarily
correct since it may be the case that some of the a;; are negative. We are assuming that the
inequality holds on a term-by-term basis, and this is not true when some of the a;; < 0.

Thus in order to analyze this algorithm, we will have to use a global analysis, rather than
a term-by-term analysis. To do so, we will need the following fact, called the Schur product
theorem, and the subsequent two corollaries.
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Fact 6.13 (Schur product theorem): For matrices A = (a;j) and B = (b;j), define AoB =
(aijbi;). Then if A= 0 and B =0, then Ao B = 0.

Corollary 6.14: If A > 0 and B = 0, then Zij a;jbi; > 0.

Proof. By Fact 6.13, we know that Ao B > 0, so that for the vector T of all ones, Z” a;jbi; =
1T(A o B)T > 0, by the definition of psd matrices. O

Corollary 6.15: If X = 0, |x;;| <1 for alli,j, and Z = (z;j) such that z;; = arcsin(z;;) — x5,
then Z = 0.

Proof. We recall that the Taylor series expansion for arcsin x around zero is

1

5.3% 1-3 5 1-3:5---(2n+1) P2

PR 3
arcsinx = x + +2.4.5$+ 2.4-6---2n-(2n +1) ’

and it converges for |z| < 1. Since the matrix Z = (z;;) where z;; = arcsin(x;;) — x;;, we can
express it as

1 1-
Z=—((XoX)oX)+ 3 (XoX)oX)oX)oX)+---.
2-3 2-4-5
By Fact 6.13, because X > 0, each term on the right-hand side is a positive semidefinite matrix,
and therefore their sum will be also. O

We can now show the following theorem.

Theorem 6.16: Rounding the vector program (6.6) by choosing a random hyperplane is a %—
approximation algorithm for the quadratic program (6.5) when the objective function matriz A
1s positive semidefinite.

Proof. We want to show that
E T | > 2 > 2 OPT
Zaij:rixj = ; Zaij(vi . Uj) > ; . .
,L’] Z7j

We know that

_ 2 .
E g aijTiTj | = — E a;j arcsin(v; - v;).
.J i,J

Thus we need to show that
- >y avesin(ui ;) = 23 oo 1) 2 0
2 i ) 2 s s )
2 ij aresin(v; - vj) — — ”alj v; V) >
1,] 4,7
By setting x;; = v; - v; and letting 0;; denote the angle between the two vectors, we obtain that
X = (z45) = 0 and |x;;| < 1 since
|vi - v;] = [||villl|vj | cos 05| = | cos Bi| < 1.

Thus we want to show that

2
— Z aij(arcsin(xij) - inj) > 0.
™ =

2y
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If we set z;; = arcsin(x;;) — x5, then it is equivalent to show that
2
; Z Q5255 > 0.
Z?J

This follows since Z = (z;;) = 0 by Corollary 6.15 and thus }_, ; a;jz;; > 0 by Corollary 6.14
since A = 0. ]

6.4 Finding a correlation clustering

In this section, we show that semidefinite programming can be used to obtain a good correlation
clustering in an undirected graph. In this problem we are given an undirected graph in which
each edge (i,7) € F is given two nonnegative weights, wi‘; > 0 and w;; = 0. The goal is to
cluster the vertices into sets of similar vertices; the degree to which ¢ and j are similar is given
by w;; and the degree to which they are different is given by W, We represent a clustering of
the vertices by a partition S of the vertex set into non-empty subsets. Let §(S) be the set of
edges that have endpoints in different sets of the partition, and let E(S) be the set of edges
that have both endpoints in the same part of the partition. Then the goal of the problem is to
find a partition & that maximizes the total w™ weight of edges inside the sets of the partition
plus the total w™ weight of edges between sets of the partition; in other words, we find S to

maximize
2 : + } : -
Wy + W+

(i,5)€E(S) (1,4)€6(S)

Observe that it is easy to get a %—approximation algorithm for this problem. If we put all the
vertices into a single cluster (that is, S = {V'}), then the value of this solution is > ; . p w;'; If
we make each vertex its own cluster (that is, S = {{i} : i € V'}), then the value of this solution
is > jyep wi;- Since OPT < Z(i7j)eE(w;; +w;;), at least one of these two solutions has a value
of at least %OPT.

We now show that we can obtain a %—approximation algorithm by using semidefinite pro-
gramming. Here we model the problem as follows. Let e be the kth unit vector; that is, it
has a one in the kth coordinate and zeros elsewhere. We will have a vector x; for each vertex
1 € V; we set x; = e, if 7 is in the kth cluster. The model of the problem then becomes

maximize Z (w:;(l‘z c@j) +wg (1 — ;- 333)>
(i.j)eE

subject to x; € {e1,...,ent, Vi,

since e - ¢ = 1 if k =1 and 0 otherwise. We can then relax this model to the following vector
program:

maximize Z (w;;(vz -vj) +wi (1 —v; - vj)) (6.7)
(i,4)€E
subject to v; - v =1, Vi,
(i ’Uj Z 0, Vi,j,
v; € %n’ Vi.
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Let Zco be the value of an optimal solution for the vector program. Observe that the vector
program is a relaxation, since any feasible solution to the model above is feasible for the vector
program and has the same value. Thus Zg¢c > OPT.

In the previous two sections, we chose a random hyperplane to partition the vectors into
two sets; in the case of the maximum cut problem, this gave the two sides of the cut, and in
the case of quadratic programming this gave the variables of value +1 and —1. In this case, we
will choose two random hyperplanes, with two independent random vectors r; and 7o as their
normals. This partitions the vertices into 2° = 4 sets: in particular, we partition the vertices
into the sets

Ry = {ieV:iri-v;>0,r9-v; >0}
Ry = {ieV:rg-v;>0,r9-v; <0}
Ry = {ieV:ir-v;<0,r9-v; >0}
Ry = {ieV:ir-v;<0,r9-v; <0}.

We will show that the solution consisting of these four clusters, with S = {R1, Ra, R3, R4},
comes within a factor of % of the optimal value. We first need the following lemma.

Lemma 6.17: For x € [0, 1],
(1 — Larccos(z))?

> .75
x
and ) )
1-(1-4%
(1 — - arccos(z)) > 75,
(I—x)
Proof. These statements follow by simple calculus. See Figure 6.4 for an illustration. O

We can now give the main theorem.

Theorem 6.18: Rounding the vector program (6.7) by using two random hyperplanes as above
3

gives a -approximation algorithm for the correlation clustering problem.

Proof. Let X;; be a random variable which is 1 if vertices ¢ and 7 end up in the same cluster, and
is 0 otherwise. Note that the probability that a single random hyperplane has the vectors v; and
v; on different sides of the hyperplane is % arccos(v;-vj) by Lemma 6.7. Then the probability that
v; and v; are on the same side of a single random hyperplane is 1 —% arccos(v;-v;). Furthermore,
the probability that the vectors are both on the same sides of the two random hyperplanes
defined by 7 and rg is (1 — %arccos(vi . vj))Q, since 71 and ro are chosen independently. Thus
E[X;] = (1 — Larccos(v; - vj))>.

Let W be a random variable denoting the weight of the partition. Observe that

W = Z (w;;Xij + wl-;(l — Xij)) )

(i,j)EE
Thus
EW) = Y (whElXy)+ w1 - B[Xy)
(1,9)€EE
N 1 S 1 2
= Z w;; (1 - arccos(v; - vj)> +w; [ 1— (1 - arccos(v; - vj)> .
(i,J)€E
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(1-(1/pi) arccos(x))"2/x
75 -
15
1 -
05 o
0 Il Il Il Il
0 0.2 0.4 0.6 0.8 1
2 T T
(1-(1-(1/pi)arccos(x))2)/(1-x)
75 -
15 B
1 - .
05 o
0 Il Il Il Il
0 0.2 0.4 0.6 0.8 1

Figure 6.4: Illustration of Lemma 6.17. The upper figure shows a plot of
[(1 — £ arccos(z))?] /z and the lower figure shows a plot of [1 — (1 — X arccos(x))?] /(1—
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We now want to use Lemma 6.17 to bound each term in the sum from below; we can do so
because the constraints of the vector program imply that v; - v; € [0,1]. Thus

E[W] > .75 Z (w;;(vz “vj) + wi (1 — ;- vj)> =.75-Zcc > .75-OPT.
(i,5)eE

6.5 Coloring 3-colorable graphs

In Section 5.12, we saw that with high probability we can 3-color a J-dense 3-colorable graph.
The situation for arbitrary 3-colorable graphs is much worse, however. We will give a quite
simple algorithm that colors a 3-colorable graph G' = (V, E) with O(y/n) colors, where n = |V|.
Then by using semidefinite programming, we will obtain an algorithm that uses O(n0‘387) colors
where O is defined below.

Definition 6.19: A function g(n) = O(f(n)) if there exists some constant ¢ > 0 and some ng
such that for all n > ng, g(n) = O(f(n)logn).

The best known algorithm does not use much fewer than O(n
is one of the most difficult problems to approximate.

Some coloring problems are quite simple: it is known that a 2-colorable graph can be
2-colored in polynomial time, and that an arbitrary graph with maximum degree A can be
(A + 1)-colored in polynomial time. We leave these results as exercises (Exercise 6.4).

Given these results, it is quite simple to give an algorithm that colors a 3-colorable graph
with O(y/n) colors. As long as there exists a vertex in the graph with degree at least \/n,
we pick three new colors, color the vertex with one of the new colors, and use the 2-coloring
algorithm to 2-color the neighbors of the vertex with the other two new colors; we know that
we can do this because the graph is 3-colorable. We remove all these vertices from the graph
and repeat. When we have no vertices in the graph of degree at least \/n, we use the algorithm
that colors a graph with A 4 1 colors to color the remaining graph with \/n new colors.

We can prove the following.

0-387) colors. Graph coloring

Theorem 6.20: The algorithm above colors any 3-colorable graph with at most 4y/n colors.

Proof. Each time the algorithm finds a vertex of degree at least \/n, we use three new colors.
This can happen at most n//n times, since we remove at least \/n vertices from the graph each
time we do this. Hence this loop uses at most 3,/n colors. The final step uses an additional
V/n colors. O

We now turn to semidefinite programming to help improve our coloring algorithms. We will
use the following vector program in which we have a vector v; for each 7 € V:

minimize A (6.8)
subject to v; - v; < A, V(i,j) € E,
v cv; =1, Vi eV,

v; € R, VieV.

The lemma below suggests why the vector program will be useful in deriving an algorithm for
coloring 3-colorable graphs.
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Green

Figure 6.5: Proof of Lemma 6.21.

Lemma 6.21: For any 3-colorable graph, there is a feasible solution to (6.8) with \ < —%.

Proof. Consider an equilateral triangle, and associate the unit vectors for all the vertices with
the three different colors with the three different vertices of the triangle (see Figure 6.5). Note
that the angle between any two vectors of the same color is 0, while the angle between vectors
of different colors is 27 /3. Then for v;, v; such that (i,j) € E, we have

27 1
vi-vj = |lvillllvjll eos { =) = —5.

Since we have given a feasible solution to the vector program with A = —1/2, it must be the
case that for the optimal solution A < —1/2. t

Note that the proof of the lemma has actually shown the following corollary; this will be
useful later on.

Corollary 6.22: For any 3-colorable graph, there is a feasible solution to (6.8) such that v;-v; =
—1/2 for all edges (i,7) € E.

To achieve our result, we will show how to obtain a randomized algorithm that produces
a semicoloring. A semicoloring is a coloring of nodes such that at most n/4 edges have
endpoints with the same color. This implies that at least n/2 vertices are colored such that
any edge between them has endpoints that are colored differently. We claim that an algorithm
for producing a semicoloring is sufficient, for if we can semicolor a graph with & colors, then we
can color the entire graph with klogn colors in the following way. We first semicolor the graph
with k colors, and take the vertices that are colored correctly. We then semicolor the vertices
left over (no more than n/2) with k& new colors, take the vertices that are colored correctly, and
repeat. This takes logn iterations, after which the entire graph is colored correctly with klogn
colors.

Now we give the randomized algorithm for producing a semicoloring. The basic idea is
similar to that used in the correlation clustering algorithm in Section 6.4. We solve the vector
program (6.8), and choose t = 2 + logg A random vectors rq,...,r;, where A is the maximum
degree of any vertex in the graph. The ¢ random vectors define 2¢ different regions into which
the vectors v; can fall: one region for each distinct possibility of whether r;-v; > 0 or r;-v; <0
for all j =1,...,t. We then color the vectors in each region with a distinct color.

Theorem 6.23: This coloring algorithm produces a semicoloring of 4A1°832 colors with proba-
bility at least 1/2.
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Proof. Since we used 2! colors for t = 2 + logg A, we use 4 - logs A — 4Alog32 colors.

We now need to show that this produces a semicoloring with probability at least 1/2. First,
we consider the probability that vertices i and j get the same color for a given edge (7, 7). This
probability is the probability that both ¢ and j fall into the same region; that is, the probability
that none of the t random hyperplanes separate i and j. Note that by Lemma 6.7, the probability
that a single random hyperplane separates ¢ and j is % arccos(v; - vj). Therefore the probability
that ¢ independently chosen hyperplanes fail to separate i and j is (1 — % arccos(v; - v;))*. Thus

1 ! 1 !
Pr[i and j get the same color for edge (i,7)] = <1 — — arccos(v; - vj)> < <1 - — arccos()\)) ,
™ ™

where the last inequality follows from the inequalities of the vector program (6.8) and since
arccos is a nonincreasing function. Then by Lemma 6.21,

<1 1 arccos(/\))t < (1 ~ L arccos(—1 /2)>t.

0 m

Finally, using some simple algebra and the definition of ¢,
1 ! 12r\*  /1\' _ 1
(1 - arccos(—1/2)> = (1 — 773?) = (3) < A"

Pr[i and j get the same color for edge (i, j)]

Therefore,

< —.
~ 9A

If m denotes the number of edges in the graph, then m < nA/2. Thus the expected number
of edges which have both endpoints colored the same is no more than m/9A, which is at most
n/18. Let X be a random variable denoting the number of edges which have both endpoints
colored the same. By Markov’s inequality (Lemma 5.25), the probability that there are more
than n/4 edges which have both endpoints colored the same is at most
E[X] n/18 1

< — < -,
n/4 — n/4 T 2

Pr[X >n/4] <

O]

If we use n as a bound on the maximum degree A, then we obtain an algorithm that
produces a semicoloring with O(n'°8s2) colors and thus a coloring with O(n!°8s 2) colors. Since
logs 2 ~ .631, this is worse than the algorithm we presented at the beginning of the section that
uses O(n'/?) colors. However, we can use some ideas from that algorithm to do better. Let
o be some parameter we will choose later. As long as there is a vertex in the graph of degree
at least o, we pick three new colors, color the vertex with one of the new colors, and use the
2-coloring algorithm to 2-color the neighbors of the vertex with the other two new colors; we
know that we can do this because the graph is 3-colorable. We remove all these vertices from
the graph and repeat. When we have no vertices in the graph of degree at least o, we use the
algorithm above to semicolor the remaining graph with O(c'°832) new colors. We can now show
the following.

0-38TY colors with

Theorem 6.24: The algorithm above semicolors a 3-colorable graph with O(n
probability at least 1/2.
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Proof. The first part of this algorithm uses 3n/o colors in total, since we remove at least o
vertices from the graph each time. To balance the two parts of the algorithm, we set o such
that = = 019832 which gives o = n%863, or ¢ ~ n%613. Thus both parts use O(n%387) colors,

which gives the theorem. O

From the theorem we get an overall algorithm that colors a graph with O(n%387) colors.

In Section 13.2, we will show how to use semidefinite programming to obtain an algorithm
that 3-colors a graph with O(A'/3v/In A) colors. Using the same ideas as above, this can be
converted into an algorithm that colors using O(n'/4) colors.

Exercises

6.1 As with linear programs, semidefinite programs have duals. The dual of the MAX CUT
SDP (6.4) is:

. 1 1

minimize B Z wWij + 1 Z Yi
1<) 1

subject to W + diag(vy) = 0,

where the matrix W is the symmetric matrix of the edge weights w;; and diag(7) is the
matrix of zeroes with 7; as the ith entry on the diagonal. Show that the value of any
feasible solution for this dual is an upper bound on the cost of any cut.

6.2 Semidefinite programming can also be used to give improved approximation algorithms
for the maximum satisfiability problem. First we start with the MAX 2SAT problem, in
which every clause has at most two literals.

(a) As in the case of the maximum cut problem, we’d like to express the MAX 2SAT
problem as a “integer quadratic program” in which the only constraints are y; €
{—1,1} and the objective function is quadratic in the y;. Show that the MAX 2SAT
problem can be expressed this way. (Hint: it may help to introduce a variable g
which indicates whether the value —1 or 1 is “TRUE”).

(b) Derive a .878-approximation algorithm for the MAX 2SAT problem.

(c) Use this .878-approximation algorithm for MAX 2SAT to derive a (%—I—e)—approximation
algorithm for the maximum satisfiability problem, for some ¢ > 0. How large an ¢
can you get?

6.3 Given a MAX 2SAT instance as defined in Exercise 6.2, prove that it possible to decide
in polynomial time whether all the clauses can be satisfied or not.

6.4 Give polynomial-time algorithms for the following:

(a) Coloring a 2-colorable graph with 2 colors.
(b) Coloring a graph of maximum degree A with A + 1 colors.

6.5 An important quantity in combinatorial optimization is called the Lovdsz Theta Function.
The theta function is defined on undirected graphs G = (V, E). One of its many definitions
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is given below as a semidefinite program:
Y(G) = maximize Z bij
i3
subject to Z bi; =1,
i

B = (b;j) = 0, B symmetric.

Lovéasz showed that w(G) < ¥(G) < x(G), where w(G) is the size of the largest clique in
G and x(G) is the minimum number of colors needed to color G.

(a) Show that w(G) < ¥(G).

(b) The following is a small variation in the vector program we used for graph coloring:

minimize «
subject to v; - v; = v(i,j) € E,
Vi - Uy = ]., Vi € ‘/7

v; € R", VieV.
Its dual is

maximize — Z U+ U
subject to Zuz cuj > 1,
i#]
u; € N VieV.
Show that the value of the dual is 1/(1 — 9(G)). By strong duality, this is also the
value of the primal; however, see the chapter notes for a discussion of conditions
under which strong duality holds.

The value of this vector program is sometimes called the strict vector chromatic
number of the graph, and the value of original vector programming relaxation (6.8)
is the vector chromatic number of the graph.

6.6 Recall the maximum directed cut problem from Exercises 5.3 and 5.6: we are given as
input a directed graph G = (V, A), with a nonnegative weight w;; > 0 for all arcs (7, 5) € A.
The goal is to partition V into two sets U and W =V — U so as to maximize the total
weight of the arcs going from U to W (that is, arcs (i,7) with ¢ € U and j € W).

(a) As in the case of the maximum cut problem, we’d like to express the maximum di-
rected cut problem as an integer quadratic program in which the only constraints are
y; € {—1,1} and the objective function is quadratic in y;. Show that the maximum
directed cut problem can be expressed in this way. (Hint: As is the case for MAX
2SAT in Exercise 6.2, it may help to introduce a variable gy which indicates whether
the value —1 or 1 means that y; is in the set U).
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(b) Find an a-approximation algorithm for the maximum directed cut problem using a
vector programming relaxation of the integer quadratic program above. Find the
best value of o that you can.

6.7 Recall the MAX 2SAT problem from Exercise 6.2 above. We consider a variant, called
MAX E2SAT, in which every clause has exactly two literals in it; that is, there are no
unit clauses. We say that a MAX E2SAT instance is balanced if for each i, the weight
of clauses in which x; appears is equal to the weight of the clauses in which z; appears.
Give a p-approximation algorithm for balanced MAX E2SAT instances, where

6 = min w /2 .94394.
xr:—1<x<1 1~ 1;[;

6.8 Consider again the maximum directed cut problem given in Exercise 6.6. We say that an
instance of the directed cut problem is balanced if for each vertex ¢ € V, the total weight
of arcs entering ¢ is equal to the total weight of arcs leaving i. Give an a-approximation
algorithm for balanced maximum directed cut instances, where « is the same performance

guarantee as for the maximum cut problem; that is,

L arccos(z)
o= min T———"
z—1<z<1 §(1 — gg)

Chapter Notes

Strang [273, 274] provides introductions to linear algebra that are useful in the context of our
discussion of semidefinite programming and various operations on vectors and matrices.

A 1979 paper of Lovész [219] gives an early application of SDP to combinatorial optimization
with his J-number for graphs (see Exercise 6.5). The algorithmic implications of the ¥-number
were highlighted in the work of Grétschel, Lovdsz, and Schrijver [144]; they showed that the
ellipsoid method could be used to solve the associated semidefinite program for the {¥J-number,
and that in general the ellipsoid method could be used to solve convex programs in polynomial
time given a polynomial-time separation oracle. Alizadeh [5] and Nesterov and Nemirovskii [236]
showed that polynomial-time interior-point methods for linear programming could be extended
to SDP. A good overview of SDP can be found in the edited volume of Wolkowicz, Saigal, and
Vandenberghe [290].

Unlike linear programs, the most general case of semidefinite programs is not solvable in
polynomial time without additional assumptions. There are examples of SDPs in which the
coefficients of all variables are either 1 or 2, but whose optimal value is doubly exponential in
the number of variables (see [5, Section 3.3]), and so no polynomial-time algorithm is possible.
Even when SDPs are solvable in polynomial time, they are only solvable to within an additive
error of ¢; this is in part due to the fact that exact solutions can be irrational, and thus not
expressible in polynomial space. To show that an SDP is solvable in polynomial time to within
an additive error of €, it is sufficient for the feasible region to be nonempty and to be contained
in a polynomially-size ball centered on the origin. These conditions are met for the problems
we discuss. Weak duality always holds for semidefinite programs. If there are points in the
interior of the feasible region of the primal and dual (called the “Slater conditions”), strong
duality also holds. As a quick way to see the solvability of semidefinite programs in polynomial
time, we observe that the constraint X > 0 is equivalent to the infinite family of constraints
yT' Xy >0 for all y € R™. Suppose we compute the minimum eigenvalue A and corresponding
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eigenvector v of the matrix X. If A > 0, then X is positive semidefinite, whereas if A < 0, then
vT(Xv) = vT (M) = WwTv < 0 gives a violated constraint. Thus we have a separation oracle
and can apply the ellipsoid method to find an approximate solution assuming the initial feasible
region can be bounded by a polynomially-sized ellipsoid and assuming that we can carry out the
eigenvalue and eigenvector computation to reasonable precision in polynomial time. Grotschel,
Lovész, and Schrijver [144] avoid the issue of computing an eigenvector in polynomial time by
giving a polynomial-time separation oracle that computes a basis of the columns of X, and then
computes determinants to check whether X is positive semidefinite and to return a constraint
y?' Xy < 0 if not.

The SDP-based algorithm of Section 6.2 for the maximum cut problem is due to Goemans
and Williamson [139]; they gave the first use of semidefinite programming for approximation
algorithms. Knuth [200, Section 3.4.1C] gives algorithms for sampling from the normal distri-
bution via samples from the uniform [0,1] distribution. Fact 6.4 is from Knuth [200, p. 135-136]
and Fact 6.5 is a paraphrase of Theorem IV.16.3 of Rényi [251]. Feige and Schechtman [109] give
graphs for which Zy p = 5375 OPT. Theorem 6.10 is due to Hastad [159]. Theorem 6.11 is due
to Khot, Kindler, Mossel, and O’Donnell [193] together with a result of Mossel, O’'Donnell, and
Oleszkiewicz [227]. The derandomization of the maximum cut algorithm is due to Mahajan and
Ramesh [222]. This derandomization technique works for many of the randomized algorithms
in this chapter that use random hyperplanes.

Subsequent to the work of Goemans and Williamson, Nesterov [235] gave the algorithm for
quadratic programs found in Section 6.3, Swamy [277] gave the algorithm of Section 6.4 on
correlation clustering, and Karger, Motwani, and Sudan [182] gave the SDP-based algorithm
for coloring 3-colorable graphs in Section 6.5. The O(y/n)-approximation algorithm for coloring
3-colorable graphs given at the beginning of Section 6.5 is due to Wigderson [286].

Fact 6.13 is known as the Schur product theorem; see, for example, Theorem 7.5.3 of Horn
and Johnson [171].

Exercises 6.1, 6.2, and Exercise 6.6 are from Goemans and Williamson [139]. Exercise 6.3
has been shown by Even, Itai, and Shamir [104], who also point to previous work on the 2SAT
problem. Exercise 6.5 is due to Tardos and Williamson as cited in [182]. Exercises 6.7 and
6.8 on balanced MAX 2SAT and balanced maximum directed cut problem instances are due to
Khot, Kindler, Mossel, and O’Donnell [193].
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CHAPTER 7

The primal-dual method

We introduced the primal-dual method in Section 1.5, and showed how it gave an approximation
algorithm for the set cover problem. Although there it did not give a better performance
guarantee than various LP rounding algorithms, we observed that in practice the primal-dual
method gives much faster algorithms than those that require solving a linear program.

In this chapter, we will cover primal-dual algorithms in more depth. We begin by reviewing
the primal-dual algorithm for the set cover problem from Section 1.5. We then apply the
primal-dual method to a number of problems, gradually developing a number of principles in
deciding how to apply the technique so as to get good performance guarantees. In discussing
the feedback vertex set problem in Section 7.2, we see that it is sometimes useful to focus on
increasing particular dual variables that correspond to small or minimal constraints not satisfied
by the current primal solution. In Section 7.3, we discuss the shortest s-t path problem, and
see that to obtain a good performance guarantee it is sometimes necessary to remove unneeded
elements in the primal solution returned by the algorithm. In Section 7.4 we introduce the
generalized Steiner tree problem (also known as the Steiner forest problem), and show that
to obtain a good performance guarantee it can be helpful to increase multiple dual variables
at the same time. In Section 7.5, we see that it can be useful to consider alternate integer
programming formulations in order to obtain improved performance guarantees. We conclude
the chapter with an application of the primal-dual method to the uncapacitated facility location
problem, and an extension of this algorithm to the related k-median problem. For the latter
problem, we use a technique called Lagrangean relaxation to obtain the appropriate relaxation
for the approximation algorithm.

7.1 The set cover problem: a review

We begin by reviewing the primal-dual algorithm and its analysis for the set cover problem from
Section 1.5. Recall that in the set cover problem, we are given as input a ground set of elements
E = {e1,...,e,}, some subsets of those elements Sq,S2, ..., S, C E, and a nonnegative weight
w; for each subset S;. The goal is to find a minimum-weight collection of subsets that covers all
of E; that is, we wish to find an I C {1,...,m} that minimizes ), ; w; subject to (J;c,; S; = E.

We observed in Section 1.5 that the set cover problem can be modelled as the following
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162 The primal-dual method

y<+0

I+

while there exists e; ¢ (J;¢; S; do
Increase the dual variable y; until there is some ¢ such that jieje8, Yi = We
I—T1U{l}

return J

Algorithm 7.1: Primal-dual algorithm for the set cover problem.

integer program:

m

minimize ijxj (7.1)
j=1

subject to Z ;> 1, i=1,...,n, (7.2)
Jie; €8

z;€{0,1} j=1,....m. (7.3)

If we relax the integer program to a linear program by replacing the constraints z; € {0,1}
with z; > 0, and take the dual, we obtain

n
maximize g Yi
i=1

subject to Z ¥ < wj, 7=1,....m,
i:e; €85

inO, Z':1,...,n.

We then gave the following algorithm, which we repeat in Algorithm 7.1. We begin with
the dual solution y = 0; this is a feasible solution since w; > 0 for all j. We also have an
infeasible primal solution I = (). As long as there is some element e; not covered by I, we
look at all the sets S; that contain e;, and consider the amount by which we can increase
the dual variable y; associated with e; and still maintain dual feasibility. This amount is

€ = Minj.c,es; (wj — Zk:ekesj yk) (note that possibly this is zero). We then increase y; by e.
This will cause some dual constraint associated with some set Sy to become tight; that is, after
increasing y; we will have for this set Sy

> e =wy

ke €Sy

We add the set Sy to our cover (by adding ¢ to I) and continue until all elements are covered.

In Section 1.5, we argued that this algorithm is an f-approximation algorithm for the set
cover problem, where f = max;|{j:e; € S;}|. We repeat the analysis here, since there are
several features of the analysis that are used frequently in analyzing primal-dual approximation
algorithms.

Theorem 7.1: Algorithm 7.1 is an f-approximation algorithm for the set cover problem.

Proof. For the cover I constructed by the algorithm, we would like to show that jerWj <

f-OPT. Let Zj, be the optimal value of the linear programming relaxation of (7.1). It is
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7.1 The set cover problem: a review 163

sufficient to show that > jer Wy < [ > y; for the final dual solution y, since by weak duality
we know that for any dual feasible solution y, > 1" ; y; < Z} p, and since the LP is a relaxation,
Z7p < OPT.

Because we only added a set S; to our cover when its corresponding dual inequality was
tight, we know that for any j € I, w; = Zz’:eiesj y;. Thus we have that

Yu = X ¥

jel jel i:eiESj
n
S leliaesy)
i=1

where the second equality comes from rewriting the double sum. We then observe that since
|{jel:e €S;}|<f, wegetthat

ijéf‘zn:yzéf-OPT-

jel i=1
O

We'll be using several features of the algorithm and the analysis repeatedly in this chapter.
In particular: we maintain a feasible dual solution, and increase dual variables until a dual
constraint becomes tight. This indicates an object that we need to add to our primal solution
(a set, in this case). When we analyze the cost of the primal solution, each object in the solution
was given by a tight dual inequality. Thus we can rewrite the cost of the primal solution in
terms of the dual variables. We then compare this cost with the dual objective function and
show that the primal cost is within a certain factor of the dual objective, which shows that we
are close to the value of an optimal solution.

In this case, we increase dual variables until w; = >, cies; Vi for some set S;, which we then
add to our primal solution. When we have a feasible primal solution I, we can rewrite its cost
in terms of the dual variables by using the tight dual inequalities, so that

DW=, D i

jel J€I i:e;€8;

By exchanging the double summation, we have that

ijzzyi“{jef:eiesj'}|.

jeI i=1

Then by bounding the value of |{j € I : e; € S;}| by f, we get that the cost is at most f times
the dual objective function, proving a performance guarantee on the algorithm. Because we
will use this form of analysis frequently in this chapter, we will call it the standard primal-dual
analysis.

This method of analysis is strongly related to the complementary slackness conditions dis-
cussed at the end of Section 1.4. Let I be the set cover returned by the primal-dual algorithm,
and consider an integer primal solution z* for the integer programming formulation (7.1) of the
set cover problem in which we set 27 = 1 for each set j € I. Then we know that whenever
x; > 0, the corresponding dual inequality is tight, so this part of the complementary slackness

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



164 The primal-dual method

conditions is satisfied. If it were also the case that whenever y; > 0, the corresponding primal
inequality were tight (namely, > jies€S; x;‘ = 1) then the complementary slackness conditions
would imply that =* is an optimal solution. This is not the case, but we have an approzimate
form of the complementary slackness condition that holds; namely, whenever y; > 0,

Z vi=[{jel:e;€S;}| <

j:eiESj

Whenever we can show that these complementary slackness conditions hold within a factor of
a, we can then obtain an a-approximation algorithm.

Recall from Section 5.6 that we defined the integrality gap of an integer programming
formulation to be the worst-case ratio over all instances of the problem of the optimal value
of the integer program to the optimal value of the linear programming relaxation. Standard
primal-dual algorithms construct a primal integer solution and a solution to the dual of the
linear programming relaxation, and the performance guarantee of the algorithm gives an upper
bound on the ratio of these two values over all possible instances of the problem. Therefore, the
performance guarantee of a primal-dual algorithm provides an upper bound on the integrality
gap of an integer programming formulation. However, the opposite is also true: the integrality
gap gives a lower bound on the performance guarantee that can be achieved via a standard
primal-dual algorithm and analysis, or indeed any algorithm that compares the value of its
solution with the value of the linear programming relaxation. In this chapter we will sometimes
be able to show limits on primal-dual algorithms that use particular integer programming
formulations due to an instance of the problem with a bad integrality gap.

7.2 Choosing variables to increase: the feedback vertex set
problem in undirected graphs

In the feedback vertex set problem in undirected graphs, we are given an undirected graph
G = (V,E) and nonnegative weights w; > 0 for vertices i € V. The goal is to choose a
minimum-cost subset of vertices S C V such that every cycle C in the graph contains some
vertex of S. We sometimes say that S hits every cycle of the graph. Another way to view the
problem is that the goal is to find a minimum-cost subset of vertices S such that removing S
from the graph leaves the graph acyclic. Let G[V — S| be the graph on the set of vertices V — .S
with the edges from G that have both endpoints in V' — S; we say that G[V — S| is the graph
induced by V — S. A third way to view the problem is to find a minimum-cost set of vertices
S such that the induced graph G[V — S] is acyclic.

We will give a primal-dual algorithm for this problem. In the case of the set cover problem,
it did not matter which dual variable was increased; we could increase any variable y; corre-
sponding to an uncovered element e; and obtain the same performance guarantee. However, it
is often helpful to carefully select the dual variable to increase, and we will see this principle in
the course of devising an algorithm for the feedback vertex set problem.

If we let C denote the set of all cycles C' in the graph, we can formulate the feedback vertex
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set problem in undirected graphs as the following integer program:

minimize Zwi%‘ (7.4)
eV
subject to le >1, vC e,
eC
x; €{0,1}, VieV.

Initially this might not seem like such a good choice of a formulation: the number of cycles in
the graph can be exponential in the size of the graph. However, with the primal-dual method we
do not actually need to solve either the integer program or its linear programming relaxation;
our use of the linear program and the dual only guides the algorithm and its analysis, so having
an exponential number of constraints is not problematic.

If we relax the integer program to a linear program by replacing the constraints x; € {0,1}
with z; > 0, and take its dual, we obtain

maximize g yc

ceC

subject to Z yo < wy, Vi eV,
CceC:xaeC

yo > 0, vC e C.

Again, it might seem worrisome that we now have an exponential number of dual variables,
since the primal-dual method maintains a feasible dual solution. In the course of the algorithm,
however, only a polynomial number of these will become nonzero, so we only need to keep track
of these nonzero variables.

By analogy with the primal-dual algorithm for the set-cover problem, we obtain Algorithm
7.2. We start with the dual feasible solution in which all yo are set to zero, and with the primal
infeasible solution S = (). We see if there is any cycle C' left in the induced graph G[V — S].
If there is, then we determine the amount by which we can increase the dual variable yo while
still maintaining dual feasibility. This amount is € = min;ec (wi — D criecr ycr). Increasing
yo causes a dual inequality to become tight for some vertex ¢ € C'; in particular, it becomes
tight for a vertex ¢ € C' that attains the minimum in the expression for e. We add this vertex
£ to our solution S and we remove ¢ from the graph. We also repeatedly remove any vertices
of degree one from the graph (since they cannot be in any cycle) until we are left with a graph
that contains only vertices of degree two or higher. Let n = |V| be the number of vertices in
the graph. Then note that we can add at most n vertices to our solution, so that we only go
through the main loop at most n times, and at most n dual variables are nonzero.

Suppose we now analyze the algorithm as we did for the set cover problem. Let S be the
final set of vertices chosen. We know that for any i € S, w; = Y .;cc yc. Thus we can write
the cost of our chosen solution as

dDwi=Y Y yo=>_19NClyc.

i€S 1€S Cuel ceC

Note that |S N C| is simply the number of vertices of the solution S in the cycle C. If we can

show that [S N C| < o whenever yo > 0, then we will have ), qw; < ) rccye < a- OPT.
Unfortunately, if in the main loop of the algorithm we choose an arbitrary cycle C' and

increase its dual variable y¢, it is possible that |S N C/| can be quite large. In order to do better,
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y <+ 0
S0
while there exists a cycle C' in G do
Increase yco until there is some £ € C' such that Y vcc.pcor Yor = we
S« Su{l}
Remove ¢ from G
Repeatedly remove vertices of degree one from G

return S

Algorithm 7.2: Primal-dual algorithm for the feedback vertex set problem (first attempt).

we need to make a careful choice of cycle C. If we can always choose a short cycle, with |C] < «,
then certainly we will have |[SNC| < |C| < «. This isn’t always possible either: the graph itself
can simply be one large cycle through all n vertices. In such a case, however, we only need to
choose one vertex from the cycle in order to have a feasible solution. This leads to the following
observation.

Observation 7.2: For any path P of vertices of degree two in graph G, Algorithm 7.2 will
choose at most one vertex from P; that is, |S N P| < 1 for the final solution S given by the
algorithm.

Proof. Once S contains a vertex of P, we remove that vertex from the graph. Its neighbors in
P will then have degree one and be removed. Iteratively, the entire path P will be removed
from the graph, and so no further vertices of P will be added to S. O

Suppose that in the main loop of Algorithm 7.2 we choose the cycle C' that minimizes the
number of vertices that have degree three or higher. Note that in such a cycle, vertices of degree
three or more alternate with paths of vertices of degree two (possibly paths of a single edge).
Thus by Observation 7.2, the value of |S N C| for the final solution S will be at most twice the
number of vertices of degree three or higher in C'. The next lemma shows us that we can find
a cycle C' with at most O(logn) vertices of degree three or higher.

Lemma 7.3: In any graph G that has no vertices of degree one, there is a cycle with at most
2[logy n| wertices of degree three or more, and it can be found in linear time.

Proof. If G has only vertices of degree two, then the statement is trivially true. Otherwise,
pick an arbitrary vertex of degree three or higher. We start a variant of a breadth-first search
from this vertex, in which we treat every path of vertices of degree two as a single edge joining
vertices of degree three or more; note that since there are no degree one vertices, every such
path joins vertices of degree at least three. Thus each level of the breadth-first search tree
consists only of vertices of degree three or more. This implies that the number of vertices at
each level is at least twice the number of vertices of the previous level. Observe then that the
depth of the breadth-first search can be at most [log, n|: once we reach level [log, n], we have
reached all n vertices of the graph. We continue the breadth-first search until we close a cycle;
that is, we find a path of vertices of degree two from a node on the current level to a previously
visited node. This cycle has at most 2[log, n] vertices of degree three or more, since at worst
the cycle is closed by an edge joining two vertices at depth [logy n]. O

We give the revised algorithm in Algorithm 7.3. We can now show the following theorem.
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y <+ 0

S0

Repeatedly remove vertices of degree one from G

while there exists a cycle in G do
Find cycle C' with at most 2[logy 1| vertices of degree three or more
Increase yc until there is some £ € C' such that Y v cc.pcor Yor = we
S« Su{/}
Remove ¢ from G
Repeatedly remove vertices of degree one from G

return S

Algorithm 7.3: Primal-dual algorithm for the feedback vertex set problem (second attempt).

Theorem 7.4: Algorithm 7.3 is a (4[logy n|)-approximation algorithm for the feedback vertex
set problem in undirected graphs.

Proof. As we showed above, the cost of our final solution S is

dwi=> > yo=)_15nClyc.

€S 1€S CueC ceC

By construction, yo > 0 only when C' contains at most 2[log, n| vertices of degree three or more
in the graph at the time we increased yc. Note that at this time S N C = (). By Observation
7.2, each path of vertices of degree two joining two vertices of degree three or more in C' can
contain at most one vertex of S. Thus if C' has at most 2[logy n] vertices of degree three or
more, it can have at most 4[logy, n] vertices of S overall: possibly each vertex of degree 3 or
more is in S, and then at most one of the vertices in the path joining adjacent vertices of degree
three or more can be in S. Since as the algorithm proceeds, the degree of a vertex can only go
down, we obtain that whenever yo > 0, |S N C| < 4[logy n]. Thus we have that

D wi=> |SNClyc < (4[logyn]) Y ye < (4[logy n]) OPT.
€S ceC ceC

O

The important observation of this section is that in order to get a good performance guar-
antee, one must choose carefully the dual variable to increase, and it is frequently useful to
choose a dual variable that is small or minimal in some sense.

The integrality gap of the integer programming formulation (7.4) is known to be Q(logn),
and so a performance guarantee of O(logn) is the best we can hope for from a primal-dual
algorithm using this formulation. However, this does not rule out obtaining a better performance
guarantee by a primal-dual algorithm using a different integer programming formulation of the
problem. In Section 14.2, we will show that we can obtain a primal-dual 2-approximation
algorithm for the feedback vertex set problem in undirected graphs by considering a more
sophisticated integer programming formulation of the problem.
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7.3 Cleaning up the primal solution: the shortest s-t path prob-
lem

In the shortest s-t path problem, we are given an undirected graph G = (V, E), nonnegative
costs ¢, > 0 on all edges e € E, and a pair of distinguished vertices s and t. The goal is
to find the minimum-cost path from s to ¢. It is well-known that the optimal solution can
be found in polynomial time; for instance, Dijkstra’s algorithm finds an optimal solution in
polynomial time. However, it is instructive to think about applying the primal-dual method to
this problem, in part because it gives us insight into using the primal-dual method for related
problems that are NP-hard; we will see this in the next section. Additionally, the algorithm we
find using the primal-dual method turns out to be equivalent to Dijkstra’s algorithm.

Let S ={SCV:seSt¢ S} that is, S is the set of all s-¢t cuts in the graph. Then we
can model the shortest s-t path problem with the following integer program:

minimize E CeTe

subject to Z Te > 1, VS eSS,
e€d(S)
x8€{071}7 Ve € E,

where §(S) is the set of all edges that have one endpoint in S and the other endpoint not in
S. To see that this integer program models the shortest s-t path problem, take any feasible
solution x and consider the graph G’ = (V, E’) with E' = {e € E: z. = 1}. The constraints
ensure that for any s-¢ cut S, there must be at least one edge of E’ in 6(5): that is, the size of
the minimum s-t cut in G’ must be at least one. Thus by the max-flow min-cut theorem the
maximum s-t flow in G’ is at least one, which implies that there is a path from s to t in G'.
Similarly, if x is not feasible, then there is some s-t cut S for which there are no edges of E’ in
d(.S), which implies that the size of minimum s-¢ cut is zero, and thus the maximum s-t flow is
zero. Hence there is no path from s to t in G'.

Once again the number of constraints in the integer program is exponential in the size of
the problem, and as with the feedback vertex set problem in Section 7.2, this is not problematic
since we only use the formulation to guide the algorithm and its analysis.

If we replace the constraints z. € {0,1} with . > 0 to obtain a linear programming
relaxation and take the dual of this linear program, we obtain:

maximize Z Ys
Ses
subject to Z ys < Ce, Ve € E,
SeS:e€s(S)

ys > 0 VS e S.

The dual variables yg have a nice geometric interpretation; they can be interpreted as “moats”
surrounding the set S of width yg; see Figure 7.1 for an illustration. Any path from s to ¢t must
cross this moat, and hence must have cost at least yg. Moats must be nonoverlapping, and
thus for any edge e, we cannot have edge e crossing moats of total width more than c.; thus
the dual constraint that ) . . 5(5) YS < Ce- We can have many moats, and any s-t path must
cross them all, and have total length at most > g5 ¥s.
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Figure 7.1: An illustration of a moat separating s from ¢. The moat contains the
nodes in S and its width is yg.

y<+0

F«0

while there is no s-t path in (V, F) do
Let C be the connected component of (V, F') containing s
Increase yo until there is an edge ¢’ € §(C) such that ZSES:E/@(S) Ys = Cer
F <+ FU{}

Let P be an s-t path in (V, F)

return P

Algorithm 7.4: Primal-dual algorithm for the shortest s-t path problem.

We now give a primal-dual algorithm for the shortest s-t path problem in Algorithm 7.4
which follows the general lines of the primal-dual algorithms we have given previously for the
set cover and feedback vertex set problems. We start with a dual feasible solution y = 0 and the
primal infeasible solution of F' = (). While we don’t yet have a feasible solution, we increase the
dual variable yo associated with an s-t cut C which the current solution does not satisfy; that
is, for which F N d(C) = 0. We call such constraints violated constraints. Following the lesson
of the previous section, we carefully choose the “smallest” such constraint: we let C be the set
of vertices of the connected component containing s in the set of edges F. Because F' does not
contain an s-t path, we know that ¢ ¢ C', and by the definition of a connected component we
know that 6(C') N F = (). We increase the dual variable yo until some constraint of the dual
becomes tight for some edge ¢’ € E, and we add ¢’ to F.

Once our primal solution F' is feasible and contains an s-t path, we end the main loop. Now
we do something slightly different than before: we don’t return the solution F', but rather a
subset of F'. Let P be any s-t path such that P C F. Our algorithm returns P. We do this
since it may be too expensive to return all the edges in F', so we effectively delete any edge we
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do not need and return only the edges in P.
We begin the analysis by showing that the set of edges F' found by the algorithm forms a
tree; this implies that the s-t path P is unique.

Lemma 7.5: At any point in Algorithm 7.4, the set of edges in F' forms a tree containing the
verter s.

Proof. We prove this by induction on the number of edges added to F'. In each step of the main
loop we consider the connected component C' of (V, F) containing s, and add an edge e’ from
the set 6(C') to our solution F. Since exactly one endpoint of €’ is in C, ¢’ cannot close a cycle
in the tree F', and causes F' to span a new vertex not previously spanned. ]

We can now show that this algorithm gives an optimal algorithm for the shortest s-t path
problem.

Theorem 7.6: Algorithm 7.4 finds a shortest path from s to t.

Proof. We prove this using the standard primal-dual analysis . As usual, since for every edge
e € P, we have that ¢, = 25:665(5) ys, and we know that

Yoce=d > ws= Y IPNSS)ys.

ecP e€P S:ecd(S) S:seS,t¢S

If we can now show that whenever yg > 0, we have |[P N d(5)| = 1, then we will show that

dce= Y, ys<OPT

ecP S:seS ¢S

by weak duality. But of course since P is an s-t path of cost no less than OPT, it must have
cost exactly OPT.

We now show that if yg > 0, then |[P N d(S)| = 1. Suppose otherwise, and |P N J(S)| > 1.
Then there must be a subpath P’ of P joining two vertices of S such that the only vertices of
P’ in S are its start and end vertices; see Figure 7.2. Since yg > 0, we know that at the time
we increased yg, F' was a tree spanning just the vertices in S. Thus F U P’ must contain a
cycle. Since P is a subset of the final set of edges F', this implies that the final F' contains a
cycle, which contradicts Lemma 7.5. Thus it must be the case that |[P N d(S)| = 1. O

As we stated previously, one can show that this algorithm behaves in exactly the same way
as Dijkstra’s algorithm for solving the shortest s-t path problem; proving this equivalence is
given as Exercise 7.1.

7.4 Increasing multiple variables at once: the generalized Steiner
tree problem

We now turn to a problem known as the generalized Steiner tree problem or the Steiner forest
problem. In this problem we are given an undirected graph G' = (V, E), nonnegative costs ¢, > 0
for all edges e € E, and k pairs of vertices s;,t; € V. The goal is to find a minimum-cost subset
of edges F' C E such that every s;-t; pair is connected in the set of selected edges; that is, s;
and ¢; are connected in (V, F') for all .
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S

Figure 7.2: Proof of Theorem 7.6. The heavy line is the path P; the dotted heavy line
is the subpath P’.

Let S; be the subsets of vertices separating s; and ¢;; thatis, S; = {S C V : |SN{s;, t;} | = 1}.
Then we can model this problem with the following integer program:

minimize Zcexe (7.5)
ecE
subject to Z Te > 1, VS CV:§esS; for some i,
e€d(S)
z. € {0,1}, ec F.

The set of constraints enforce that for any s;-t; cut S with s; € S, t; ¢ S or vice versa, we must
select one edge from §(S). The argument that this models the generalized Steiner tree problem
is similar to that for the shortest s-t path problem in the previous section. Given the linear
programming relaxation obtained by dropping the constraints z. € {0,1} and replacing them
with z, > 0, the dual of this linear program is

maximize Z Ys
SCV:3i,5€S;
subject to Z Ys < Ce, Ve € E,
S:e€d(S)

ys >0, Ji:SeS.

As in the case of the shortest s-t path problem, the dual has a natural geometric interpretation
as moats. In this case, however, we can have moats around any set of vertices S € §; for any
i. See Figure 7.3 for an illustration.

Our initial attempt at a primal-dual algorithm is given in Algorithm 7.5, and is similar to
the shortest s-t path algorithm given in the previous section. In every iteration, we choose some
connected component C such that |C' N {s;,¢;} | = 1 for some i. We increase the dual variable
yo associated with C' until the dual inequality associated with some edge ¢ € §(C') becomes
tight, and we add this edge to our primal solution F'.
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Figure 7.3: Illustration of moats for the generalized Steiner tree problem. Each of sq,
s2, and t3 has a white moat surrounding just that node; additionally, there is a grey
moat depicting yys, s,.t51 = 0.

y<+« 0

F«0

while not all s;-t; pairs are connected in (V, F') do
Let C be a connected component of (V, F') such that |C'N {s;,¢;} | =1 for some ¢
Increase yc until there is an edge €’ € 6(C') such that >_Sessercs(s) Ys = Ce
F+ FU{}

return I

Algorithm 7.5: Primal-dual algorithm for the generalized Steiner tree problem (first attempt).

Using the standard primal-dual analysis, we can analyze the cost of the final solution F' as

follows:
Y= Y ys=p 16(S)NFlys.
) S

ecF ecF S:e€é(S

In order to compare the term ) ¢ |5(S) N F|ys with the dual objective function )¢ ys, we will
need to show that |§(S) N F| < a for some o whenever yg > 0.

Unfortunately, it is possible to give an example showing that |0(S) N F| = k (where k is the
number of s;-t; pairs) for yg > 0 no matter what connected component is chosen in the main
loop of Algorithm 7.5. To see this, consider the complete graph on k+ 1 vertices. Let each edge
have cost 1, let one vertex correspond to all s;, and let the remaining k vertices be t1,...,tx
(see Figure 7.4). The algorithm must choose one of the k + 1 vertices initially for the set C.
The dual yo gets value yo = 1, and this is the only non-zero dual at the end of the algorithm.
The final solution F' has edges from the vertex chosen for C' to all k other vertices, giving
|0(C) N F| = k. However, observe that in the final solution if we take the average of |6(C) N F|
over all the k+ 1 vertices we could have chosen for the initial set C, we get 2k/(k+1) ~ 2 since
e () N F| = 2k,

This observation suggests that perhaps we should increase the dual variables for several sets
C at once. We present this variation in Algorithm 7.6. Let C be the set of all the connected
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51,52, 53, 54

to t3

Figure 7.4: Bad example for Algorithm 7.5. If the algorithm chooses the vertex
$1,...,S84 as its initial connected component C, then it will eventually add all solid
edges to F, and |§(C) N F| = 4.

components C' such that |C N {s;,t;}| = 1. We increase associated dual variables yc for all
C € C at the same rate until a dual inequality becomes tight for some edge e € 6(C) for a set C
whose dual we increased. We then add e to our solution £’ and continue. Additionally, we index
the edges we add as we go along: e; is added in the first iteration, es in the second, and so on.
Once we have a feasible solution F' such that all s;-t; pairs are connected in F', we go through
the edges in the reverse of the order in which they were added, from the edge added in the last
iteration to the edge added in the first iteration. If the edge can be removed without affecting
the feasibility of the solution, it is deleted. The final set of edges returned after this “reverse
deletion” step is F’. This reverse deletion step is solely to simplify our analysis; in Exercise 7.4
the reader is asked to show that removing all unnecessary edges in any order gives an equally
good approximation algorithm.

Given the geometric interpretation of the dual variables as moats, we can give an illustration
of the algorithm in Figure 7.5.

We can now show that our intuition gathered from the bad example in Figure 7.4 is essen-
tially correct, and that the algorithm is a 2-approximation algorithm for the generalized Steiner
tree problem. In order to do this, we first state a lemma, whose proof we defer for a moment.

Lemma 7.7: For any C in any iteration of the algorithm,

Y 1s(C)nF < 21el.
ceC

In terms of the geometric interpretation, we wish to show that the number of times that the
edges in the solution cross a moat is at most twice the number of moats; see Figure 7.6. The
main intuition of the proof is that the degree of nodes in a tree is at most twice the number of
nodes, where we treat each connected component C' as a node of the tree and the edges in 6(C)
as the edges of the tree. The proof is slightly more complicated than this because only some
components C are in C, but we show that every “leaf” of the tree is a component in C and this
is sufficient to prove the result.

We now show that the lemma implies the desired performance guarantee.

Theorem 7.8: Algorithm 7.6 is a 2-approrimation algorithm for the generalized Steiner tree

problem.
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Figure 7.5: Illustration of the primal-dual algorithm for the generalized Steiner tree
problem. Two edges go tight simultaneously in the last iteration before the deletion
step. The deletion step removes the edge (s1, s2) added in the first iteration. The final
set of edges is shown in the last figure.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



7.4 Increasing multiple variables at once: the generalized Steiner tree problem 175

y <+ 0
F+0
{0
while not all s;-t; pairs are connected in (V, F') do
l—0+1
Let C be the set of all connected components C of (V, F') such that |C'N {s;,t;}| =1
for some i
Increase yc for all C' in C uniformly until for some e, € 6(C”), C' € C,
Cep = ZS:@@E(S(S) Ys
F«+ FuU {eg}
F' '+ F
for k + ¢ downto 1 do
if F’ — e}, is a feasible solution then
Remove e, from F’
return F’

Algorithm 7.6: Primal-dual algorithm for the generalized Steiner tree problem (second attempt).

Proof. As usual, we begin by expressing the cost of our primal solution in terms of the dual

variables:
D= >, us=) IF'NaS)lys.

ecF’ ecF’ S:ecé(S) S

We would like to show that

d_IFNa(S)ys <2 ys. (7.6)

S S

since by weak duality, this will imply that the algorithm is a 2-approximation algorithm. As
is suggested by the bad example in Figure 7.4, we cannot simply prove this by showing that
|F'N4(S)| < 2 whenever yg > 0. Instead, we show inequality (7.6) by induction on the number
of iterations of the algorithm. Initially all dual variables yg = 0, so inequality (7.6) holds.
Suppose that the inequality holds at the beginning of some iteration of the main loop of the

algorithm. Then in this iteration we increase each yo for C' € C by the same amount (call it €).
This increases the left-hand side of (7.6) by

e> |F'nés(0)
ceC

and the right-hand side by
2¢|C].

However, by the inequality of Lemma 7.7, this means that the increase in the left-hand side
is no greater than the increase in the right-hand side. Thus if the inequality held before the
increase of the dual variables in this iteration, it will also hold afterwards. ]

We now turn to the proof of Lemma 7.7. We first need an observation.

Observation 7.9: At any point in the algorithm, the set of edges F' is a forest.

Proof. We prove the statement by induction on the number of iterations of the algorithm. The
set F' = () is initially a forest. Any time we add an edge to the solution, it has at most one
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Figure 7.6: Illustration of Lemma 7.7. Consider the 5 thin dark moats. The edges
of F’ cross these moats 8 times (twice each by the edges joining s1-t1, sa-te, to-t3, and
te-s3). Each moat corresponds to a connected component C' € C in the iteration in
which the corresponding duals yo were increased. Thus in this iteration we see that
8 =73 ceccld(C)NF'| <2[C| = 10.

endpoint in any given connected component of C. Thus it joins two connected components of
the forest F', and the forest remains a forest. O

Proof of Lemma 7.7.  Consider the iteration in which edge e; is added to F. Let F; be the
edges already in F' at this point; that is, F; = {e1,...,e;—1}. Let H = F' — F;. Observe that
F; UH = F; U F' is a feasible solution to the problem, since F’ by itself is a feasible solution
to the problem. We claim also that if we remove any edge e € H from F; U H, it will not
be a feasible solution. This follows from the deletion procedure at the end of the algorithm:
at the time we consider edge e;_1 for deletion, the edges in F’ at that point in the procedure
are exactly those in F; U H. Hence it must be the case that any edge already considered and
remaining in F’ is necessary for the solution to be feasible. These edges are exactly the edges
in H.

We form a new graph by contracting each connected component of (V, F;) to a single vertex.
Let V' be this new set of vertices. Observe that since at any point F is a forest, once we
have contracted all the edges in Fj into vertices V', no edge in H can have both endpoints
corresponding to the same vertex in V’. Thus we can consider the forest of edges H on the set
of vertices V', where each edge in H is connected to the two vertices in V'’ corresponding to the
two connected components it joined in (V, F;). See Figure 7.7 for an illustration. We let deg(v)
for v € V' represent the degree of vertex v in this forest. We also color the vertices in V' with
two different colors, red and blue. The red vertices in V'’ are those connected components C' of
(V, F;) that are in the set C in this iteration (that is, for some j, |C'N {s;,t;} | =1). The blue
vertices are all the other vertices of V’. Let R denote the set of red vertices in V' and B the
set of blue vertices v that have deg(v) > 0.

We now observe that we can rewrite the desired inequality

Yo lsC)nFl<2(c]
ceC
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Figure 7.7: Proof of Lemma 7.7. On the left is the current set of connected components,
with the edges in H shown in dashed lines. The right side shows the contracted graph.

in terms of this forest. The right-hand side is 2|R|. Since F’ C F; U H and no edge of F; can
appear in 0(C) for C' € C (since C is a connected component of F;), the left-hand side is no
greater than ) _pdeg(v). So we wish to prove that ) _pdeg(v) < 2|R|.

To prove this, we claim that no blue vertex can have degree exactly one. If this is true, then

we have that
Z deg(v) = Z deg(v) — Z deg(v).
vER vERUB vEB

Then since the total degree of a forest is no more than twice the number of vertices in it, and
since all blue vertices of non-zero degree have degree at least two by the claim, we have that

> deg(v) <2(|R| +|B|) —2|B| = 2|R|,
vER

as desired.

It remains to prove that no blue vertex can have degree one. Suppose otherwise, and let
v € V' be a blue vertex of degree one, let C' be the connected component of the uncontracted
graph corresponding to v, and let e € H be the incident edge. By our initial discussion, e must
be necessary for the feasibility of the solution. Thus it must be on some path between s; and ¢;
for some j, and |C'N{s;,t;} | = 1. But in this case, C' must be in C, and v must be red, which
is a contradiction. ]

Since the proof shows that the algorithm finds a solution to the integer programming for-
mulation (7.5) of cost at most twice the value of a dual solution to the dual of the linear
programming relaxation, the proof implies that the integrality gap of the formulation is at
most 2. We can use the integrality gap instance for the prize-collecting Steiner tree problem in
Section 5.7 (see Figure 5.4) to show that the integrality gap for this formulation is essentially
2, so that no better performance guarantee can be obtained by using a primal-dual algorithm
with this formulation.

In Section 16.4, we will consider a directed version of the generalized Steiner tree problem,
and we will show that it is substantially more difficult to approximate the directed version of
the problem.
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7.5 Strengthening inequalities: the minimum knapsack prob-
lem

In this section, we turn to a minimization version of the knapsack problem introduced in Section
3.1. As in the previous version of the knapsack problem, we are given a set I of n items,
I ={1,2,...,n}. Each item has a value v; and a size s;. In the previous version of the problem,
we additionally had a knapsack capacity B, and the goal was to find the maximum-value subset
of items such that the total size of the items was at most the capacity of the knapsack. In the
minimization version of the problem, we are given a demand D, and the goal of the problem
is to find a subset of items having minimum total size such that the total value is at least the
demand. That is, we try to find a subset X C I of items minimizing s(X) = ),y s; subject
to the constraint that v(X) =",y v; > D.

We can formulate the problem as the following integer program, in which the primal variable
x; indicates whether item 7 is chosen to be in the solution or not:

minimize E SiT;
el

subject to g v;x; > D,
el

x; €{0,1}, Vi el

We obtain a linear programming relaxation for the problem by replacing the constraints z; €
{0,1} with linear constraints 0 < z; < 1 for all i € I. However, this linear programming
relaxation is not a particularly good one, in the sense that it has a bad integrality gap. Consider
a two-item set I = {1,2}, where v = D — 1, v9 = D, s; = 0 and s = 1. The only feasible
integer solutions require us to take item 2 (xo = 1), for a total size of 1. But the solution
x1 =1, xz9 = 1/D is feasible for the linear programming relaxation and has total size 1/D. This
example shows that the integrality gap of this formulation is at least 1/(1/D) = D.

To get a primal-dual algorithm with a reasonable performance guarantee, we must use a
different integer programming formulation of the same problem, one with a better integrality
gap. We introduce a new set of constraints, one for every subset A C I of items such that
v(A) < D. Let Dy = D — v(A); we can think of D4 as the demand left over if the items in
A are added to the knapsack. Notice that even if we select every item in the set A, we must
still choose additional items of total value at least D 4. Given the set A, this is simply another
minimum knapsack problem on the set of items I — A, where the desired demand is now Dy4.
Given A, we can also reduce the value of each item in I — A to be the minimum of its value and
D 4; since the desired demand is D4, we don’t need the value of the item to be any larger. We
let v = min(v;, D). Then for any A C I and any set of items X C I such that v(X) > D,
it is the case that ) .y 4 UiA > Dj. We can then give the following integer programming
formulation of the problem:

minimize Z SiT;
el
subject to Z UZAl‘i > Dy, VACI,
icl—A

z;€{0,1}, Viel.

As we argued above, any integer solution corresponding to a knapsack of value at least D is
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y<+0

A0

while v(A) < D do
Increase y4 until for some ¢ € I — A, ZBgzz‘gB UZByB =S
A+ AU{i}

return A.

Algorithm 7.7: Primal-dual algorithm for the minimum knapsack problem.

a feasible solution to the integer program, and thus the integer program models the minimum
knapsack problem.

We now consider the linear programming relaxation of the integer program above, replacing
the constraints z; € {0,1} with z; > 0:

minimize Z S;T;
el
subject to Z viA:L'Z- > Dy, VA C I,
i€l—A
x; > 0, Vi € I.

Observe that for the instance that gave a bad integrality gap for the previous integer pro-

gramming formulation, the given LP solution is no longer feasible. In that example, we had

I ={1,2}, withv; = D —1, vy =D, sg =0, and s = 1. Now consider the constraint cor-

responding to A = {1}. We have D4y = D —v; = 1, and v§' = min(ve, D4) = 1, so that the

constraint Zie I—A vawi > Dy is z9 > 1 for this choice of A. The constraint forces us to take

item 2; we cannot take a 1/D fraction of item 2 to meet the missing single unit of demand.
The dual of the linear programming relaxation is

maximize g Daya
A:ACT

Yo vlya<s, viel
ACI:i¢A

ya > 0, VA C 1.

We can now consider a primal-dual algorithm for the problem using the primal and dual
formulations as given above. We start with an empty set of selected items, and a dual solution
ya = 0 for all A C I. Now we must select some dual variable to increase. Which one should it
be? Following the idea introduced previously of choosing a variable corresponding to a minimal
object of some sort, we increase the dual variable yy. A dual constraint will become tight for
some item ¢ € I, and we will add this to our set of selected items. Which variable should we
increase next? Notice that in order to maintain dual feasibility, it will have to be a variable y4
for some set A such that i € A; if i ¢ A, then we cannot increase y4 without violating the tight
dual constraint for . The most natural choice is to increase y4 for A = {i}. We continue in
this fashion, letting A be our set of selected items; whenever a dual constraint becomes tight
for some new item j € I, we add j to A, and in the next iteration increase the dual variable
yA. The algorithm is given in Algorithm 7.7. The algorithm terminates when v(A) > D.

We can now show that the algorithm is a 2-approximation algorithm for the minimum
knapsack problem.
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Theorem 7.10: Algorithm 7.7 is a 2-approximation algorithm for the minimum knapsack prob-
lem.

Proof. Let £ be the final item selected by the algorithm, and let X be the set of items returned
at the end of the algorithm. We know that v(X) > D; since item ¢ was added to X, it must be
the case that before ¢ was added, the total value of the set of items was less than D, so that
v(X =) < D.

Following the standard primal-dual analysis, we know that

SasY Y

ieX i€X ACI:i¢A

Reversing the double sum, we have that

)DIDIETIES ST SR

i€X ACI:ig A ACI  ieX—-A

Note that in any iteration of the algorithm except the last one, adding the next item ¢ to the
current set of items A did not cause the value of the knapsack to become at least D; that
is, v; < D —v(A) = D4 at that point in the algorithm. Thus for all items ¢ € X except ¢,
A

v/t = min(v;, D) = v; for the point in the algorithm at which A was the current set of items.

Thus we can rewrite

S owr—vtt S v vt u(X 0 - v(A),
iEX—A I€EX — Aritl

Note that 1)24 < D4 by definition, and as argued at the beginning of the proof v(X —¢) < D so
that v(X —¥¢) —v(A) < D —v(A) = Dy4; thus we have that

vt +v(X —0) —v(A) < 2D 4.

Therefore

Zsi:ZyA Z UZA<2 Z Daya <20PT,

ieX ACI i€EX—A A:ACT

where the final inequality follows by weak duality since ) ,. acr Daya is the dual objective
function. O

The proof of the performance guarantee of the algorithm shows that the integrality gap of
the new integer programming formulation must be at most 2.

7.6 The uncapacitated facility location problem

We now return to the uncapacitated facility location problem introduced in Section 4.5 for
which we gave a randomized approximation algorithm in Section 5.8. Recall that the input to
the problem is a set of clients D and a set of facilities F', with facility costs f; for all facilities
it € F, and assignment costs ¢;; for all facilities ¢« € I and clients j € D. The goal is to select
a subset of facilities to open and an assignment of clients to open facilities so as to minimize
the total cost of the open facilities plus the assignment costs. As before, we consider the metric
uncapacitated facility location and assume that the clients and facilities are points in a metric
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space, and the assignment cost ¢;; is the distance between client j and facility ¢. In particular,
given clients j, ! and facilities 4, k, we have that ¢;; < ¢; + cx + ¢ij by the triangle inequality.

We will now give a primal-dual approximation algorithm for the problem. Recall the linear
programming relaxation of the problem we used in previous sections:

minimize E fzyl + E CijTij

i€k ieF,jeD
subject to Zmij =1, VjeD,
i€EF
Tij < Yi, Vie F,j €D,
x5 > 0, Vie F,j €D,
yi > 0, Vi € F,

in which variable z;; indicates whether client j is assigned to facility ¢, and variable y; indicates
whether facility 7 is open or not. The dual of the LP relaxation is

maximize E vj

JjED
subject to Zwij < fi, Vi € F,
j€D
v — w4 < ¢, Vie F,j €D,
wi; 2> 0, Vie F,jeD.

It is also useful to recall the intuition for the dual which we gave in Section 4.5. We can
view the dual variables v; as the amount that each client j will pay towards its part of the cost
of the solution. If facility costs are all zero, then v; = min;cr ¢;;. To handle nonzero facility
costs, the cost f; is split into nonnegative cost shares w;; apportioned among the clients, so
that > jep Wij < fi- A client j only needs to pay this share if it uses facility 7. In this way, we
no longer charge explicitly for opening a facility, but still recover some of its cost. Each client j
is willing to pay the lowest cost over all facilities of its service cost and its share of the facility
cost, so that v; = min;cp(c;; + w;;). By allowing v; to be any value for which v; < ¢;; + wy,
the objective function maximizing » jeD forces vj to be equal to the smallest right-hand side
over all facilities ¢+ € F'. Thus any feasible solution to the dual is a lower bound on the cost of
an optimal solution to the facility location problem.

To get some intuition for why a primal-dual analysis will be useful for this problem, let us
first consider a dual feasible solution (v*,w*) that is maximal; that is, we cannot increase any
v} by any positive amount and then derive a set of w}; that gives a dual feasible solution. Such
a dual solution has some very nice structure. To discuss this further, we modify a definition
used in previous sections, and introduce a new one.

Definition 7.11: Given a dual solution (v*,w*), we say that a client j neighbors a facility i
(or that i neighbors j) ifv; > cij. Welet N(@j) = {z €EF:v; > cij} be the neighbors of a client

j and N(i) = {j €D:vj > cij} be the neighbors of a facility i.

Definition 7.12: Given a dual solution (v*,w*), we say that a client j contributes to a facility
i if wi; > 0.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



182 The primal-dual method

In other words, a client j contributes to facility ¢ if it has a nonzero cost share w;kj for that
facility.

We observe that given dual variables v*, we can derive a feasible set of cost shares w* (if
they exist) by setting w;; = max(0,v; — ¢;;). Observe that if we derive w* in this way and
client j contributes to facility i, then j neighbors i (j € N(i)), since wj; > 0 implies v} > ¢;;.
Furthermore, if j € N(i), then v} = ¢;5 + wy;.

Let T be the set of all facilities such that the sum of the cost shares is equal to the

cost of the facility; in other words, the corresponding dual inequality is tight. Then T =
{i EF:Y jcpwl; = fz} First we claim that in a maximal dual solution (v*,w*), every client

must neighbor some facility in 7. To see this we claim that in a maximal dual solution, it
must be the case that Uj = min;ep(cij + w;}), and some facility ¢ € F' attaining the minimum
must be in T. Then for this facility 4, vj > ¢j, and j neighbors ¢ € T. To see the claim,
clearly if v; < mingep(cij + w;“j), we can feasibly increase v} and the solution is not maximal.
If vi = min;ep(cij + wy;

) and all facilities ¢ attaining the minimum are not in 7', then since
> kep Wy, < fi for these facilities ¢ we can feasibly increase v

; and wy; for these facilities ¢, and
once again the solution is not maximal.

J
Given some facility ¢ € T', the cost of the facility plus the cost of assigning the neighbors
N (i) to i is exactly equal to the sum of the dual variables of the neighboring clients; that is,

fi+ Z Cij = Z (wj; + cij) = Z s,

JEN(3) JEN(3) JEN(3)

where the first equality follows since wj; > 0 implies that j € N(i) and the second equality
follows since j € N (i) implies that w}; +¢;; = v}. Since all clients have a neighbor in T', it would
then seem that we could get an optimal algorithm by opening all facilities in T" and assigning
each client to its neighbor in 7. The difficulty with this approach is that a given client j might
neighbor several facilities in 7" and might contribute to many of them; we then use v} multiple
times to pay for the cost of these facilities. We can fix this by only opening a subset 7" of T'
such that each client contributes to the cost of at most one facility in 7”. If we do this in such a
way that clients not neighboring a facility in 7" are nonetheless not too far away from a facility
in T, we can get a good performance guarantee for the algorithm.

We now give the primal-dual algorithm in Algorithm 7.8. We generate a maximal dual
solution by increasing the dual variables v;. We let S be the set of clients whose duals we are
increasing, and T" be the set of facilities whose dual inequality is tight. Initially S = D and
T = (. We increase v; uniformly for all j € S. Once v; = ¢;; for some i, we increase wj;
uniformly with v;. We increase v; until one of two things happens: either j becomes a neighbor
of a facility in 7', or a dual inequality becomes tight for some facility 7. In the first case, we
remove j from S, and in the second case we add i to T', and remove all neighboring clients N ()
from S. Once S is empty and every client neighbors a facility in T, we select a subset T” of T'
by iteratively picking an arbitrary ¢ € T, then deleting all facilities i’ in 7" such that there exists
some client j that contributes to both i and i’. We then open all facilities in 7" and assign
every client to the closest open facility.

We claim the following lemma about the set of facilities 77 and the dual solution (v, w)
produced by the algorithm. It shows that if a client does not have a neighbor in 77, then it is
not far away from a facility in T".

Lemma 7.13: If a client j does not have a neighbor in T', then there exists a facility 1 € T’

such that c;j < 3v;.
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v+ 0, w0
S« D
T+ 0
while S # () do // While not all clients neighbor a facility in T
Increase v; for all j € S and wy; for all i € N(j),j € S uniformly until some j € S
neighbors some i € T' or some 7 ¢ T has a tight dual inequality
if some j € S neighbors some ¢ € T' then
S 5—1{j)
if ¢ ¢ T has a tight dual inequality then
// facility ¢ is added to T
T «+ T U{i}
S+ S—N()
T 0
while T # () do
Pick i e T; T' + T" U {i}
// remove all facilities h if some client j contributes to h and 1
T+ T—-{heT:3j€D,wy;>0and wp; >0}

Algorithm 7.8: Primal-dual algorithm for the uncapacitated facility location problem.

The intuition is that if a client j does not have a neighbor in 7", then it must have neighbored
some tight facility h ¢ T’ such that some other client k contributed both to h and another facility
i € T" (see Figure 7.8). By applying triangle inequality we obtain the factor of 3. We defer the
proof of the lemma for the moment and show that it implies a performance guarantee of 3 for
the algorithm.

Theorem 7.14: Algorithm 7.8 is a 3-approximation algorithm for the uncapacitated facility
location problem.

Proof. For any client that contributes to a facility in 7", we assign it to this facility. Note
that by construction of the algorithm, any client contributes to at most one facility in 7", so
this assignment is unique. For clients that neighbor facilities in 7”7 but do not contribute to
any of them, assign each to some arbitrary neighboring facility in 7. Let A(i) C N(i) be the
neighboring clients assigned to a facility 7 € T’. Then as discussed above, the cost of opening
the facilities in 7" plus the cost of assigning the neighboring clients is

Do\t e =2 D (wyte) =3 > v

icT” FEA() €T EA() €T’ jEA()

where the first equality holds because i € T" implies ;. , wi; = fi and w;; > 0 implies j € A(i).
Let Z be the set of all clients not neighboring a facility in 7", so that Z = D — | J;cq A(7). We
have by Lemma 7.13 that the cost of assigning any j € Z to some facility in 7" is at most 3v;.
Thus the total assignment cost for these clients is at most

BZ’U]'.
JE€EZ
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heT'

Wpy > 0 — vy > cpg,

wip > 0 — v > cige

ieT
Figure 7.8: Proof of Lemma 7.13.

Putting everything together, we have that the cost of the solution is at most

Z Z Uj+32vj§3ZUjS3OPT,

i€T’ jEA(®D) jez jeD
where the final inequality follows by weak duality. 0

Now we finish the proof of the lemma.

Proof of Lemma 7.13.  Let j be an arbitrary client that does not neighbor a facility in 7".
During the course of the algorithm, we stopped increasing v; because j neighbored some h € T'.
Obviously h ¢ T’, since otherwise j would neighbor a facility in 7”. The facility A~ must have
been removed from 7" during the final phase of the algorithm because there exists another client
k such that k contributes to both h and another facility ¢« € T”. See Figure 7.8. We would now
like to show that the cost of assigning j to this facility 4 is at most 3v;. In particular, we will
show that each of the three terms in cp; + cpi + ¢jx is no more than v;, which will then prove
by the triangle inequality that c;; < 3v;.

We know that c,; < v; simply because j neighbors h. Now consider the point in the
algorithm at which we stop increasing v;. By our choice of h, at this point in the algorithm
either h is already in T or the algorithm adds h to T'. Because client k contributes to facility
h, it must be the case that either vy has already stopped increasing or we stop increasing it at
the same point that we stop increasing v;. Because the dual variables are increased uniformly,
we must have that v; > vg. Since client k£ contributes to both facilities h and i, we know that
U > cpk and vy > ¢ Thus vj > v > cpg and vy > v > ¢, as claimed. ]

7.7 Lagrangean relaxation and the k-median problem

In this section, we look at a variant of the uncapacitated facility location problem called the
k-median problem. Asin the uncapacitated facility location problem, we are given as input a set
of clients D and a set of facilities F', with assignment costs ¢;; for all facilities ¢ € F' and clients
j € D. However, there are no longer costs for opening facilities; instead, we are given as input
a positive integer k that is an upper bound on the number of facilities that can be opened. The
goal is to select a subset of facilities of at most k facilities to open and an assignment of clients
to open facilities so as to minimize the total assignment costs. As before, we assume that the
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7.7 Lagrangean relaxation and the k-median problem 185

clients and facilities are points in a metric space, and the assignment cost ¢;; is the distance
between client j and facility . Since the facilities are points in a metric space, we also have
distances between pairs of facilities, a fact we will use in our algorithm. For facilities h,¢ € F,
let ¢j,; denote the distance between h and 1.

An alternate perspective on the k-median problem is that it is a type of clustering problem.
In Section 2.2, we saw the k-center problem, in which we wished to find & clusters of a set
of vertices. Each cluster was defined by a cluster center; each vertex assigned itself to the
closest cluster center, and the goal was to find a set of k cluster centers such that the maximum
distance of a vertex to its cluster center was minimized. In the k-median problem, the facilities
correspond to potential cluster centers, and the clients correspond to vertices. As in the k-center
problem, we choose k cluster centers, and each vertex assigns itself to the closest cluster center.
However, rather than trying to minimize the maximum distance of a vertex to its cluster center,
we minimize the sum of the distances of the vertices to their cluster centers. For the rest of
this section, we will discuss the k-median problem in terms of a facility location problem; since
the clustering problem is completely equivalent, this is just a choice of terminology.

We can formulate the k-median problem as an integer program very similar to the one used
for the uncapacitated facility location in Section 4.5. If we let y; € {0,1} indicate whether
we open facility ¢, then in order to limit the number of open facilities to k, we introduce the
constraint ) ;- y; < k. This gives the following integer programming formulation:

minimize E CijTij

i€F,jeD
subject to inj =1, VjeD,
iEF
Yi S ka
i€eF
zi; € {0,1}, VieF,je€D,
Yi € {0,1}, Vi € F.

The only differences from the uncapacitated facility location integer program of Section 4.5 is
the extra constraint and the objective function, which has no facility costs.

We use the idea of Lagrangean relaxation to reduce the k-median problem to the uncapaci-
tated facility location problem. In Lagrangean relaxation, we eliminate complicating constraints
but add penalties for their violation to the objective function. For example, consider the linear
programming relaxation of the integer program for the k-median problem:

minimize Z CijTij (7.7)
i€F,jeD
subject to Z:UU =1, VjeD,
ieF

SUZJSZJZ, Vi€F>j€D>
y’LSkv

icF
Tij Vie F,j €D,
yi>0, VieF
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To make the problem more closely resemble the uncapacitated facility location problem, we
would like to get rid of the constraint ) . y; < k. To do this, we add a penalty (ZieF Yi — k)
to the objective function for some constant A > 0. The penalty term favors solutions that obey
the constraint. So our new linear program is then

minimize Y e+ > Ay — Mk (7.8)
i€FjeD =3
subject to inj =1, Vj e D,
i€F

wz]Syu ViEF,jGD,
.TUZO, Vie F,j €D,
yi>0, VieF

First, observe that any feasible solution for the linear programming relaxation (7.7) of the k-
median problem is also feasible for this linear program (7.8). Also, for any A > 0, any feasible
solution for the linear programming relaxation of the k-median problem (7.7) has an objective
function value in this linear program (7.8) at most that of its value in (7.7). Therefore, this
linear program (7.8) gives a lower bound on the cost of an optimal solution to the k-median
problem. We will denote the optimum cost of the k-median problem as OPTj. Observe that
except for the constant term of —\k, the linear program now looks exactly like the linear
programming relaxation of the uncapacitated facility location problem in which each facility
cost f; = A.  If we take the dual of this linear program, we obtain

maximize Z vj — Ak (7.9)
j€D
subject to Z wi; <A, Vi € F,
Jj€D
vj—wijgcl-j, Vie F,jeD,
’wl‘jZO, Vie F,j€D.

Again, this is the same as the dual of the linear programming relaxation of the uncapacitated
facility location problem except that each facility cost is A and there is an extra constant term
of —\k in the objective function.

We would like to use the primal-dual algorithm for the uncapacitated facility location prob-
lem from the previous section in which all facility costs f; are set to A for some choice of A > 0.
While this will open some set of facilities, how can we then obtain a performance guarantee?
In the previous section, we show that the algorithm opens a set S of facilities and constructs a

feasible dual (v, w) so that
Ny < y
Z?élélcl] 4—2:fz < SZ'UJ
Jj€D 1€S jeD

For notational convenience, let ¢(S) = ;. p mineg ¢;;. In Exercise 7.8, we observe that this
claim can be strengthened slightly to

o(S)+3D fi<3) v

= jeD
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Substituting f; = A, and rearranging, this gives us that

S)<3|> v —AS||. (7.10)

JjeD

Note that if, by chance, the algorithm opens a set of facilities S such that |S| = k, we then
have that

o(S) <3 v —Ak| <3-OPTy.
jeD

This follows since (v, w) is a feasible solution to the dual program (7.9), which is a lower bound
on the cost of an optimal solution to the k-median problem, and since ) — Ak is the dual
objective function.

jeD Vj

A natural idea is to try to find some value of A\ such that the facility location algorithm
opens a set of facilities S with |S| = k. We will do this via a bisection search. To initialize the
search, we need two initial values of A\, one for which the facility location algorithm opens at
least k facilities, and one for which it opens at most k facilities. Consider what happens with
the facility location algorithm when A = 0. If the algorithm opens fewer than k facilities, then
we can open an additional k — |S| facilities at no cost, and apply the previous reasoning to get
a solution of cost at most 3 OPTy. So we assume that with A = 0, the algorithm opens more
than k facilities. It is also not hard to show that if A = 3 . 5> ;cpcij, then the algorithm
opens a single facility.

Thus we can run the bisection search on A\ as follows. We initially set \; = 0 and
WEDY jeD > icr Cij; as discussed above, these two values of A return solutions Si and Sy (re-
spectively) in which 91| > k and |Sa| < k. We run the algorithm on the value A = 1 (A1 + o).
If the algorithm returns a solution S with exactly k facilities, then by the arguments above,
we are done, and we have a solution of cost at most 3OPTy. If S has more than k facilities,
then we set Ay = X and S; = S5, otherwise S has fewer than k facilities and we set Ao = A and
S9 = 5. We then repeat until either the algorithm finds a solution with exactly k facilities or the
interval Ay — A1 becomes suitably small, at which point we will be able to obtain a solution to
the k-median problem by appropriately combining the solutions from S; and Sy. If we let ¢pin
be the smallest nonzero assignment cost, we run the bisection search until either the algorithm
finds a solution with exactly k facilities, or Ao — A1 < €cpin/|F|. In the latter case, we will use Sy
and S to obtain a solution S in polynomial time such that |S| = k and ¢(S) < 2(3 4 €) OPTY.
This will give us a 2(3 4 €)-approximation algorithm for the k-median problem.

If we have not terminated with a solution with exactly k facilities, the algorithm terminates

with solutions S; and Sy and corresponding dual solutions (v!,w!) and (v? w?) such that

|S1] > k > |S2| and ¢(Sy) < 3 (Z]eD v; )\gk:) for ¢ = 1,2 by inequality (7.10). Also, by the
termination condition, Ag — A1 < ecpin/|F|. Without loss of generality, we can assume that
0 < ¢min < OPTY, since otherwise OPT}, = 0; we leave it as an exercise to show that we can find
an optimal solution to the k-median problem in polynomial time if OPT; = 0 (Exercise 7.9).

Note that the binary search on A makes O(log Ll ZC”)
and thus the overall algorithm runs in polynomlal time.

calls to the facility location algorithm,

We will now show how we can use the two solutions S; and Sy to obtain a solution S in
polynomial time such that |S| = k and ¢(S) < 2(3 + ¢€) OPT;. To do this, we first need to
relate the costs of the two solutions to OPTy. Let a1 and ag be such that a;|S1| + ag|S2| = &,
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a1 + ag = 1, with aq, as > 0. Note that this implies that

k — 15|

= ————and ay = [ —
|51 = [52]

a T T ~ -
' 1] — |52

We can then get a dual solution (#,%) by letting © = ajv! + asv? and @ = ayw! + asw?.
Note that (0,w) is feasible for the dual linear program (7.9) with facility costs Ay since it is
a convex combination of two feasible dual solutions. We can now prove the following lemma,
which states that the convex combination of the costs of S; and S5 must be close to the cost of

an optimal solution.

Lemma 7.15:
a1c(S1) + azc(S2) < (3 +¢€) OPTYy,.

Proof. We first observe that
o(S1) < 3D v —\|S
Jj€D

= 3 Zvjl — ()\1 + Ao —)\2)‘51‘
jeD

= 3D vj = NafSi| | + (A2 — A1)[S]
Jj€D

IN
w

> vj = XS] | + €OPTy,
jeD

where the last inequality follows from our bound on the difference Ao — A;.
Now if we take the convex combination of the inequality above and our bound on ¢(.S3), we
obtain

0616(51) + OCQC(SQ) S 3041 Z ’U]l' — )\2‘51‘ + o€ OPTk
JjE€D

+30p | Y07 = Xg| Sl
j€D

Recalling that © = ajv!' + av? is a dual feasible solution for facility costs Ao, that a1|S1] +
a9|Sa| = k, and that oy < 1, we have that

a16(51> + OJQC(SQ) <3 Z 'IN)j — Xk | +aje- OPTy < (3 + 6) OPTy, .
jeD
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Our algorithm then splits into two cases, a simple case when oy > % and a more complicated
case when ay < % If ag > %, we return So as our solution. Note that |Sa| < k, and thus is a
feasible solution. Using as > % and Lemma 7.15, we obtain

c(S2) < 2a9¢(S2) < 2 (a1e(S1) + age(S2)) < 2(3 4 ¢€) OPTYy,

as desired.

Before we give our algorithm for the remaining case, we let ¢(j,S) = min;eg ¢;;, so that
> jep c(d,S) = c(S). Now for each facility i € S», we open the closest facility h € Si; that is,
the facility h € S; that minimizes ¢;;,. If this doesn’t open |S3| facilities of S; because some
facilities in Sy are close to the same facility in S7, we open some arbitrary facilities in S7 so that
exactly |S2| are opened. We then choose a random subset of k — |Sa| of the |S1| — | S| facilities
of S1 remaining, and open these. Let S be the resulting set of facilities opened.

We now show the following lemma.

Lemma 7.16: If ay < 3, then opening the facilities as above has cost E[c(S)] < 2(3+¢) OPTy,.

Proof. To prove the lemma, we consider the expected cost of assigning a given client 7 € D to
a facility opened by the randomized algorithm. Let us suppose that the facility 1 € S is the

open facility in S; closest to j ; that is, ¢1; = ¢(j, S1); similarly, let 2 € Sy be the open facility

in Sy closest to j. Note that with probability % = «q, the facility 1 € Sy is opened in

the randomized step of the algorithm if it has not already been opened by the first step of the
algorithm. Thus with probability at least oy, the cost of assigning j to the closest open facility
in S is at most ¢1; = ¢(j, S1). With probability at most 1 —aq = as, the facility 1 is not opened.
In this case, we can at worst assign j to a facility opened in the first step of the algorithm; in
particular, we assign j to the facility in S7 closest to 2 € S5. Let ¢ € S; be the closest facility
to 2 € Sy; see Figure 7.9. Then

Cij < Cig + C2j

by triangle inequality. We know that c;2 < ¢ since ¢ is the closest facility in S7 to 2, so that
cij < c12 + coj.
Finally, by triangle inequality ci2 < c1; + c25, so that we have
cij < c1j + ¢ + c25 = (4, S1) + 2¢(3, So).
Thus the expected cost of assigning j to the closest facility in .S is
Elc(j, 9)] < arc(f, S1) + aa(c(f, S1) + 2¢(j, S2)) = ¢, S1) + 202¢(j, S2).
By the assumption as < %, so that a1 =1 — ag > %, we obtain
Elc(5,9)] < 2(aic(j, 1) + a2c(j, 52))-
Then summing over all j € D and using Lemma 7.15, we obtain

Ele(S)] < 2(a1c(S1) + a2c(S2)) < 2(3 + €) OPT .
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Figure 7.9: The bad case of assigning clients. Client j is closest to 1 in Sp, closest to
2 in So, but gets assigned to 4 in 57 since this is the closest facility in S7 to 2 in S.

This algorithm can be derandomized by the method of conditional expectations; we leave
this as an exercise (Exercise 7.10).

In Chapter 9, we will see improved algorithms for the k-median problem using local search
and greedy algorithms. In particular, in Section 9.4, we will see a dual fitting greedy algorithm
for the uncapacitated facility location problem that opens a set S of facilities such that

o(S)+2) fi<2) v

ies jeD

where v is a feasible solution to the dual of the linear programming relaxation of the uncapac-
itated facility location problem. Then we will be able to follow the same logic as the algorithm
above to get a 2(2 + €)-approximation algorithm for the k-median problem.

Note that it is crucial for the analysis that we have an uncapacitated facility location algo-
rithm that returns a solution S such that

c(S)—i—aZfiSaZvj

ieS jebD

for some «. If this is the case, then when we set f; = A, we are able to derive that

o) <a D v—ASl|,

jE€D

which then allows us to use as a bound the objective function of the dual of the Lagrangean
relaxation. Such algorithms are called Lagrangean multiplier preserving. In Chapter 14, we
will see another example of a Lagrangean multiplier preserving algorithm: a primal-dual 2-
approximation algorithm for the prize-collecting Steiner tree problem.

The following hardness result is known for the k-median problem via a reduction from the
set cover problem. We discuss this result further in Section 16.2.

Theorem 7.17: There is no a-approzimation algorithm for the k-median problem with constant
a<l+ % ~ 1.736 unless each problem in NP has an O(nCU°818M)Y time algorithm.
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Exercises

7.1

7.2

7.3

Prove that the shortest s-t path algorithm in Section 7.3 is equivalent to Dijkstra’s al-
gorithm: that is, in each step, it adds the same edge that Dijkstra’s algorithm would
add.

Consider the multicut problem in trees. In this problem, we are given a tree T' = (V, E), k
pairs of vertices s;-t;, and costs c. > 0 for each edge e € E. The goal is to find a minimum-

cost set of edges F' such that for all ¢, s; and ¢; are in different connected components of
G =(V,E-F).

Let P; be the set of edges in the unique path in T between s; and ¢;. Then we can
formulate the problem as the following integer program:

minimize Zcexe
ecl
subject to Z Te > 1, 1<i<kEk,
EGPZ'
z. € {0,1}, ec Fb.

Suppose we root the tree at an arbitrary vertex r. Let depth(v) be the number of edges
on the path from v to r. Let lca(s;,t;) be the vertex v on the path from s; to ¢; whose
depth is minimum. Suppose we use the primal-dual method to solve this problem, where
the dual variable we increase in each iteration corresponds to the violated constraint that
maximizes depth(lca(s;,t;)).

Prove that this gives a 2-approximation algorithm for the multicut problem in trees.

The local ratio technique is another technique that is highly related to the primal-dual
method; however, its use of duality is implicit. Consider the following local ratio algorithm
for the set cover problem. As with the primal-dual algorithm, we compute a collection
I of indices of a set cover, where [ is initially empty. In each iteration, we find some
element e; not covered by the current collection I. Let ¢ be the minimum weight of any
set containing e;. We subtract € from the weight of each set containing e;; some such set
now has weight zero, and we add the index of this set to I.

We now analyze the performance of this algorithm. To do this, let €; be the value of €
from the jth iteration of the algorithm.

(a) Show that the cost of the solution returned is at most f >, €;, where f = max; [ {j : €;
(b) Show that the cost of the optimal solution must be at least 3 €;.

(c) Conclude that the algorithm is an f-approximation algorithm.

In its most general application, the local ratio technique depends upon the local ratio
theorem, stated below. For a minimization problem II with weights w, we say that a
feasible solution F' is a-approximate with respect to w if the weight of F' is at most «
times the weight of an optimal solution given weights w. Then the local ratio theorem
states that if we have nonnegative weights w such that w = w! 4+w?, where w! and w? are
also nonnegative weights, and we have a feasible solution F' such that F'is a-approximate
with respect to both w! and w?, then F is a-approximate with respect to w.
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192 The primal-dual method
(d) Prove the local ratio theorem.
(e) Explain how the set cover algorithm above can be analyzed in terms of the local
ratio theorem to prove that it is an f-approximation algorithm.
Most of the algorithms of this chapter have local ratio variants.

7.4 In the 2-approximation algorithm for the generalized Steiner tree problem that we gave

in Section 7.4, we first add certain edges, then remove unnecessary edges in the order
opposite of the order in which they were added.
Prove that one can in fact remove unnecessary edges in any order and still obtain a 2-
approximation algorithm for the problem. That is, we replace the edge removal steps in
Algorithm 7.6 with a step that checks if there exists any edge e in F” such that F’ — e is
feasible. If so, e is removed from F’, and if not, I is returned as the final solution. Prove
that ) . ce <2 gys for the dual y generated by the algorithm.

7.5 In the minimum-cost branching problem we are given a directed graph G = (V, A), a root
vertex r € V, and weights w;; > 0 for all (7, j) € A. The goal of the problem is to find a
minimum-cost set of arcs F' C A such that for every v € V, there is exactly one directed
path in F' from r to v. Use the primal-dual method to give an optimal algorithm for this
problem.

7.6 Recall that in our algorithms of Sections 4.4 and 5.7 for the prize-collecting Steiner tree
problem, we used the following linear programming relaxation of the problem:

minimize Z CeTe + Z (1 —y;)
ecE eV
subject to Z Te > Ui, Vie S,VSCV —r, S #0,
e€d(S)
yr =1,
yi 2 0, VieV,
T, > 0, Vee .
Given an optimal solution (z*,y*) to the linear program, we then selected a set of vertices
U such that U = {i € V : yf > a} for some value of a > 0.
Give a primal-dual algorithm that finds a Steiner tree T" on the set of terminals U such
that 5
YIUEES et
ecT ecE
(Hint: you should not need to design a new primal-dual algorithm.)
7.7 In the k-path partition problem, we are given a complete, undirected graph G = (V, E)

with edge costs ¢, > 0 that obey the triangle inequality (that is, Cluw) < Cluw) T Clw,p) for
all u,v,w € V), and a parameter k such that |V'| is a multiple of k. The goal is to find
a minimum-cost collection of paths of k vertices each such that each vertex is on exactly
one path.

A related problem is that of partitioning a graph into 0(mod k)-trees. The input to this
problem is the same as that above, except that the graph is not necessarily complete and
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7.7 Lagrangean relaxation and the k-median problem 193

edge costs do not necessarily obey the triangle inequality. The goal is to find a minimum-
cost collection of trees such that each tree has O(mod k) vertices, and each vertex is in
exactly one tree.

(a) Given an a-approximation algorithm for the second problem, produce a 2« (1 — %)—
approximation algorithm for the first.

(b) Use the primal-dual method to give a 2-approximation algorithm for the second
problem.

(c) Give a 4 (1 — %)—approximation algorithm for the problem of partitioning a graph
into cycles of length exactly k.

7.8 Show that the performance guarantee of the primal-dual algorithm for the uncapacitated
facility location algorithm in Section 7.6 can be strengthened in the following way. Suppose
that the algorithm opens the set T of facilities and constructs the dual solution (v, w).

Show that
Z?{EﬂTI}CU +32fi < 321}]-.

jeD i€T’ jeD

7.9 Show that for the k-median problem as defined in Section 7.7, the optimal solution can
be found in polynomial time if the optimum cost OPT} = 0.

7.10 By using the method of conditional expectations, show that the randomized algorithm for
choosing k facilities in the k-median algorithm of Section 7.7 can be made deterministic.

Chapter Notes

The primal-dual method for approximation algorithms is a generalization of the primal-dual
method used for linear programming and combinatorial optimization problems such as the short-
est s-t path problem, the maximum flow problem, the assignment problem, the minimum-cost
branching problem, and others. For an overview of the primal-dual method and its application
to these problems, see Papadimitriou and Steiglitz [238]. Edmonds [95] gives the primal-dual
algorithm for the minimum-cost branching problem in Exercise 7.5. The idea of Section 7.3
that the shortest s-t path problem can be solved by an algorithm that greedily increases dual
variables is due to Hoffman [168]. Dijkstra’s algorithm for the same problem is due, of course,
to Dijkstra [88].

The first use of the primal-dual method for approximation algorithms is due to Bar-Yehuda
and Even [35]; they gave the algorithm of Section 7.1 for the set cover problem. Work in primal-
dual approximation algorithms was revived by work on the generalized Steiner tree problem
of Section 7.4. The first 2-approximation algorithm for the generalized Steiner tree problem is
due to Agrawal, Klein, and Ravi [4], and the algorithm presented in Section 7.4 is essentially
that of [4]. The use of linear programming and LP duality in the algorithm was made explicit
Goemans and Williamson [138], who extended the technique to other problems (such as the
k-path partition problem of Exercise 7.7). The idea of depicting dual variables as moats is due
to Jiinger and Pulleyblank [180].

Several uses of the primal-dual method for approximation algorithms then followed. Bar-
Yehuda, Geiger, Naor, and Roth [37] gave the feedback vertex set algorithm of Section 7.2,
using Lemma 7.3, which is due to Erdés and Pésa [100]. Jain and Vazirani [177] developed the
primal-dual algorithm for the uncapacitated facility location problem and the use of Lagrangean
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relaxation for the k-median problem in Sections 7.6 and 7.7. Carnes and Shmoys [61] gave
the primal-dual algorithm for the minimum knapsack problem in Section 7.5; their algorithm
uses an integer programming formulation of the problem due to Carr, Fleischer, Leung, and
Phillips [62], who gave an LP-rounding 2-approximation algorithm for the problem based on
their formulation.

Surveys of the primal-dual method for approximation algorithms are given by Bertsimas
and Teo [46], Goemans and Williamson [140], and Williamson [288].

The local ratio technique of Exercise 7.3 is due to Bar-Yehuda and Even [36]. All of the
algorithms in Sections 7.1 through 7.4 are known to have local ratio equivalents. A formal proof
of the equivalence of the primal-dual method and the local ratio technique for a defined set of
problems is given in Bar-Yehuda and Rawitz [38]. Surveys of the local ratio technique have
been given by Bar-Yehuda [33], Bar-Yehuda, Bendel, Freund, and Rawitz [34], and Bar-Yehuda
and Rawitz [38].

The hardness result for the k-median problem in Theorem 7.17 is due to Jain, Mahdian,
Markakis, Saberi, and Vazirani [176], following work of Guha and Khuller [146] for the hardness
of the uncapacitated facility location problem. The result of Exercise 7.2 is due to Garg,
Vazirani, and Yannakakis [127]. The results of Exercises 7.4 and 7.7 are from Goemans and
Williamson [138]. The result of Exercise 7.8 is from Jain and Vazirani [177]; Exercise 7.10 is
also from this paper.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



CHAPTER 8

Cuts and metrics

In this chapter, we think about problems involving metrics. A metric (V,d) on a set of vertices
V gives a distance d,, for each pair of vertices u,v € V such that three properties are obeyed:
(1) dyp = 0 if and only if v = u; (2) dyy = dyy for all u,v € V and (3) dyy < dyw + dyy for all
u,v,w € V. The final property is sometimes called the triangle inequality. We will sometimes
simply refer to the metric d instead of (V, d) if the set of vertices V' is clear from the context. A
concept related to a metric is a semimetric (V,d), in which properties (2) and (3) are obeyed,
but not necessarily (1), so that if d,, = 0, then possibly u # v (a semimetric maintains that
dyy = 0). We may sometimes ignore this distinction between metrics and semimetrics, and call
them both metrics.

Metrics turn out to be a useful way of thinking about graph problems involving cuts. Many
important problems in discrete optimization require findings cuts in graphs of various types.
To see the connection between cuts and metrics, note that for any cut S C V, we can define
d where dy, = 1 if u € S and v ¢ S, and d,, = 0 otherwise. Note that (V,d) is then a
semimetric; it is sometimes called the cut semimetric associated with S. Then a problem
in a graph G = (V,E) in which we are trying to find a cut to minimize or maximize the
sum of weights w, of the edges e in the cut becomes one of finding a cut semimetric that
minimizes or maximizes e=(u,0)eE Wedyy. In several examples in this chapter, we set up a linear
programming relaxation with variables d,, in which we have constraints on d corresponding
to the properties of a semimetric. Then we use the metric properties of d,, to help find the
desired cut. In many cases, we consider for some vertex s € V' all the vertices within some small
distance r of s (using the LP variables d,,, as distances) and put them on the same side of the
cut and all other vertices on the other side; we view this as taking a ball of radius r around s.
This is a technique we will use extensively.

We will also consider the notion of approximating a given metric (V,d) by a metric of a
simpler form. In particular, we will consider tree metrics; tree metrics are metrics that are
defined by shortest paths in a tree. Sometimes we wish to approximate problems involving
distances in a graph, in which the problem becomes straightforward in a tree metric. We can
sometimes get good approximation algorithms by first approximating the graph distances by a
tree metric, then solving the problem easily in the tree metric.

We begin the chapter by considering a number of different cut problems. We start in Section
8.1 with the multiway cut problem, and first show that a simple algorithm involving finding
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196 Cuts and metrics

a number of minimum s-t cuts gives a 2-approximation algorithm. We then show that the
3

randomized rounding of an LP solution along the lines described above improves this to a 3-
approximation algorithm. We consider the multicut problem in Section 8.3, which also uses an
LP relaxation and a rounding technique as described above. For this problem, we introduce
an important technique called “region growing” that relates the edges in the cut formed by a
ball to the value of the LP solution on edges inside the ball. In the following section, we apply
the region growing technique to the problem of finding small balanced cuts; balanced cuts are
ones in which the two parts of the cut have roughly equal numbers of vertices. The final three
sections of the chapter discuss the technique of approximating metrics by tree metrics, and
present applications of this technique to the buy-at-bulk network design problem and the linear

arrangement problem.

8.1 The multiway cut problem and a minimum-cut-based algo-
rithm

We begin by considering a simple variety of cut problem, and give an approximation algorithm
that does not require using a linear programming relaxation. We then show that using a linear
programming relaxation and treating its solution as a metric on the set of vertices gives a
better performance guarantee. The problem is known as the multiway cut problem. We are
given an undirected graph G = (V, E), costs ¢, > 0 for all edges e € E, and k distinguished
vertices s1,...,S,. The goal is to remove a minimum-cost set of edges F' such that no pair of
distinguished vertices s; and s; for i # j are in the same connected component of (V, E — F').

One application of this problem arises in distributed computing. Each vertex represents an
object, and an edge e between them of cost c. represents the amount of communication between
the objects. The objects need to be partitioned to reside on k different machines, with special
object s; needing to reside on the ith machine. The goal is to partition the objects onto the k
machines in such a way that communication between the machines is minimized.

Our algorithm for the multiway cut problem begins with some observations about the struc-
ture of any feasible solution F. Given a feasible F, let C; be the set of vertices reachable in
(V,E — F) from each distinguished vertex s;. Let F; = §(C;), where §(5) is the set of all
edges in F with exactly one endpoint in S. Observe that each F; is a cut separating s; from
S1y--+58i—1,Si+1,---,Sk. We call F; an isolating cut: it isolates s; from the other distinguished
vertices. Observe also that some edges might appear in two different F;: an edge e can have
one endpoint in C; and the other in C; for some j # 4, so that e € F; and e € Fj.

Our algorithm will compute a minimum isolating cut F; between s; and s1, ..., Si—1, Si41,- - -, Sk
for each i: we can do this by adding a sink vertex t to the graph with infinite cost edges from
the distinguished vertices (other than s;) to the sink, and then computing a minimum s;-t cut.
We return as our solution Ule F;.

Theorem 8.1: The algorithm of computing a minimum cut between each s; and the other
distinguished vertices is a 2-approximation algorithm for the multiway cut problem.

Proof. As above, let F; be the minimum isolating cut between s; and the other distinguished
vertices. Let I be an optimal solution, and let F;* be the isolating cut in the optimal solution
for s;. For a subset of edges A C E, let ¢(A) = Y ., ce. Because F; is a minimum isolating
cut for s;, we know that c¢(F;) < ¢(F;). Hence the cost of the solution of the algorithm is at
most Zle c(F;) < Zle c(F}). We observed above that each edge in the optimal solution F™*
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8.2 The multiway cut problem and an LP rounding algorithm 197

can be in at most two F;", so that

O

By being only slightly cleverer, we can improve the performance guarantee a little bit.
Without loss of generality, let Fj be the costliest cut of Fi,..., Fi. Note that the union of the
first k —1 isolating cuts, F' = Uk ! F;, is also a feasible solution for the problem: if s, can reach
any other distinguished vertex s; in (V7 E — F), then F; was not an isolating cut for s;. Then
we have the following.

Corollary 8.2: The algorithm of returning the cheapest k — 1 minimum isolating cuts is a
(2 - f) -approzimation algorithm for the multiway cut problem.

Proof. We use the same notation as in the proof of the theorem above. Observe that the cost
of our new solution F is at most (1 — +) Zle ¢(F;). Thus its cost is at most

(1 - ;) zkjc(m) < (1 - ;) gc(ﬂ*) <9 <1 - ;) OPT.

8.2 The multiway cut problem and an LP rounding algorithm

We now show that one can obtain a better approximation algorithm for the multiway cut
problem via LP rounding.

First, we need to strengthen some of our observations above. We noted that for any feasible
solution F' to the problem, we can compute sets C; of vertices reachable from each distinguished
vertex s;. We claim for any minimal solution F', the C; must be a partition of the vertices V.
To see this, suppose we are given some solution F' such that the corresponding sets C; do not
partition V. Let S be all vertices not reachable from any s;. Pick some j arbitrarily and add S
to C;j. Let the new solution be F' = Ul 1 0(C;). Then we claim that F' C F. Observe that for
any i # j, 0(C;) is in F. Furthermore, any edge e € 6(C;) must have some endpoint in some
C; with ¢ # j. Thus e € 6(C;) and is in F' also.

Therefore, another way of looking at the multiway cut problem is finding an optimal par-
tition of V' into sets C; such that s; € C; for all ¢ and such that the cost of F' = Ule 0(C;) is
minimized. Given this perspective, we formulate the problem as an integer program. For each
vertex u € V, we have k different variables, x%,. The variable 2, = 1 if u is assigned to the set
C; and is 0 otherwise. We create a variable 2. which will be 1 if e € §(C;) and 0 otherwise.
Since if e € 6(C;), it is also the case that e € 6(C};) for some j # 4, the objective function of the

integer program is then
k
1 )
SIHE:
eck i=1

this will give exactly the cost of the edges in the solution F = UZ 16(C;) for the assignment
of vertices to sets C; given by the variables x%,. Now we consider constraints for the program.
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198 Cuts and metrics

Obviously s; must be assigned to Cj, so we have xgl =1 for all i. To enforce that z¢ = 1 when
e € 6(C;) for e = (u,v), we add constraints 22 > 2%, — 2! and 2! > 2! — z¢; this enforces that
2t > |2t — '], Since the integer program will minimize the objective function and z! appears
with a nonnegative coefficient in the objective function, at optimality we will have 2% = |z, —z¢|.
Thus 2 = 1 if one of the two endpoints of the edge e = (u,v) is assigned to the set C; and the
other is not. Then the overall integer program is as follows:

k
T ;
minimize 7 E Ce E ze (8.1)

eccE  i=1
k
subject to sz =1, Yu eV, (8.2)

i=1
2t >l — ot Ve = (u,v) € E,
2>l — Ve = (u,v) € E,
al =1, i=1,...,k,
z! € {0,1}, VueVyi=1,...,k

The linear programming relaxation of this integer program is closely connected with the ¢;
metric for measuring distances in Euclidean space. Let x,y € R", and suppose that x',y" are
the ith coordinates of x and y. Then the ¢1 metric is as follows.

Definition 8.3: Given x,y € R", the {i-metric is a metric such that the distance between x
and y is |z =yl = 30, ' — ¢

We relax the integer program above to a linear program by replacing the integrality condition
x¢, € {0,1} with 2i, > 0. Observe then that the linear program can be given a much more
compact formulation. The variable z¢, is the ith coordinate of a vector z,. Each z, € Rk
in fact, because of constraint (8.2), each x, lies in the k-simplex Ay, where Aj, = {z € R* :
Zle b = 1}. Each distinguished vertex s; has x5, = e;, where e; is the vector with 1 in the
ith coordinate and zeroes elsewhere. Finally, we observe that Zle zi = Zle |zt — 2t| =
|y — xy||1, which is just the distance between the points z,, and z, under the ¢; metric. Thus
the linear programming relaxation becomes

T |
minimize 7 Z CellTy — Ty (8.3)
e=(u,v)€E

subject to T,

7

Ty € Ap, Yu e V.

= e, i=1,...,k,

In Figure 8.1, we give a geometric representation of an instance with k = 3.

We will give an approximation algorithm by the randomized rounding of the solution of the
linear program. In particular, we will take all vertices that are close to the distinguished vertex
s; in the LP solution and put them in C;. For any » > 0 and 1 < i < k, let B(e;,r) be the set
of vertices corresponding to the points x, in a ball of radius 7 in the ¢; metric around e;; that
is, B(e;,r) = {u €V : 3|le; — zull1 < r}. We will sometimes write B(s;, r) instead of B(e;, 7).
We include the factor of 1/2 in the definition so that all vertices are within a ball of radius 1:
B(ei, 1) =V for all i. See Figure 8.1 for an illustration.
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S3
(0,0,1)

51 S2

(1,0,0) (0,1,0)

Figure 8.1: A geometric representation of an LP solution for k = 3. The distinguished
vertices s1, s2, and s3 are given by the coordinates (1,0,0), (0,1,0), and (0,0,1) re-
spectively. Any other vertex lies in the triangle defined by these three coordinates. The
dotted line represents a ball around s1.

Let x be an LP solution to (8.3)
forall1<i<kdoC; <0
Pick r € (0,1) uniformly at random
Pick a random permutation 7 of {1,...,k}
X« 0 // X keeps track of all currently assigned vertices
fori<1tok—1do
Cr(iy < B(sr@),r) — X
X+ XU Cﬁ(i)
Cw(k) —~V-X
return F = Ule 3(C5)

Algorithm 8.1: Randomized rounding algorithm for the multiway cut problem.

We now consider Algorithm 8.1. The algorithm selects r € (0, 1) uniformly at random, and
a random permutation 7 of the indices {1,...,k}. The algorithm proceeds through the indices
in the order given by the permutation. For index 7 (7) in the ordering, the algorithm assigns all
previously unassigned vertices in B(sz(;),7) to Cr(;). At the end of the order, any unassigned
vertices are assigned to Cr ). See Figure 8.2 for an example.

Before we get into the details of the proof, let’s look at an example that will show why
picking a random radius and a random permutation 7 are useful in giving a good performance
guarantee. To simplify matters, suppose that k is large, and suppose we have an edge (u,v)
where z, = (0, 1,0,0,...) and z,, = (%, %, 0,0,...); see Figure 8.3 for an illustration. We suppose
that x5, = (1,0,0,...) and =5, = (0,1,0,...). Note that in this case, u can only be in the balls
B(s1,7) or B(sa,r) since r < 1 and 3|le; — zy/[1 = 1 for i # 1,2. Thus u can only be assigned
to C1, Oy, or Cpr(y), with the last case occurring if x,, ¢ B(s1,7) and @, ¢ B(s2,7). Somewhat
similarly, v can only be assigned to Cy or Cb; in this case, z, is always in B(sg,r) since r > 0
and [jea — xy]]1 = 0.
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S3

(0,0,1)

S1 S9
(1,0,0) " (0,1,0)

Figure 8.2: A geometric representation of the algorithm for £ = 3. The random
permutation is 1,3,2. The ball around ss assigns to C3 all vertices in the ball not
already assigned to Ci.

Now, suppose we have a fixed permutation 7. If the permutation orders s; before so,
and sy is not last in the permutation, then we claim (u,v) enters the cut with probability
|z — zy|l1 = 1. To see this, note that if 1/2 < r < 1, then u € B(sy,r) but v ¢ B(s1,r) so
that u € C1 and v € Cy. If 0 < r < 1/2, then v € B(s2,r) but u ¢ B(s2,7), so that v € Ca; we
observed above that u can only be assigned to C1, C, and Cry, so that if u ¢ B(s2,r) and
(k) # 2, it must be the case that u ¢ Cy and (u,v) is in the cut. Note that if sy is last in the
permutation, this can only lower the probability that (u,v) is in the cut. In general, we can
upper bound the probability that an edge (u, v) ends up in the cut by ||z, — 2|1, but analyzing
the algorithm with this probability is only good enough to give a performance guarantee of 2,
since the contribution of edge e = (u, v) to the objective function is 3¢z, — x|/1. However, if
the permutation 7 orders so before s1, then the edge is in the cut if 0 < r < 1/2, since v € Cy
but u ¢ Cy as before, while if » > 1/2, then the edge cannot end up in the cut at all because
both u and v are in B(sz2,7) and hence both are assigned to Cy. Since the probability that s,
is ordered before s; is 1/2 in a random permutation, the overall probability that (u,v) is in the
cut is at most

Pr[(u,v) in cut |s; before so] Pr[s; before so] + Pr[(u,v) in cut |sg before s1] Pr[sy before s

1 1 1

< ||55u _SUvul : 5 + i”xu _xUH]. : 5
3 1

=3 §qu — Zyll1,

which will give us a performance guarantee of 3/2.

To start the analysis, we need some lemmas that will be helpful later on. The first lemma
observes that any coordinate accounts for at most half of the ¢; distance. The second lemma
gives us a condition under which a vertex is in a ball of radius r.

Lemma 8.4: For any index £ and any two vertices u,v € V,

1
0 0
28— o8] < S llw — ulh.
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w=(1/2,1/2,0,...)
® ®
81:(1,0,0,...) 82:?}:(0,1,0,...)

Figure 8.3: An illustration of the ideas of the analysis.

Proof. Without loss of generality, assume that z¢ > 2. Then

wh—ail =a—ay = (1=l | - (1= 2 el | = D@ —ad) <3 Jad —all

J#L J#L J#L J#L
By adding |z¢ — 2¢| to both sides, we have
2|xﬁ - x£| < lww — |1,
which gives the lemma. O
Lemma 8.5: u € B(s;,r) if and only if 1 — 2%, <.

Proof. We have u € B(s;, r) if and only if $||e; — @y[[1 < r. This is equivalent to %Zif:l |ef —
z!| < r which is equivalent to %ZZ# zf + (1 —2%) < r. Since D0 ! =1 — 2, this is

u
equivalent to 1 — z}, < r. O

Theorem 8.6: Algorithm 8.1 is a randomized %—appm:mmation algorithm for the multiway cut
problem.

Proof. Pick an arbitrary edge (u,v) € E. We claim that the probability that the endpoints lie
in different parts of the partition is at most %qu —xy]|1. Let W be a random variable denoting
the value of the cut, and let Z,, be a 0-1 random variable which is 1 if v and v are in different
parts of the partition, so that W = Ze:(uﬂ})EE CeZyw- Given the claim, we have

E[W] = B Z Ce L
e=(u,v)€E

= > cE[Zu)

e=(u,v)eE

= Z ce - Pr](u,v) in cut]

VAN
e
o
El
=
8
s
=

<

where the final inequality follows since %Ze:(u ek CellTu — oll1 is the objective function of
the LP relaxation.
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Now to prove the claim. We say that an index i settles edge (u,v) if i is the first index
in the random permutation such that at least one of u,v € B(s;,r). We say that index i cuts
edge (u,v) if exactly one of u,v € B(s;,r). Let S; be the event that i settles (u,v) and X;
be the event that ¢ cuts (u,v). Note that S; depends on the random permutation, while X; is
independent of the random permutation. In order for (u,v) to be in the multiway cut, there
must be some index i that both settles and cuts (u,v); if this happens, then (u,v) € §(C;).
Thus the probability that edge (u,v) is in the multiway cut is at most Zle Pr[S; A X;]. We
will now show that Zle Pr[S; A Xi] < 2|2y — o)1

By Lemma 8.5,

Pr[X;] = Pr[min(1 — 2%, 1 — 2°) <r < max(1 — 2%,1 — 2%)] = |2, — 2.

Let ¢ be the index that minimizes min;(min(1 — 2%,1 — 2!)); in other words, s, is the
distinguished vertex that is closest to one of the two endpoints of (u,v). We claim that index
i # ¢ cannot settle edge (u,v) if £ is ordered before i in the random permutation 7: by Lemma
8.5 and the definition of ¢, if at least one of u,v € B(e;, ), then at least one of u,v € B(ey,1).
Note that the probability that ¢ occurs after ¢ in the random permutation 7 is 1/2. Hence for

i # L,
Pr[S; A Xi] = Pr[S; A X;|¢ occurs after ¢ in 7] - Pr[f occurs after ¢ in 7]

+ Pr[S; A X;|€ occurs before ¢ in 7| - Pr[¢ occurs before i in 7]

1
< Pr[X;|¢ occurs after ¢ in ] - 3T 0.

Since the event X is independent of the choice of random permutation, Pr[X;|¢ occurs after ¢ in 7] =
Pr[X;], and therefore for i # ¢

1

i, — .

N

We also have that Pr[Sy A Xy] < Pr[X,] < |of — z!|. Therefore, we have that the probability
that (u,v) is in the multiway cut is

k
1 . .
Y PrSinXi] < Jay, —ah| + 3 > |k, — )|
=1 it

1, ‘ 1
= Sleb =l + Slleu —wolh.

Using Lemma 8.4, 3|2f — 2| < [z, — 241, so that

k

3
ZPT[SZ' A Xz] < Equ - xUHh
=1

as desired. ]

With only slightly more work, the performance guarantee of the algorithm can be improved
to %—%; this is left to Exercise 8.1. One can also obtain a %—approximation algorithm by choosing
between two fixed permutations; we explore this in Exercise 8.2. The idea of partitioning vertices
by taking balls of fixed radius in the order given by a random permutation is a useful one which

we will apply again in Section 8.5.

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



8.3 The multicut problem 203

8.3 The multicut problem

In this section, we consider a slightly different cut problem, called the multicut problem. Rather
than having a set of distinguished vertices s1, ..., s, we now have a set of distinguished source-
sink pairs of vertices (s1,t1),..., (S, tx). Given an undirected graph G = (V, E') with nonnega-
tive costs ¢, > 0 for all e € E, our goal is to find a minimum-cost set of edges F' whose removal
disconnects all pairs; that is, for every i, 1 < ¢ < k, there is no path connecting s; and t; in
(V,E — F). Unlike the previous problem, there can be paths connecting s; and s; or s; and t;
for ¢ # j. We previously considered special case of the multicut problem in trees in Exercise
7.2.

Given a graph G, let P; be the set of all paths P joining s; and ¢;. Then an integer
programming formulation of the problem is:

minimize Zcexe
ecE
subject to Zaze > 1, VP e P;,1 <i<k,
eeP
ze € {0,1}, Ve € E.

The constraints ensure that for each ¢, for each path P € P;, some edge is selected from P.

To obtain a linear programming relaxation, we replace the constraints z. € {0,1} with
ze > 0. Although the formulation is exponential in the size of the input (since there could be
an exponential number of paths P € P;), we can solve the linear program in polynomial time
by using the ellipsoid method described in Section 4.3. The separation oracle works as follows:
given a solution x, we consider the graph G in which the length of each edge e is x.. For each
i, 1 < i < k, we compute the length of the shortest path between s; and t;. If for some i,
the length of the shortest path P is less than 1, we return it as a violated constraint, since we
have > .pwe < 1 for P € P;. If for each 4, the length of the shortest path between s; and ;
is at least 1, then the length of every path P € P; is at least 1, and the solution is feasible.
Thus we have a polynomial-time separation oracle for the linear program. Alternatively, it is
possible to give an equivalent, polynomially-sized linear program that can be solved directly in
polynomial time, and whose solution can be transformed into a solution of this linear program
in polynomial time; we leave this as an exercise (Exercise 8.4).

As in the LP rounding algorithm for the multiway cut problem, we will build our solution
by taking balls around the vertex s; for each ¢. In order to do this, we must define a notion
of distance. Given an optimal solution x to the LP, we will let x, denote the length of edge e
for the purposes of our algorithm. We then let d,(u,v) denote the length of the shortest path
from vertex u to v using z. as edge lengths. Observe that d, will obey the triangle inequality
by the definition of shortest paths. Also, in any feasible LP solution we have d,(s;,t;) > 1 for
all i. Let By(s;,7) = {v € V : dy(s;,v) < r} be the ball of radius r around vertex s; using these
distances.

Additionally, it will be useful to think of each edge e € E as being a pipe with length x. and
cross-sectional area c.. Then the product c.x. gives the volume of edge e. The LP produces
the minimum-volume system of pipes such that d,(s;,t;) > 1 for all i. See Figure 8.4 for an
illustration of the pipe system, and Figure 8.5 for an illustration of a ball in the pipe system.
Given an optimal solution x to the LP, we let V* = > __p ccx. be the total volume of the pipes.
We know that V* < OPT. Let V,(s;,7) be the volume of pipes within distance r of s; plus an
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Figure 8.4: An illustration of a pipe system. The width of the pipe corresponds to
its cost ce, and the number next to it gives its length. The distance between each
source/sink pair is at least 1 along any path.

extra V*/k term; that is,

*

Vi(si,r) = V? + Z Cee + Z Ce(r — dy(si,u)).

e=(u,v):u,v€ By (s;,r) e=(u,v):u€By(si,r),v¢ By (si,r)

The first term ensures that V,.(s;,0) is nonzero, and that the sum of V' (s;,0) over all s; is V*;
it will later be clear why this is useful. The second term adds up the volume of all edges (u,v)
such that both v and v are inside the ball of distance r around s;, while the third term adds
up the volume of pipes that fall partially within the ball. Let §(S) be the set of all edges that
have exactly one endpoint in the set of vertices S.

For a given radius r, let ¢(0(Bx(s;,7))) be the cost of the edges in d(B;(s;,7)); that is,
c(6(Bz(5i:7))) = Yces(By(sir)) Ce- We will first claim that it is always possible to find some
radius » < 1/2 such that the cost ¢(d(By(si,r))) of the cut induced by the ball of radius r
around s; is not much more than the volume of the ball; finding a ball of this sort is sometimes
called region growing.

Lemma 8.7: Given a feasible solution to the linear program x, for any s; one can find in
polynomial time a radius r < 1/2 such that

c(0(Bx(si, 7)) < 2In(k + 1)) Va(ss, 7).

This leads to the following algorithm, which is summarized in Algorithm 8.2. We start out
with an empty set of edges F', and we sequence through each i from 1 to k. If s; and ¢; are not
already separated by the cut F', we invoke Lemma 8.7 to find an appropriate radius r < 1/2
around s;. We then add the edges of §(By(si,r)) to F. We remove all the vertices of By(s;, 1)
and all incident edges from the graph and continue. We note that in any iteration, the balls
By (s;,r) and volumes V(s;,r) are taken with respect to the edges and vertices remaining in
the current graph.

We first show that the algorithm produces a feasible solution.

Lemma 8.8: Algorithm 8.2 produces a feasible solution for the multicut problem.

Proof. The only possible way in which the solution might not be feasible is if we have some s;-t;
pair in the ball B;(s;,r) when the vertices in the ball get removed from the graph. However, if
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}«dr

Figure 8.5: An illustration of a ball in pipe system. The ball has radius 3/8 around
si. Note that the volume of the ball will jump from radius r = 1/4 — e to r = 1/4 due
to the presence of edge (u,v). Observe also that if we consider a second ball of radius
r + dr for sufficiently small dr, then the volume of the difference of the two balls is just
the cross-sectional area of the pipes with one endpoint inside the ball and one outside;
that is, it is ¢(0,(Bgz(si,r)))dr.

Let x be an optimal solution to the LP
F« 10
for i <~ 1to k do
if s; and t; are connected in (V, E' — F) then
Choose radius r < 1/2 around s; as in Lemma 8.7
F < FU(By(si,r))
Remove B, (s;,r) and incident edges from graph
return F

Algorithm 8.2: Algorithm for the multicut problem.
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sj,t; € By(si,r) for r < 1/2, then dy(si,s5) < 1/2 and d,(s;,t;) < 1/2 so that dy(sj,t;) < 1.
This contradicts the feasibility of the LP solution x. So it must be the case that whenever we
remove the vertices in a ball B,(s;,r) from the graph, it can contain at most one of the pair of
vertices s, t; for all j. O

Assuming Lemma 8.7, we can now prove that the algorithm is a good approximation algo-
rithm for the multicut problem.

Theorem 8.9: Algorithm 8.2 is a (41In(k + 1))-approximation algorithm for the multicut prob-
lem.

Proof. Let B; be the set of vertices in the ball B,(s;,r) chosen by the algorithm when the pair
s;-t; are selected for separation; we set B; = () if no ball is chosen for i. Let F; be the edges
in §(B;) when B; and its incident edges are removed from the graph (where F; = () if B; = ().
Then F = Ule F;. Let V; be the total volume of edges removed when the vertices of B; and
its incident edges are removed from the graph. Note that V; > V,(s;,r) — % since V; contains
the full volume of edges in Fj, while V,(s;,7) only contains part of the volume of these edges,
but has an extra term of V*/k. Note that by the choice of r in Lemma 8.7, we have that
o(F;) < (2In(k + 1))Va(si,r) < 2In(k + 1)) (Vi + VT*) Further, observe that the volume of
each edge belongs to at most one V;; once the edge is part of V; it is removed from the graph
and cannot be part of the volume of a ball B; removed in a later iteration. This observation
implies that Zle V; < V™.
Putting all of this together, we have that

k k %
dee=> Y ce<@mn(k+1)) (v + ‘2) < (4In(k+1))V* < (4In(k + 1)) OPT.

ecF i=1 ecF; i=1

O]

We finally turn to the proof of Lemma 8.7.

Proof of Lemma 8.7. For simplicity we write V(r) = V,(s;,r) and c(r) = c(6(Bz(si,7)).
Our proof will show that for r chosen uniformly at random from [0,1/2), the expected value
of ¢(r)/V(r) is no more than 2In(k + 1). This implies that for some value of r, we have
that ¢(r) < (2ln(k + 1))V (r). We will then show how we can quickly find such a value of r
deterministically.

To set up the computation of the expectation, we need the following observations. For any
value of r such that V(r) is differentiable, note that the derivative is exactly the cost of the
edges in the cut given by the ball of radius r around s;; that is, 2- = c(r) (see Figure 8.5). We
observe that the points at which V(r) is not differentiable are values of r such that B;(s;,7)
changes; that is, at values of r such that d,(s;,v) = r for some vertex v. Furthermore, V (r)
may not even be continuous for these values: if there are two vertices u and v such that there is
an edge (u,v) of positive volume ¢ > 0 and d,(s;,u) = dy(s;,v) =7, then V(r) =V (r—e) > ¢
as € | 0 (see Figure 8.5). Nevertheless, note that V' (r) is nondecreasing in r.

Essentially we would now like to invoke the mean value theorem from calculus. Recall
that the mean value theorem states that for a function f continuous on an interval [a,b] and
differentiable on (a,b), there exists some ¢ € (a,b) such that f'(c) = w. If we set
f(r) =InV(r), we note that
Py - V) )

vVir) V()
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Observe that V(1/2) < V*+ % since V(1/2) cannot be more than the entire volume plus V*/k,
and V(0) is exactly V*/k. Following the mean value theorem, we want to show that there is
some 7 € (0,1/2) such that

I .
fl(r) < o V(ll//2; _1) V) =2In <V‘§t(/))2)> <2In (W) =2In(k +1). (8.4)

However, the mean value theorem doesn’t apply since as we noticed earlier V(r) may not
be continuous and differentiable in (0,1/2). Nevertheless, we show a form of the mean value
theorem still holds in this case.

We now sort and label the vertices in By(si, 1/2) according to their distance from s;; let
rj = dy(si,v5) be such that 0 =19 <71 < --- <11 <1/2. Then the vertices are labelled s; =
V0, V1, V2, . ..,Vv_1. For notational simplicity define r;, = 1/2. Let i be a value infinitesimally
smaller than r;.

The expected value of ¢(r)/V (r) for r chosen uniformly from [0,1/2) is then

-1

1 i1 c(r) B Lo 1 dv
1/22/” v = 2;/ vy ar

Jj=0

Since V/(r) is nondecreasing, this last sum is at most

-1

2> InV(rj1) —InV(r))].

§=0
Then the sum telescopes so that
-1
2 Z IV (rjy1) —InV(r;)] =2(nV(1/2) —InV(0)),
§=0

and this can be bounded above by 2In(k + 1) as shown in (8.4).

Thus it must be the case that there exists r € [0,1/2) such that ¢(r) < (2In(k + 1))V (r).
How can we find this value of r quickly? Observe that for r € [rj,r; 4], c(r) stays constant
(since By(s;, ) is unchanged), while V (r) is nondecreasing. Thus if the inequality holds at any
point in this interval, it must also hold at i Therefore, we need to check the inequality only
at 744 for j =0,...,l —1; by the argument above, the inequality must hold for some value of
J. O

While no better approximation algorithm for the multicut problem is known, given the
unique games conjecture, we cannot do significantly better.

Theorem 8.10: Assuming the unique games conjecture, for any constant o > 1, there is no
a-approzimation algorithm for the multicut problem unless P = NP.
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We will prove this theorem in Section 16.5.
It will be useful in later sections to have a slight generalization of Lemma 8.7. We observe

that by modifying the proof of Lemma 8.7 one can get the following corollary.

Corollary 8.11: Given lengths x. on edges e € E and a vertexr u, one can find in polynomial
time a radius r € [a,b) such that

8.4 Balanced cuts

We now turn to the graph cut problem that most commonly arises in practice. We say that a
set of vertices S is a b-balanced cut for b € (0,1/2] if |bn] < |S| < [(1 — b)n|, where n = |V|.
Given an undirected graph G = (V, E) with nonnegative edge costs ¢, > 0 for all edges e € E,
and a b € (0,1/2], the goal is to find a b-balanced cut S that minimizes the cost of the edges
with exactly one endpoint in S. The case when b = 1/2 is sometimes called the minimum
bisection problem.

Finding b-balanced cuts arises in divide-and-conquer schemes used in a variety of applica-
tions: the cut S is found, some graph problem is solved on S and V — S, then the solution is
the result of combining the two solutions in S and V' — § via the edges between them. If the
cut has low cost, then the combining step becomes easier. Furthermore, if S and V' — S have
approximately the same size, then the algorithm can be applied recursively to each side, and
the total depth of the recursion will be O(logn).

In this section, we will not give an approximation algorithm for the balanced cut problem,
settling instead for a pseudo-approximation algorithm; by this we mean that our algorithm will
find a b-balanced cut whose cost is within a O(logn) factor of the cost of the optimal b’-balanced
cut for &' # b. Let OPT(b) denote the value of the minimum-cost b-balanced cut. In particular,
we will show how to find a -balanced cut of value at most O(logn) OPT(1/2). Note first of
all that OPT(1/3) < OPT(1/2), since any j-balanced cut is also a %—balanced cut. However,
OPT(1/2) could be substantially larger than OPT(1/3): in fact, if the graph consists of a clique
on %n nodes connected by a single edge to a clique on %n nodes, and all edges have weight
1, OPT(1/3) = 1 while OPT(1/2) = Q(n?). Thus the algorithm is not a true approximation
algorithm since we compare the cost of the solution found by the algorithm with the optimum
OPT(1/2) for a problem that could be much larger than the optimum OPT(1/3) of the problem
for which the algorithm finds a solution. While we give an algorithm to find a %—balanced cut
of cost at most O(logn) OPT(1/2), the discussion that follows can be generalized to give a

b-balanced cut of cost at most O(z15 logn) OPT(Y) for b < 1/3 and b < b'.

Our approach to the problem follows that used for the multicut problem in the previous
section. We claim that the following is a linear programming relaxation of the minimum bisec-
tion problem; we will shortly prove that this is true. Given a graph G, let P, be the set of all
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paths between v and v in G. Consider the following linear program:

minimize E CeTe

eck
subject to dup < Z:}:e, Yu,v € V,VP € Py,
ecP
2 1 2
Y dw= (52— )n  VSCV:IS|>|in|+1,VueS,
3 2 3
veS
dyy > 0, Yu,v €V,
ze > 0, Ve € F.

In this relaxation, we have a variable d,, that is intended to denote the distance between u and
v using edge lengths x.; if we let d,(u,v) be the actual shortest path length between u and v
using edge lengths z., then dy, < d;(u,v).

To solve the linear program in polynomial time, we once again apply the ellipsoid method as
described in Section 4.3. Given a solution (d, x), we can first check if the first set of constraints
is obeyed by computing the shortest path distance between u and v using edge lengths z., and
ensuring that dy, < dy(u,v). For each vertex u, we find the closest [ n| + 1 vertices using
distances dy,; this will include u itself since d,,, = 0. Let u = vg, v1, v9, . . S U2 be the ( nl+1

2
vertices that minimize d,,,. If ngﬂ dm,]. < (% — l)n, then clearly the constraint is violated for

S = {vy,.. -2 1) and this choice of u. Note that if 2(3 i duv, > (3 — 1)n, then there is no

other set S with |S| > [2n] + 1 and u € S such that the constraint is violated, since any S
containing v, . .. ) Urz,y) can only give rise to a larger sum, and since these vertices were chosen
3

to make the sum as small as possible. Thus in polynomial time we can check whether (d, z) is
a feasible solution and find a violated constraint if it is not feasible.
We now argue that the linear program is a relaxation.

Lemma 8.12: The linear program above is a relaxation of the minimum bisection problem.

Proof. Given an optimal bisection S, we construct a solution (d, Z) for the linear program by
setting Z, = 1 if e € 6(S) and Z, = 0 otherwise. We then set dy, = 1 forallu € S, v ¢ S,
and dy, = 0 otherwise. We argue that this solution is feasible, which is sufficient to prove the
lemma. Clearly the first set of constraints is obeyed, since any path P from u € S tov ¢ S
must use an edge e € §(5).

Now consider any set S” such that ]S’\ > [%n] +1. Notice that |S"— S| > [2n]+1—[3n] >
(2—3%)mnand |S'NS| > [2n] +1—[in] > (3 — $)n; call & — S and S’ N S the two parts of
S’. See Figure 8.6. One part (namely, S’ nsS) is contamed in S and the other (namely, S" —5)
has no vertices of S, so for v and v in different parts, dy, = 1. Pick any u € S’. Since u is in
one of the two parts of S’, there are at least (% - %)n vertices v in the other part of S’ which
does not contain u. Thus >, g duy > (% - %)n

O]

Given an optimal solution (d,z) to the linear program, let B, (u,r) be the set of vertices in
the ball of radius r around wu; that is, By(u,r) = {v € V : dz(u,v) < r}. As with the multicut
problem, we let V* =3 __p ccxe, so that we know V* < OPT(1/2) by Lemma 8.12. We define
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Figure 8.6: An illustration of the proof of Lemma 8.12. At least (2 — 1)n vertices
must be both in $NS" and S’ — S, so for any u € S, there must be at least (3 — 1)n

2
vertices v which lie on the other side of the bisection S.

the volume of the ball of radius r around a vertex u as we did in the previous section:

Va(u,r) = ‘% + Z CeTe + Z Ce(r — dy(u,v)).

e=(v,w)w,wEBg(u,r) e=(v,w):wEBz (u,r),w¢Be (u,r)

As before, define ¢(6(Bx(u,))) to be the cost of the edges with exactly one endpoint in B (u, 7).
We can then prove the following lemma, which is analogous to Lemma 8.7.

Lemma 8.13: Given a feasible solution to the linear program (d,x) and two vertices u and v
such that dy(u,v) > 1/12, one can find in polynomial time a radius r < 1/12 such that

c(0(Bz(u,r))) < (12In(n + 1)) Vo (u, 7).
Proof. We apply Corollary 8.11 to the interval [0,1/12), and observe that

(B2 L (V)

O]

Our algorithm for the %—balaneed cut problem is given in Algorithm 8.3. We let S be the set
of vertices that will be in the cut; S is initially empty. We let F' be a superset of the edges in the
cut, and it is also initially empty. Our final solution requires that [$n] < [S| < [2n]. As long
as |S| < [3n], we will show that there must exist two vertices u,v ¢ S such that dg(u,v) > ¢.
We apply Lemma 8.13 to find balls of radius less than 1/12 around both u and v. We take the
ball of smaller cardinality, add it to .S, add the corresponding cut to F, and remove the ball
and its incident edges from the graph.

We now need to prove that the algorithm is correct, and returns a %—balanced cut.

Lemma 8.14: For any iteration of the algorithm in which |S| < |in|, there exist u,v ¢ S such
that dg(u,v) > 1/6.

Proof. Consider $' =V —S. Then |S’| > [2n]+1. Then by the linear programming constraint,
for any w € 8, 3 cor duw > (% — $)n = %n. Since there are at most n vertices in S’, it must

be the case that for some v € S’ dy,, > 1/6. Finally, we know that d,(u,v) > dy,. O
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Let (d,z) be an optimal solution to the LP relaxation
F+0;58«0
while [S| < [in] do
Choose some u,v ¢ S such that dg(u,v) > 1/6
Choose radius r < 1/12 around v as in Lemma 8.13
Choose radius " < 1/12 around v as in Lemma 8.13
if |By(u,7)| < |Bz(v,7")| then
S« SUBg(u,r)
F < FU(Bg(u,r))
Remove B (u,r) and incident edges from graph
else
S« SUBg(v,r")
F «+ FU{§(Bg(v,1"))
Remove B, (v,r’) and incident edges from graph
return S

Algorithm 8.3: Algorithm for the %—balanced cut problem.

Lemma 8.15: The algorithm returns S such that [n] < |S| < [3n].

Proof. By construction of the algorithm, |S| > |4n]. Thus we only need to show that |S| <
[%n] Let S be the contents of S at the beginning of the iteration before the algorithm ter-
minated. Then |S| < [3n] and we added the smaller of the two balls around u and v to
S to obtain the final solution S. Since we considered B, (u,r) and By (v,r') for r < 1/12,
r’ < 1/12, and d,(u,v) > 1/6, it must be the case that these two balls are disjoint; that is,
By (u,r) N By(v,7") = 0. Since we chose the smaller ball to add to S, this implies that the size
of the ball added to S had no more than half the remaining vertices, or no more than %(n — ]S )
vertices. Thus

since |S| < L3n]. O

The proof of the performance guarantee is nearly the same as that for the multicut algorithm,
and so we omit it.

Theorem 8.16: Algorithm 8.3 returns a %-balanced cut of cost no more than (24In(n+1))V* <
(241n(n + 1)) OPT(1/2).

As mentioned previously, the algorithm above can be generalized to give a b-balanced cut
of cost at most O(32 logn) OPT(V) for b < 1/3 and b < V.

In Section 15.3, we will give an O(log n)-approximation algorithm for the minimum bisection
problem; this algorithm is not a pseudo-approximation algorithm, but is an algorithm that
produces a bisection of cost at most O(logn) OPT(1/2).

8.5 Probabilistic approximation of metrics by tree metrics

In this section, we introduce the idea of tree metrics, which we will consider for the remainder of
the chapter. Tree metrics have become an important tool for devising approximation algorithms
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for a wide variety of problems.

We use tree metrics to approximate a given distance metric d on a set of vertices V. A tree
metric (V' T) for a set of vertices V is a tree T defined on some set of vertices V/ O V|, together
with nonnegative lengths on each edge of T'. The distance Ty, between vertices u,v € V' is the
length of the unique shortest path between u and v in T. We would like to have a tree metric
(V',T) that approximates d on V' in the sense that dy, < Ty < @ - dy, for all u,v € V for some
value of . The parameter « is called the distortion of the embedding of d into the tree metric
V', T).

Given a low-distortion embedding, we can often reduce problems on general metric spaces
to problems on tree metrics with a loss of a factor of « in the performance guarantee. It is
often much easier to produce an algorithm for a tree metric than for a general metric. We will
see examples of this in the following two sections, in which we discuss the buy-at-bulk network
design problem and the linear arrangement problem. Further examples can be found in the
exercises.

Unfortunately, it can be shown that for a cycle on n vertices, no tree metric has distortion
less than (n — 1)/8 (see Exercise 8.7 for a restricted proof of this). However, we can give a
randomized algorithm for producing a tree T such that for each u,v € V, dy, < Ty, and
E[T.w] < O(logn)dy,; that is, the expected distortion is O(logn). Another way to view this is
that we can give a probability distribution on trees such that the expected distortion is O(logn).
We refer to this as the probabilistic approximation of the metric d by a tree metric.

Theorem 8.17: Given a distance metric (V,d), such that dy, > 1 for allu # v, u,v € V, there

is a randomized, polynomial-time algorithm that produces a tree metric (V',T), V. C V', such
that for all u,v € V, dyy < Typ and E[Ty,] < O(logn)dy,.

It is known that there exist metrics such that any probabilistically approximation of the metric
by tree metrics must have distortion 2(logn), so the result above is the best possible to within
constant factors.

We now begin to give the details of how the algorithm of Theorem 8.17 works. The tree is
constructed via a hierarchical cut decomposition of the metric d. Let A be the smallest power of
2 greater than 2maxy, dyy. The hierarchical cut decomposition is a rooted tree with logy A +1
levels. The nodes at each level of the tree correspond to some partitioning of the vertex set V:
the root node (at level logy A) corresponds to V itself, while each leaf of the tree (at level 0)
corresponds to a single vertex of V. A given node at level ¢ corresponds to some subset S of
vertices V'; the children of the node corresponding to S correspond to a partitioning of S. For
a given node at level ¢ that corresponds to a set S, the vertices in S will be the vertices in a
ball of radius less than 2! and at least 2~! centered on some vertex. Notice that each leaf of
the tree at level 0 is in a ball of radius less than 2° = 1 centered on some vertex u, and so u is
in the ball by itself since d,, > 1 for all v # u. Observe also that by the definition of A, the
set V is contained in a ball of radius A centered on any vertex, since the radius of the ball at
level log, A is at least %A > maxXy .y dyy- The length of the tree edge joining the children at
level ¢ — 1 to their parent at level 7 is 2. See Figure 8.7 for an illustration of the hierarchical
cut decomposition.

Each node of the tree will be a vertex in V', so that the tree is a tree on the vertices in V.
We let each leaf correspond to the unique v € V that it contains, so that the leaves are the
vertex set V', while the internal vertices are the remaining nodes in V/, and V C V’.

Before we state precisely how to obtain the decomposition, we observe the following prop-
erties of the tree obtained in this way.
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Level log, A

Level log, A-1

Level log, A-2

Level 0

Figure 8.7: A hierarchical cut decomposition of the metric space.

Lemma 8.18: Any tree T' obtained via the hierarchical cut decomposition of metric d as above
has Tyy > dyy for all pairs of vertices u,v € V. Furthermore, if the least common ancestor of

w,v €V is at level i, then Ty, < 2012,

Proof. The distance d,,,, between any pair of vertices u and v in a set S corresponding to a node
at level 4 of the tree is less than 2¢*1, since the radius of the ball containing S is less than 2°.
Thus vertices u and v cannot belong to the same node at level |logy dyy | — 1, since otherwise
the distance between them would be less than 2U082duw] < dyv, a contradiction. The lowest
level at which u and v can belong to the same node is thus |log, dy,]. Therefore, the distance
Tww =2 ]LIL’%Q duvl 9 > dy, since the length of the tree edge joining level j — 1 to j is 27, and
the path from u to v in T starts at u at level 0, goes through a node of level at least |logy dyy |
and back to v at level 0.

If the least common ancestor of u,v € V is at level ¢, then T}, = 22;21 W =22 _4 <
2i+2' ]

The randomized algorithm for producing a tree metric begins by picking a random permu-
tation 7 of the vertices and setting a radius r; for all balls at level i. We pick r9 € [1/2,1)
uniformly at random, and set 7; = 2irq for 4, 1 <14 < logy A. We observe that this implies that
for any i, r; is distributed in [2¢71, 2%) uniformly.

In order to show how to produce the tree metric, we only need to specify how to obtain
the children of a node corresponding to a set .S at level ¢ in the hierarchical cut decomposition.
The partitioning of S into children on level ¢ — 1 is performed as follows: we go through all the
vertices of V' in the order given by the permutation, starting with 7(1). For a vertex 7(j) we
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—

Figure 8.8: An example of the partitioning of set S = {1,3,4,5,7,8,9,10,11} in the
hierarchical cut decomposition. Suppose that the random permutation is the identity.
The ball centered on 1 contains 1, 4, and 11, and {1,4,11} forms a child node. The
ball centered on 2 contains 7 and 10, and {7, 10} forms a child node. The ball centered
on 3 contains 3 and 5, and {3,5} forms a child node. The ball centered on 4 contains
8 and {8} forms a child node; note that the ball centered on 4 also contains 4, 1, and
11, but these have already been put into the first child node. The ball centered on 5
contains no elements of S that are not already in child nodes. The ball centered on 6
contains 9, and {9} forms a child node, and all elements of S are accounted for. Thus
S is partitioned into sets {1,4, 11}, {3,5}, {7,10}, {8}, and {9}.

consider the ball B(w(j),ri—1): if B(w(j),ri—1) NS = (), we go on to vertex m(j + 1), otherwise
we make B(m(j),ri—1)NS a child node of S, remove the vertices of B(m(j),r;—1) from S, and go
on to vertex 7(j+ 1) with the remaining nodes of S (if there are any). An alternate perspective
of this procedure is that for each u € S, we assign u to the first 7(j) in the permutation such
that uw € B(w(j),ri—1); all the vertices of S assigned to the same 7(j) are put in the same set of
the partition. Note that all vertices in .S are accounted for by this procedure, since every vertex
in S is a member of the ball centered on itself. Observe also that a child node of S can have as
its center a vertex 7(j) that is not in S, or a vertex = (j) that is in another, previously formed
part of the partition. See Figure 8.8 for an illustration of the partitioning, and see Algorithm
8.4 for a summary of the algorithm.

We now prove that the constructed tree probabilistically approximates the metric d. We
restate the theorem here for convenience.

Theorem 8.17: Given a distance metric (V,d), such that dy, > 1 for allu # v, u,v € V, there
is a randomized, polynomial-time algorithm that produces a tree metric (V',T), V. C V', such
that for all u,v € V', dyy < Typ and E[Ty,] < O(logn)dy,.

Proof. Lemma 8.18 shows that for tree T', T, > dy,. Now to show the other inequality, pick a
particular pair of vertices u,v € V. The lemma also shows that the length T}, depends on the
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Pick a random permutation 7 of V'
Set A to the smallest power of 2 greater than 2 maxy, , dy,
Pick 7 € [1/2,1) uniformly at random; set r; = 2irg for all i : 1 < i < log, A
// C(i) will be the sets corresponding to the nodes at level i; the sets
partition V
Clogy A) = {V'}
Create tree node corresponding to V'
for ¢ « logy A downto 1 do
C(i—1) <«
for all C € C(i) do
S+ C
for j < 1 ton do
if B(Tr(j),ﬂ',l) ns ?é @ then
Add B(w(j),ri—1) NS to C(i — 1)
Remove B(w(j),ri—1) NS from S
Create tree nodes corresponding to all sets in C(i — 1) that are subsets of C'
Join these nodes to node corresponding to C by edge of length 2!

Algorithm 8.4: Algorithm to create a hierarchical tree decomposition.

level of the least common ancestor of u and v, and if this level is level i + 1, T}, < 2!*3. For
this least common ancestor to be at level ¢ + 1, v and v must be in different sets on level 7. In
order for this to happen, there must be some vertex w such that exactly one of u and v is in
the set corresponding to the ball centered on w on level i. As in the proof of Theorem 8.6, we
say that w settles the pair u,v on level 4 if w is the first vertex in the random permutation of
vertices such that at least one of u, v is in the ball B(w,r;). We say that w cuts the pair u,v on
level i if exactly one of w and v is in B(w,r;). Let Xj,, be the event that w cuts (u,v) on level
i, and let Sy, be the event that w settles (u,v) on level i. Then if 1 is the indicator function,

Tw < max 103w €V : Xy A Siy) - 2773,
=0,...,log A—1

We can simplify slightly by replacing the maximum and the existential quantifier with sums,
so that

log A—1
Tw <Y D UXiw A Siw) - 275,
weV =0
Taking the expectation, we obtain
log A—1
BlTw] <> Y Pr[Xw ASi) - 27
weV =0

We will give an upper bound b, on Pr[S;,|X;,] that depends only on w, and will show that
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S8 8 Pr[X;y] - 2743 < 16dy,. Then

log A—1
ElTw] < > Y Pr[XpASi] -2
weV =0
log A—1
= > > PrlSu|Xiw| Pr(X,] - 27
weV =0
log A—1
< D bw Y Pr[X] 27
weV =0
< 16duy Y bu.
weV

In particular, we will show that ) i b, = O(logn), which will give the result.

First we show that Zlog A-l Pr[X;y] - 2073 < 16dy,. Suppose without loss of generality
that dyw < dyyw. Then the probability that w cuts (u,v) on level ¢ is the probability that
u € B(w,r;) and v ¢ B(w,r;), or that dyy < 7 < dyy. Since r; € [20712%) uniformly at
random, this probability is simply 1/(2¢ — 2¢=1) times the length of the intersection of the
intervals [2071, 2%) and [dyw, dvw ), SO that

‘[22’71, 21) N [duunde” _ |[2i717 21) n [duwa d”w)’
[201, 20)] - 2i-1 '

PI‘[Xiw] =
Then
21+3
2i—

Since the intervals [2i71,2%) for i = 0 to logy A — 1 partition the interval [1/2, A/2), it follows
that

2 Pr(Xp] = 51271, 2) N [duw, dow)| = 16][271,2°) N [duaw, dow)-

logy, A—1
Pr[Xiw} DA < 16Hduw7de)| = 16(de - duw) < 16dyw,
i=0
where the final inequality follows by the triangle inequality.

Now to bound Pr[S;,|X;y]. We order the vertices w € V' in order of their distance to the
pair u, v; that is, we order the vertices w € V' by min(dyuy, dyw). Note that if event X, happens,
then one of w and v is in the ball B(w,r;). Thus any vertex z closer to the pair u,v than w
will also have at least one of u and v in the ball B(z,r;). So in order for w to settle the pair
u,v given that it cuts w,v on level 7, it must come before all closer vertices z in the random
permutation of vertices. If w is the jth closest vertex to u,wv, this happens with probability
at most 1/j. Thus Pr[Siy|Xiw] < 1/j if w is the jth closest vertex to the pair u,v. We can
then define the bound b,, on this probability as 1/j. Since for each j, 1 < j <mn, there is some
vertex w that is the jth closest to the pair u,v, we have that >, by = >/ 1 = O(logn),
as desired. O

8.6 An application of tree metrics: Buy-at-bulk network design

To get a sense of the kinds of problems for which we can obtain approximation algorithms
using probabilistic approximation by tree metrics, we consider the buy-at-bulk network design
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8.6 An application of tree metrics: Buy-at-bulk network design 217

Set P; to be the unique s;-t; path in T'
Set ¢ = Zi:eEPi d; forallee T

Algorithm 8.5: Algorithm for the buy-at-bulk network design problem in a tree T

problem. In this problem, we are given an undirected graph G = (V| E) with lengths ¢, > 0 for
each e € E. There are k source-sink pairs s;-t;, with s;,%; € V', and each pair has an associated
demand d;. We can purchase a capacity u on any edge at a cost of f(u) per unit distance. We
assume that f(0) = 0 and that f is nondecreasing; as we purchase more capacity, the total cost
does not go down. We further assume that the function f obeys economies of scale: the cost
per unit of capacity does not increase as the desired capacity increases. Note that this implies
that f is subadditive: f(ui +u2) < f(u1) + f(u2) (see Exercise 8.9 for an alternate assumption
about how capacity is purchased). The goal of the problem is to find a path P; from s; to t; for
each ¢ and a minimum-cost set of capacities c. for all edges e € E such that a multicommodity
flow can be routed in the graph of non-zero capacities; that is, such that we can send d; units of
commodity ¢ from s; to ¢; on path P; for all ¢ using the capacities c.. The cost of the solution
is Y cp flce)le.

Observe that the problem is easy to solve in a tree metric T'; let T, be the length of the
unique path in T" between u and v. Because there is only one path P; in T" between any s; and
t;, the desired capacity on a given edge in the tree is simply the sum of the demands of the
commodities whose unique path uses the edge. This algorithm is summarized in Algorithm 8.5.
Thus given the algorithm of the previous section which approximates general metrics d by tree
metrics, a straightforward idea presents itself. Let d,, be the length of the shortest path in G
between v and v using lengths ¢.. Use the algorithm to probabilistically approximate d by a
tree metric T, then run the algorithm on the tree T. There is a slight problem in that since
the tree metric is over a set of vertices V' D V, it is not clear how we translate a result on the
tree metric (V/,T) back into one on the original graph. To do this, we will use the following
theorem.

Theorem 8.19: For any tree metric (V',T) with V. C V' defined by a hierarchical cut decom-
position, with the vertices in V as the leaves of T', we can find in polynomial time another tree
metric (V,T") such that Ty, < T, < 4Ty,.

Proof. Pick any v € V such that the parent w of v in the tree T is not in V' (that is, w € V' —V).
We contract the edge (v, w), merging the subtree at v into its parent w, and identify the newly
merged node as v. Repeat this process until every vertex in the tree is a vertex of V. Finally,
multiply the length of every remaining edge by four. Let 7" denote the resulting tree.

Clearly T, < 4T, since the distance between u and v could have only decreased during
the contraction of edges, and then increased by a factor of four when the edge lengths were
multiplied. Now suppose that the least common ancestor of 4 and v in the original tree T" was
a node w at level i so that T}, = 2°t2 — 4, as shown in the proof of Lemma 8.18. Then since
the contraction process only moves v and v upwards in 7', and does not identify the nodes u
and v, the distance 7!, in 7" must be at least four times the length of the edge from w to one
of its children, which is 4 - 2! = 2+2. Thus T, > Ty.. O

We thus obtain the following corollary from Theorem 8.17.
Corollary 8.20: Given a distance metric (V,d), such that dy, > 1 for all u # v, u,v € V,

there is a randomized, polynomial-time algorithm that produces a tree metric (V,T'), such that
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Apply Corollary 8.20 to find tree metric (V,7T") that approximates input metric d
Find shortest path P, in G for each (z,y) € T'

Let P;, be unique s;-t; path in T" for all 4

Let P; be concatenation of paths Py, for all (z,y) € P, ;. for all i

Set ¢, = Zi:eepi d;forallec FE

Algorithm 8.6: Algorithm for the buy-at-bulk network design problem for general metrics d.

for allu,v € V, dyy < T}, and E[T),] < O(logn)dy,.

Proof. By the proof of Lemma 8.18, the least common ancestor of « and v in the tree T obtained
from a hierarchical cut decomposition must be on level |logy d,,| or higher. By the proof of
Theorem 8.19, the distance T, > 272 for vertices in u and v that have their least common
ancestor at level ¢ in tree T. Thus 7|, > dy,. The other statements follow immediately. O

Thus our algorithm now uses the algorithm of Corollary 8.20 to find a tree metric 7”, then
uses Algorithm 8.5 to solve the buy-at-bulk problem on 7”. For each edge (x,y) € T", we find
a corresponding shortest path P,, in our input graph G. Then our output path P; from s; to
t; in our input metric is the concatenation of the paths Py, for all edges (z,y) € T’ on the path
from s; to t; in the tree T’. Given the paths P;, we set the capacity of edge e to be the sum of
the demands routed on paths that use e, so that c, = ;... p, ;. This algorithm is summarized
in Algorithm 8.6. Thus the cost of our solution is ) . fef(ce).

We will now show in a sequence of lemmas that Algorithm 8.6 is an O(logn)-approximation
algorithm for the buy-at-bulk network design problem. We do this by relating both the cost
of our algorithm’s solution and the cost of an optimal solution to the cost of a solution in T".
First, we give a bit of notation. Let P,, denote the set of edges in a fixed shortest path from
u to v in G, and let P;, denote the set of edges in the unique path from z to y in 7". Let ¢},
for edges (x,y) € T' be the capacity used by our algorithm on edge (z,y) of the tree T”; that

o )
18, Cpy = Zi:(w,y)EPS’iti di.

Recall that our algorithm first finds a solution in 7”, then translates the solution into G.
We first show that the cost of the solution can only decrease with this translation.

Lemma 8.21: The cost of the solution given by the algorithm is at most Z(m,y)eT’ Ty f(chy)-

Proof. For each (z,y) € T', our algorithm finds a shortest -y path in G, P,,. We know that
every demand i that uses (z,y) in T" will send its demand in G along this path, so that ¢},
demand is sent along this path at a cost of dy f(c},) < Ty, f(c;,). Note that it is possible that
some edge e in G is contained in more than one shortest path corresponding to edges from T”;
for example, e might be contained in P,, and P,,, corresponding to two edges (z,y) and (v, w)
from T’. Then we will route demand c;:y + ¢, across e. However, by the subadditivity of f,
we know that routing multiple paths on e cannot increase the total cost of the solution since
f(chy + cpw) < flcy) + fchy)- Thus we claim that the cost of the solution in 7" does not

increase when mapped to G.
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Arguing more precisely, we have that

Yo Ty = D duyf(e)

(zy)eT’ (z,y)eT’
= Z f(cécy) Z ge
(z,y)ET’ e€Pyy

= > b Y f(dhy)

ecE (Qf,y)ETlleesz

= Z tef Z Cay

ecF (z,y)ET":€€ Pyy
== Z fef(ce)7
eceE
as desired. -

Now suppose that an optimal solution uses paths P in G. Then the optimal solution uses
capacity ¢; = > ;. .cp+d; on edge e, and has cost OPT = /. f(cf). In order to compare
the cost of the optimél solution with the cost on our solution the tree 7", we think about how
to translate the optimal solution in G to a solution on 7”. For each edge e = (u,v) € E, we’ll
install ¢} units of capacity on all edges in the unique u-v path in 77. We now show that the

cost of this translated optimal solution on 7" must cost at least as much as our solution on 7".

Lemma 8.22: The cost of the optimal solution in G translated toT" is at least 3, ,y e Ty f(¢y)-
Proof. To see this, we observe that for any edge (x,y) € T’, our solution uses capacity cgy,
which is exactly equal to the demands of all s;-t; pairs that would be separated in T” if we
removed (z,y) from T’. Any other solution in 7" sending d; units of demand from s; to t; for
every ¢ must use capacity at least this much; so the translation of the optimal solution must
use capacity at least c’xy on edge (x,y). Thus since f is nondecreasing, and the translation into
T' of the optimal solution uses capacity at least ¢, on edge (z,y) € T for all (x,y) € T", the
cost of the optimal solution in G translated to 7" must be at least 3, cq Thy f(cy)- O

We can now prove the main theorem.

Theorem 8.23: The above randomized algorithm gives an O(logn)-approzimation algorithm
for the buy-at-bulk network design problem.

Proof. By combining Lemmas 8.21 and 8.22, we see that the cost of the solution given by the
algorithm is at most the cost of the optimal solution in G translated to 77. We now only need
to show that this cost, in expectation, is at most O(logn) OPT.

We first claim that the cost of the optimal solution in G translated to T is at most
Ze:(u,v)e g F()T),. Given the claim, the theorem follows since then the expected cost of
the solution is at most

E| Y. [T, | <O(ogn) > f(ct)du < O(logn) > f(ct)te = O(logn) OPT.
e=(u,v)EE e=(u,v)€E ecE
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Now to show the claim. The capacity that the translated solution needs for any edge
(x,y) e TVis Y. (u0)eE:(zy)ep,, Ce- Then by subadditivity, the cost of the optimal solution
translated to 7" is

o T, f > al < Y 1, > f(ct)

(zy)eT” e=(uv)eE:(z,y)e Py, (zy)eT’ e=(uv,v)E€E:(z,y)E Py,

= > fl@)

e=(u,v)EE (,y)€P;,

= Y [T,

e=(u,v)€E

8.7 Spreading metrics, tree metrics, and linear arrangement

We turn to one more problem that can be approximated using tree metrics. We consider the
linear arrangement problem. In the linear arrangement problem, we are given an undirected
graph G = (V, E) and nonnegative weights w, > 0 for all edges e € E. A feasible solution
is a one-to-one mapping f of the vertices to the numbers {1,2,...,n}, where n = |[V|. The
goal is to find the mapping that minimizes the sum }-._, ,)cp we| f (u) — f(v)]. Intuitively, we
are mapping a graph to points on the line so that we do not stretch the edges by too much;
an example of the problem is shown in Figure 8.9. To find a solution to the problem, we first
give an LP relaxation using a kind of metric called a spreading metric. Then we approximate
the spreading metric by a tree metric. Finally, since we will be trying to minimize a sum of
distances, we show that we can deterministically find a good tree metric.

We claim that the following linear program is a relaxation of the linear arrangement problem:

minimize Z Weyy
e=(u,v)EE
1
subject to Zduv > —|S|%, VS CV,ués,
vES
duv = dmm V’LL,U € Vvv
duv S duw + d’LU’U) vu? U’ w 6 ‘/:
dyy > 1, Yu,v € V,u # v,
dyy = 0, Yu e V.
To see that this is a relaxation, given a one-to-one mapping f: V — {1,...,n}, let dy, be the

distance between u and v under the mapping f, so that dy, = |f(u) — f(v)|. Clearly the value
of the solution is the cost of the linear arrangement. It is easy to see that then dy, = dyq,
duy < dyw + dwp, dyy > 1 if u # v, and d,,, = 0. To see that the final set of constraints is
obeyed, note that for any set of vertices S and any u ¢ S, there can be at most two vertices in
S at distance 1 from f(u) (namely, the vertices mapped to f(u)+1 and f(u)—1), at most two
at distance 2, and so on. Thus

51 (15] L
vES
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2 4
1 6
3 5
e e Se_e
1 2 3 4 5 6

Figure 8.9: An example of the linear arrangement problem. We can map the vertices
of the graph on the top of the figure to {1,...,6} as shown on the bottom of the
figure. Assuming the edges all have unit weight, this mapping gives a solution of cost
1+14+142+2+2+2=11

The variables d arising from the solution to the LP are a metric (V, d) since they obey the three
properties of a metric as defined at the beginning of the chapter. This metric is sometimes
called a spreading metric, since the constraint on sets S C V enforces that for any set S and
any u ¢ S, there is a v € S that is far from w. Indeed, for any S C V and any u ¢ S, let
z = maxyeg duy. Then observe that z|S| > Y o duy > %|S|* implies that z > 1|S|. The

constraint >, ¢ dyy > 1|5|? is sometimes called the spreading constraint.

Observation 8.24: For the spreading metric d defined as above, for any subset of vertices S
and vertez u ¢ S, there exists vertez v such that dy, > 1|9

The linear program above can be solved in polynomial time by using the ellipsoid method
given in Section 4.3. There are a polynomial number of constraints excepting the spreading
constraints. The polynomial-time separation oracle for the spreading constraints is as follows.
For each u € V' we sort the remaining vertices in order of their distance from w, from smallest to
largest: let vq,...,v,—1 be such that dy,, < dyy, < -+ < dyy,_,. We then check the constraint
for each of the sets {v1},{v1,v2}, ..., {vi,...,vp—1}. We claim that if the constraint is not
violated for any of these sets for any u, then no constraint is violated. Suppose the constraint
is violated for some S and some u ¢ S. Then clearly the sum ) _¢dy, is at least as large as

Zlﬂl dy,, so if the constraint is violated for S and u ¢ S, it will also be violated for u and the
set {vl, .. ,v|5|}.

To get an approximation algorithm for the problem, we use a tree metric to approximate the
metric dy, obtained by solving the LP. However, here we will show that we can deterministically

obtain a tree metric with the desired properties. In particular, we will show below that for any
metric d, and any set of nonnegative costs ¢, > 0 on pairs of vertices u,v € V', one can find in
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polynomial time a tree metric (V’,T') such that T, > d,, and

Z CuvTuy < O(logn) Z Cuvduv

u,veV u,veV

Observe that the results of Section 8.5 give a randomized algorithm such that

E| Z cuvTuv] < O(logn) Z Cuvuv

u,veV u,veV

Since this inequality holds over the random choices of the trees from the randomized algorithm,
there must exist some tree T generated by the algorithm such that the inequality holds. In fact,
we can easily give a randomized algorithm to find such a tree metric (see Exercise 8.12). How-
ever, in the rest of this section we will deterministically find a hierarchical cut decomposition,
leading to a tree metric, such that the inequality above holds.

We now show how finding a tree metric to approximate d applies to the linear arrangement
problem. We will need the tree metric 1" to have some additional properties: first, that T is
a rooted tree with all the vertices of V' at the leaves of the tree; and second, if vertex z € V
belongs to the smallest subtree containing vertices u,v € V', then Ty, > T,,. Note that these
additional properties are satisfied by trees resulting from a hierarchical cut decomposition. We
claim that we can find such a tree efficiently.

Theorem 8.25: Given a metric dy, on vertices V and nonnegative costs cy, for all u,v € V,
in polynomial time we can compute a tree metric (V',T) on a set of vertices V! D'V such that
Tww > duy for all u,v € V and Zu,ve\/ cuvTuw < O(logn) Zu,vev Cuvluy. Furthermore, T is a
rooted tree with all vertices of V' at its leaves, and if vertex z € V belongs to the smallest subtree
containing vertices u,v € V, then Ty, > T, .

Our algorithm for linear arrangement is as follows. We solve the linear programming relax-
ation above to obtain the metric d, and use the theorem to obtain a tree metric (V',T); we do
so with costs ¢y, = we for e = (u,v) € F and ¢,, = 0 otherwise. We then assign each leaf of
the tree T' a number from 1 to n; intuitively, we number them consecutively from left to right.
Then each subtree in T has leaves that are numbered consecutively. Since each vertex of V is
a leaf of the tree, the process assigns each v € V' a number from 1 to n.

Theorem 8.26: The algorithm given above is an O(logn)-approzimation algorithm for the
linear arrangement problem.

Proof. Let f be the one-to-one mapping produced by the algorithm. For any given edge e =
(u,v), consider the smallest subtree in the tree T' that contains both w and v. This subtree is
assigned some range of integers [a, b]. Since the leaves of the subtree are numbered consecutively,
there are b—a+1 leaves in the subtree. At worst, we can have one endpoint of the edge assigned
to a and the other to b; hence |f(u) — f(v)] < b — a. Let S be the set of leaves in the subtree
other than u; we have |S| = b — a. By Observation 8.24, we know there is some other vertex
z € S such that d,, > %(b —a). Therefore, by the property of the tree metric in Theorem 8.25,
Tuw > Tus > dys > %(b — a), since z belongs to the smallest subtree containing v and v. Hence
we have |f(u) — f(v)| <4 -Tyy. By Theorem 8.25, we can then bound the cost of the solution
f as follows:

Z w6|f(u) - f(’U)| <4 Z weTuv < O(log n) Z weduv < O(log n) OPT,

e=(u,v)eE e=(u,v)eE e=(u,v)eE
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where the final inequality follows since > e=(u,0)EE Wedy, is the objective function of the linear
programming relaxation of the linear arrangement problem. O

We now begin our proof of Theorem 8.25. As we have mentioned previously, we will construct
our tree via a hierarchical cut decomposition, as in Section 8.5. To give the decomposition, we
need to explain how to partition a set .S corresponding to a node at level ¢ of the tree so as to
obtain its children at level ¢ — 1. As in the previous sections, we need to define the concept of a
ball and the volume of a ball. For a given metric d, let By(u,r) be the set of a vertices within
distance r of u, so that By(u,r) = {v € V : dy, <71}. Let V* = Zu,vEV Cuv@un. We define the
volume Vy(u,r) as in the previous sections, with

*

%
Vd(u7 T) = 7 + Z Cowdyw + Z Cyw (T — duv)-

v,w€Bgy(u,r) vEBq(u,r),wé¢Bg(u,r)

We define ¢(0(Bgy(u,r))) to be the cost of the pairs of vertices with exactly one vertex in
Ba(u,r), so that ¢(6(Ba(u,7))) = Xveny(ur)weBy(ur) Cow- We let cq(u,r) be shorthand for
(6(Ba(u, 7).

Note that in Section 8.5, we made a random choice of the radii r; for the balls at level 7.
Here we note that we can make good, deterministic choices via the region growing technique
that relates the cost ¢4(u,r) to the volume of the ball.

Lemma 8.27: In polynomial time it is possible to find a value r for anyu € V and i, 0 < ¢ <
logy A, such that 2071 < r < 2! and

calu,r) < 2171 n (%) Va(u,r).

Proof. This follows from Corollary 8.11 applied to the interval [2¢71 2%). O

The partitioning of a node corresponding to S at level ¢ into children at level ¢ — 1 is
performed as follows. Rather than using a random ordering on the vertices, we find a vertex
u € S that maximizes the volume Vy(u,2°72), and find a ball of radius r, 2072 < r < 271,
around v via Lemma 8.27. We make a child node of S corresponding to all the vertices of
Bg(u,r) in S, remove these vertices from S and repeat as long as S # (). Note that the ball has
radius less than 2¢~! as required.

We can now prove the main theorem, which we restate here for convenience.

Theorem 8.25: Given a metric dy, on vertices V. and nonnegative costs cy, for all u,v € V,
in polynomial time we can compute a tree metric (V',T) on a set of vertices V' OV such that
Tww > dyy for all u,v € V and ZU,UEV cuvTuy < O(logn) ZW}GV Cuv@uy. Furthermore, T is a
rooted tree with all vertices of V' at its leaves, and if vertex z € V belongs to the smallest subtree
containing vertices u,v € V, then Ty > T, .

Proof. 1t follows from the properties of a hierarchical cut decomposition that each leaf of T’
corresponds to a single vertex v € V. Furthermore, by Lemma 8.18, the distance between u
and v depends solely on the level of the least common ancestor containing v and v; namely, if
it is at level ¢, then T, = 2 Z}Zl 2/ = 212 _ 4 Thus if z is in the smallest subtree containing
u and v, clearly the least common ancestor of u and z is at level at most i, so that T, > Ty.,.

We now need to argue that Zu,vev cuwTuy < O(logn) Zu,vEV Cuvduy. For a given pair of

vertices u,v € V, let i + 1 be the level of the least common ancestor in the tree T' containing
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both uw and v. As shown in Lemma 8.18, then T}, < 23, Let FE;i+1 be the pairs of vertices
(u,v) with u,v € V whose least common ancestor in the tree T' is at level i + 1. Thus

log, A—1
E : § : E /‘ i+3
cuvTuv S 2 * Cyp-
U,UGV =0 (u,v)eEH_l

Note that (u,v) € E;;1 implies that there is a node at level i of the tree T' corresponding to a
ball such that exactly one of u and v is inside the ball. Thus Z(u,v)e Byyy Cuv is at most the sum
of the cuts created when we formed the children at level ¢, and by Lemma 8.27, we can relate
these cuts to the volume of these children.

Let C; be the set of the centers of the balls corresponding to the nodes of level ¢ of the tree
T, and for z € C;, let r,; be the radius of the ball around z we chose via Lemma 8.27. Then
for any level 1, Z(u,v)GEH_l Cup < Zzeci cq(z,7i). By Lemma 8.27, we know that cg(z,7,;) <

— V(2,2
21=%1n (#2?,)1)) Va(z,72). Thus

logy A—1
E Cuwluw < g g 213 Cyv
u,veV =0 (u,v)€E¢+1
logy A—1

Z Z 2it3 . ca(z,r;)

1=0 zeC;
. Vd(27 22)
16 ; Z In (W) Vd(Z, T’iz)-

To bound this final term, we need to somehow relate the sum to the overall volume. To
do this, let g(v) be the volume of all the edges incident on vertex v plus V*/n; that is, g(v) =
% + ZuEV Cuvdyy. Then certainly the volume of the set associated with any node in the tree
is at most the sum of the g(v) of all the vertices v in the set; that is, for a set S corresponding
to a node at level i generated by a ball around a center z of radius 7., Vy(z,7i2) <> cq9(v).
Pick any v € S§. Since r;, < 2', any edge or part of an edge contributing volume to the ball
of radius r;, in S must also be in a ball of radius 2*! around v. Thus Vy(z,7:.) < Va(v, 2iT1h).
By construction of the algorithm, if z is a center of a ball corresponding to a node of level ¢ in
the tree, it must be the case that Vy(z,271) > Vy(v,2¢71) for any other v € S since we chose
z € S to maximize the volume Vj(z,2¢~1). Putting all of these together, for any level i and set
S corresponding to a node on level i, with z as its corresponding center, we have that

(521 s S (2 o= £ ()

Substituting this into the inequality above and using the fact that the nodes at level i partition
V', we have

IN

IN

logy A—1 21+1)
S et =160y S ({A0E ) o
u,veV =0 weV
logy A—1
1}27’+1)
-6 Y (AR )
veV =0
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For each v € V' the sum telescopes to In(Vg(v, A))+1In(Vy(v, A/2)) —In(Vi(v, 1)) —1In(Vy(v, 1/2)),
which can be bounded above by 2(In(Vy(v,A)) — In(Vy(v,0))). Thus this sum is at most

Va(v, A)
321;/1 (Vdv 0) >g(v).

Then since Vy(v, A) is at most V*, the entire volume, plus the extra V*/n term, while Vy(v,0) =
v*/n,

327)€Z‘/In (%) <3221 <V*—|—V*/n> g(v) :321n(n—|—1)Zg(v).

veV

Using the definition of g(v), we have that

32In(n+1) Y g(v) =32In(n+1)» (‘2 +> cwduv> =96In(n+1) > cuvduo,

veV veV ueV u,veV
so that
Z CuvTuy < O(log n) Z Cuvdum
u,veV u,veV
as desired. ]

While we have gone to considerable lengths to give a deterministic algorithm to find a tree
metric T such that ZU,UEV CuvTuw < O(logn) Zu,UEV Cuvdyy, We can quite simply obtain a ran-
domized algorithm that finds such a tree metric with high probability given a randomized algo-
rithm for probabilistically approximating a metric by a tree metric with distortion O(logn). We
give this as an exercise (Exercise 8.12). The reverse direction can also be shown; given any de-
terministic algorithm to find a tree metric 1" such that ZW}EV cuvTuw < O(logn) Zu,vEV Cuvnuw,
we can obtain a randomized algorithm that can probabilistically approximate d by a tree metric
with distortion O(logn). We give the latter problem as an exercise later on in the book, once
we have a bit more experience with the ellipsoid method (Exercise 15.9).

Exercises

8.1 Prove that the analysis of the performance guarantee of the multiway cut algorithm of
1

Section 8.2 can be improved to 5= %
8.2 Consider the following two permutations 7; and 72, where 7 (1) = 1,m(2) = 2,...,m (k) =
k, while mo(1) = k,m2(2) = k —1,...,m(k) = 1. Consider a modification of Algorithm
8.1 in which we do not choose a random permutation 7, but rather choose m = 7 with
probability 1/2 and m = my with probability 1/2. Show that the modified algorithm is

still a %—approximation algorithm for the multiway cut problem.

8.3 In the Steiner k-cut problem, we are given an undirected graph G = (V, E), costs ¢ > 0
for all e € F, a set of terminals ' C V, and a positive integer k < |T'|. The goal of the
problem is to partition the vertices into k sets S1,..., Sk such that each set contains at
least one terminal (that is, S; T # @) for « = 1,..., k) and to minimize the weight of the
edges with endpoints in different parts. Given a partition P = {Si,..., Sk}, let ¢(P) be
the total cost of the edges that have endpoints in different parts of the partition.
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Consider the following greedy algorithm for the Steiner k-cut problem: We start with
P = {V}. As long as P does not have k parts, we consider each set S € P with
|SNT| > 2, consider each pair of terminals in SN 7T, and compute the minimum-cost cut
between that pair of terminals. We then choose the minimum-cost cut found overall by
this procedure; note that this breaks some set S € P into two parts. We replace S in P
with these two new parts, and continue.

(a) Let P; be the contents of the partition found by the algorithm when it has i parts.
Let P = {V1,Va,...,Vi} be any valid partition into ¢ parts (that is, V; N T # 0 for
j=1,...,i). Show that

i—1
c(Pi) < Z Z Ce.

J=1ecé(Vj)

(b) Use the above to show that this greedy algorithm is a (2 — %)—approximation algo-
rithm for the Steiner k-cut problem.

8.4 Give a linear programming relaxation for the minimum multicut problem of Section 8.3
whose number of variables and constraints can be bounded by a polynomial in the size
of the input graph G. Show that it is equivalent to the linear programming relaxation of
Section 8.3, and show that any optimal solution to your linear program can be transformed
to an optimal solution of the other linear program in polynomial time.

8.5 In the minimum cut linear arrangement problem, we are given an undirected graph G =
(V,E) and costs ¢ > 0 for all e € E. As in the linear arrangement problem, a feasible
solution is a one-to-one mapping f of the vertices to the numbers {1,2,...,n}. In this
problem, however, the goal is to minimize the cost of the cut {f(1),..., f(i)} over all i;
that is, we wish to minimize

mex ) e

e=(u,v):f(u)<i,f(v)>1

Show that by using the balanced cut pseudo-approximation algorithm of Section 8.4, one
can obtain an O(log2 n)-approximation algorithm for this problem.

8.6 In the sparsest cut problem, we are given an undirected graph G = (V, E), costs ¢, > 0
for all e € E, and k pairs of vertices s;,t;, each pair with an associated positive integer
demand d;. We want to find a set of vertices S that minimizes

ZeE(S(S) Ce
D isisnsitid|=1 di

That is, the sparsest cut problem finds a cut that minimizes the ratio of the cost of the
edges in the cut to demands separated by the cut. Let P; denote the set of all paths P
from s; to t;.

(a) Prove that it is equivalent to find a minimum-cost set of edges F' that minimizes

ZeEF Ce
D ies(r) i’

where s(F') is the set of indices 7 such that s; and ¢; are not connected in the graph
(V,E —F).
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8.7

8.8

8.9

(b) Prove that the following LP is a linear programming relaxation of the sparsest cut
problem.

minimize g CeTe
ecE

k
subject to Zdiyi =1,
i=1

7
d we>y, VPeP,1<i<k
ecP
yi >0, 1<i<k,

Le

>
>

(c) Prove that the linear program can be solved in polynomial time.

(d) Let (2*,y*) be an optimal solution to the linear program, and suppose that yj >
Yys = 2 yp. Let Dy = 23:1 d;j, and H, =1+ % + -+ % Show that there exists
1, 1 < i <k, such that
1

*
>
Yi _Di'HDk

(e) Use the preceding discussion to get an O(log k- Hp, )-approximation algorithm for the
sparsest cut problem. Since H,, = O(logn), this is a O(log k - log Dy, )-approximation
algorithm.

Let C,, = (V, E) be a cycle on n vertices, and let d,, be the distance between u,v € V on
Cp. Show that for any tree metric (V,T') on the same set of vertices V', there must exist
a pair of vertices u,v € V such that dy, = 1, but T,,, > n — 1. To do this, suppose that of
all trees T' with optimal distortion, 7" has the minimum total length. Show that T" must
be a path of vertices of degree two, then conclude the statement above.

In the universal traveling salesman problem, we are given as input a metric space (V,d)
and must construct a tour 7 of the vertices. Let mg be the tour of the vertices S C V
given by visiting them in the order given by the tour m. Let OPTg be the value of an
optimal tour on the metric space induced by the vertices S C V. The goal of the problem
is to find a tour 7 that minimizes mg/ OPTg over all S C V; in other words, we’d like to
find a tour such that for any subset S C V, visiting the vertices of S in the order given
by the tour is close in value to the optimal tour of S.

Show that if (V, d) is a tree metric, then it is possible to find a tour 7 such that mg = OPTg
forall S CV.

A typical variant of the buy-at-bulk problem discussed in Section 8.6 is to assume that
cables come in different types: cable type i costs ¢; and has capacity u;. We must choose
the type and number of cables to install on each edge given the demand to be supported
on the edge. Show that given a demand d to be supported on an edge, installing enough
copies of a single cable type i (e.g., [d/u;] copies for some 7) is a 2-approximation algorithm
for this problem.

8.10 Consider a slight variant of the k-median problem given in Section 7.7: we are given as

input a set of locations N in a metric space, and a parameter k. Let ¢;; be the distance
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between ¢ and j for 7,5 € N. We wish to select a subset S C N of k centers to minimize
the sum of the distances of each location to the nearest center; that is, we wish to select
S C N with |S| = k to minimize .y minjeg c;;.

(a) Give a polynomial-time algorithm for the problem in the case that the metric c;;
comes from a tree metric (N, 7). You can assume you know the tree 7. (Hint: use
dynamic programming on the structure of the tree. It might help to assume that
that the tree is a rooted binary tree such that each internal node has at most two
children; show that this assumption is without loss of generality).

(b) Give a randomized O(log|N|)-approximation algorithm for this variant of the k-
median problem.

8.11 In the capacitated dial-a-ride problem, we are given a metric (V,d), a vehicle of capacity
C, a starting point r € V, and k source-sink pairs s;-t; for ¢ = 1,..., k, where s;,t; € V.
At each source s; there is an item that must be delivered to the sink ¢; by the vehicle.
The vehicle can carry at most C items at a time. The goal is to find the shortest possible
tour for the vehicle that starts at r, delivers each item from its source to its destination
without exceeding the vehicle capacity, then returns to r; note that such a tour may visit
a node of V' multiple times. We assume that the vehicle is allowed to temporarily leave
items at any node in V.

(a) Suppose that the metric (V,d) is a tree metric (V,T"). Give a 2-approximation algo-
rithm for this case. (Hint: How many times must each edge (u,v) € T be traversed
going from u to v, and going from v to u? Give an algorithm that traverses each
edge at most twice as many times as it needs to.)

(b) Give a randomized O(log |V|)-approximation algorithm for the capacitated dial-a-
ride problem in the general case.

8.12 Suppose we have a metric (V,d) and costs ¢, for all u,v € V. Suppose we are also given
a randomized algorithm that finds a tree metric (V’,T) with V/ 2 V such that dy, < Ty,
and E[Ty,] < O(logn)dy, for all u,v € V. Obtain a randomized algorithm that with
high probability obtains a tree metric (V”,T') with V” O V such that d,, < T, and

Eu,vev CU'UT{w S O(log n) Zu,vEV Cuvd'lw'

Chapter Notes

Early work on approximation algorithms for NP-hard cut problems mostly used polynomial-
time algorithms for finding a minimum s-¢ cut as a subroutine. The isolating cut algorithm
for the multiway cut problem in Section 8.1 is an example of such an algorithm; this algorithm
is due to Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [86]. The application
mentioned of assigning objects to machines is due to Hogstedt, Kimelman, Rajan, Roth, and
Wegman [169]. Although it is of relatively recent vintage, the Steiner k-cut algorithm of Exercise
8.3 is another example of reducing a cut problem to repeated applications of a minimum s-¢
cut algorithm. The Steiner k-cut problem was independently introduced by Chekuri, Guha,
and Naor [70] and Maeda, Nagamochi, and Ibaraki [221]. The algorithm given in the exercise is
due to Zhao, Nagamochi, and Ibaraki [295] based on earlier algorithms for other problems. The
analysis of the exercise is an unpublished result of Chekuri. The problem itself generalizes the
k-cut problem; in the k-cut problem, the goal is to remove edges of minimum total cost so that
the graph has at least k components. The k-cut problem is a special case of the Steiner k-cut
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problem in which T' = V’; a 2-approximation algorithm for the k-cut problem due to Saran and
Vazirani [259] was previously known.

Leighton and Rao [213, 214] wrote a highly influential paper that used solutions to linear
programming relaxations as metrics and rounded the LP solutions to obtain solutions to cut
problems. The idea of region growing appeared in this paper, in the context of obtaining
an O(logn)-approximation algorithm for a variant of the sparsest cut problem (discussed in
Exercise 8.6) called the uniform sparsest cut problem; in the uniform sparsest cut problem, each
pair of vertices u,v € V is an s;-t; pair with demand d; = 1. The first pseudo-approximation
algorithm for the balanced cut problem (as discussed in Section 8.4) was given in this paper.
Several applications of these techniques to cut and arrangement problems also appeared in this
paper, including the result for the minimum cut linear arrangement problem given in Exercise
8.5.

Subsequent work on treating LP solutions as metrics includes the multicut algorithm of
Section 8.3 (due to Garg, Vazirani, and Yannakakis [126]), the pseudo-approximation algorithm
given in Section 8.4 for the balanced cut problem (due to Even, Naor, Rao, and Schieber
[102]), and the LP rounding algorithm for the multiway cut problem (due to Calinescu, Karloff,
and Rabani [60]). Karger, Klein, Stein, Thorup, and Young [185] give a more sophisticated
LP rounding algorithm for the same LP relaxation of the multiway cut problem and obtain
somewhat better performance guarantees.

Bartal [39] defined the notion of the probabilistic approximation of metrics by tree metrics
we use here, although his work was inspired by earlier unpublished work of Karp and work
of Alon, Karp, Peleg, and West [7]. Bartal [39, 40] also gave the first algorithms for finding
such tree metrics. Bartal [39] shows the existence of a metric for which any probabilistic
approximation by tree metrics must have distortion Q(logn); the graph is one in which every
cycle in the graph has at least Q(logn) vertices. The algorithm of Section 8.5 for the probabilistic
approximation of metrics by tree metrics is due to Fakcharoenphol, Rao, and Talwar [106]. The
tree metric algorithm from Section 8.7 is also from this paper. As mentioned in the section,
many approximation algorithms use probabilistic approximation of metrics by tree metrics
as a subroutine. The application of tree metrics to the buy-at-bulk network design problem
in Section 8.6 was made by Awerbuch and Azar [28]; Theorem 8.19 in that section is due
to Konjevod, Ravi, and Sibel Salman [202]. Even, Naor, Rao, and Schieber [103] introduce
spreading metrics and their application to the linear arrangement problem. The application
of tree metrics to this problem in Section 8.7 follows a survey of Fakcharoenphol, Rao, and
Talwar [105]. For some time, the k-median approximation algorithm of Exercise 8.10 was the
best approximation algorithm known for the problem; approximation algorithms with constant
performance guarantees are discussed in Sections 7.7 and 9.2. Polynomial-time algorithms for
the k-median problem in tree metrics are due to Kariv and Hakimi [186] and Tamir [278]. The
capacitated dial-a-ride algorithm of Exercise 8.11 is due to Charikar and Raghavachari [66].

Exercises 8.1 and 8.2 are due to Calinescu, Karloff, and Rabani [60]. The algorithm and
analysis for the sparsest cut problem given in Exercise 8.6 is due to Kahale [181]. Exercise 8.8
is due to Schalekamp and Shmoys [260]. Exercise 8.7 is due to Gupta [147]. Exercise 8.9 can
be found in Awerbuch and Azar [28].
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CHAPTER 9

Further uses of greedy and local
search algorithms

We have now concluded our initial introduction to the various techniques for designing ap-
proximation algorithms. In this second part of the book, we revisit each of these techniques
and give additional applications of them. In some cases, these applications are recent or more
advanced, but in others they are just a bit more technically involved, or are in some other way
“non-introductory”. Hence this second part covers “further uses” of each technique, rather than
“advanced uses” or “recent uses”.

In this chapter, we look again at greedy and local search algorithms. We revisit the problem
of minimizing the maximum degree of a spanning tree, and show that a variant of the local
search algorithm described in Section 2.6 in which the local moves are carefully ordered results
in a spanning tree whose maximum degree is within 1 of the optimum. When we revisit the
technique of deterministic rounding in Chapter 11, we will show a similar result for a version
of the problem in which there are costs on the edges.

The bulk of the chapter is spent on greedy and local search algorithms for the uncapacitated
facility location problem and the k-median problem. Simple local search algorithms for these
problems have been known since the early 1960s. It is only relatively recently, however, that it
has been shown that these algorithms produce provably near optimal solutions. In Section 9.1,
we show that a local search algorithm for the uncapacitated facility location problem gives a
(3 4 €)-approximation algorithm for that problem. Then by using a technique called scaling, in
which we artificially scale the facility costs by a certain factor before running the local search
algorithm, we show that we can obtain a (1 + /2 + €)-approximation algorithm for the same
problem, where 1 + /2 ~ 2.414. In Section 9.2, we show that a simple local search algorithm
for the k-median problem gives a (5 + €)-approximation algorithm for the problem. Finally,
in Section 9.4, we give a greedy algorithm for the uncapacitated facility location problem that
is analogous to the greedy algorithm for the set cover problem we discussed in Section 1.6.
By using a dual fitting analysis similar to the one for the set cover problem, we are able to
show that the greedy algorithm is a 2-approximation algorithm for the uncapacitated facility
location problem. Furthermore, the algorithm is Lagrangean multiplier preserving in the sense
mentioned at the end of Section 7.7, and thus leads to a 2(2 + €)-approximation algorithm for
the k-median problem.
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9.1 A local search algorithm for the uncapacitated facility lo-
cation problem

In this section, we turn to a local search algorithm for the uncapacitated facility location
problem that we have considered previously several times. We will show that we can obtain
a somewhat better performance guarantee by a local search algorithm than we did with the
primal-dual algorithm in Section 7.6. Recall that the input to the problem is a set of clients
D and a set of facilities F', with a facility cost f; for each facility ¢ € F, and an assignment
cost ¢;; for each facility ¢ € F' and each client j € D. The goal is to select a subset of facilities
to open and an assignment of clients to open facilities so as to minimize the total cost of the
open facilities plus the assignment costs. As before, we will assume that the set of clients and
potential facility locations are in a metric space; that is, for each ¢, 5 € F'U D, we have a value
¢ij, and for each 4, j, k € F'U D, we have that c;; + c; > ¢;,. Note that whenever we consider a
distance between 7 € F' and j € D, we will maintain the convention that it is referred to as c;;.

The local search algorithm for the problem will maintain a (non-empty) set of open facilities
S C F and an assignment o of clients to facilities in S; that is, o(j) = ¢ if client j is assigned
to facility ¢ € S. The algorithm that we first consider is perhaps the most natural local search
algorithm, in that we permit three types of changes to the current solution: we can open one
additional facility (an “add” move), we can close one facility that is currently open (a “delete”
move), and we can do both of these simultaneously (a “swap” move). Of course, we must also
update the current assignment of clients to open facilities. The algorithm will always maintain
that each client is assigned to its nearest open facility. We repeatedly check if any of these
changes to the current solution reduces the total cost; if so, we make the change to the current
solution. Once no further change decreases the total cost, we stop; the current solution is said
to be a locally optimal solution.

We first analyze the quality of the solution found by this procedure. In fact, we will first
focus not on an algorithmic statement, but instead prove that any locally optimal solution is
near-optimal. In essence, we show that for any locally optimal solution, the absence of any
improving add move implies that the total assignment cost of the current solution is relatively
small. Then we show that the absence of improving swap and delete moves implies that the
total facility cost is relatively small. Together, this yields an upper bound on the cost of any
locally optimal solution. We focus on a particular optimal solution, and let S* be its open
facilities, and let o* denote the corresponding optimal assignment of clients to open facilities.
To compare the cost of this optimal solution to the current, locally optimal solution of the
algorithm, we let F' and F'* denote, respectively, the total facility cost of the current solution
and the optimal one, and similarly let C' and C* denote their respective total assignment costs.
The optimal value OPT is clearly F* 4+ C*. Note that now F' stands for both the set of facilities
and the facility cost of the current solution, but the meaning at any given point should be clear
from the context.

The strategy in proving this guarantee is to focus on a particular subset of possible moves;
each move consists of an update to S and an update to 0. We know that each such move can
generate an inequality based on the fact that the change in cost must be non-negative. In fact,
the update to the assignment o need not be the optimal one relative to the new choice of open
facilities; since the corresponding change in cost is greater than or equal to the change if we
updated the assignment optimally, we are free to consider this sub-optimal assignment update,
and still conclude that the overall change in cost is non-negative.
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Lemma 9.1: Let S and o be a locally optimal solution. Then
C<F"+C"=0PT. (9.1)

Proof. Since S is a locally optimal solution, we know that adding any facility to S does not
improve the solution (with respect to the best possible updated assignment). In this way, we
will focus on a few potential changes to the current solution, and analyze their change in cost.
Note that we consider the changes only for the sake of analysis, and we do not actually change
the solution.

Consider some facility ¢* € S* — S, and suppose that we open the additional facility ¢*, and
reassign to that facility all of the clients that were assigned to i* in the optimal solution: that
is, we reassign all clients j such that o*(j) = ¢*. Since our current solution S and o is locally
optimal, we know that the additional facility cost of i* is at least as much as the improvement in
cost that would result from reassigning each client optimally to its nearest open facility; hence,
fi~ must also be more than the improvement resulting from our specific reassignment; that is,

fe 2 Y (Co(i)s = Co(i)i)- (9.2)

j:o* (§)=i*

Consider also a facility * that is in both S and S*; although it might seem a bit odd, observe
that the same inequality (9.2) must hold for such a facility *, since the local optimality of S and
o implies that each client j is currently assigned to its closest open facility, and so each term
in the summation on the right-hand side of the inequality must be non-positive. Consequently,
we can add inequality (9.2) for each i* € S*, to obtain

Z fir = Z Z (Co()j = Co(5)j)-

i*eS* P*ES* jio*(j)=i*

The left-hand side of this inequality is clearly equal to F™*. For the right-hand side, since each
client j is assigned to exactly one facility i* € S* by ¢*, the double summation is the same as
summing over all possible clients j € F'. Hence, the first right-hand side terms (corresponding
to ¢y (j);) sum to C, whereas the second terms sum to C*. It follows that F* > C' — C*, and
the lemma has been proved. ]

The argument to show that a local optimum has small total facility cost is somewhat more
complicated. As in the proof of the previous lemma, we will consider a set of changes to the
solution S, each of which will generate a corresponding inequality. For any move that deletes
a facility ¢ € S (either a delete move, or a swap move that “swaps out” facility ¢), we must
reassign each of the clients that are assigned to i. If we were simply deleting i, then each such
client must be reassigned to a facility in S — {i}. One natural way to determine this facility is
as follows: for each client j, it is assigned to a facility i* = 0*(j) in our fixed optimal solution.
For each i* € S*, let ¢(i*) be the facility in S closest to i*; for each client j, if i # i’, where
i = ¢(c*(j)), then it seems reasonable to reassign client j to i’ (see Figure 9.1). In fact, the
following lemma proves this intuition correct.

Lemma 9.2: Consider any client j for which o(j) =i is not equal to i' = ¢(c*(j)). Then the
increase in cost of reassigning client j to i’ (instead of to i) is at most 2¢o+(5)j-
Proof. Consider a client j currently being served by ¢, where its facility in S*, * = o*(j), is
such that i*’s nearest facility in S, ¢(i*), is not the facility i. Let ' = ¢(¢*). What can we

conclude about the assignment cost c;;7 Consider Figure 9.1. By the triangle inequality,
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Figure 9.1: The reassignment of a client j to i’ = ¢(c*(j)) when facility i = o(j) is
closed.

Citj < Cirgx + Cixj.

By the choice of i/, we see that cy;« < ¢ji+, from which we can conclude that
Cirj < Cigx + Cixj.

But now we also know that c;;+ < ¢;; + ¢;+; by the triangle inequality, and hence we have that
cirj < cij + 2¢4+5; (9.3)

Note that by subtracting c;; from both sides, we can reinterpret this inequality as saying that
the increase in the assignment cost of client j by this reassignment is at most 2c¢,«(j);- O
We will apply this lemma both when 7 is deleted, and when 7 is swapped out of the solution.

Lemma 9.3: Let S and o be a locally optimal solution. Then
F < F*+20". (9.4)

Proof. As was true in the proof of Lemma 9.1, we will prove this by considering a set of changes
to the solution S, and by deriving an inequality based on each change. Because S is locally
optimal, we know that any delete, swap, or add move must result in a non-negative change in
total cost. Again, we consider these moves solely for the sake of analysis. In this construction,
we will give a set of moves that either deletes or swaps out every facility in S (once each) and
either adds or swaps in every facility in S* (again once each). Since the change in cost for each
of these local moves is non-negative, this will allow us to bound the facility cost F' in terms of
the facility cost F™* and additional terms that we will bound by twice the optimal assignment
cost.

Suppose that we want to delete a facility ¢ € S. Each client j that is currently served by
must be reassigned to one of the remaining open facilities in S — {i}. If we are to apply Lemma
9.2, then we need that for each client j such that o(j) = i, we also have that ¢(c*(j)) # i. We
shall call a facility i safe if for every facility i* € S*, the facility ¢(i*) € S closest to i* is different
from ¢. As this name suggests, for any safe facility ¢, we can consider the local move of closing
facility 4, since we can safely reassign each of its clients j to ¢(c*(j)), and apply Lemma 9.2 to
bound the resulting increase in the assignment cost for reassigned client j. Again, since S is
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locally optimal, we know that this local change cannot decrease the overall cost, and hence the
savings obtained by closing the safe facility ¢ must be no more than the increase in assignment
costs incurred by reassigning all of the clients assigned to 7. That is,

fi < Z 2¢q+(5)4s

jio(j)=i
or equivalently,
Jio(j)=i

Consider a facility ¢ that is not safe (or, in other words, is unsafe), and let R C S* be the
(non-empty) set of facilities i* € S* such that ¢(i*) = i; among those facilities in R, let i’ be the
one closest to i. We will derive one inequality for each member of R, based on an add move for
each member of R — {i'}, plus one swap move closing the facility at i, while opening a facility
at 7',

First let us derive an inequality for each add move corresponding to i* € R — {i'}. As in
the proof of Lemma 9.3, we open a facility at ¢*, and for each client j that is assigned to i in
the locally optimal solution and is assigned to ¢* in the optimal solution, we reassign client j
to ¢*. The change in cost caused by this move must also be non-negative, and we derive the
inequality

fir + > (o ()5 = o)) 2 O- (9.6)
jio(§)=i & o*(j)=i*

Next we derive an inequality based on the swap move that closes the facility at ¢ but opens
a facility at #/. Of course, in order for this to make sense as a swap move, we need that i’ # 4.
However, we will see that the ultimate inequality derived from this move also holds if i’ = i, and
so this will turn out to be unimportant. To make this swap move precise, we will also specify a
(suboptimal) reassignment of the clients assigned to ¢ by o: each client j for which o*(j) € R
is reassigned to ¢(c*(j)), and the rest are reassigned to 4'.

Let us consider the change in cost incurred by this swap move. Clearly, the change in cost
of the facilities is f;y — f;. To bound the reassignment cost for the clients, consider the two cases
of the reassignment rule. For any client j reassigned to ¢(c*(j)), we are in the case governed by
Lemma 9.2, and hence the increase in the assignment cost is at most 2c¢,«(;);. If j is assigned
to ¢/, then the change in the assignment cost is exactly ¢;; — ¢;;. Combining all of these pieces,
we obtain an upper bound on the total change in cost of this swap move (where it is an upper
bound both because we are focusing on a potentially suboptimal reassignment, and we are only
computing an upper bound on the increase in that reassignment cost). Again, we know that
the true change in cost is non-negative, and hence,

fir—fi+ Z 260*(j)j + Z (ci’j — Cij) > 0. (97)
jo(=i & o*(j)¢R jo()=i & o*(j)eR
Again, suppose that ' = i; this inequality reduces to the essentially trivial inequality that
Fo(i)=i & o*(j)¢R

For this unsafe facility ¢, let us consider the net effect of combining all of these inequalities
(that is, the one (9.7) derived from the swap move, and the remaining ones (9.6) from add
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moves). Adding these, we get that

—fi+ Y S+ > 2¢q+(j); + > (cirj — cij)

i*eR jio(i)=i & o*(j)¢R jio(j)=i & o*(j)ER

+ > (Cox()j — Coi)s) = O
jio(j)=i & o*(j)eR—{i'}

We will simplify this expression by combining the final two summations, and by showing that
for each client j that appears in either summation, we can upper bound its total contribution
by 2¢g+(j);- If 0*(j) = i’, then this is quite simple, since in that case, the contribution for
client j is ¢y — ¢;; which is no more than 2¢; ;. Next consider any client j for which o(j) =i
and 0*(j) € R — {i'}; its total contribution is cy; + co+(j); — 2¢i;. By the triangle inequality,
cirj < ¢y + cij. Furthermore, by the choice of 7 among R, cy; < c,+(jy;- Finally, again by
the triangle inequality, ¢, (j); < €o+(5); + ¢ij. Combining these three inequalities, we see that
Cirj < Cox(5); T 2¢ij, which proves our claim that the total contribution of j is at most 2cq«(
Consequently, we see that

i

—fi+ Z fir + Z 2¢4+(j)7 2 0. (9.8)

i"€R  jio(j)=i

Finally, suppose we add inequality (9.5) for each safe facility ¢ € S, and inequality (9.8) for
each unsafe facility ¢ € S; note that as we consider each of the unsafe facilities, each facility
1" € §* occurs in exactly one corresponding set R. Hence we see that

ST fe =D Fi+ D 20,5 2 0. (9.9)

i*eS* €S jeD
Thus, F* — F + 2C* > 0, and we have proved the lemma. ]

By adding the inequalities of these two lemmas, we obtain directly the following theorem.

Theorem 9.4: Let S and o be a locally optimal solution for the uncapacitated facility location
problem. Then this solution has total cost that is at most 3 OPT.

This theorem is not quite the ultimate result in two ways; first, we really proved a stronger
result, that the cost is at most 3C™* + 2F™*, and this will allow us to improve the guarantee
slightly, and second, we did not prove that the corresponding local search algorithm terminates
in polynomial time, and hence is not a 3-approximation algorithm. In the latter case, if the
cost of the solution only improves by 1 with each local move, then the algorithm could take
time exponential in the size of the input.

The first of these issues is the simpler of the two. Suppose that we rescaled the facility costs
by dividing each f; by a factor u. For an input in which the optimal solution had assignment
cost C* and facility cost F'*, there now must exist a solution of assignment cost C* and facility
cost F* /. By Lemmas 9.3 and 9.1, the resulting solution found by local search must therefore
have assignment cost at most C* + F*/u, and (rescaled) facility cost at most 2C* + F*/u. (To
be more careful, we should note that the proof of these lemmas did not actually use the fact
that the fixed optimal solution was optimal, merely that there was a feasible solution with the
particular facility and assignment costs.) Reinterpreting this solution in terms of the original
costs (that is, multiplying the facility costs by p), we obtain a solution of total cost at most
(1+2u)C*+ (14 1/p)F*. If we set p so that the maximum of these two coefficients is as small
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as possible (by setting them equal), we want that u = 4/2/2, and the resulting performance
guarantee is 1 4+ v/2 ~ 2.414.

The idea behind ensuring that the local search algorithm runs in polynomial time is simple,
but the details in analyzing that the idea works involve some calculation. To speed up the
algorithm, rather than just requiring any decrease in cost, suppose that we insist that the cost
decreases in each iteration by some factor 1 — § that is strictly less than 1. If the objective
function value is initially equal to M, and the input data is integral (and hence so is any feasible
objective function value), then if k is chosen such that (1 — §)¥M < 1, we can be sure that k
iterations suffice for the algorithm to terminate. Suppose that the algorithm stopped whenever
the current solution was nearly locally optimal, in the sense that each possible move did not
decrease the cost of the solution by a factor of 1 —d. Consider the proof of Lemma 9.1; in order
to derive equation (9.2), we use the fact that there are no improving moves. Now we must
rely only on the fact any move does not improve the solution too much, and so we may only
conclude that

fz' — Z (Cg(j)j — CO’*(j)j) > —(5(0 + F) (9.10)
Jio*(§)=i

As we trace through the rest of the proof of Lemma 9.1, we add at most | F'| such inequalities.

Hence, if we let m = |F|, we can conclude that

F*—C+C* > —md(C + F).

Similarly, in the proof of Lemma 9.3, we derive the result by adding the inequalities (9.5), (9.7),
and (9.6). Again, there are at most m inequalities, and if we require that a move produces
a solution that is a factor of 1 — § cheaper, this would result in each right-hand side being
—0(C + F) rather than 0. Hence, we can still derive that

F*—F+42C" > —mdé(C + F).
Adding these two inequalties, we obtain the inequality that
(1 =2mdé)(C+ F)<3C*"+2F* <30PT.

Hence, the “bigger step” local search algorithm has a performance guarantee of %m&’

We will show that if we set 6 = €/(4m), then we both have a polynomial-time algorithm,
and achieve a performance guarantee of 3(1 + €). For the first, (1 — ¢/(4m))*/¢ < 1/e, and so
(4mIn M) /e iterations suffice, where M could be >, fi + > _;cprjep cij (by starting with the
solution in which all facilities are open), and so this is a polynomial bound on the number of
iterations. A straightforward calculation shows that 1—715/2 <1+ € (provided € < 1). Hence, we
can convert the local search algorithm into a polynomial-time algorithm, losing an arbitrarily
small factor in the performance guarantee, by requiring these bigger steps. And finally, it is
easy to see that one could combine the rescaling idea with the big steps to yield the following
theorem.

Theorem 9.5: For any constant p > 1 + /2, the rescaled local search algorithm using bigger
steps yields a p-approximation algorithm for the uncapacitated facility location problem.
9.2 A local search algorithm for the k-median problem

In this section, we shall consider again the k-median problem originally considered in Section
7.7; however, we shall consider a slightly simpler variant in which we have a set of locations
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N, each of which is both a client and a potential facility location. For each pair of locations
¢ and j, there is a cost ¢;; of assigning location j to a facility at location ¢. We can select at
most k locations at which to open facilities, where k is part of the input. The goal is to find a
set of locations S at which to open a facility, where |S| < k, such that the assignment cost is
minimized: .y minieg c;;. Without loss of generality, we can assume that |S| = k. In other
words, this problem can be viewed as the min-sum analogue of the k-center problem, previously
considered in Section 2.2, which is a min-max problem. As in the k-center problem, we shall
assume that the distance matrix is symmetric, satisfies the triangle inequality, and has zeroes
on the diagonal (i.e. ¢;; = 0 for each ¢ € N).

We will give a local search algorithm for the k-median problem. We will let S C N denote the
set of open facilities for the current solution, and let S* C N denote the set of open facilities
in a fixed optimal solution. For each of these two solutions, each client j is assigned to its
nearest open facility (breaking ties arbitrarily); we let this mapping be denoted o(j) and o*(j),
respectively, for these two assignments. Analogously, we let C' and C* denote, respectively, the
total cost of the current and optimal solutions.

The local search algorithm that we shall consider is the most natural one. Each current
solution is specified by a subset S C N of exactly k locations. To move from one feasible
solution to a neighboring one, we swap two locations; that is, we select one location ¢ € S to
delete from the current set, and choose one location i’ € N — S to add to the current set of
facilities. Afterward, we reassign each client to its nearest open facility. In our local search
procedure, we repeatedly check to see if any swap move yields a solution of lower cost; if so,
the resulting solution is our new current solution. We repeat this step until, from the current
solution, no swap move decreases the cost. The current solution at this point is said to be
locally optimal.

We shall prove the following theorem.

Theorem 9.6: For any input to the k-median problem, any feasible solution S that is locally
optimal with respect to the pairwise swap move has a cost that is at most five times the optimal
value.

Proof. The proof will focus on first constructing a set of k special swaps, which we shall call
the crucial swaps. Since the current solution S is locally optimal, we know that each of these
swaps does not improve the objective function of the resulting solution. These swaps will all
be constructed by swapping into the solution one location ¢* in S* and swapping out of the
solution one location ¢ in S. Each ¢* € S§* will participate in exactly one of these k swaps,
and each ¢ € S will participate in at most 2 of these k swaps. (We will allow the possibility
that ¢* = 4, and hence the swap move is degenerate, but clearly such a “change” would also
not improve the objective function of the current solution, even if we change the corresponding
assignment.) Observe that the current solution provides a mapping from each facility i* € S*
to a facility o(i*) € S.
As Figure 9.2 shows, this mapping allows us to categorize the facilities in S:

e let O C S consist of those facilities ¢ € S that have exactly one facility * € S* with
o(i*) =1

e let Z C S consist of those facilities ¢ € S for which none of the facilities i* € S* have
o(i*) =1

e and let 7" C S consist of those facilities ¢ € S such that ¢ has at least two locations in S*
assigned to it in the current solution.
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Figure 9.2: The mapping of locations in S* to S used to construct the crucial swaps.

We make a few simple observations. The mapping o provides a matching between a subset
O* C 5* and the set O C S (by the definition of O). Hence, if £ denotes the number of locations
in R* = S* — O*, then ¢ must also equal |Z UT)| (since |S*| = |S| = k). Since each location in
T is the image of at least two locations in R*, it follows that |T'| < ¢/2. Hence |Z| > ¢/2.

We now construct the crucial swaps as follows: first, for each i* € O*, we swap ¢* with
o(i*); second, we build a collection of ¢ swaps, each of which swaps into the solution a distinct
location in R*, and swaps out a location in Z, where each location in Z appears in at most
two swaps. For the swaps involving locations in R* and Z, we are free to choose any mapping
provided that each element of R* is swapped in exactly once, and each element of Z is swapped
out once or twice.

Consider one crucial swap, where i* € S* and ¢ € S denote the swapped locations; we
analyze the change of cost incurred by no longer opening a facility at location ¢ € S, and using
i* instead. Let S’ denote the set of selected locations after this swap; that is, S’ = S—{i} U{i*}.
To complete the analysis, we also specify the assignment of each location in NV to an open facility
in S’. For each location j such that o*(j) = i*, we assign j to ¢* (since i* is in S’). For each
location j such that o*(j) # i*, but o(j) = ¢, then we need a new facility to serve j, and we
now assign it to o(c*(j)). All other locations j remain served by o(j).

One must argue that o(c*(j)) # @ when o*(j) # i* (since we need that this location must
remain in S’). Assume, for a contradiction, that o(c*(j)) = i; then i € O (since each location
swapped out by a crucial swap is either in Z or O, and the former is clearly not possible by the
definition of Z). Since ¢ € O, it is ¢’s image of exactly one element in O*, and we build a crucial
swap by swapping 7 with that one element. Hence, o*(j) = i*, but this is a contradiction.

We have now constructed a new set of facilities S’ and an assignment of each location in N
to one of the facilities in S’. There may be some location j that is not served by its closest point
in S’ by this assignment. However, since there are no improving swaps from the current solution
S, any swap combined with a sub-optimal assignment must also not decrease the overall cost;
hence, the change to S’ along with the specified assignment also must not improve over using
S with the assignment given by function o.

What is the change of cost for this swap? By focusing only on the clients j for which
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g

Figure 9.3: Bounding the length of the edge from j to o(c*(j)).

o*(j) = i*, or both 0*(j) # i* and o(j) = i, we can compute the change in the cost to be
ST (o — Cot) + > (Coto*(i))s — Coli)i):
G (j)=i* ot (#ir & o(j)=i

We can simplify the terms in the second summation by considering Figure 9.3. By the
triangle inequality, we have that

Co(a*())j = Co(o*(j))o*(j) T Co=(j)j-

In the current solution S, o*(j) is assigned to o(c*(j)) instead of to o(j), and so we know that

Co(o*(j))o*(j) = Co(j)o*(j)>

Once again, we can apply the triangle inequality to get that

Co(j)o*(j) < Cor(j)j T Colj)js

and so, putting these pieces together, we have that

Co(o(j))j < 2Co+(j)j T Co()s>

or equivalently,
Colo(7)i ~ Coli)i = 2Co(j)j-
(In fact, a little reflection indicates that we had already proved this, in Lemma 9.2, where now

o plays the same role as ¢.) This yields a more compact upper bound on the change in the
cost, which we know must be non-negative; that is, for each crucial swap ¢* and i, we have that

0< > (cony = Coliis) + > 2¢,+(j);- (9.11)
Jor(g)=ir jor (A & alj)=i

Now we add inequality (9.11) over all k£ crucial swaps. Consider the contribution for each
of the two terms in the first summation. Recall that each ¢* € S* participates in exactly one
crucial swap. For the first term, we add c,-(;); over all clients j for which o*(j) = i*, and this
sum is then added for each choice of ¢* in S*. Each client j has a unique facility o*(j) € S*
to which it is assigned by the fixed optimal solution, and so the net effect is to compute the
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sum » jeN Co*(j)j = C*. However, the same is true for the second term, the double summation
is merely the sum over all possible locations j, and so the second terms contribute a total of
— ZjeN Co(j); = —C. Now consider the second summation in (9.11). We can upper bound this

expression by
Z 2¢+(j);j

jio(j)=t

What is the effect of adding this summation over all crucial swaps? Each facility i € S occurs
in 0, 1, or 2 crucial swaps; let n; be the number of swaps in which each ¢ € S occurs. Thus, we
can upper bound the double summation as follows:

Z Z 2nzc *()j <4Z Z

€5 jio(j)=i €5 jio(j)=i

But now we can apply the same reasoning as above; each location j is served in the current
solution by a unique facility location o(j) € S, and hence the effect of the double summation
is merely to sum over each j in N. That is, we have now deduced that this term is at most
4(%:]-6]\, Cor(j)j = 4C*. Furthermore, we have concluded that 0 < 5C* — C, and hence C' <
5C™. O

Finally, we observe that the same idea used in the previous section to obtain a polynomial-
time algorithm can be applied here. The central ingredients to that proof are that if we restrict
attention to moves (in this case swap moves) in which we improve the total cost by a factor
of 1 — 4, then provided the analysis is based on a polynomial number of moves (each of which
generates an inequality that the change in cost from this move is non-negative), we can set §
so that we can obtain a polynomial-time bound, while degrading the performance guarantee by
an arbitrarily small constant.

Theorem 9.7: For any constant p > 5, the local search algorithm for the k-median problem
that uses bigger improving swaps yields a p-approximation algorithm.

9.3 Minimum-degree spanning trees

In this section we return to the minimum-degree spanning tree problem introduced in Section
2.6. Recall that the problem is to find a spanning tree 7' in a graph G = (V, E) that minimizes
the maximum degree. If T™ is an optimal tree that minimizes the maximum degree, let OPT be
the maximum degree of T™*. In Section 2.6, we showed that a particular local search algorithm
finds a locally optimal tree of maximum degree at most 2 OPT +[logy n] in polynomial time.
In this section, we will show that another variation on the local search algorithm finds a locally
optimal tree of maximum degree at most OPT +1 in polynomial time. As we discussed in
Section 2.6, since it is NP-hard to minimize the maximum degree of a spanning tree, this is the
best result possible unless P = NP.

As in the algorithm of Section 2.6, we start with an arbitrary spanning tree T and we will
make local changes to it in order to decrease the degree of nodes in the tree. Let dp(u) be the
degree of u in T. We pick a node u and attempt to reduce its degree by adding an edge (v, w)
to T that creates a cycle C containing u, then removing an edge of the cycle C incident on wu.
Let A(T) = maxyey dr(v) be the maximum degree of the current tree T. We will make local
changes in a way that is driven by the following lemma, which gives us a condition under which
the current tree 7' has A(T) < OPT +1.
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components C

Figure 9.4: Illustration of the terms used in the statement of Lemma 9.8. The edges
in F' are shown in bold. Some edges in GG that are not in the tree 1" are shown as dotted
lines; note that they are not all incident on nodes in Dy U Dy_1. The components C are
the components of the tree T' remaining after the edges in F' are removed.

Lemma 9.8: Let k = A(T), let Dy be any nonempty subset of nodes of tree T with degree k
and let Dy_1 be any subset of nodes of tree T' with degree k—1. Let F' be the edges of T' incident
on nodes in Dy U Dy_1, and let C be the collection of |F| + 1 connected components formed by
removing the edges of F' from T. If each edge of graph G that connects two different components
in C has at least one endpoint in Dy U Di_1, then A(T) < OPT +1.

Proof. See Figure 9.4 for an illustration of the terms. We use the same idea as in the proof of
Theorem 2.19 to obtain a lower bound on OPT. Since any spanning tree in G will need |F|
edges of GG to connect the components in C, the average degree of the nodes in Dy U Dg_1 in
any spanning tree is at least |F'|/|Dy U Di_1|. Thus OPT > [|F|/|Dy U Dy_1]].

We now bound |F| in order to prove the lemma. The sum of the degrees of the nodes in
Dy, and Dy_; must be |Dglk + |Di—1|(k — 1). However, this sum of degrees may double count
some edges of F' which have both endpoints in Dy U Dy_1. Because T is acyclic, there can be
at most |Dy|+ |Dg—1| — 1 such edges. Hence, |F| > |Dg|k+|Dg—-1|(k —1) — (|Dx| +|Dg—1] — 1).
Thus

opr > [Pl 1Dl 1D+ D = 1]
- [ D + | Dy—1]
|Dy_1| — 1 —‘
> |k—1-
- { | Di| + | Dg—1|
> k-
implying that £k = A(T) < OPT +1. O

The goal of the local search algorithm is to continue to reduce the degree of the nodes of
degree A(T') while trying to attain the conditions of Lemma 9.8. The algorithm works in a
sequence of phases, with each phase divided into subphases. At the beginning of the phase,
for the current tree T', let & = A(T'). At the beginning of a subphase, we let Dy be all the
degree k vertices in T', let Dy_1 be all the degree k — 1 vertices in T', let F' be the edges of
T incident to Dy U Dy_1, and let C be the components of T formed if F' is removed from 7.
The goal of each phase is to make local moves to remove all nodes of degree k from the tree;
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the goal of each subphase is to make local moves to remove a single vertex of degree k. In the
process of executing a subphase, we discover nodes of degree k — 1 in Dyp_; for which we can
make a local move to reduce their degree. We do not yet execute these moves, but we mark
the nodes as reducible via the particular local move, remove them from Dj_;, and update F
and C accordingly by removing edges from F' and merging components in C. The algorithm is
summarized in Algorithm 9.1, and we now discuss its details.

In a subphase, we consider all edges of G that connect any two components of C. If all such
edges have an endpoint in Di U D1, we meet the condition of Lemma 9.8, and the algorithm
terminates with a tree 7" such that A(7) < OPT +1. If there is some such edge (v, w) without
an endpoint in Dy U Dy_1, then consider the cycle formed by adding (v, w) to T'. Because (v, w)
connects two different components of C, it must be the case that the cycle includes some node
u € Dy U Dg_q. Note that if we desire, we can make a local move to reduce the degree of u
by adding (v,w) to the tree T and removing a tree edge incident to u. If the cycle contains
nodes of Dj_1 only, then we do not yet make the local move, but we make a note that for any
of the nodes in D;_1 on the cycle, we could do so if necessary. We label these nodes in Djy_1
on the cycle as reducible via the edge (v, w), then remove them from Dj_1, then update F to
be the tree edges incident on the current set of Dy U Di_1, and update C accordingly. Note
that since we removed all nodes on the cycle from Dj_q, this only removes edges from F' and
merges components in C; in particular, the two components connected by (v, w) will be merged
in the updated C. If, on the other hand, the cycle includes a node of u € Dy, we go ahead and
reduce its degree by adding (v, w) to the tree and removing an edge incident on u. Decreasing
the degree of u decreases the number of nodes of degree k in the tree, but we want to ensure
that we do not increase the degree of nodes v and w to k. Note that this could only happen if
the degree of v or w in the tree is k — 1 and at some previous point in the subphase the node
was removed from Dj_; and labelled reducible. In this case, we carry out the local move that
allows us to reduce the degree of reducible node to k —2, then add (v, w) to the tree and remove
an edge incident to u from the tree. It is possible that carrying out the local move to reduce
the degree of the reducible node to & — 2 might cause a cascade of local moves; for instance, if
v has degree k — 1, and we can reduce its degree by adding edge (z,y), potentially x also has
degree k — 1 and is reducible, and so on; we will show that it is possible to carry out all these
moves, and reduce the degree of u to k — 1 without creating any new nodes of degree k. We say
that we are able to propagate the local move for u. Once we reduce the degree of u from k to
k — 1, we start a new subphase. If there are no further nodes of degree k, we start a new phase.

We can now prove that the algorithm is correct and runs in polynomial time.

Theorem 9.9: Algorithm 9.1 returns a spanning tree T with A(T) < OPT +1 in polynomial
time.

Proof. Because the algorithm terminates only when it meets the conditions of Lemma 9.8,
it returns a tree 7' with A(7") < OPT +1 if it does indeed terminate. We claim that in each
subphase, we can propagate local moves to reduce the degree of a reducible node in a component
in C without creating any new nodes of degree k. Then either the algorithm terminates or in
each subphase, we find some node u of degree k whose degree can be reduced to k—1 by making
a local move with an edge (v, w). Since v and w must be in separate components of C, either
their degree is less than & — 1 or they have degree k — 1 and are reducible, and by the claim
we can propagate local moves to reduce their degree. Thus we can reduce the degree of u from
k to k — 1 without creating any new nodes of degree k, and so each phase eliminates all nodes
of degree k. Since we cannot have a feasible spanning tree with A(7T") = 1, the algorithm must
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Let T be an arbitrary spanning tree of G = (V, E)
while true do
k + A(T) // Start a new phase
while there are nodes of degree k£ in T' do // Start a new subphase
Dy, < all nodes of degree k in T
Dj._1 < all nodes of degree k — 1 in T
F + all edges of T incident on nodes in Dy U Dy
C « all components formed by removing F' from T
All nodes u € Dj,_1 are unlabelled
if for all (v,w) € E connecting two components in C: either v or w in Dy U Dy
then
return T’
for all (v,w) € E connecting two components in C: v,w ¢ Dy U Dy_; do
Let C be cycle created by adding (v, w) to T
if CN Dy =0 then
Mark all w € C' N Dy_1 reducible via (v, w)
Remove C' N Dy_q from Dy_4
Update F' and C
else
if w e C N Dy then
if v or w marked reducible then
Reduce degree of v and/or w via local move and propagate local

moves if necessary
Reduce degree of u via local move with (v, w)
Break for loop // Start new subphase

Algorithm 9.1: Local search algorithm for the minimum-degree spanning tree problem.

eventually terminate. Clearly the algorithm runs in polynomial time.

We now prove the claim by showing that at any iteration of the subphase, we can propagate
local moves to reduce the degree of a reducible node in a component in C. We prove this by
induction on the number of iterations in the subphase. In the first iteration, no nodes are
marked reducible and the claim is trivially true. Now suppose we are at some iteration ¢ > 1
of the subphase, and let u be labelled reducible in this iteration. The node u is currently
reducible because we have a local move with a non-tree edge (v, w) that will reduce the degree
of u from k — 1 to k — 2; furthermore, the components in C containing v and w are disjoint
in the current iteration. If v is reducible, it was labelled such in an iteration j < ¢, and by
induction we can carry out local moves to ensure that its degree is at most k£ — 2. The same is
true for w, and by induction we can carry out the local moves for both v and w because they
are in separate components in C. In the next iteration the components containing v and w are
merged into a single component that also contains u. Since the only changes that can happen
to components in C during a subphase is that components are merged, u, v, and w remain in
the same component of C through the rest of the subphase, and the local moves of adding (v, w)
and reducing the degree of u remain available. O

In Section 11.2, we will consider a version of the problem in which there are costs on the
edges and specified bounds on the degrees of the nodes. If a tree with the given degree bounds
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exists, we will show how to find a minimum-cost tree such that the degree bounds are only
exceeded by one.

9.4 A greedy algorithm for the uncapacitated facility location
problem

In this section, we give yet another approximation algorithm for the uncapacitated facility
location problem. We will give a greedy algorithm for the problem, then use dual fitting to
analyze it; this is similar to what we did in Theorem 1.12 for the set cover problem.

A very natural greedy algorithm is to repeatedly choose a facility and some clients to assign
to that facility. We open the facility, assign the clients to the facility, remove the facility and
clients from further consideration, and repeat. For a greedy algorithm, we would somehow like
to find a facility and set of clients that minimizes total cost for the amount of progress made.
To do this, we use the same criterion we used for the greedy set cover algorithm in Section
1.6: we maximize the “bang for the buck” by minimizing the ratio of the total cost per client
assigned. To be more precise, let X be the set of facilities opened so far, and let S be the set
of clients that are not connected to facilities in X so far. We pick some i € FF— X and Y C §
that minimizes the ratio

fit ey cij
vy

We then add 7 to X, and remove Y from S, and repeat. Note that to find the appropriate
set Y C S, for any given facility 7, we can sort the clients in S by their distance from ¢, from
nearest to farthest, and the set Y minimizing the ratio for ¢ will be some prefix of this ordering.

We now add two simple improvements to this proposed algorithm. The first is that once
we select facility 4, rather than removing it from the set of facilities that can be chosen in the
future, we instead allow it to be chosen again and set its facility cost to zero. The intuition here
is that in future iterations it may be more cost-effective to assign some clients to i rather than
opening another facility to serve them, and since i has already been opened, we should treat its
facility cost as zero. The second idea is that rather than assigning clients to a facility and fixing
that assignment from then on, we consider switching assignments to other facilities we open
later on. We include the savings gained by switching assignments when trying to choose the
facility to open. Let ¢(j, X) = minjex ¢;;, and let (a)+ = max(a,0). Then if we have already
assigned the clients in D — S to some facilities in X, and we are considering opening facility
i, we can decrease assignment costs for all clients j ¢ S such that c(j, X) > ¢;; by reassigning
them from X to ¢. The savings achieved is ;4 4(c(j, X) — ¢;j)+. Thus in every step we pick
some 7 € ' and Y C S that minimizes the ratio

fi — Z]’¢S(C(ja X) —cij)+ + ZjeY Cij
Y] '

Our revised greedy algorithm is now given in Algorithm 9.2.

To analyze this algorithm, we will use a dual fitting analysis: we will construct an infeasible
solution to the dual of the linear programming relaxation such that the cost of the primal
solution is equal to the value of the dual objective. Then we show that scaling the dual solution
by a factor of 2 makes it feasible. This implies that the cost of the primal solution is at most
twice the value of a solution to the dual of the linear programming relaxation, which implies
that the algorithm is an 2-approximation algorithm.
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S+ D

X0

while S # () do
Choose i € F'and Y C D — S minimizing (f; — - ¢5(c(d, X) = ¢ij)+ + 2 ey ci5)/[Y|
fi<0;, 8« S-Y

Open all facilities in X, assign client j to closest facility in X

Algorithm 9.2: Greedy algorithm for the uncapacitated facility location problem.

First, recall the dual of the linear programming relaxation of the uncapacitated facility
location problem that we introduced in Section 4.5:

maximize E vj

JjED
subject to Zwij < fi, Vi € F,
Jj€D
v — w4 < ¢y, Vie F,j €D,
wi; 2> 0, Vie F,jeD.

We claim that the greedy algorithm above can be restated in the following way. FEach facility
will make a bid «; towards its share of the service and facility costs. We increase the bids of
clients uniformly until each client is connected to a facility whose cost is paid for by the bids. A
client j that is not connected to a facility 7 bids the difference of «; and the service cost towards
the cost of facility ¢; that is, it bids (co;j — ¢;;)+ towards the cost of facility i. When the total of
the bids on a facility ¢ equals its facility cost f;, we open the facility i. We also allow connected
clients to bid the difference in service costs towards the facility cost of a closer facility; that is,
if client j is currently connected to a facility in X, it bids (c¢(j, X) — ¢;j)+ towards the facility
cost of 7. If facility ¢ is opened, then client j connects itself to facility ¢ instead, decreasing its
service cost by exactly (c(j, X) — cij)+. Once every client is connected to some open facility,
the algorithm terminates.

We summarize the algorithm in Algorithm 9.3. For ease of proofs, it turns out to be better
to have the algorithm use facility costs ﬁ = 2f;. As in the statement of the greedy algorithm,
let the set S C D keep track of which clients have not yet been connected to an open facility,
and let X C F keep track of the currently open facilities.

We leave it as an exercise (Exercise 9.1) to prove that the two algorithms are equivalent.
The basic idea is that the value of client j’s bid a; is the value of the ratio (f; —>_;¢4(c(j, X) —
cij)+ + X jey ¢ij)/1Y | when j is first connected to a facility.

We observe in passing that there are some strong similarities between Algorithm 9.3 and the
primal-dual algorithm for the uncapacitated facility location problem in Section 7.6. Here we
are increasing a bid «; uniformly for all unconnected clients, while in the primal-dual algorithm,
we increase a dual variable v; for each client uniformly until the dual inequality associated with
a facility becomes tight, or until a client connects to a temporarily opened facility. However,
in that algorithm, we only open a subset of the temporarily opened facilities, and in order to
remain dual feasible we need that > (v; — ¢;j)+ < f; for facilities i, where the sum is over all
clients j. In this algorithm we allow >~ co(o; — cij)+ + 325¢5(c(4, X) — ¢ij)+ < fi. In this
algorithm, the clients j not in .S only contribute (¢(j, X) — ¢;j)+ towards the sum, while in the
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a0
S« D
X «+0
fi=2fiforalli e F
while S # 0 do // While not all clients neighbor a facility in X

Increase «; for all j € S uniformly until [3j € S,i € X such that o = ¢;;] or

[Fie F—X: 3 icslay —cij)e + 2jgs(c(d, X) — cij)+ = fil
if 35 € S,i € X such that o; = ¢;; then
// j becomes a neighbor of an existing facility ¢ in X

S 5 {j)
else
// facility ¢ is added to X
X «— X u{i}
for all j € S such that o;j > ¢;; do
S5 1{j)

Open all facilities in X, assign client j to closest facility in X

Algorithm 9.3: Dual fitting algorithm for the uncapacitated facility location problem.

primal-dual algorithm they contribute the potentially larger amount of (v; — ¢;5)4+. For this
reason, the bids « are not in general feasible for the dual linear program.

We will shortly prove the following two lemmas. Let « be the final set of bids from Algorithm
9.3, and let X be the set of facilities opened by the algorithm. The first lemma says that the
total bids of all clients equals the cost of the solution with facility costs f . The second lemma
says that «/2 is dual feasible.

Lemma 9.10: For o and X given by the Algorithm 9.3,
D= el X)+2) fi
jeD j€D icX
Lemma 9.11: Let v; = /2, and let wi; = (vj — ¢ij)+. Then (v,w) is a feasible solution to
the dual.
From these two lemmas, it is easy to show the following theorem.

Theorem 9.12: Algorithm 9.3 is a 2-approximation algorithm for the uncapacitated facility
location problem.

Proof. Combining Lemmas 9.10 and 9.11, we have that

STel, X))+ 3 fi < Y e X)+2>  fi

jeD ieX jeD i€X
= Do
jED
= 2>y
jeD
< 20PT,

where the final inequality follows since Zje pv; is the dual objective function, and by weak
duality is a lower bound on the cost of the optimal integer solution. O
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Note that we actually prove that

DG X)+2) fi<2> v

jeD i€EX jeD

for the feasible dual solution (v, w). Thus the algorithm is Lagrangean multiplier preserving as
we defined it at the end of Section 7.7. As we argued there, plugging this algorithm into the
algorithm for the k-median problem given in that section results in a 2(2 + €)-approximation
algorithm for the k-median problem for any € > 0.

We now turn to the proofs of Lemmas 9.10 and 9.11.

Proof of Lemma 9.10. We will prove by induction on the algorithm that at the beginning of
each execution of the main while loop,

Yooag= > i X)+2) fi

jeD—S jeD—S ieX

Since at the end of the algorithm S = (3, this implies the lemma.

The equality is initially true since initially S = D and X = (). In each execution of the while
loop, either we connect some j € S to a facility ¢ already in X or we open a new facility in X.
In the first case, we have that o = ¢(j, X), and we remove j from S. Thus the left-hand side
of the equality increases by «; and the right-hand side by ¢(j, X), so the equality continues to
hold. In the second case, we have that >, o(oy — ¢ij)+ + 32 525(c(f, X) — ¢i5)+ = fi, and 7 is
added to X. The algorithm removes from S all j € S such that a; — ¢;; > 0. Let S’ represent
this subset of S. Thus the left-hand side of the equality increases by > . ¢ ;. Let S” be the
set of all j ¢ S that make positive bids for facility 4; that is, (¢(j, X) — ¢;5)+ > 0 for j € S”.
Note that all of the clients in S” are exactly those closer to ¢ than any other facility in X, so
when 7 is added to X, ¢(j, X U{i}) = ¢;; for all j € S”. Thus the change in the cost of the right
hand side is

2fi+ D it 3 (G, XULY —c( X)) =2fi+ D cy— > (G, X) = i)y

jes’ jes” jES:ajZCij ]¢S

Using the fact that 2f; = f; = > jes(aj—cij) 4+ 545(c(j, X) —cij)+, and substituting this for
2f; in the above, we obtain that the change in cost of the right-hand side is ) jeSia; e 4G =

>_jes @, which is exactly the change in cost of the left-hand side. Thus the equality continues
to hold. ]

To prove Lemma 9.11, we first prove a sequence of lemmas. In proving these lemmas, we
use a notion of time in the algorithm. The algorithm starts at time 0, and uniformly increases
all oj with j € S. At time ¢, any client j not yet connected to a facility (and thus j € S) has
a; =t.

Lemma 9.13: Consider the time o at which j first connects to some facility. Then the bid of
client k on facility i at that time, for any client k such that oy, < «j, is at least a; — ¢;j — 2¢4.

Proof. Either client k connects to a facility at the same time as j and aj = «;, or it connects
to a facility at an earlier time that j, and o < «;.

If k£ connects to a facility at the same time as j, then a; = «aj, and at time «; its bid on
facility ¢ is (o — i)+ = (0 — Cik)+ > aj — ¢ij — 2¢ik.

Now suppose k connects to a facility at an earlier time than j. Let h be the facility that
client k is connected to at time ;. Then at time «;, the bid that & offers facility i is (cpr—cik)+-
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By the triangle inequality, we know that cp; < ¢;j+c; +cpg. Furthermore, since j first connects
to a facility at a time later than «y, it must be the case that j did not earlier connect to h, and
so aj < cp;. Thus we have a; < ¢;5 + ¢ + cpr. So the bid of client £ on facility 7 at time o is
(Chke — Cik)+ > Chk — Cik > 0 — Cij — 2¢ik, as claimed. d

Lemma 9.14: Let A C D be any subset of clients. Reindex the clients of A so that A =
{1,...,p} and oy < --- < ap. Then for any j € A,

-1 p

(ozj — Cjj — 2Cik) + Z(aj - Cz‘k) < fz
1 k=j

<.

T

Proof. We know that any time, the sum of the bids on facility 7 is at most the facility cost f,
By Lemma 9.13 at time «;, for all clients £ with £ < j, the bid of % for facility ¢ is at least
aj — ¢;j — 2¢;,. For all clients k > j, since o, > o, at any time just before a;, they have not
connected to a facility, so their bid on facility ¢ at time «; is (oj — cir)+ > o — ¢ Putting
these together gives the lemma statement. O

Lemma 9.15: Let A C D be any subset of clients. Reindex the clients of A so that A =
{1,...,p} and oy <--- < ap. Then

Z(Oéj —2¢i5) < fi-

JEA

Proof. If we sum the inequality of Lemma 9.14 over all j € A, we obtain

Jj—1 P
Z Z(aj — Cij — QCik) + Z(O{j - Cik) < pfi‘
j=1 \k=1 k=j
This is equivalent to
p p p p X
pY ;=Y (k=Deck—pY cow— Y (p—k)eir <pfi,
j=1 k=1 k=1 k=1

which implies

We can finally prove that v; = a;/2 gives a feasible dual solution.

Proof of Lemma 9.11.  Let v; = /2, and let w;; = (vj — ¢;5)+. Then certainly v; —w;; < ¢;;.
Now we must show that for all ¢ € F, ZJED w;; < fi. To do this, pick an arbitrary ¢ € F', and
let A ={j€D:wy; >0}, so that it is sufficient to prove that ;. , wi; < fi. We have from

Lemma 9.15 that .
> (aj —2¢iy) < fi.
jeA

Rewriting, we obtain

Z(2Uj — 201']‘) S 2f1

JEA
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2n+1

Figure 9.5: Instance for Exercise 9.2 showing a bad locality gap for the local search
algorithm of Section 9.1.

Dividing both sides by 2, we get

Z('Uj —¢ij) < fi

JeEA
Finally, by the definition of A and w we have that w;; = v; — ¢;; for j € A, and we are done.
O

A significantly more involved analysis of this algorithm shows that its performance guarantee
is 1.61; see the notes at the end of the chapter for more details.

Exercises

9.1 Prove that the uncapacitated facility location algorithms in Algorithm 9.2 and Algorithm
9.3 are equivalent.

9.2 The locality gap of a local search algorithm for an optimization problem is the worst-case
ratio of the cost of a locally optimal solution to the cost of an optimal solution, where
the ratio is taken over all instances of the problem and over all locally optimal solutions
to the instance. One can think of the locality gap as an analog of the integrality gap of a
linear programming relaxation.

We consider the locality gap of the local search algorithm for the uncapacitated facility
location problem in Section 9.1. Consider the instance shown in Figure 9.5, where the
facilities ' = {1,...,n,2n + 1}, and the clients D = {n+1,...,2n}. The cost of each
facility 1,...,n is 1, while the cost of facility 2n + 1 is n — 1. The cost of each edge in the
figure is 1, and the assignment cost ¢;; is the shortest path distance in the graph between
1 € F and j € D. Use the instance to show that the locality gap is at least 3 — € for any
e> 0.

9.3 Show that the local search algorithm of Section 9.3 can be adapted to find a Steiner tree
whose maximum degree is at most OPT 41, where OPT is the maximum degree of a
minimum-degree Steiner tree.

9.4 Recall the uniform labeling problem from Exercise 5.10: we are given a graph G = (V, E),
costs c. > 0 for all e € E, and a set of labels L that can be assigned to the vertices of V.
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9.5

There is a nonnegative cost ¢, > 0 for assigning label i € L to vertex v € V, and an edge
e = (u,v) incurs cost ¢ if u and v are assigned different labels. The goal of the problem
is to assign each vertex in V a label so as to minimize the total cost. In Exercise 5.10, we
gave a randomized rounding 2-approximation algorithm for the problem; here we give a
local search algorithm with a performance guarantee of (2 + €).

Our local search algorithm will use the following local move. Given a current assignment
of labels to vertices in V, it picks some label ¢ € L and considers the minimum-cost i-
expansion of the label i; that is, it considers the minimum-cost assignment of labels to
vertices in V' in which each vertex either keeps its current label or is relabeled with label
i (note that all vertices currently with label ¢ do not change their label). If the cost of
the labeling from the i-expansion is cheaper than the current labeling, then we switch to
the labeling from the i-expansion. We continue until we find a locally optimal solution;
that is, an assignment of labels to vertices such that the minimum-cost i-expansion for
each i € L costs no less than the current assignment.

(a) Prove that for any given label ¢ € L, we can compute the minimum-cost i-expansion
in polynomial time (Hint: find a minimum s-¢ cut in a graph where s corresponds
to the label ¢ and ¢ corresponds to all other labels).

(b) Prove that any locally optimal assignment has cost at most twice the optimal cost.

(c) Show that for any constant ¢ > 0, we can obtain a (2 + €)-approximation algorithm.

The online facility location problem is a variant of the uncapacitated facility location
problem in which clients arrive over time and we do not know in advance which clients
will want service. As before, let F' be the set of facilities that can be opened, and let D
be a set of potential clients. Let f; be the cost of opening facility ¢ € F' and ¢;; the cost of
assigning a client j € D to facility ¢ € F. We assume that the assignment costs obey the
triangle inequality. At each time step t, a new set Dy C D of clients arrive, and they must
be connected to open facilities. We are allowed to open new facilities in each time step;
once a client is assigned to a facility, it cannot be reassigned if a closer facility opens later
on. For each time step ¢, we wish to minimize the total cost (facility plus assignment)
incurred by all clients that have arrived up to and including time ¢t. We compare this cost
with the optimal cost of the uncapacitated facility location problem on the total set of
clients that have arrived up to and including time ¢. The ratio of these two costs gives
the competitive ratio of the algorithm for the online problem.

Consider the following variation on Algorithm 9.3. As before, we let .S be the set of clients
that have not yet been connected to some facility, and let X be the set of currently open
facilities. At each time step t, we sequence through the clients j in D;. We increase the
client’s bid «; from zero until either it connects to some previously open facility (o; = ¢;;
for some ¢ € X)), or some facility receives enough bids to allow it to open. As in the greedy
algorithm, we allow previously connected clients j to bid toward facility ¢ the difference
between the cost ¢(j, X) of connecting to the closest open facility and cost of connecting
to facility ¢; that is, j bids (c¢(j, X) — ¢i;j)+ towards facility 4. Thus facility  is opened
when (aj — ¢ij)+ + X j¢5(c(4, X) — ¢ij)+ = fi. Note that even if facility ¢ is opened and
is closer to some client j than previously opened facilities in X, we do not reassign j to @
(per the requirements of the problem).
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(a) Prove that at the end of each time step ¢, the cost of the current solution is at most
twice the sum of the client bids ;. o).

(b) Consider two clients j and k such that we increase the bid for j before that of k.
Let X be the set of facilities open when we increase «j. Prove that for any facility
i, C(X,j) — Cij > ap — Cj — QCij.

(c¢) For any time step t, pick any subset A of clients that have arrived so far and any
facility 7. Let A ={1,...,p}, where we increase the bids for the clients in A in order
of the indices.

(i) Prove that for any ¢ € A, l(ay —cit) =232, 4¢ij < fi.
(ii) Use the above to prove that Zlg?:l(aﬂ_QHpCiﬁ) < H,f;, where H, = 1+%+. . ._|_%,

(d) Prove that v; = «a;/2H, is a dual feasible solution for the uncapacitated facility
location problem at time ¢, where n is the number of clients that have arrived up to
and including time ¢.

(e) Use the above to conclude that the algorithm has a competitive ratio of 4H,,.

Chapter Notes

As was discussed in Chapter 2, local search algorithms are an extremely popular form of heuristic
and have been used for some time; for instance, a local search algorithm for the uncapacitated
facility location problem was proposed in 1963 by Kuehn and Hamburger [206]. However, not
many local-search based approximation algorithms were known until recently. A paper by
Korupolu, Plaxton, and Rajaraman [205] in 2000 touched off recent research on approximation
algorithms using local search. The paper gave the first performance guarantees for local search
algorithms for the uncapacitated facility location problem and the k-median problem, although
their k-median algorithm opened up to 2k facilities rather than only k. Charikar and Guha
[64] first proved a performance guarantee of 3 for a local search algorithm for the uncapacitated
facility location problem; they also introduced the idea of rescaling to show that the performance
guarantee could be improved to 1 4+ 2v/2. The analysis we use here is due to Gupta and
Tangwongsan [151]. Arya, Garg, Khandekar, Meyerson, Munagala, and Pandit [24] first proved
a performance guarantee of 5 for a local search algorithm for the k-median problem. The result
in Section 9.2 is a modification of their analysis due to Gupta and Tangwongsan [151]. Exercise
9.2 is due to Arya et al.

Although not many local search approximation algorithms were known until the recent work
on location problems, the algorithm for finding a minimum-degree spanning tree of Section 9.3 is
an exception; this work appeared in 1994 and is due to Fiirer and Raghavachari [119]. Exercise
9.3 is also from this paper.

The greedy/dual-fitting algorithm for the uncapacitated facility location problem given in
Section 9.4 is due to Jain, Mahdian, Markakis, Saberi, and Vazirani [176]. As was mentioned
at the end of the section, a much more careful analysis of this algorithm shows that it has a
performance guarantee of 1.61. This analysis involves the use of factor-revealing LPs: for any
given facility ¢ € I, we consider the bids a; of the clients as LP variables, and set up constraints
on the variables stating that the total bid on the facility can be at most the sum of the bids,
and other inequalities such as those resulting from Lemma 9.13. Subject to these constraints,
we then maximize the ratio of the sum of the bids over the cost of the facility ¢ plus the cost
of connecting the clients to facility ¢. If we divide the «; by this ratio, we obtain a feasible
solution v for the dual of the LP relaxation for the uncapacitated facility location problem.
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Hence this LP “reveals” the performance guarantee of the algorithm. The technical difficulty of
the analysis is determining the value of the LP for any number of clients.

Exercise 9.4 is a result from Boykov, Veksler, and Zabih [57]. Exercise 9.5 gives an algorithm
for the online facility location problem due to Fotakis [116]. The analysis used is due to
Nagarajan and Williamson [229].
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CHAPTER 10

Further uses of rounding data and
dynamic programming

In this chapter, we return to the technique of applying dynamic programming via rounding data.
We look at two, more technically difficult, applications of this technique to find polynomial-time
approximation schemes for two different problems.

First, we consider the traveling salesman problem, introduced in Section 2.4, for instances
in which the cities are points in the Euclidean plane and the cost of traveling between two cities
is the Euclidean distance between the corresponding points. In this case the dynamic program
works by recursively dividing the plane into squares. Starting with the smallest squares, we
compute the least-cost set of paths for visiting all the cities in the squares, then use these to
compute solutions for larger squares. We can show that the optimal tour can be modified at
low cost such that it doesn’t enter and exit any square too many times; this “rounding” of
the optimal tour makes it possible to solve the dynamic program in polynomial time. This
technique turns out to be widely applicable to problems in the Euclidean plane, including the
Steiner tree problem and the k-median problem for Euclidean instances.

Second, we consider the maximum independent set problem in planar graphs. We show that
the maximum independent set problem is easy to solve on trees, and can be solved in graphs
that are “tree-like”. We can measure how close a graph is to being a tree via a parameter called
its treewidth, and we give an algorithm to solve the maximum independent set problem in
time that is polynomial in the number of vertices and exponential in the treewidth of the input
graph. Planar graphs don’t necessarily have low treewidth, but we show a way to partition
the vertices of the planar graph into k£ parts such that removing any one of the parts from the
graph yields a low-treewidth graph. Then since at least one of the k parts must have at most a
% fraction of the weight of an optimal solution, we can from this get a (1 — %)—approximation
algorithm for the maximum independent set problem in planar graphs, and we can use this to
obtain a PTAS for the problem.

10.1 The Euclidean traveling salesman problem

To see a more sophisticated use of dynamic programming for approximation algorithms, we
return to the Traveling Salesman Problem (TSP) introduced in Section 2.4 and show how we
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258 Further uses of rounding data and dynamic programming

can use dynamic programming to obtain a polynomial-time approximation scheme for a certain
class of TSP instances. In these TSP instances, each city i is defined by a point (z;,y;) in the
Euclidean plane, and the cost ¢;; for traveling from city 4 to city j is simply the Euclidean
distance between (z;,y;) and (z;,y;) (namely, c;; = \/(z; — x;)% + (y; — y;)?). We call such
instances of the TSP Fuclidean TSP instances. Note that the input of the Kuclidean TSP is
simply a list of the points (z;,y;) for each of the n cities; the distances ¢;; are not part of the
input.

The basic idea of the algorithm is to recursively subdivide the plane into squares and show
that there is a tour that costs only slightly more than OPT such that it doesn’t cross the
boundary of any square too many times. Given that such a tour exists, we can apply dynamic
programming to find it: we start by finding the cheapest ways to visit the nodes inside the
smallest squares, then combine these partial solutions to find the cheapest ways to visit the
nodes inside next larger squares, and so on. In the end we find the cheapest overall tour with
this structure.

The overall proof strategy is then as follows. First, we show that it is sufficient to design a
PTAS for Euclidean instances that have certain nice properties. Second, we recursively divide
the plane into squares as mentioned above; we introduce some randomization in how we do
this. Third, we show that with probability at least %, a tour of cost at most (1 + €) OPT exists
for the nice instances with respect to the random subdivision of the plane; this tour has the
property that it doesn’t cross the squares of the subdivision too many times. Last, we use
dynamic programming to find the least expensive tour with the given property. This results in
the PTAS.

We begin by showing that it is sufficient to obtain a PTAS for a subclass of Euclidean TSP
instances. We will say that a Euclidean TSP instance is nice for constant € > 0 if the minimum
nonzero distance between points is at least 4, and all coordinates z;,y; are integers in [0, O(n)],
where n is the number of points.

Lemma 10.1: Given a polynomial-time approzimation scheme for nice Fuclidean TSP in-
stances, we obtain a polynomial-time approzimation scheme for all Euclidean TSP instances.

Proof. We will show how to transform any instance into a nice instance such that the cost of
any tour in the transformed instance doesn’t differ by much from that of the original instance.
This will allow us to prove the lemma.

Let L be the length of a side of the smallest axis-aligned square containing all of the points
of the instance; thus L = max(max; x; — min; z;, max; y; — min; y;). Note that since there are
two points at least distance L apart it is the case that L < OPT. Let € > 0 be a constant
parameter that we specify later. To get a nice instance, we create a grid of horizontal and
vertical lines where the spacing between the lines is €L/2n; see Figure 10.1. We then move
each point of the original instance to the nearest grid point (that is, the nearest intersection of
a horizontal and a vertical grid line). Because we end up moving any point by a distance of
at most €L /2n, the distance between any two points changes by at most +2¢L/2n. Thus the
overall cost of any tour changes by at most +el.

We now increase the grid spacing by a factor of 8n/eL, so that the spacing between any
two grid lines is % . f—z = 4 and translate the bounding square so the lower left-hand corner
is on the origin. This enforces that each point in the modified instance is now at nonnegative
integer coordinates and that the minimum nonzero distance between any two points is at least 4.
Furthermore, the maximum distance between any two points before increasing the grid spacing

was at most 2L; after increasing grid spacing it is at most 2L - f—z = O(n), so that each z,y
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Figure 10.1: An example of the smallest square containing all the points of the in-
stance, and the grid of lines spaced eL/2n apart.

coordinate is in the range [0, O(n)]. Thus for any tour in the original instance of cost C, its
cost in the nice instance is at least f—Z(C —¢eL) and at most E—Z(C +el).

Let OPT be the cost of an optimal tour in the original instance, OPT’ the cost of an optimal
tour in the corresponding nice instance, C’ the cost of the tour returned by the PTAS on the
nice instance, and C' the cost of the corresponding tour in the original instance. We know
that ¢’ < (1 + ¢) OPT’. Furthermore, it must be the case that OPT’ is no more than the
cost of the optimal tour of the original instance in the corresponding nice instance, so that
OPT’ < E—Z(OPT +eL). Putting everything together, we have that

%(C —el)<C'<(1+6¢)OPT < (1+ E)S—Z(OPT +el),
or

C—€eL < (1+¢€)(OPT+eL).
Recalling that L < OPT, we have that

C < (14 3e+ %) OPT.

Choosing € suitably small will allow us to obtain a tour of cost at most (1 4 ¢') OPT for any
choice of €. n

From here on, we assume we have a nice Euclidean TSP instance, and we show how to
obtain a PTAS for such instances.

In order to perform dynamic programming on nice instances, we need to structure the
problem so that we can build up a solution from smaller subproblems. To do this, we are
going to recursively divide the plane into squares in a way that involves randomization. First,
we will describe the recursive division without randomization, and then we will introduce the
randomization.

As in the proof of Lemma 10.1, we let L be the length of a side of the smallest square
containing all the points of the instance. Let L’ be the smallest power of 2 that is at least 2L.
We will take a square of side length L’ around the points of the instance and divide it into
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Figure 10.2: An example of a dissection. The level 0 square is outlined in a thick
black line; the level 1 squares in thin black lines, and the level 2 squares in dashed lines.
The thin black lines are level 1 lines, and the dashed lines are level 2 lines.

four equally-sized squares, then recursively divide each of these squares into four equally-sized
squares, and so on; see Figure 10.2. We stop the process when each square has side length 1. We
call this division of the instance into squares a dissection. It will be useful to refer to the level
of a given square of the dissection; we say that the top-level square of side length L’ is at level
0, the four squares dividing the top-level square are at level 1, and so on. Since the maximum
distance between points in a nice instance is O(n), we know that L' = O(n). Therefore, the
level of the smallest squares of the dissection (of side length 1) is O(logn). Since the minimum
nonzero distance between any two points is 4, we know that in the smallest squares of side
length 1, there can be at most one distinct point.

So far we have not completely specified how to create the dissection because there are many
squares of side length L’ that contain all the points of the instance. In fact, any translation
of the square which has its lower left-hand coordinates at (a,b) for a,b € (—L'/2,0] will work.
It will be useful for us to choose this translation randomly by choosing integers a and b from
(—L'/2,0] uniformly at random. We will call such a dissection after a and b are chosen an
(a,b)-dissection. We will give an intuitive explanation for the randomization in a moment.

Now, to further help construct a dynamic program for the problem, we will consider tours
that enter and exit the squares of the dissection only in prespecified points called portals. For
each square of level i, we place portals at all four corners, then m — 1 additional portals equally
spaced along each side, for m some power of two. We will call m the portal parameter. Note
that since m is a power of two, each portal on the sides of a level ¢ — 1 square are at the same
location as a portal on the side of some level i square contained in the level ¢ — 1 square. See
Figure 10.3 for an illustration of portals.

We now consider p-tours, which are tours that optionally include portals; as in the case
of the Steiner tree problem (from Exercise 2.5), the tour must include the points of the TSP
instance, but may include portals. We say that a p-tour is portal-respecting if for every square
of the dissection, the tour only enters and exits the square via a portal for that square. See
Figure 10.4 for an example of a portal-respecting p-tour. We’'ll say that a portal-respecting
p-tour is r-light if for every square of the dissection it crosses each side of the square at most r
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Figure 10.3: Portals added to the squares of the dissection with portal parameter
m = 2. The black squares are portals for both the level 1 and level 2 squares; the white
squares are portals for the level 2 squares.

times.
We can now state two central theorems in obtaining an approximation scheme for Euclidean
TSP instances. The second builds on the first and is somewhat more complicated to prove.

Theorem 10.2: If we pick integers a and b from (—L'/2,0] uniformly at random, then with
probability at least 1/2, the (a,b)-dissection has an r-light portal-respecting p-tour of cost at
most (1+ €) OPT for portal parameter m = O(Llog L') and r = 2m + 4.

Theorem 10.3: If we pick integer a and b from (—L'/2,0] uniformly at random, then with
probability at least 1/2, the (a,b)-dissection has an r-light portal-respecting p-tour of cost at
most (1+ €) OPT for portal parameter m = O(LlogL') and r = O(2).

We will give the proofs of these theorems in a moment; the essential idea is that we will be
able to modify an optimal tour to be a portal-respecting p-tour without increasing the cost by
too much. Any time the optimal tour crosses a square at a point that is not a portal for that
square, we move it to the nearest portal; the distance we need to move the crossing depends on
the level of the square, which given the randomized choice of the (a, b)-dissection will trade off
nicely with the probability that the square is of any given level. Similarly, if the tour crosses a
side of a square too many times, we will be able to modify it so that it crosses fewer times at a
cost proportional to the length of the side of the square; again, given the randomized choice of
the (a, b)-dissection, this cost trades off nicely with the probability that the square is of a given
level.

Before we show how this can be done, we first show that for a nice Euclidean instance, we
can find a tour of cost at most (1 + €) OPT in polynomial time, given the theorems, where the
running time depends on the portal parameter and how many times the tour crosses each side
of each square in the dissection.

Theorem 10.4: With probability at least 1/2, we can find a tour of cost at most (1 + ¢) OPT
in O(mP"nlogn) time for nice Buclidean TSP instances.

Recalling that L’ = O(n), that m = O(Llog L’) = O(% log n) and that (log n)°e™ = plosloen,
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Figure 10.4: A portal-respecting p-tour. Note that only black portals are used to
enter or exit the level 1 squares, while the portals on the level 2 squares are used to
enter or exit the level 2 squares.

we get the following corollaries.

Corollary 10.5: For the choice of m and r as in Theorem 10.2, the running time is O(no(log log ”))
for constant € > 0.

Corollary 10.6: For the choice of m and r as in Theorem 10.3, the running time is O(n logo(l/e) n)
for constant € > 0.

Proof of Theorem 10.4. From both Theorems 10.2 and 10.3, we know that with probability
at least 1/2, with a,b chosen as in the theorem, there is an (a,b)-dissection with an r-light
portal-respecting p-tour of cost at most (1+¢) OPT for m = O(% logL') = O(% logn); the only
distinction between the two theorems is the value of r. For a given (a, b)-dissection, we’ll show
that we can find the cheapest r-light portal-respecting p-tour in O(mO(T)nlog n) time, given
the values of m and r. Note than any p-tour can be converted to a standard tour of no greater
cost by shortcutting the portals.

As we mentioned before, we will find the cheapest such p-tour by dynamic programming.
Consider any portal-respecting p-tour of the given instance. Then for any given square in the
(a,b)-dissection, the p-tour may enter the square, visit some of the points inside it, then exit,
visit points outside the square, then re-enter the square, and so on. We call the part of the
p-tour inside the square a partial p-tour; note that a partial p-tour visits all of the points of the
TSP instance inside the square; see Figure 10.5. Because the p-tour is r-light, we know that
the p-tour crosses each side of the square at most r times, and so it uses at most 4r portals on
the sides of the square. Furthermore, we can pair up the portals used by the p-tour into pairs,
where each pair represents a portal through which the p-tour entered the square, and a portal
through which the p-tour then left the square. The goal of our dynamic program will be to
compute for every square in the dissection, for every choice of up to r portals per side, and for
every pairing of the portals into entry/exit pairs, the cheapest partial p-tour that visits all the
points of the TSP instance inside the square. Clearly if we can do this, we can find the cheapest
overall r-light portal respecting p-tour by considering the entry in the dynamic programming
table for the level 0 square that does not use any of the portals on the boundary of the square.
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Figure 10.5: Partial p-tour inside a square.

To begin discussion of the dynamic program, we start by computing the number of entries
in the table that we will need. Note that for any given level of squares in the dissection, there
are at most n that contain any points of the TSP instance. For any square that contains no
points of the instance, we need only consider one square of any given size. Since there are
O(log L) = O(log n) levels of the dissection, there are at most O(nlogn) squares that we must
consider. For each square of level 4, there are 4m portals on the square and thus at most
(4m + 1)*" choices for the up to r portals on each side of the square (including not choosing
any portals) through which an r-light portal-respecting p-tour could cross. Finally, there are
at most (47)! possible pairings of the selected portals into entry/exit pairs. With r = O(m),
the total number of entries in the table is

O(nlogn) x (4m + 1) x (47)! = O(m®"nlogn).

Now we discuss how to build up the entries in the table. For each distinct point, we find the
largest square in the dissection that contains only that point. The case for each such square is
straightforward; for each choice of portals and pairings of portals, we find the shortest paths that
enter/exit the square in the designated way and visit the one distinct point inside the square.
We now build up the solutions to other entries in the table from previous entries, working our
way up from smaller squares of the dissection to larger squares. We construct solutions for a
square S from the solutions for the four smaller squares s1,..., sS4 that it contains. Note that
any partial p-tour for S might use portals on the four sides of the s; that are not also on a side
of S. Let’s call these sides the internal sides of the s;. To combine solutions from the s; to get a
solution for the square S, we enumerate over all the portals on the internal sides that the partial
p-tour for S might have used, and the order in which the partial p-tour visited these portals,
and pick the best solution found. Notice that specifying a set of portals used on the internal
sides and an order in which they are used implies for each s; a set of portals which are used, as
well as an entry/exit pairing on the portals, so we will be able to look up the best solution for
each square s; in our table. Therefore, given a square .S, a set of portals of S that are used, and
entry/exit pairings of the portals, we enumerate over all the portals on the internal sides that
a partial p-tour for this configuration might have used, and an ordering on the portals. We can
pick up to r portals from each of the four internal sides, each of which has m + 1 portals, so
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Figure 10.6: Illustration of shortcutting a portal.

that there are no more than (m + 2)%" possibilities (including not choosing any portal). Since
the partial p-tour inside S uses at most 47 portals on the sides of S, there can be at most 2r
paths entering and exiting S; thus we need to specify on which of these 2r paths the portals
on the internal sides lie. This gives another (2r)%" possibilities. Finally, there are at most (47)!
ways to order the portals along the paths. Thus if we enumerate over the

(m +2)* x (2r)* x (4r)! = O(mO™M)

possibilities, we will find the best solution for the table entry consisting of the square S, the
chosen portals from S, and the entry/exit pairing of the portals. This takes O(mO(T)) time.
Since we do the computation for O(mO(T)nlog n) dynamic programming table entries, the total
time taken is O(mPnlogn). O

We now turn to the proof of Theorem 10.2. As we mentioned previously, the proof works by
showing that with reasonable probability, an optimal tour can be modified to a portal-respecting
p-tour without increasing the cost by too much. Notice that an r-light tour with r = 2m + 2 is
implied by a tour that crosses the side of any square at most twice at any portal. If the tour
crosses three or more times at a portal, it can be shortcut to cross at most twice; see Figure
10.6. Thus we need only to show that modifying the tour to be portal-respecting does not
increase the cost by more than e OPT. To prove this, we first need some notation and a lemma.
We will use ¢ to denote either a vertical line x = ¢ or a horizontal line y = i for some integer 1.
Given an optimal tour, let ¢(¢) be the number of times that the optimal tour crosses the line /.
Let T be the sum of ¢(¢) over all such horizontal and vertical lines ¢.

Lemma 10.7: For nice Fuclidean instances, T' < 20PT.

Proof. Consider an edge in the optimal tour from point (z1,y1) to point (z2,y2). The edge
contributes at most |x1 —z2|+|y1 —y2|+2 to T, and has a length s = \/(arl —22)% + (y1 — y2)2.
Recall that for a nice instance the minimum nonzero distance between points of the instance is
at least 4, so that s > 4. If we let x = |v1 — 22| and y = |y; — 2|, then since (z — y)? > 0, we
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have that x2 + y? > 2xy, or 222 + 2y? > 22 + 22y + 9% = (z +y)?, or /2(z2 +42) >z + .
Thus we can bound the contribution of the edge to T' as follows:

rH+y+2 = |ry— x|+ |yr — el +2
< V2[(z1 - 22)2 + (11— y2)?] +2
< V25242
< 2s,

where the last inequality follows since s > 4. Thus summing over all edges in the tour, we
obtain that T' < 20PT. L]

Now we can give the proof of Theorem 10.2, which we restate here for convenience.

Theorem 10.2: If we pick integers a and b from (—L'/2,0] uniformly at random, then with
probability at least 1/2, the (a,b)-dissection has an r-light portal-respecting p-tour of cost at
most (1+ €) OPT for portal parameter m = O(Llog L) and r = 2m + 4.

Proof. As described earlier, the general idea of the proof is that we modify the optimal tour to
ensure that it crosses any square of the dissection at a portal for that square. When we move the
crossing of the optimal tour, we increase it by an amount that depends on the distance between
the portals for that square. As the level of a square gets smaller, this distance is greater, but
the probability that any given line £ belongs to a square of that level also gets smaller, so that
the overall expected distance we need to move the tour will simply depend on ¢(¢) and m, which
we can relate to the cost of the optimal tour by Lemma 10.7.

To show this formally, define the level of line ¢ to be the minimum level over all squares of
the (a, b)-dissection such that ¢ contains the side of the square. Observe that to split the level
squares into level i + 1 squares, we draw 2¢ horizontal and 2¢ vertical lines which are then level
i+ 1 lines; see Figure 10.2 for an illustration. Because we choose a and b uniformly at random,
this implies that

-1 9i

2~ 1"

Pr[level of ¢ is i] <

Thus, for instance, the probability that a vertical line £ is the single level 1 vertical line splitting
the bounding box in two is at most 1/(L’/2).

We modify the optimal tour so that the tour crosses any square of the dissection at a portal
for that square. Consider any line ¢ of level i. Since it contains the boundary of a level i square,
and the side length of a level i square is L'/2%, the distance between portals is at most L’/2'm.
Observe also that by construction the portal for a level i square is also a portal for any smaller,
level j square for j > i. Thus if we move any crossing of a level i line £ at most L'/2m, any
square of the dissection whose side is contained in ¢ will have the tour crossing at some portal
for that square. Recall that we defined ¢(¢) to be the number of times that the optimal tour
crosses line £. Thus the expected increase in cost for moving every crossing of line ¢ to the
nearest portal is at most

log L’ log L’

Z Prllevel of ¢ is 4] - t(¢) - I./ < Z z - t(0) - I./
P 2'm T L 2'm
= 0] log L.
m
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We choose the portal parameter m to be the smallest power of two that is at least %log L.
Then the total expected increase is at most §t(¢).

Recall that we defined T" to be the sum over all lines ¢ of ¢(¢). Thus the total expected cost
of what we have done in moving the crossings to portals as above is

> 10 =4T.

lines ¢

Lemma 10.7 shows that T" < 2 OPT for nice Euclidean instances. Then we have that the ex-
pected increase in cost is at most §7° < § OPT. If the random variable X represents the expected
increase in cost, then by Markov’s inequality (Lemma 5.25), Pr[X > ¢ OPT| < E[X]/(e OPT) =
(5§ OPT)/(e OPT) = 1/2. Thus, we obtain that the increase in cost is at most ¢ OPT with prob-
ability at least 1/2. O

To prove Theorem 10.3, we additionally need to show that if a tour crosses a given line too
many times, we can modify it at a small increase in cost to a tour that doesn’t cross the line
too many times. We will call the following lemma the Patching lemma.

Lemma 10.8 (Patching lemma): Given a line segment R of length I, if a tour crosses R
three or more times, we can increase the length of the tour by no more than 6l to get a closed
path that contains the previous tour and crosses R at most twice.

Proof. Suppose the tour crosses the line segment k£ times. We take the tour, and break it at
the k points at which it crosses line R. We add 2k new points by adding k new points on either
side of R where the tour crossed R; see Figure 10.7.

We now add a cycle and a matching to the new points on each side of the lines; if k is odd,
the matching matches the first £ — 1 points on each side. If k£ is odd, we add an edge connecting
the last pair of new points, while if k is even we add two edges connecting the last two pairs
of new points. This results in an Eulerian graph which contains the points of the tour and
crosses R at most twice. Each of the two cycles added has cost at most 2[, and each of the
two matchings has cost [, for an overall cost of 6/. A traversal of the Eulerian graph contains
all points of the tour. We can shortcut the traversal to obtain a closed path that contains all
points of the tour. O

We can now prove Theorem 10.3, which we restate here for convenience

Theorem 10.3: If we pick integer a and b from (—L'/2,0] uniformly at random, then with
probability at least 1/2, the (a,b)-dissection has an r-light portal-respecting p-tour of cost at
most (1+ €) OPT for portal parameter m = O(LlogL') and r = O(2).

€

Proof. The basic idea is to repeatedly apply the Patching lemma so that the side of each square
is not crossed more than r times. The cost of the patching depends on the side-length of the
square, which is larger for squares of smaller level; however, the probability that for any line ¢
that it contains a side of a square of that level is smaller for smaller levels. Once again, these
quantities trade off so that the expected cost for patching a line ¢ is proportional to ¢(¢) and
inversely proportional to r, so that for a good choice of r, we can relate the patching cost to
the optimal cost via Lemma 10.7.

Now we begin the formal proof. Consider a level ¢ line ¢. We invoke the Patching lemma
(Lemma 10.8) to ensure that for every side of every square which ¢ contains, that side is not
crossed by the tour more than r times. However, we must apply the Patching lemma carefully.
We do the following: we start with the sides of the smallest squares whose sides are contained
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Figure 10.7: Illustration of the patching lemma: (a) The original tour; (b) Breaking
the tour at the points at which it crosses the line; (¢) Adding a tour and a matching to
both sides of the line; (d) Shortcutting to a closed path.
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in ¢, and apply the lemma if the side of any square is crossed more than r times. Then we do
the same for the next smallest squares, and so on, until we finish with the level i squares; since
¢ is a level i line, it contains no square side for any larger square. In other words, we perform a
loop, setting j to log L’ and decrementing j down to i. In each iteration of the loop, we consider
all level j squares that have a side contained in ¢. If the side is crossed more than r times, we
apply the Patching lemma to that side.

To bound the cost of applying the Patching lemma, we let ¢; denote the number of times that
the Patching lemma is applied when considering squares of level j. Then ) ;- ¢; < t(£)/(r—1),
since each time the Patching lemma is invoked, it replaces at least r + 1 crossings with at most
2. By the Patching lemma, the cost of replacing at least r crossings of the side of a level j
square with at most two crossings is at most 6 times the side length of a level j square; thus
the cost is at most 6L'/27. Thus if £ is level 7, the total cost of applying the Patching lemma as
given above is Z;-O:gf/ ¢;j(6L'/27). Since the level of line ¢ depends on the random choices of a
and b at the beginning of the algorithm, we have that the expected increase in cost of applying
the Patching lemma as discussed above is at most

log L’ log L' 6L/ log L' _, log L' 6L/
Z Prlevel of ¢ is i] Z o5 < Z i Z Cior
i=1 j=i i=1 j=i
log L' . 7
— J %
B SED
=1 < =
log L’

< 6 2
j=1
< 12t(0)/(r —1).

As in the proof of Theorem 10.2, we can modify the tour to cross the line ¢ only at portals
with an expected increase in cost of at most % log I'. Choosing m to be the smallest power of
two that is at least (r — 1)log L', this expected increase becomes at most ¢(¢)/(r — 1). Recall
that we defined T" to be the sum over all lines ¢ of £(¢). Thus the total expected increase in cost
of moving the crossings to portals as above is

> 130/ (r—1) =

lines ¢

13
r—1

T.

Setting r = % +1 and recalling from Lemma 10.7 that T' < 2 OPT for nice Euclidean instances,
we have that the expected increase in cost is at most {7° < § OPT. As we argued at the end
of the proof of Theorem 10.2, this implies that we obtain that the increase in cost is at most
e OPT with probability at least 1/2.

To conclude, we need to argue that we have successfully made the tour into an r-light
portal-respecting p-tour. This becomes somewhat complicated, because it could be the case
that in reducing the number of crossings for a vertical line £ we may increase the number of
crossings for a horizontal line ¢’ that intersects it. We note that the additional vertical crossings
of ¢ introduced by the Patching lemma, in reducing the crossings of ¢ are immediately on either
side of £, and thus go through the portal corresponding to the intersection of £ and ¢/. We can
apply the Patching lemma again to ensure that the number of times ¢’ is crossed at this point
is at most twice at no increase in cost (because the crossings all occur at a single geometric
point). Thus reducing the crossings of vertical lines ¢ may increase the number of crossings at
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the corners of the squares of dissections by at most 4; we get 2 from each application of the
Patching lemma on each side of ¢; this increases the number of crossings on a side of a square
by at most 8 (4 for each corner). Thus we get an (r + 8)-light portal-respecting p-tour, which
is sufficient for the purposes of the theorem. O

The idea of this algorithm for the Euclidean TSP can be applied to many other standard
problems in a Euclidean setting, such as the Steiner tree problem, the k-median problem, and
others.

10.2 The maximum independent set problem in planar graphs

Given an undirected graph G = (V| E), an independent set of vertices S C V' is one such that
no two vertices of S are joined by an edge; that is, for all i,57 € S, (i,j) ¢ E. If we are given
nonnegative weights w; > 0 for all vertices ¢ € V', then the mazimum independent set problem
is that of finding an independent set S of maximum weight w(S) = ) ;. gw;. Sometimes we
are interested in the unweighted version of the problem, in which w; = 1 for all vertices i € V;
then we are interested in finding an independent set of maximum cardinality.

The maximum independent set problem is essentially identical to another problem intro-
duced at the very beginning of the book: the mazimum cliqgue problem. A clique of vertices
S C V is one such that every pair 7,7 € S has an edge connecting it; that is, for all ¢,j € S,
(i,j) € E. Given nonnegative weights w; > 0 for all vertices i € V', the mazimum clique problem
is that of finding a clique of maximum weight. As in the case of the maximum independent set
problem, we can consider an unweighted version in which we are interested in finding a clique of
maximum cardinality. To see the connection between the maximum clique and maximum inde-
pendent set problems, let G = (V, E) be the complement of graph G = (V, E) where E is the set
of all pairs of vertices (7, j) that are not edges in E, so that E = {(i,7) : 4,5 € Vi # j, (i,j) ¢ E}.
Now notice that any clique S in G is an independent set in G of the same weight and vice versa.
Thus given any approximation algorithm for the maximum independent set problem, we can
convert it to an approximation algorithm of the same performance guarantee for the maximum
clique problem simply by running it on the complement graph, and similarly if we have an
approximation algorithm for the maximum clique problem.

We recall Theorem 1.4 from Chapter 1 which says that the unweighted version of the max-
imum clique problem is very hard to approximate.

Theorem 10.9 (Theorem 1.4): Let n denote the number of vertices in an input graph, and
consider any constant € > 0. Then there does not exist an O(n~')-approzimation algorithm
for the unweighted mazimum clique problem, unless P = NP.

Thus the maximum independent set problem is very hard to approximate as well.

Nevertheless, for some special classes of graphs, it is possible to do better — in fact, much
better. We observe that it is relatively easy to find the maximum independent set in a tree
in polynomial time via a dynamic programming algorithm. We suppose that the tree T is
rooted at some node. The dynamic program will work in a bottom-up fashion, starting with
the leaves and working up to the root. Let T, be the subtree of T rooted at a node u. The
dynamic programming table will have two entries for each node u in the tree, I(7T,,u) and
I(Ty,0): I(Ty,u) is the weight of a maximum independent set of T, which includes u, and
I(T,,0) is weight of the maximum independent set of T, which excludes u. If u is a leaf, we
can easily compute the two entries for u. Now suppose that u is an internal node, with k
children vy, ..., vk, and suppose we have already computed the entries for each child. We can
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Figure 10.8: Illustration of planar embeddings of planar graphs. Both graphs are
planar, but only the bottom graph is outerplanar.

then compute the two entries for u. Clearly if u is included in the independent set for 7T, then
v1,. .., must be excluded, so the maximum independent set for T}, including w is u plus the
union of the maximum independent sets for the T, excluding v;; that is,

k
I(Tyu) = wy + Y (T, 0).

=1

If u is excluded from the independent set for T, then we have the choice for each child v;
about whether we should take the maximum independent set of T}, including v; or excluding
v;. Since there are no edges from any T,, to T, for i # j, the decision for T}, can be made
independently from that for T}, and we can choose either possibility; we simply pick the set
of largest weight for each v;, and this gives the maximum independent set for T; excluding
u. Thus I(Ty,0) = 3% max(I(Ty,,v;), [(T,,;,0)). Once we have computed both entries for
the root vertex r, we take the entry that has largest weight, and this gives the maximum
independent set for the entire tree.

Trees are a very restricted class of graphs; we would like to be able to devise good algorithms
for larger classes of graphs. In this section, we will show that for planar graphs, it is possible
to get a polynomial-time approximation scheme for the maximum independent set problem.
Planar graphs are graphs which can be drawn in the Euclidean plane without crossing edges.
More precisely, we correspond each vertex of the graph to some Euclidean point in the plane,
and each edge (i, ) of the graph to a curve in the plane joining the points corresponding to i
and j. The graph is planar if it is possible to do this such that no two curves corresponding to
edges intersect. The mapping of the graph G to points and curves is called a planar embedding
for planar graphs G. A graph G is outerplanar if it has a planar embedding such that all the
vertices lie on the exterior face of the embedding; roughly speaking they are all on the “outside”
of the drawing of the graph. See Figure 10.8 for examples of planar and outerplanar graphs.

To obtain the PTAS for planar graphs, we will need to define the concept of a k-outerplanar
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Figure 10.9: A 2-outerplanar graph and a 3-outerplanar graph. The levels of the
vertices in the 2-outerplanar graph are labelled.

graph. Given a planar embedding of a graph G, we say that all the vertices on the exterior
face are level 1 vertices of the graph. Then in general the level ¢ vertices of the graph are all
the vertices on the exterior face of the same planar embedding of G after removing all level
1,...,7 — 1 vertices and incident edges. A graph G is k-outerplanar if there exists a planar
embedding of G such that all the vertices of the graph are level k or less; see Figure 10.9 for
examples of k-outerplanar graphs. It is possible to determine whether a graph G is k-outerplanar
in time polynomial in k& and n, but the proof of this is outside the scope of this book.
The central theorem we will need to prove the PTAS for planar graphs is the following.

Theorem 10.10: There is a dynamic programming algorithm for finding the mazimum inde-
pendent set in k-outerplanar graphs with running time O(2O(k)n2).

The key to proving this theorem is to show that k-outerplanar graphs can be decomposed
into a tree-like structure, so that we can run a dynamic programming algorithm similar to the
one given above for trees.

Given the theorem, it is relatively simple to obtain the approximation scheme.

Theorem 10.11: There is a polynomial-time approximation scheme for the mazximum inde-
pendent set problem in planar graphs running in time 0(20(1/6)n2).

Proof. Given a planar graph G with a planar embedding of G, we let L; denote all the level ¢
vertices of G. Observe that by the definition of level, it cannot be the case that an edge has
endpoints that differ in level by two or more, since then in the embedding the curve correspond-
ing to the edge would intersect the curves corresponding to edges connecting intermediate level
vertices.

If we want a (1 — €)-approximation algorithm, let k be the smallest positive integer such
that 1/k < e. Let S; be the set of all vertices whose level is i(mod k), for i =0,...,k— 1. Now
consider the graphs G; induced on all vertices except those in S;; that is, G; = G[V — S;]. For
each i = 0,...,k — 1, by removing all the vertices in S; and edges incident on it, we obtain
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a graph G; for which each connected component is a k-outerplanar graph. For instance, in

Gy, we remove vertices from levels k, 2k, 3k, and so on. Thus the vertices in L1, ..., L,_1 are
disconnected from all other vertices in G;, and these form a k-outerplanar graph. Similarly,
the vertices in Lgy1,..., Logp_1 are also disconnected from other vertices in G;, and these also

form a k-outerplanar graph, and so on. We use the algorithm of Theorem 10.10 to find a
maximum independent set for each connected component of G; separately, and the union of
these independent sets gives a maximum independent set X; for G;. The running time is
0(2°1/9n?). Note that any independent set X; for G; is also independent for the original
graph G. Then we return as our solution the independent set X; whose weight is the largest.

Let O be a maximum independent set for G, so that w(O) = OPT. We observe that since the
S; partition all the vertices in V' into k sets, there exists some j such that w(ONS;) < w(0)/k.
Since O — S; is an independent set for G, the weight of the independent set X; found by the
algorithm for G; must be at least

w(0 = 8;) =w(0) —w(ONS;) > <1 — ;) w(0) > (1 —¢€) OPT.

Thus the algorithm will return a solution of weight at least (1—¢) OPT in O(2°(/)n?) time. [

We now turn to the proof of Theorem 10.10. To do this, we shall introduce another concept,
called the treewidth of a graph. The treewidth of a graph in some sense measures how close the
graph is to being a tree. Our proof agenda then will be to show that any graph with treewidth ¢
has a dynamic programming algorithm to solve the maximum independent set problem in time
exponential in ¢ but polynomial in n, and to show that k-outerplanar graphs have treewidth at
most 3k + 2.

Given an undirected graph G = (V, E), a tree decomposition of G is a spanning tree T on a
new set of nodes V', where each ¢ € V' corresponds to a subset X; of vertices of V. The tree
decomposition has the following three properties:

1. For every vertex u € V, there is some 7 € V'’ such that v € X;;
2. For every edge (u,v) € E, there is some i € V' such that both u,v € Xj;; and
3. For i,j,k € V', if j lies on the path in T from i to k, then X; N X} C X;.

As an example, suppose that the original graph G is itself a tree. Then we can make a tree
decomposition of G' by creating a node 4, in V' for each node u € V and a node i, for each edge
in e € E. The tree T' will have edges (i, i.) for all u € V and e € E such that u is an endpoint
of e; note that this gives a tree since G itself is a tree. The node i,, € V' will have corresponding
subset X;, = {u}, and the node i, € V' for edge e = (u,v) € F will have corresponding subset
X, = {u,v}. It can then be seen that this decomposition obeys all three properties of a tree
decomposition. See Figure 10.10 for an example of a tree decomposition of a graph.

The treewidth of a tree decomposition of G is the maximum over all i € V'’ of | X;| — 1, and
the treewidth of a graph G is the minimum treewidth over all tree decompositions of G. One
might wonder about the —1 term in the definition, but note that given the tree decomposition
of a tree given above, this definition yields that trees have a treewidth of 1; since the second
property of tree decomposition requires that each edge of the graph have both endpoints in
some subset of the decomposition, no smaller treewidth is possible unless the graph has no
edges.
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Figure 10.10: An example of a tree decomposition of a graph; the graph is on the left
and the tree decomposition on the right. The treewidth of this tree decomposition is 3.

We can now show that we can find the maximum independent set in a graph with low
treewidth in time exponential in the treewidth. The algorithm is simply a generalization of the
dynamic program for finding a maximum independent set in a tree.

Theorem 10.12: Given a tree decomposition of a graph G = (V, E) with nodes V' and treewidth
t, we can find a mazimum independent set in G in time O(2°M|V'|) via dynamic programming.

Proof. Given the tree decomposition T of graph G = (V, E) with nodes V' and sets X; C V for
all i € V', we root the tree T. As in the dynamic program for trees, our algorithm will work
bottom-up on the tree T. Now for each i € V', let T; be the subtree of T rooted at 7. Let V;
be the set of vertices given by taking the union of all the X; for all j in 7, and let G; be the
subgraph of G induced by V;. We will compute the maximum independent set of G; for each
1 € V'; when we reach the root vertex r of the rooted tree T', the graph G, = G, and we will
have computed its maximum independent set. In our dynamic program, we have 2/Xil entries
in the table for each i € V'; these correspond to the maximum independent set in G; for all
possible subsets U C X; where we require the intersection of the independent set and X; to be
exactly U. Note that some of these possibilities might not correspond to a valid independent
set (for instance, if we include both endpoints of an edge of G;), and these table entries will be
marked ‘Not valid’.

If i is a leaf vertex of T, then V; = X;. Then since each table entry for ¢ dictates whether
each vertex of X; is included or excluded, we only need to check whether the given inclu-
sions/exclusions yield a valid independent set to compute the entry.

Now suppose that ¢ is an interior node of the tree. To handle this case, we must first
establish two claims: (1) for any two distinct children j,k of i, V; NV}, C X;; (2) any edge of
G; must either have both endpoints in X; or both endpoints in V; for some child j of 7. To see
claim (1), suppose that there is some v € V; N'V,. We have u € V; because u € X, for some
node p in the subtree T} and u € V}, since u € X, for some ¢ in the subtree T},. Now since 7 is
on the path from p to ¢ in the tree T', by the third property of a tree decomposition, it must
be the case that u € X;, N X, C X;. To see claim (2), pick any edge (u,v) in G;. By the second
property of a tree decomposition, there is some node ¢ in the tree such that both u,v € X,. If
¢ =i, then u,v € X;. If £ is in the subtree T;, but ¢ # 7, then / is in the subtree T} for some
child j of 4, and both u,v € V;. Now suppose £ is not in the subtree 7;. Since u and v are in
G, there must be nodes p and ¢ in the subtree T; such that v € X, and v € X,;. The node i is
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on the path from p to £ in the decomposition tree T', and is also on the path from ¢ to £ in T.
Therefore, by the third property of the tree, u € X, N X, C X; and v € X, N X, C X; so both
u,v € X;.

We can now show how to compute the table entries for ¢ when ¢ is an interior node of the
tree. For any given valid set U C X;, and any child j of ¢, consider an entry W C X for j. We
say that the entry W for the child j is compatible with the entry U for ¢ if U and W agree on
XiNXj (that is, UNX; N X; = WNX;NX;). Then to compute the entry for i for set U C X,
for each child j of ¢, we find the compatible entry of maximum weight; call this independent
set Sj. We claim that U together with the union of the S; over all children j is the maximum
independent set for G; whose intersection with X; is exactly U; call this set S = U U Uj S;.
Note that by claim (1), V; — X; are disjoint over all children j of 4, so S is well defined. By
induction, the S; are maximum independent sets compatible with U, so if S is an independent
set, there cannot be one of larger weight. Also, S is an independent set since by claim (2) any
edge (u,v) in G; must have either both endpoints in X; or both endpoints in V; for some child
j of i. It cannot be the case that both u and v are in the independent set, since then either
both of them were in U and U was not valid, or both of them were in S}, and \S; is not a valid
independent set.

For each node in |V'|, there are 2!*! entries we must compute. We compute these by
checking for compatible entries at the child nodes; each of the 2/7! entries of a child is checked
once by the parent node for each entry of the parent node. Hence the overall time taken is
O2°01V')). O

We now turn to showing that k-outerplanar graphs have low treewidth. It will be useful
for us to consider k-outerplanar graphs with maximum degree at most three; we will show that
these have treewidth at most 3k + 1. We show below that this is in fact general since any
k-outerplanar graph G can be transformed into a k-outerplanar graph G’ of maximum degree
three, such that we can compute a tree decomposition of G from that of G’ and the treewidth
of G is bounded above by the treewidth of G’.

Lemma 10.13: For any k-outerplanar graph G there is a k-outerplanar graph G' of maximum
degree three such that given a tree decomposition of G' we can compute a tree decomposition of
G of no greater trecwidth.

Proof. Given the k-outerplanar graph G with some vertex v of degree d greater than three, we
can create a new graph G’ by splitting v into two vertices v; and v9 joined by an edge, of degree
three and degree d — 1, respectively. This can be done in such a way that the graph remains
k-outerplanar; see Figure 10.11. Given a tree decomposition 7" of G’, we can create a new tree
decomposition T of G by taking any subset X! containing either v or vy and replacing them
with v; that is, set X; = (X} — {v1,v2}) U{v} if X! contains v; or vy, otherwise X; = X]. Then
T is a valid tree decomposition of G given that T” is a valid tree decomposition of G’, and
clearly the treewidth of the decomposition of G is no greater than that of G'.

Given any k-outerplanar graph G of maximum degree greater than three, we can use the
transformation above to create a sequence of new graphs G1, Ga, ..., G, such that G, has maxi-
mum degree at most three, and then from a tree decomposition of G, work backwards to create
a sequence of decompositions of G,_1,...,G1, G such that the treewidth of the decomposition
of G is at most that of G,. O

Given a maximum spanning forest (V) F') of a graph G, consider any edge e € E — F. The
fundamental cycle of e is the cycle closed in the forest by adding e to F. We say that the
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Figure 10.11: Splitting vertex v into v; and v9, and maintaining k-outerplanarity.

load of a vertex v € V is the number of fundamental cycles in which it participates over all
e € E — F. Similarly, the load of a tree edge e € F is the number of fundamental cycles in
which it participates over all e € E — F. The maximum load of a maximum spanning forest
(V, F) for a graph G is the maximum over all v € V and e € F of the loads of v and e.

Lemma 10.14: Every k-outerplanar graph with mazimum degree 3 has a maximum spanning
forest (V, F) of mazimum load 3k.

Proof. We show the result by induction on k. Suppose k = 1, and the graph G is outerplanar.
Let R be the set of edges on the exterior face of the embedding of G. Note that after removing
the edges of R the resulting graph must be acyclic since GG is outerplanar; extend E — R to a
maximum spanning forest F' of G by adding as many edges of R as possible. Then any edge of
E — F is on the exterior face; adding it to F' creates a unique interior face of the embedding
of G. Since any edge of G bounds at most two interior faces of the embedding, and any vertex
bounds a number of interior faces at most its degree, each edge has load at most two and each
vertex has load at most three.

Now suppose we have a k-outerplanar graph for k£ > 1. Again, let R be all the edges on
the exterior face of the embedding of G. If we remove all the edges in R, then since the graph
has degree three, the vertices on the exterior face will have degree at most one, and so the
remaining graph will be at most (k — 1)-outerplanar. By induction, we know that we can find
a maximum spanning forest F” of the graph (V, E — R) such that the maximum load is at most
3(k —1). We extend F’ to a maximum spanning forest F' of G by adding as many edges of R
as possible. As above, adding any edge of R — F' closes a unique interior face of a planar graph
(V, FUR), and thus the additional load imposed on any edge of F' by edges in R — F' is at most
two, and the additional load imposed on any vertex v by edges in R — F' is at most three. See
Figure 10.12 for an illustration. Hence the maximum load of the forest (V, F’) for G is at most
3k. O

Lemma 10.15: If a graph G of mazimum degree 3 has a mazimum spanning forest (V, F') such
that the mazimum load of F' is at most £, then G has treewidth at most £ + 1.

Proof. Given G = (V| E), we start by giving a tree decomposition of the forest F' as shown
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Figure 10.12: Illustration of the proof of Lemma 10.14 for a 2-outerplanar graph. The
edges of the maximum spanning forest F', adding edges from R, are shown in thick lines.
The remaining edges of R are dotted.

previously in the discussion of tree decompositions: that is, we create a node i, for each u € V,
and a node i, for each edge e in the forest F'. We start by setting X;, = {u} and X;, = {u,v}
for e = (u,v), and the decomposition tree T' has edges (iy,%.) whenever u is an endpoint of
an edge e in the forest F. This decomposition obeys the first and third properties of tree
decompositions, but not the second because there may be edges in £ — F' that do not have
both endpoints in the same subset of the decomposition. We now update the tree for each
(u,v) € E — F to fix this problem. Given an edge e = (u,v) € E — F we choose one of the
endpoints arbitrarily, say u. Consider the fundamental cycle of e. For every vertex w # v in
this cycle, we add u to the set X; and for every edge €’ # e in the cycle, we add u to the set
Xi -
We claim this gives a tree decomposition of G. The first property is satisfied, as is the
second for every edge e € F. For any edge e = (u,v) € E — F, consider the fundamental cycle
of e; there must be an edge (w,v) € F in this cycle incident on v. We added u to X, and this
set already included v, so the second property is satisfied for all edges of E. The third property
is also satisfied: it was satisfied in the initial decomposition of the spanning tree F', and then
whenever we added a vertex u to subsets in the decomposition, we added it to all the subsets
along a path in the decomposition tree 1. Thus for nodes 4, j, k in the tree decomposition, if j
is on the path from ¢ to k in the decomposition tree T', X; N X}, C X.

Note that initially every set in the decomposition has size at most two, and we add to each
subset X;, anumber of vertices that is at most the load of w € V', and we add to each subset X,
a number of vertices that is at most the load of e € E. Thus the treewidth of this decomposition
is at most ¢ + 1. O

We can finally summarize the discussion above in the following theorem.

Theorem 10.16: There is a dynamic programming algorithm to find a maximum independent
set in a k-outerplanar graph in O(2°%)n?) time.

Proof. We will use the fact that a planar graph of n vertices has at most m < 3n —6 edges. We
begin by noting that the arguments of Lemmas 10.13, 10.14, and 10.15 can be made algorithmic.
We can apply Lemma 10.13 to create a k-outerplanar graph of maximum degree at most 3; we
create from the original graph of n vertices and m edges a graph with n/ vertices and m’ edges,
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where n’ is at most the sum of the degrees of the original graph. Thus n’ < 2m = O(n),
and m’ < 3n' — 6 = O(n). We then use Lemma 10.14 to compute the appropriate maximum
spanning forest of the degree 3 graph in O(m’) = O(n) time, and apply Lemma 10.15 to create
a tree decomposition in O(m'n’) = O(n?) time of size |[V'| = O(m’ +n') = O(n). Then we
invoke Lemma 10.13 again in O(m/|V’|) = O(n?) time to get the tree decomposition of the
original graph. Note that the tree decomposition of the original graph is still on the vertex set
V' with |V’| = O(n). Using Theorem 10.12 then finds the maximum independent set. O

Many hard combinatorial optimization problems on graphs have algorithms whose running
time is polynomial in the size of the graph and exponential in the treewidth of the graph. We
give some examples in the exercises below.

Exercises

10.1 In the Fuclidean Steiner tree problem, we are given as input a set T of points in the
plane called terminals. We are allowed to choose any other set N of points in the plane;
we call these points nonterminals. For any pair of points i,j € T'U N, the cost of an
edge connecting ¢ and j is the Euclidean distance between the points. The goal is to find
a set N of nonterminals such that the cost of the minimum spanning tree on T"U N is
minimized.

Show that the polynomial-time approximation scheme for the Euclidean TSP can be
adapted to give a polynomial-time approximation scheme for the Euclidean Steiner tree
problem.

10.2 In this problem, we consider a Euclidean variant of the k-median problem from Section
9.2. We are given a set N of points in the plane that are clients and potential locations
for facilities. We must find a subset S C N with |S| < k of facilities to open so as to
minimize ) jEN min;eg ¢;;, where ¢;; is the Euclidean distance between 4, j € N. Using the
techniques of Section 10.1, give a polynomial-time approximation scheme for the Euclidean
k-median problem. (Extended hint: Several aspects of the proof must be adapted. For
the Euclidean TSP, the side length L of the smallest square containing all points of the
instance is a lower bound on the cost of an optimal solution, and then can be used in
modifying the instance to be a nice instance. For the Euclidean k-median problem, L
isn’t necessarily a lower bound on the cost of an optimal solution. What can be used
instead? In the dynamic program, for each square of side length s, it will be useful to
keep track of the number of facilities opened in the square. Also for each portal of the
square we may wish to keep track of two estimates: first, the distance from the portal to
the nearest open facility inside the square (if any) in increments of s/m (where m is the
number of portals on a side); and second, the distance of the portal to the nearest open
facility outside the square, also in increments of s/m. Note that for two adjacent portals,
both estimates should differ by at most one increment of s/m.)

10.3 Recall the vertex cover problem defined in Section 1.2. In the problem we are given an
undirected graph G = (V, F) and a nonnegative weight w; for each vertex ¢ € V. The goal
is to find a minimum-weight subset of vertices C' C V such that for each edge (i,7) € E,
either i € C or j € C.

Show that the polynomial-time approximation scheme for the maximum independent set
problem in planar graphs can be adapted to give a polynomial-time approximation scheme
for the vertex cover problem in planar graphs.
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10.4 Recall from Section 5.12 that we say a graph G = (V, E) is k-colorable if we can assign
each vertex one of k colors such that for any edge (i,j) € F, i and j are assigned different
colors. Suppose that G has a tree decomposition 7" of treewidth ¢, for constant t. Prove
that for any k, one can decide in polynomial time whether the graph is k-colorable.

10.5 In the graphical traveling salesman problem, we are given a graph G = (V| E) with edge
costs ¢, > 0 for all e € E. The goal is to find a minimum-cost multiset of edges F' such
that (V, F') is Eulerian. One can view this as a variant of the traveling salesman problem
in which cities can be visited multiple times, but it is not possible to travel directly from
city i to city j when (i,7) ¢ E. In this problem, we will show that we can compute the
optimal solution to the graphical TSP when the graph G has low branchwidth, a concept
related to treewidth.

Given an undirected graph G = (V, E), a branch decomposition of G is a spanning tree T'
on a new set of nodes V'’ such that the degree of each internal node of T is exactly three,
and T has exactly |E| leaves; each edge e of G maps to a unique leaf of 7. Removing an
edge of the tree T' therefore partitions the edges of G into two parts A and B corresponding
to the leaves in the two connected components of T" after the edge has been removed. The
width of the separation is the number of vertices of G that have edges from both A and
B incident on them. The width of the branch decomposition is the maximum width of
the separation over all edges in the tree T. The branchwidth of G is the smallest width of
a branch decomposition over all branch decompositions of G.

Suppose we are given an instance of the graphical traveling salesman problem, and a
branch decomposition T" of the input graph G = (V, E) of branchwidth ¢. We can root
the tree T' by removing an arbitrary edge (a,b) and replacing it with two edges (a,r) and
(r,b). Show that by using dynamic programming, there is a polynomial-time algorithm
for the graphical TSP when the branchwidth ¢ is a constant.

Chapter Notes

Approximation schemes for Euclidean instances of the traveling salesman problem and some
other geometric problems were discovered independently by Arora [11] and Mitchell [225].
Arora’s scheme also generalizes to Euclidean problems in higher dimensions, as long as the
dimension d is o(loglogn). The algorithm and presentation given in Section 10.1 is due to
Arora [11], following somewhat a survey of Arora [12]. As mentioned in the introduction, this
technique turns out to be widely applicable to optimization problems in the Euclidean plane,
including the Steiner tree problem (discussed in both [11] and [225]), given in Exercise 10.1,
and the k-median problem (due to Arora, Raghavan, and Rao [20]), given in Exercise 10.2.
The approximation scheme of Section 10.2 for the maximum independent set in planar
graphs is due to Baker [30], although we give a different presentation here. The result for
vertex cover in Exercise 10.3 is also from Baker [30]. The concept of the treewidth of a graph
was introduced by Robertson and Seymour [252]; other equivalent concepts were introduced
independently in the literature. For one such concept, partial k-trees, Arnborg and Proskurowski
[10] give a “linear time” dynamic program for finding the maximum independent set. Bodlaender
[52] shows that k-outerplanar graphs have treewidth at most 3k — 1; we adapt (and weaken
slightly) his presentation. The concept of branchwidth in Exercise 10.5 was introduced by
Robertson and Seymour [253]; they showed that a graph of branchwidth ¢ has treewidth at
most 3t/2, and a graph with treewidth k has branchwidth at most k + 1. The graphical
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traveling salesman problem was introduced by Cornuéjols, Fonlupt, and Naddef [84], and the
dynamic programming algorithm of Exercise 10.5 is due to Cook and Seymour [80].
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CHAPTER 11

Further uses of deterministic
rounding of linear programs

In this chapter, we return to the technique of deterministically rounding linear programs. We
begin with a generalization of the problem of scheduling jobs on identical machines which we
introduced in Section 2.3. In this general case, not only does a job j take different amounts of
processing time depending on which machine ¢ it is assigned to, but also a job j incurs a cost
cij when assigned to machine 4. If there is any feasible schedule of cost C' in which the jobs
are completed by time T', we show that by rounding a linear programming relaxation we can
in polynomial time produce a schedule of cost at most C' in which all jobs finish by time 27T

For the remaining applications, we use the fact that there is always a basic optimal solution
to a linear program, and that algorithms for solving linear programs return such a solution.
Suppose we have a linear program with n variables x; in which there is a constraint x; > 0 for
each variable z;. Then the number of constraints m > n, since there is at least one constraint
per variable. Let the a; be a vector and b; be a scalar giving the ith constraint, a;fpac >b;. A
feasible solution Z is a basic feasible solution if there are n linearly independent vectors a; such
that the corresponding constraints are met with equality; that is, a;fpi = b;. Observe that this
linear system uniquely defines Z. Basic feasible solutions are equivalent to extreme points of
the geometric region of feasible solutions defined by the linear program; recall that an extreme
point is a feasible solution that cannot be expressed as the convex combination of two other
feasible solutions (see, for example, Exercise 1.5). There is always an optimal solution to the
linear program that is a basic feasible solution, and we call such a solution a basic optimal
solution.

The structure of basic solutions is very useful in designing approximation algorithms. In
Section 11.2; we consider a version of the minimum-degree spanning tree problem introduced in
Section 2.6: here we have costs on the edges and bounds b, on the degree of each vertex v € V.
We show that if there exists a spanning tree of cost at most C' such that the degree of each
vertex is at most b,, we can in polynomial time find a spanning tree of cost at most C' in which
each vertex v has degree at most b, + 1. The algorithm uses the properties of basic optimal
solutions to generate a sequence of linear programming relaxations of the problem, where each
LP in the sequence is defined on a smaller graph and has fewer constraints than the previous
LPs. The final LP in the sequence returns a spanning tree with the desired properties.

In Section 11.3, we consider a generalization of the generalized Steiner tree problem intro-
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duced in Section 7.4 in which we must find a minimum-cost subgraph with several edge-disjoint
paths between certain pairs of vertices. We show a remarkable theorem that any basic feasible
solution to the linear programming relaxation of this problem must have some variable of value
at least 1/2. We round this variable up to 1, then iterate on the remaining problem; this tech-
nique is called iterated rounding and it gives a 2-approximation algorithm for the problem. This
theorem can be viewed as a weakening of a statement we proved about a linear programming
relaxation for the vertex cover problem in Exercise 1.5, in which all variables in a basic feasible
solution have value either 0, 1, or 1/2. Here we only show that some variable will have value
at least 1/2, but this is sufficient to give a good approximation algorithm.

11.1 The generalized assignment problem

In the generalized assignment problem, we are given a collection of n jobs to be assigned to m

machines. Each job j = 1,...,n is to be assigned to exactly one machine; if it is assigned to
machine 4, then it requires p;; time units of processing, and incurs a cost of ¢;;. Furthermore,
we are given a time bound T that limits the total processing of each machine ¢ = 1,...,m. The
aim is to find a feasible assignment of minimum total cost.
If we write this problem as an integer program, and introduce a 0-1 variable x;;, i = 1,...,m,
7 =1,...,n, to indicate whether job j is assigned to machine ¢, then we obtain
m n
minimize Z Z CijTij (11.1)
i=1 j=1
m
subject to inj =1, j=1,...,n, (11.2)
i=1
n
> pijai < T, i=1,...,m, (11.3)
j=1
zi; € {0,1}, i=1,....m, j=1,...,n. (11.4)

It is not hard to see that just deciding whether there is a feasible solution to the integer
program is strongly NP-hard; for instance, checking whether there is a feasible solution to
the integer program captures the problem of minimizing the makespan on identical parallel
machines (the case in which p;; = pj, ¢ = 1,...,m for each job j = 1,...,n). Nonetheless,
we shall see that a rather strong approximation result is possible: for a given input, we either
prove that no feasible solution exists, or else output a solution of total cost no greater than the
optimum, but violate feasibility by allowing each machine to process jobs for a total time no
greater than 27

We shall give an LP rounding algorithm to find the near-optimal schedule. However, the
linear programming relaxation of the integer program (11.1)—(11.4) in which the constraints
(11.4) are replaced by

x5 > 0, it=1,....m, j=1,...,n, (11.5)

does not provide a sufficiently strong bound on which to base the algorithm. Instead, we will
strengthen this linear program in a seemingly trivial way; we add the constraints that

Tij = 0 if Dij > T, (11.6)
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which clearly hold for any feasible integer solution.

In carrying out the rounding of the fractional solution x, we shall rely heavily on a beautiful
well-known result from matching theory (or more generally, from the theory of network flows).
Suppose we are given a bipartite graph with two disjoint sets of nodes V and W, and an edge
set F' where each edge has one endpoint in each of V' and W; let B = (V, W, F') denote such
a graph. We say that M C F is a complete matching for V' in this graph if (a) for each node
v € V there is exactly one edge of M incident to v, and (b) for each node w € W, there is at
most one edge of M incident to w. (We shall assume that |V| < |W], since otherwise, no such
matching is possible.)

Deciding whether a given bipartite graph B = (V, W, F') has a complete matching is equiv-
alent to deciding whether the following integer program has a feasible solution, where the 0-1
variable y,,, indicates that edge (v, w) is in the matching:

> yw <1, Yw € W, (11.7)
vi(v,w)EF
> =1, Yo eV, (11.8)
(v,w)eF
Yow € {0, 1}, V(v,w) € F. (11.9)

If we relax the binary constraints (11.9) to be non-negativity constraints
Yow >0,  V(v,w) € F, (11.10)

then we get a linear program; a feasible solution is called a fractional complete matching. In
Exercise 4.6 we showed that this linear program has the special property that each extreme
point is integer. The exercise shows the following theorem.

Theorem 11.1 (Exercise 4.6): For any bipartite graph B = (V,W, F), each extreme point of
the feasible region of (11.7), (11.8), and (11.10) has integer coordinates. Furthermore, given
edge costs cyy, (v,w) € F, and a feasible fractional solution Yy, (v,w) € F, we can find, in
polynomial time, a feasible integer solution {y,, such that

Z Cowlow < Z CowYvw-

(v,w)eF (v,w)eF

We next show how this result can be applied to obtain the main result of this section, which
is as follows.

Theorem 11.2: If the linear program (11.1)-(11.8), (11.5), and (11.6) has a feasible (frac-
tional) solution x of total cost C, then we can round it to an (integer) assignment of total cost
at most C in which each machine is assigned total processing at most 2T

Proof. We will prove this theorem by providing an algorithm that converts a feasible LP solution
x to the required (integer) assignment. This fractional solution = assigns, in total, Z?:l Tij
jobs to machine i; the integer assignment that we construct will be similar to this, and so we
allocate k; = [Z?Zl xi;| “slots” for machine i to be assigned jobs. Furthermore, the algorithm
will assign job j to machine ¢ only if 2;; > 0.

We can model this restriction by constructing a bipartite graph B = (J, S, E), where one
side of the bipartite graph consists of job nodes J = {1,...,n}, and the other side consists of
machine slots

S={(i,s):i=1,...,m, s=1,... ki}.
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Slots
Jobs /
Y1,6,1) = 3/4
Y2,6i,1) = 1/4
Yo(i2) = 1/4
(7’7 2) y3,(i,2) = 1/2
Tz =1/2 3 Ya,i,2) = 1/4
Ya,(i,3) = 1/12
Tigp = 1/3 4 (@', 3)

Figure 11.1: An example of how the fractional matching for B is created given z;;.

(Note that |S| > |J|.) One natural idea is to simply include an edge ((4,s),j) in E whenever
x;; > 0; although this is a good start, we will need to refine this later.

We shall focus on assignments of the jobs that correspond to complete matchings in this
graph B. Since an edge e that connects machine slot node (7, s) to job node j has the inter-
pretation that job j is assigned to machine 4, it is natural to set the cost of edge e equal to ¢;;.
Ideally, the graph B would have the following two properties:

1. B contains a fractional complete matching for J of cost C;

2. any (integer) complete matching for J in B corresponds to an assignment in which each
machine is required to complete at most 27" time units of processing.

If we succeed in constructing such a bipartite graph B, then we can compute the desired
assignment by finding the minimum-cost (integer) complete matching in B (for example, by
the polynomial-time algorithm of Theorem 11.1). This matching must have cost at most C
(by property (1) and Theorem 11.1), and assign each machine total processing at most 27" (by
property (2)).

Let us understand in detail why our graph B has the first property. Focus on any machine
1. We can convert our LP solution z into a fractional complete matching y in B. Consider the
slot nodes (7,s), s =1,...,k; as bins of capacity 1, and the values x;;, j = 1,...,n as pieces of
the n jobs to be packed in these bins. We can place the pieces in the bin corresponding to slot
(i,1) until the next piece j would cause the bin to be packed with pieces of total size greater
than 1. Suppose this piece j is of size z;; and there is only capacity z remaining in the bin
(where z < z;;). Then we pack z of this job piece j (of size x;;) into slot (i,1), and pack the
remaining x;; — z in the next bin (or equivalently, slot (é,2).) Whenever we pack a positive
fraction of job j in slot (7, s), we set y; (; 5) equal to that fraction; all other components of y are
set to 0. It is easy to see that repeating this for each machine ¢ yields a fractional complete
matching in B of total cost Z” cijxij. See Figure 11.1 for an illustration.

However, as stated thus far, we do not have the second property. We will need to refine
the construction of B = (J, S, E). First, suppose that we include an edge (4, (i,s)) € E only
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if the corresponding value y; ; s) > 0. Clearly, this does not affect the existence of a fractional
complete matching y. Furthermore, let us refine our “bin-packing” procedure that constructs the
solution y. Suppose that in packing the n pieces x;j, j = 1,...,n, into the k; slots (or bins), we
first sort the jobs so that their corresponding processing requirements p;; are in nonincreasing
order. For ease of notation, suppose without loss of generality that

Pit 2 Pi2 2 2 Pin- (11.11)

We shall consider the graph B formed by including an edge (4, (i,s)) in E exactly when this
bin-packing procedure places a positive fraction from x;; into slot (7,s) (and hence makes the
corresponding component of y positive).

Consider the slot (i, s), and focus on those jobs j for which some positive fraction is packed
in the bin corresponding to this slot; let maz(i, s) denote the maximum processing requirement
pi; among these jobs. The total load assigned to machine 7 by any complete matching in B is
at most

ki
Z maz(i, s).
s=1

Since (11.6) holds, we know that maz(i,1) < T. We shall show that

k;
Z max(i,s) < T,
s=2

and hence the total load on machine ¢ for any complete matching in B is at most 27". Observe
that for each s = 1,..., k;—1, we have that Zj Yj(i,s) = 1, since we only start the next bin when
we have completely filled the previous one. Thus, we can think of > i Yj(i.s)Pij 8s a weighted
average of the relevant p;; values; that is, those jobs for which a positive fraction is assigned
to slot (i,s). By our ordering assumption (11.11), for each s = 1,...,k; — 1, we have that
mazx(i,s +1) < Zj Y (i,s)Pij» and hence,

ki—1 ki—1 ki
Z maz(i,s +1) < Z Yj (i,5)Pij = Zzyj,(i,s)pij-
s=1 s=1 j s=1 j
However, since x;; = Y ¥ s), by interchanging the order of the summations in the final

expression, we see that 3. y; ; \pij = D_; Pij®ij, and hence,

ki—1
Z Z max(i,s +1) < Zpijxij.
s=1 7

J

Since z is a feasible solution for our original LP, it satisfies (11.3), and hence,

ki—1
Z max(i,s +1) <T,
s=1

which completes the proof of the theorem. O

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



286 Further uses of deterministic rounding of linear programs

11.2 Minimum-cost bounded-degree spanning trees

In this section, we consider the weighted case of a problem we considered in Sections 2.6 and
9.3. In those sections, we considered the problem of finding a spanning tree of a graph such
that we minimized the maximum degree of the tree. Here, we consider the problem of finding
a spanning tree of minimum cost such that the degree of node v is no more than some specified
bound. We refer to this problem as the minimum-cost bounded-degree spanning tree problem.
More formally, we are given as input an undirected graph G = (V, E), costs ¢e > 0 for all e € F,
a set W C V, and integer bounds b, > 1 for all v € W. Let OPT be the cost of the minimum
spanning tree such that the degree of each node v € W is no more than b, (if such a tree exists).
In the first part of this section, we give an algorithm that finds a spanning tree of cost at most
OPT such that each node v € W has degree at most b, + 2. In the latter part of this section,
we show that we can find a spanning tree of cost at most OPT such that each node v € W has
degree at most b, + 1. As we argued at the end of Section 2.6 for unweighted spanning trees,
no better result is possible unless P = NP.

We begin by giving an integer programming formulation of the problem for a graph G =
(V,E). Given a vertex set S C V, let E(S) be the subset of edges in E that have both endpoints
in S, and let §(S) be the subset of edges that have exactly one endpoint in S. We will denote
d({v}) by d(v). We let z. € {0,1} indicate whether an edge e is in the spanning tree or not.
Every spanning tree has exactly |V| — 1 edges, so we have

er =|V|-1.
eckl

Furthermore, since for any set S C V with |S| > 2, a spanning tree does not have a cycle in

E(S), we have
> oz <8 - 1
ecE(S)
Finally, we want the spanning tree to respect the degree bounds for all v € W so that we have
Z Te < by.
e€d(v)

Relaxing the integrality constraints to z. > 0 gives us the following linear programming
relaxation of the problem:

minimize Y  come (11.12)
eckE

subject to Y e = [V] -1, (11.13)
eclE

Yo oz <IS|-1, VSTV S >2, (11.14)
ecE(S)

> @ < by, Yo e W, (11.15)
e€b(v)

ze >0, Ve € E. (11.16)

We can use the ellipsoid method introduced in Section 4.3 to solve the linear program by
giving a polynomial-time separation oracle. It is easy to check that the constraints (11.13),
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(11.15), and (11.16) are satisfied. To check that the constraints (11.14) are satisfied, we need to
set up a sequence of maximum flow problems. We first explain the general max-flow construc-
tion, and then we modify it to check the constraints (11.14). We create a new graph G’ where
we add source and sink vertices s and ¢, edges (s, v) from the source to every vertex v € V', and
edges (v,t) from every vertex v € V. The capacity of every edge e from G is %xe, the capacity
of every edge (s,v) is % Zeeé(v) xe, and the capacity of every edge (v,t) is 1. Then consider the
capacity of any s-t cut SU{s} for S C V. It contains edges (v,t) for allv € S, alle € §(S)NE
and (s,v) for all v ¢ S. So its total capacity is

’S|+*Z$e+ sze |S|+Z:ce+ Z Te,

ecd(S ngSeEé(v) e€d(S) ecE(V-5)

since adding up %er for each e € 0(v) where v ¢ S gives x, for all edges e with both endpoints
not in S plus %xe for all edges e with exactly one endpoint not in S. Using the fact that
Y ecr Te = |V| =1, this is equal to

S|+ VI =1= > ze=[V[+(IS|-1) - er

ecE(S) ecE(S

Thus the capacity of this cut is at least [V] if and only if 3~ ¢ pgy e < [S| — 1. We want to
make sure |S| > 2, so for each pair z,y € V, we construct the max-flow instance as above, but
alter the capacity of the edges (s,z) and (s,y) to be infinite. This ensures that any minimum
s-t cut SU{s} has z,y € S. Then by the reasoning above, the value of the maximum flow for
this instance will be at least |V| if and only if constraints (11.14) are satisfied for all S D {z,y}.
If the flow is at least |V/| for all pairs x,y € V, then all constraints (11.14) are satisfied. If the
flow value is less than |V|, then the corresponding minimum s-t cut S'U {s} will give a violated
constraint.

We assume from here on that there is a feasible solution to this linear program. If there is
no feasible solution, then obviously there is no tree in the graph G that has the given degree
bounds.

As a warmup to the algorithm and its approach, we first show that if we have no degree
bounds (that is, W = (}), then we can find a spanning tree of cost no more than the value of
the linear program (11.12); this gives us a minimum spanning tree. Given an LP solution z,
define E(z) to be the support of z; that is, F(z) = {e € E : . > 0}. The algorithm for finding
a minimum spanning tree depends on the following lemma. We defer the proof of the lemma
for the moment.

Lemma 11.3: For any basic feasible solution x to the linear program (11.12) with W = (), there
is some v € V' such that there is at most one edge of E(x) incident on v.

Our algorithm then works as follows. We maintain a set of edges F' for our solution, which
is initially empty. While there is more than one vertex in the current graph, we solve the linear
program (11.12) for the current graph G = (V| E), and obtain a basic optimal solution z. We
remove from the edge set E all edges e for which z. = 0. By Lemma 11.3, there exists some
vertex v € V such that there is at most one edge of E(x) incident on it; suppose the edge
is (u,v). Then we add (u,v) to our solution set F', remove v and (u,v) from the graph, and
repeat. Intuitively, each iteration finds a leaf v of the spanning tree, then recursively finds the
rest of it. The algorithm is summarized in Algorithm 11.1.

Theorem 11.4: Algorithm 11.1 yields a spanning tree of cost no more than the value of the
linear program (11.12).
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F+0

while |V| > 1 do
Solve LP (11.12) on (V, E), get basic optimal solution x
Find v € V such that there is one edge (u,v) in E(z) incident on v
F «+ FU{(u,v)}

V<V —{v}
E+ FE— {(U,’U)}
return F

Algorithm 11.1: Deterministic rounding algorithm for finding a minimum-cost spanning tree.

Proof. We begin by showing that if the edge e* is chosen to add to F' in some iteration of the

algorithm, then z.« = 1 in that iteration. To prove this, we first claim that Zeeé(w) e > 1 for

any vertex w € V. Then for the edge e* = (u,v) chosen by the algorithm, we know that there is

one edge in E(z) incident on v, and therefore z¢- > 1. To see that ) ¢,y Ze = 1, note that for
S =V —{v}, the LP constraint (11.14) enforces that }_.c pg) ze < [S|—1 = ([V[-1)-1 = [V[—
2. But > cpae =|V| =1 by constraint (11.13) and also }_.cs5(,) Te = Docep Te = Decp(s) Te-
Therefore »_ 5,y ze = (V[ = 1) = (V] —2) = 1. Now consider the constraint (11.14) for
S = {u,v}. This enforces z.~ < 1, so it must be the case that z.~ = 1.

We now prove by induction on the size of the graph that the algorithm produces a spanning
tree of cost no more than the value of the linear program. In the base case, we have a graph
with two vertices, and the algorithm returns a single edge e. By the above, we have z. =1, so
that the value of the LP is at least c.z. = c¢, and the statement holds. Now suppose that the
statement holds for every graph with at most k£ > 2 vertices, and our graph has k + 1 vertices.

We solve the LP, get a solution x, and find a vertex v such that there is only one edge ¢* = (u, v)
in E(z) incident on v. Let V' =V — {v}, and E' = E(z) — {e*}. By the inductive hypothesis,
we will find a spanning tree F/ on (V', E’) of cost at most the value of the LP on (V'/, E'); let 2
be an optimal solution to this LP. Obviously F’ U {e*} is a spanning tree of (V, E), so that the
algorithm returns a spanning tree. To show that its cost is at most ) . c.ze, we shall show

that z. for e € E’ is a feasible solution to the LP on (V’, E’). Tt then follows that the cost of

the spanning tree returned is

!
§ Ce + Cex < E Cely + CexTex < E Cele + CexTex = E CelTe,

ecF’ eckE’ ecE’ eeE

as desired.

We now must show that z. for e € E’ is a feasible solution to the LP on (V', E’). Since the LP
constraints (11.14) for (V’, E) are a subset of the constraints for (V, E), x is feasible for them.
Thus we only need to show that the first constraint holds, namely )" . p 2. = [V/| =1 = [V|=2.

This follows since the only edges in E — E’ are €*, which has z.« = 1, and edges such that

Te=0. Thus Y} cp e =Y cpTe—Ter = (|[V|=1)—1=|[V'| =1, and =, for e € E’ is feasible
for the LP on (V'  E').

Now we return to the minimum-cost bounded-degree spanning tree problem. Recall that we
have a subset of vertices W such that we wish to find a tree with the degree of v at most b, for
all v € W. We cannot hope for a result as strong as that of Lemma 11.3 for this problem, since
we would be able to translate this into an algorithm to find an optimal tree. Instead, we will
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F <« 0
while |V| > 1 do
Solve LP (11.12) on (V, E) and W, get basic optimal solution x
if 3 a v € V such that there is one edge (u,v) in E(x) incident on v then
F +— FU{(u,v)}
V<V —{v}
E + FE—{(u,v)}
if w € W then
by b, —1
else
Ja v e W such that there are at most three edges in F(z) incident on v
W+ W —{v}
return F

Algorithm 11.2: Deterministic rounding algorithm for finding a minimum-cost bounded-degree spanning tree.

be able to show the following. This will lead to a result in which degree bounds are exceeded
by at most two.

Lemma 11.5: For any basic feasible solution x to the linear program (11.12), either there is
some v € V such that there is at most one edge of E(x) incident on v, or there is some v € W
such that there are at most three edges of E(x) incident on v.

Note that Lemma 11.3 is a special case of this lemma; the second possibility cannot occur
when W = (). We again defer the proof of this lemma, and instead show how it leads to the
desired algorithm. As before, we maintain a solution set F', which is initially empty. We solve
the linear program for the current graph (V, E) and current bound set W, and obtain a basic
optimal solution x. We remove all edges e with x. = 0 from the edge set. If, as before, there
is some v € V such that there is at most one edge (u,v) in E(x) incident on v, we add (u,v)
to F, remove v from V, and remove (u,v) from E. If u € W, we also decrease b, by one. We
then iterate. If instead, there is some v € W such that there are at most three edges of E(x)
incident on v, we remove v from W and repeat. The algorithm is summarized in Algorithm
11.2.

We can now prove the following.

Theorem 11.6: Algorithm 11.2 produces a spanning tree F such that the degree of v in F is
at most by, +2 for v € W, and such that the cost of F is at most the value of the linear program
(11.12).

Proof. In each step of the algorithm, we either add a spanning tree edge to F', or we remove a
vertex from W. Thus the algorithm will terminate in at most (n — 1) +n = 2n — 1 iterations.

Observe that the proof that the algorithm returns a spanning tree whose cost is at most
the value of the linear program is almost identical to that of Theorem 11.4. In that proof
we considered the graph (V’, E’) resulting from adding an edge (u,v) to our solution F, then
removing v and (u,v) from the graph. We showed that the LP solution z for the graph (V, E)
is feasible for the new graph (V’/, E') when restricted to the edges in E’. Here we also need to
consider the set of degree bounds W, and show that z is feasible for the new graph (V’/, E’) and
the new degree bounds after b, has been decreased by one. If x was feasible for the constraints
(11.15) before, then }_ 5.,y Ze < by. Thus after edge e = (u,v) with z. = 1 is removed from
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O

Figure 11.2: Top: two intersecting sets. Bottom: A laminar collection of sets.

the graph, the solution x restricted to the remaining edges in E’ will be feasible for the same
constraint on the new graph (V’, E’) with the degree bound b, — 1.

Now consider any vertex v initially in W. We show by induction on the algorithm that
the degree of v in the solution F' is at most b, + 2. In each iteration, one of three things can
happen. First, we can choose an edge incident on v and decrease b, by 1, in which case the
statement follows by induction. Second, we can choose an edge incident on v and remove v
from the graph; in this case, we must have had b, > 1 in order to have a feasible solution to
the LP, so the statement holds. Third, we can remove v from W. In this case, we must have
by, > 1 in order for there to be any edges in F(z) incident on v; yet there are at most 3 edges
in E(x) incident on v. Thus, in all future iterations we can add at most three edges incident
on v, since all edges not in E(x) are removed from the graph for all future iterations. Thus, v
will have degree at most b, + 2. O

We can now turn to the proof of Lemma 11.5. In order to do this, we will need to introduce
some definitions and notation. From here on, for the given solution z, we assume that all edges
e such that 2. = 0 have been removed from the edge set; that is, E = E(z).

Definition 11.7: For = € RI®| and a subset of edges F, we define z(F) = Y ecr Te-

Definition 11.8: For a solution x to LP (11.12), we say that a constraint (11.14) corresponding
aset S CV,|S| > 2, is tight if x(E(S)) = |S| — 1. A constraint (11.15) corresponding to a
vertex v € W is tight if x(6(v)) = by.

We may also say that the set S C V is tight if x(E(S)) = |S| — 1 or that the vertex v is
tight if 2(6(v)) = by.

Definition 11.9: We say two sets A and B are intersecting if ANB, A— B, and B — A are
all nonempty.

Definition 11.10: We say a collection of sets S is laminar if no pair of sets A,B € S are
intersecting.

See Figure 11.2 for an example of intersecting sets and laminar set collections.
Definition 11.11: For a subset of edges F' C E, the characteristic vector of F is xp € {0, 1}‘E|,
where xp(e) =1 if e € F and 0 otherwise.

We are now able to state the following theorem, which we will need to prove Lemma 11.5.
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Theorem 11.12: For any basic feasible solution x to the linear program (11.12), there is a set
Z C W and a collection L of subsets of vertices with the following properties:

1. Forall S € L, |S| > 2 and S is tight, and for all v € Z, v is tight.

2. The vectors xp(s) for S € L and x5, for v € Z are linearly independent.
3. |L|+|Z] = |E|.

4. The collection L is laminar.

We will defer the proof of this theorem for a moment, and will next show how Lemma 11.5
can be derived from the theorem. First, however, we observe that for any basic feasible solution
x to the LP, there is a collection of sets S and set Y C W such that the first three properties
hold for § and Y’; the key statement of the theorem is the last property which states that for any
basic feasible solution, there is a laminar collection of such sets. A basic solution is formed by
taking |E/| linearly independent constraints from the linear program, setting them at equality,
and solving the resulting linear system. This is precisely what the first two properties state.
The third property states that the number of constraints set to equality is equal to the number
of nonzero variables (recall that we have assumed that £ = E(x)).

We first need the following short lemma.

Lemma 11.13: Let £ be a laminar collection of subsets of V', where each S € L has |S| > 2.
Then |L| <|V|—1.

Proof. We can prove this by induction on the size of |V|. For the base case |V| = 2, obviously
L can contain only one set of cardinality 2. For |V| > 2, pick a minimum cardinality set R in
L. Let V' be V with all but one vertex of R removed, and let £’ be the sets in £ restricted to
the elements of V', with the set R removed. Note that £’ fulfills the conditions of the lemma; it
is still laminar, and any set must contain at least two elements. So |£'| < |V’| —1 by induction,
and since |£'| = |£] — 1 and |V’| < |V]| — 1, the lemma statement follows. O

Now we recall the statement of Lemma 11.5, and give its proof.

Lemma 11.5: For any basic feasible solution x to the linear program (11.12), either there is
some v € V' such that there is at most one edge of E(x) incident on v, or there is some v € W
such that there are at most three edges of E(x) incident on v.

Proof. We prove the statement by contradiction. If the statement is not true, then for every
vertex v € V, there are at least two edges of E(x) incident on it, and for every v € W, there
are at least four edges of E(z) incident on it. Then it must be the case that

1
|E(x)| 2 5 2(IV] = W) + 4]W]) = [V] + [W].
However, by Theorem 11.12, we know that |E(z)| = |£|+|Z| < |£]|+|W]| for laminar £. Since
each set S € L has cardinality at least two, by Lemma 11.13, we get that |E(x)| < |[V|—1+|W|,

which is a contradiction. O

Finally, we can turn to the proof of Theorem 11.12. The basic idea of the proof is simple, and
has proven enormously useful in a number of different contexts. We start out with a collection
of sets S that may not be laminar, and as long as we have two intersecting sets S,T € S, we
show that we can “uncross” them and replace them with two non-intersecting sets. A first step
in this proof is to show the following.
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Lemma 11.14: If S and T are tight sets such that S and T are intersecting, then SUT and
SNT are also tight sets. Furthermore,

XE(S) T XE(T) = XE(SUT) T XE(SNT)-
Proof. We begin by showing that x(FE(S)) is supermodular; namely,
2(E(S))+z(E(T)) <z(E(SNT))+z(E(SUT)).

This follows by a simple counting argument: any edge in E(S) or in E(T) is in E(SUT), while
any edge in both E(S) and E(T') appear both in E(SNT) and E(SUT). The right-hand side
may be greater than the left-hand side since edges with one endpoint in S — T and the other in
T — S appear in E(SUT) but not in E(S) or E(T).

Since S and T are intersecting, S NT # (). Thus by the feasibility of z

(S| =)+ (T =1)=(1SNT| = 1)+ (SUT| = 1) > 2(E(SNT)) + 2(E(SUT)).
By supermodularity,
2(E(SNT)) +2(E(SUT)) > 2(E(S)) + x(E(T)).
Finally, since S and T are tight sets,
z(E(5)) +z(E(T)) = (15| = 1) + (|7 = 1).

Thus all of these inequalities must be met with equality, and SN7T and S UT are tight sets.
Furthermore, as z(E(SNT)) + z(E(SUT)) = z(E(S)) + (E(T)), it must be the case that
XE(S) + XE(T) = XE(SuT) T XE(SnT), since we have assumed that the only edges in E have
ze > 0. OJ

Let T be the collection of all tight sets for the LP solution z; that is, 7 = {S C V :
z(E(S)) = |S| = 1,]S| > 2}. Let span(T) be the span of the set of vectors {xpg) : S € T}.
We now show that we can find a laminar collection of sets with span at least that of 7.

Lemma 11.15: There exists a laminar collection of sets L such that span(L) 2 span(T ), where
each S € L is tight and has |S| > 2, and the vectors XE(s) for S € L are linearly independent.

Proof. Let £ be a laminar collection of sets such that each S € £ is tight and has |S| > 2,
and the vectors xp(g) for S € L are linearly independent. We assume that £ is the maximal
such collection; that is, we cannot add any additional sets to £ such that all of these properties
continue to hold. We will give a proof by contradiction that span(L) O span(T); assume
otherwise. Then there must be a tight set S with [S| > 2 such that xp(s) € span(T) and
XE(s) & span(L); we choose an S such that there is no other such set intersecting fewer sets
in £. Note that such an S must be intersecting with at least one set in £, otherwise £ is not
maximal.

Now pick a set T € £ such that S and T' intersect. By Lemma 11.14, xg(s) + XE(T) =
XE(snT) + XE(sur) and both SNT and SUT are tight. We will argue that it cannot be the
case that both xgsnr) € span(L) and xpgsur) € span(L). We know that T" € L so that
XE(r) € span(L), and we know that xg(s) = Xg(snr) + XE(sur) — XE(r)- Thus if both X gsur)
and X g(snr) are in span(L), this implies xp(g) € span(L), which contradicts our assumption
that xp(s) ¢ span(L). Hence at least one of x g(snr) and X g(sur) is not in span(L).
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Figure 11.3: Proof of Lemma 11.15. The only sets from the laminar collection £, with
T € L, that can intersect S N1 must also intersect S.

Without loss of generality, suppose that xp(snr)y ¢ span(L); note that this implies that
XE(snT) 7 0, so that [SNT| > 2. We claim that S N T must intersect fewer sets in £ than
S, and with this claim, we contradict the choice of S, since S N T is tight, |[SNT| > 2, and
XE(snT) & span(L). To prove the claim, we observe that any set in the laminar collection £
intersecting S NT must also intersect S; see Figure 11.3. However, S intersects T', while SNT
does not intersect T', so S N'T must intersect fewer sets in £ than S. O

We can now give the proof of Theorem 11.12, which we restate here.

Theorem 11.12: For any basic feasible solution x to the linear program (11.12), there is a set
Z CW and a collection L of subsets of vertices with the following properties:

1. Forall S € L, |S| > 2 and S is tight, and for all v € Z, v is tight.

2. The vectors xp(s) for S € L and x5, for v € Z are linearly independent.
3. |L|+|Z] = |E|.

4. The collection L is laminar.

Proof. As we said previously, we know that there exists a collection S and set Y C W that
have the first three properties of the theorem. Let span(S,Y’) be the span of the set of vectors
{xE@s) S € S} U{Xs0) : v € Y}. Since there are |E| linearly independent vectors in this
set and the vectors have |E| coordinates, clearly span(S,Y) = RI”l. By Lemma 11.15, if
T is the set of all tight sets, then there exists a laminar collection of tight sets £ such that
span(L) D span(T). Since S C T, then RIEl = span(S,Y) C span(T,Y) C span(L,Y) C RIEI
so that span(S,Y) = span(L,Y) = RIZl. From the proof of Lemma 11.15 the vectors XE(s) for
all S € L are linearly independent. We now let Z =Y, and as long as there exists some v € Z
such that x;,) € span(L,Z — v), we remove v from Z. Note that span(L, Z) never decreases,
and so the span is always R/Zl. When this process terminates, the vectors E(s) for S € L and

X5(v) for v € Z must be linearly independent, and furthermore since their span is R we must
have |E| = |L| + |Z]. O

To summarize, we have been able to show that we can find a spanning tree of cost at most
OPT such that each node v € W has degree at most b, + 2. To do this, we used the properties
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while W # () do
Solve LP (11.12) on (V, E), W, get basic optimal solution x
E + E(x)
Select v € W such that there are at most b, + 1 edges in E incident on v
W« W —{v}
Compute minimum-cost spanning tree F on (V, E)
return F

Algorithm 11.3: Deterministic rounding algorithm for finding a minimum-cost bounded-degree spanning tree.

of a basic feasible solution; we showed that the basic optimal solution has structure in terms
of a laminar collection of tight sets. This structure allows us to prove Lemma 11.5, which,
informally speaking, states that either we can find a leaf of the tree or some node v € W that
will have degree at most b, + 2. The lemma leads naturally to an algorithm for finding the
desired tree.

We now give an algorithm that finds a spanning tree of cost at most OPT such that each
node v € W has degree at most b, + 1. As with the previous algorithm, we find a basic optimal
solution of a linear programming relaxation of the problem. The key to the algorithm is proving
a stronger version of Lemma 11.5: we show that if W # (), we can find some v € W such that
there are at most b, + 1 edges of F(z) incident on v. Thus in our new algorithm, we will
show that we will be able to remove degree bounds from the linear programming relaxation
until none are left, in such a way that the cost of the solution to the corresponding relaxation
does not increase. When all the degree bounds are removed, we will have a solution to the
linear programming relaxation of the minimum spanning tree problem, and we previously saw
in Theorem 11.4 that we can find a minimum spanning tree of cost at most the value of the
linear programming relaxation.

As before, we define E(z) = {e € E : . > 0}. Our algorithm will depend on the following
lemma, whose proof we defer for a moment.

Lemma 11.16: For any basic feasible solution x to the linear program (11.12) in which W # (),
there is some v € W such that there are at most b, + 1 edges incident on v in E(x).

Given the lemma, the algorithm is relatively straightforward. We solve the LP relaxation
to obtain a basic optimal solution. All edges e € E such that x. = 0 are removed from F. If
W # (), the lemma states that there must exist some v € W such that there are at most b, + 1
edges in F(z). We remove v from W, since we know that when we obtain the minimum-cost
spanning tree F', there can be at most b, + 1 edges of F incident on v. If W = (), then by
Theorem 11.4, we can compute a minimum spanning tree of cost at most the value of the linear
programming relaxation. The algorithm is summarized in Algorithm 11.3. The following proof
of the correctness of the algorithm is then not difficult.

Theorem 11.17: Algorithm 11.3 produces a spanning tree F' such that the degree of v in F is
at most by, +1 forv € W, and such that the cost of F is at most the value of the linear program
(11.12).

Proof. As in the proofs of Theorems 11.4 and 11.6, we show by induction that in each iteration,
the LP solution z. on (V,FE) and W is feasible for the input (V,E’) and W’ for the next
iteration. It is easy to see this since any time we remove an edge e from E, x, = 0, which does
not affect the feasibility of the solution. Also, we only remove vertices from W, imposing fewer
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constraints. Thus the cost of the optimal LP solution on the input (V, E’) and W’ is no greater
than that on the input (V, E) and W.

Since we remove a vertex v from W in each iteration, eventually W = (), and the algorithm
computes a minimum spanning tree £’ on the final set of edges. By Theorem 11.4, this cost is
at most the cost of the final linear programming solution. Since the value of the linear program
never increases as we modify F and W, the cost of the minimum spanning tree is at most the
value of initial linear program (11.12).

Furthermore, we removed v from W only if there were at most b, + 1 edges remaining in £
incident on v. Thus the computed spanning tree can have at most degree b, + 1 for each vertex
v in the initial set W. O

We now turn to the proof of Lemma 11.16. As before, for the basic feasible solution x, we
use the existence of a laminar collection £ and a set of vertices Z as given in Theorem 11.12.
We also need the following lemma.

Lemma 11.18: For any e € E such that x. = 1, xe € span(L).

Proof. By the proof of Theorem 11.12, the laminar collection L is such that span(L) 2 span(T),
where T is the collection of all tight sets. Notice that if z. = 1 for e = (u,v), then the set S =
{u, v} is tight, since z. = z(E(S)) = [S| — 1 = 1. Thus xe = xp(s) € span(T) C span(L). O

We now restate Lemma 11.16 and give its proof.

Lemma 11.16: For any basic feasible solution x to the linear program (11.12) in which W # (),
there is some v € W such that there are at most b, + 1 edges incident on v in E(x).

Proof. Assume the statement of the lemma is false, so that there are at least b, + 2 edges in F
incident on every v € Z, with W # (). We derive the contradiction via a charging scheme, in
which we assign each v € Z and each S € L a certain nonnegative charge, possibly fractional.
We will then show by the falsity of the lemma statement, each v € Z and each S € L receives a
charge of at least one. This will imply that the total charge is at least |Z|+ |L| = |E|. However,
we will also show that the total charge assigned must have been strictly less than |E|, giving
the contradiction. Thus there must exist some v € W # () such that there are at most b, + 1
edges of E incident on v.

To carry out our charging scheme, for each e € E we assign a charge of %(1 — x.) to each
endpoint of e that is in Z, and we assign a charge of x. to the smallest S € £ that contains
both endpoints of e, if such an S exists. Note then that have assigned a total charge of at most
(1 —2¢)+x.=1peredgeecE.

Now we show that each v € Z and each S € L receives a charge of at least one. Each v € Z
receives a charge of %(1 — ) from each edge of E incident on it. By hypothesis, there are at
least b, + 2 edges incident on v. Since v € Z implies v is tight, we know that Eeeé(v) Te = by.
Thus the total charge received by v is at least one, since

1 1
Y s-m) = 5 [B@I- Y @
e€d(v) e€d(v)
1
5 [(bv + 2) - bv]
= 1.
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Now consider a set S € L. If S contains no other set C € L, then since S is a tight set,
> cer(s) Te = |S| — 1, and the total charge assigned to S is [S| — 1. Since S| > 2, the total
charge a581gned to S is at least one. Now suppose that S contains some C' € L. We call a set
C € L a child of S if it is strictly contained in S, and no other set C’ € £ that contains C' is
also strictly contained in S. Let C1,...,Cy be the children of S. Recalling that the sets S and
C4,...,Cy are tight, we have that z(F(S)) = |S| — 1 and z(E(C;)) = |C;| — 1 and thus are
integral. Furthermore, the E(C;) are disjoint and are contained in E(S) by the laminarity of
L. Hence the total charge assigned to S is

However, it cannot be the case that E(S) = Ule E(C;) since then xpg) = Zle XE(Cy)»
which violates the second property of Theorem 11.12, which says that these vectors are linearly
independent. Thus it must be the case that the total charge assigned to S is

and since

-

k
)= > w(B(Ci) = (8] - 1) = > (ICi| - 1)

=1 =1

is integral, the difference must be at least one. Therefore at least one unit of charge is assigned
to S.

Finally we show that the total charge is strictly less than |E| via a three-case argument.
First, if V' ¢ L, then there must exist some edge e such that e ¢ E(S) for all S € £. The charge
xe > 0 is not made to any set, so that the total charge is strictly less than |E|. Second, if there
exists some e = (u,v) € E with x. < 1 such that one of its two endpoints is not in Z (say
u ¢ Z), then the charge of 3(1— =) > 0 is not made to u, and again the total charge is strictly
less than |F|. Finally, suppose that V € £ and for any e € E with . < 1, both endpoints of
e are in Z. We will show that this case gives rise to a contradiction, so one of the first two
cases must occur. We observe that ) _, Xs(v) = 2XE(z) T X5(z) and by hypothesis, each edge
e €0(Z)UE(V — Z) has . = 1. Now we show that we can express 2xg(z) + Xs(z) by the sum
of vectors xp(g) for S € L, which will contradict the linear independence of the vectors xg(s)
for S € L and x5, for v € Z. By Lemma 11.18, for any e € 6(Z) U E(V — Z), x. € span(L)
since e = 1. Thus 32 ,c 7 Xo(w) = 2X8(2) + Xo(2) = 2XB(WV) =2 Leen(v-2) Xe ~ Lees(z) Xes ald
every term on the right-hand side is in span(L); this proves that x5, for v € Z and x (g for
S € L are linearly dependent, which is a contradiction. O

In summary, we have been able to show the we can find a spanning tree of cost at most
OPT with degree at most b, + 1 for v € W. We did this by proving a lemma showing that a
basic feasible solution x to the linear programming relaxation of the problem must have some
v € W such that at most b, + 1 edges of E(z) are incident on v. The proof of this lemma, given
above, uses the structure of the basic feasible solution as a laminar collection of tight sets, as
well a charging scheme that uses fractional charges. In the next section we will use many of
these same ideas in giving an approximation algorithm for another network design problem.
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11.3 Survivable network design and iterated rounding 297

11.3 Survivable network design and iterated rounding

In this section, we turn to a generalization of the generalized Steiner tree problem which was
introduced in Section 7.4. This problem is called the survivable network design problem. In
this problem, we are given as input an undirected graph G = (V, E), costs c. > 0 for all
e € I, and connectivity requirements r;; for all pairs of vertices 4,j € V, where i # j. The
connectivity requirements are nonnegative integers. The goal is to find a minimum-cost set of
edges F' C E such that for all pairs of vertices 4, j with ¢ # j, there are at least 7;; edge-disjoint
paths connecting i and j in (V| F'). The generalized Steiner tree problem is a special case of the
survivable network design problem in which all r;; € {0, 1}.

The survivable network design problem is motivated by the telecommunications industry.
We wish to design low-cost networks that can survive failures of the edges. In the case of r;; — 1
edge failures, vertices ¢ and j will still be connected in the resulting set of edges. We may
wish to have certain pairs of vertices to be highly connected, with others with connectivity
requirement 1 if it is not as crucial that they be connected in case of failures.

The problem can be modelled by the following integer program:

minimize g CeTe

eeE
subject to Z Te > Zergl&;;écs Tijs VS CV,
e€d(S)
z. € {0,1}, Ve € E.

Consider any pair of vertices i,j with ¢ # j, and a set of edges F. By the maxflow/mincut
theorem, there are at least 7;; edge-disjoint paths connecting ¢ and j in (V, F) if and only if
every cut S separating 7 and j contains at least r;; edges of F'; that is, [6(.S) N F| > r;;. Hence,
a set of edges I’ is feasible if and only if [0(S) N F| > max;cg j¢57i; for all S C V, which is
exactly the constraint imposed by the integer program.

Note that this insight can be used to solve the following linear programming relaxation in
polynomial time:

minimize g CeTe

eck
subject to Z Te > Mmax 7y, VS CV,
1€5,j¢S
e€d(S)
0<z. <1, Ve € E.

We use the ellipsoid method introduced in Section 4.3 with the following separation oracle.
Given a solution x, we first check that 0 < x, < 1 for all edges e € E. We then create a max-
flow instance for each pair of vertices 1, j, i # j, with the capacity of each edge set to x.. If the
maximum flow that can be sent from i to j is at least r;; for each 4, j € V, then by the argument
above, we know that all the constraints are satisfied. If for some 7, j, the maximum flow is less
than 7;;, then there must be some cut S with i € S, j ¢ S, such that ZeES(S) Te < 15, giving
a violated constraint.

It will be useful to consider a more general form of the linear program above. We will
consider the following linear program with functions f on the vertex set such that f(S) is an
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integer for all S C V:

minimize Zce:re (11.17)
ecE
subject to Z ze > f(5), VS CV,
e€d(S)
0<z. <1 Ve € E.

Clearly the linear programming relaxation of the survivable network design problem corresponds
to the case f(S) = max;cg j¢g 7ij-
We will consider functions f that are weakly supermodular.

Definition 11.19: A function f : 2V — 7 is weakly supermodular if f(0) = f(V) = 0, and
for each two sets A, B C 'V, one of the following two statements holds:
f(A)+ f(B) < f(ANB) + f(AU B), (11.18)
f(A)+ f(B) < f(A-B) + f(B - A). (11.19)

The function f that we use for the survivable network design problem falls into this class.

Lemma 11.20: The function f(S) = max;cg j¢s1ij is weakly supermodular.

Proof. Trivially f(0) = f(V) = 0. We observe that f(S) = f(V —5) for any S C V. Also, for
any disjoint A, B, f(AU B) < max(f(A), f(B)): choosei € AUB and j ¢ AU B attaining the
maximum max;e 4y, j¢AuB Tij that defines f(AUB). Then either i € Aand j ¢ Aori € B and
J ¢ B, so that max(f(A), f(B)) > ri; = f(AU B). We then observe that f obeys the following
four inequalities:

f(A) < max(f(A - B), f(AN B));

(4) I
f(A) = f(V = A) <max(f(B - A), f(V = (AU B))) = max(f(B — A), f(AU B));
(B) < max(f(B — A), f(AN B));

(B) (f(A=B), f(V = (AU B)) = max(f(A = B), f(AU B)).

Then summing together the two inequalities involving the minimum of f(A — B), f(B — A),
f(AU B), and f(A N B) gives the desired result; so, for instance, if f(A — B) achieves the
minimum of the four values, then we sum the first and last inequalities, which then implies

f(A) + f(B) < f(AUB) + f(AN B). =

We now state a remarkable theorem that will allow us to obtain a 2-approximation algorithm
for the survivable network design problem. We will first show how the theorem gives the
approximation algorithm, then turn to the proof of the theorem.

Theorem 11.21: For any basic feasible solution x to the linear program (11.17) such that f is
a weakly supermodular function, there exists some edge e € E such that zo > 1/2.

Given the theorem, we have the following rather simple idea for an approximation algorithm
for the survivable network design problem: we solve the linear programming relaxation, find
all edges whose LP value is at least 1/2, and include them in our solution. We fix the value of
these variables to 1, resolve the linear program, and repeat the process until we have a feasible
solution to the problem. Intuitively, we are always rounding variables up by at most a factor
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F+ 0
141
while F' is not a feasible solution do
Solve LP (11.17) on edge set E — F' with function f;, where
fi(S) = f(S) —16(S) N F|, to obtain basic optimal solution z
Fi<{e€c E—F:x.>1/2}
F+ FUF;,
14 1+1
return F

Algorithm 11.4: Deterministic rounding algorithm for the survivable network design problem.

of 2, which will lead to the performance guarantee of 2. There are a number of details to be
taken care of, but this is the main idea.

We state the algorithm more formally in Algorithm 11.4. We let F' be the set of edges in the
solution; F' is initially empty. In the ¢th iteration of the algorithm, we solve the linear program
(11.17) on edge set E — F' with the function f;, where f;(S) = f(S) —|6(S) N F|. Given a basic
optimal solution to this linear program, we set F; = {e € E — F : . > 1/2}, and add F; to
F. Because we iteratively round up the LP solution to create the final feasible solution, this
technique is called iterated rounding.

To show that the algorithm works, we must show that each function f; is again weakly
supermodular, so that Theorem 11.21 applies; this will imply that F; # () in each iteration,
and thus there are at most |E| iterations before the algorithm terminates. We will also need
to show that we can solve the linear program in each iteration. We start with the following
lemma, which will be useful in showing that the f; are weakly supermodular.

Lemma 11.22: Pick any z. > 0 for alle € E, and let 2(E') = " s Ze for any E' C E. Then
for any subsets A,B CV,

2(8(A)) + 2(8(B)) = 2(8(AU B)) + 2(6(AN B))

and
2(0(A)) 4+ z(6(B)) > 2(0(A — B)) + z(6(B — A)).

Proof. The proof is a simple counting argument; to prove each inequality, we show that an edge
included in the sums on the right-hand side of the inequalities appears at least as many times
on the left-hand side. See Figure 11.4 for an illustration. For instance, any edge whose two
endpoints are in A — B and V — (AU B) appears in 6(AU B), 6(A — B), and §(A), but not
(AN B), §(B — A), or 6(B). Thus it is included once in the right-hand side and left-hand
side of the first inequality, and once in the right-hand side and left-hand side of the second
inequality. We simply need to check all possible cases for the four different places in which the
two different endpoints of an edge can be. We note that an edge whose two endpoints are in
A— B and B — A appears twice on the left-hand side of the first inequality, but not at all on the
right-hand side; similarly, an edge whose two endpoints are in AN B and V — (AU B) appears
twice on the left-hand side of the second inequality, but not on the right-hand side; thus the
inequalities can be strict.

O

Lemma 11.23: For any F' C E, the function f;(S) = f(S)—|0(S)NF| is weakly supermodular
if [ is weakly supermodular.
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N

Figure 11.4: Proof of Lemma 11.22.

Proof. Set zz = 1 if e € F and z. = 0 otherwise. Then it is equivalent to show that f; is
weakly supermodular when f;(S) = f(S) — 2(6(5)). It is clear that f;(0) = fi(V) = 0. Now
pick any two subsets A, B C V. We note that for the function f, it is the case that either
f(A)+ f(B) < f(AUB)+ f(AnB) or f(A)+ f(B) < f(A—B) + f(B — A). Suppose the
former holds. Then

filA) + fi(B) = f(A)+ f(B)—2(6(A)) — 2(6(B))
< F(AUB)+ f(ANB) — 2(0(AU B)) — 2(5(AN B))
= fi(AUB)+ fi(ANB),

where the inequality follows by hypothesis and by Lemma 11.22. The other case is identical. [

Lemma 11.24: For any F C E, we can solve the linear program (11.17) in polynomial time
with edge set E — F and function g(S) = f(S) — |6(S) N F| when f(S) = max;cg j¢s7ij-

Proof. We use the ellipsoid method with a separation oracle similar to the one given to solve
the LP with the original function f. For a solution z, we first check that 0 < z, < 1 for all
e € E — F. Then for each pair of vertices i, j, with i # j, we create a maximum flow instance
with the capacity of each edge e € F — F set to x. and the capacity of each edge e € F set to 1.
We then check that the flow between ¢ and j is at least r;;. If it is, then for any ¢, j € V' and any
cut S with i € S and j ¢ S, it must be the case that the capacity is at least r;;, which implies
that 2(6(5)) + [0(S) N F| > ri;, which implies 2(5(5)) > ri; — |6(S) N F|. Since this holds for
all pairs i,j € V, then z(6(S)) > ¢(S). Similarly, if for some pair i,j € V, the maximum flow
is less than r;;, then the capacity of the minimum cut S with i € S and j ¢ S is less than r;;.
Then z(6(S)) + |0(S) N F| < 145, or (8(5)) < 135 — |0(S) N F| < g(S), and this is a violated
constraint. O

We can now prove that Theorem 11.21 implies that the algorithm is a 2-approximation
algorithm.

Theorem 11.25: Given Theorem 11.21, Algorithm 11.4 is a 2-approximation algorithm for the
survivable network design problem.

Proof. We prove a slightly stronger statement by induction on the number of iterations of the
algorithm; in particular, we will show that the algorithm has a performance guarantee of 2 for
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any weakly supermodular function f. We only need that the function f is for the survivable
network design problem in order to solve the linear programming relaxations in polynomial
time.

Let x be the solution to the original linear programming relaxation with function f; = f for
any weakly supermodular function f. For any subset £/ C E of edges, let ¢(E") = > ./ ce.
The base case is straightforward: if after one iteration, F' = F} is a feasible solution, then since
Fy={ec E:x.>1/2},it is clear that ¢(F) <2} pcere <20PT.

Now suppose that the statement holds if the algorithm takes k iterations; we show that it
holds if the algorithm takes k + 1 iterations. By induction, the cost of all the edges added from
the second iteration onwards is no more than twice the value of the LP solution for the weakly
supermodular function fo; that is, if 2’ is the solution found in the second iteration for the
LP with function fa, then ¢(F — Fy) <23 p_p cex, since the algorithm finds a solution for
function fy in k iterations. For e € Fy, we know that c(F1) <23  p Cee, since xe > 1/2 for
all e € F}. To complete the proof, we will show that x is a feasible solution on the edges £ — F

for the function fs. Thus
Z Ce$/e < Z Cele,
eeE—F eceE—Fy

so that

c(F)=c(F—F)+c(F) < 2 Z cex'e+2Zcexe
ecE—Fy ecFy

2 Z Cele + 2 Z Cele
ecE—Fy ecky

= 2 ceme <20PT.
eclE

IN

To see that x is feasible for the LP for the function fo on edges F — F}, we note that for
any S CV, z(6(5)) > f1(S) implies that

z(6(S)N(E—-F1)) = z(0(5))—=(6(S)NF1) = f1(5) —z(0(S)NF1) = f1(S) —[6(S)NFi| = fa(55),
where for the second inequality we use that z, < 1. O

We now turn to the proof of Theorem 11.21, and show that for any basic feasible solution
x, e > 1/2 for some edge e € E. We assume without loss of generality that 0 < z. < 1 for all
e € F; we can do this since if . = 1, then we are done, while if for some edge e € F, . = 0,
we can simply remove it from the graph. We will now need a definition.

Definition 11.26: For the given solution x to LP (11.17), we say that a set S C 'V is tight if
z(6(5)) = f(9)-

We are now able to state the following theorem, which we will need to prove Theorem 11.21.

Theorem 11.27: For any basic feasible solution x to the linear program (11.17) with f a weakly
supermodular function, there is a collection L of subsets of vertices with the following properties:

1. Forall S € L, S is tight.
2. The vectors xs(s) for S € L are linearly independent.

3. |c| = |E].
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4. The collection L is laminar.

The proof of this theorem is almost identical to the proof of Theorem 11.12 in Section 11.2,
and so we leave it as an exercise (Exercise 11.2).

We now turn to our proof of Theorem 11.21. We restate the theorem here for convenience.
The proof is similar to the fractional charging argument used for the minimum-cost bounded-
degree spanning tree problem in Lemma 11.16.

Theorem 11.21: For any basic feasible solution x to the linear program (11.17) such that f is
a weakly supermodular function, there exists some edge e € E such that zo > 1/2.

Proof. We give a proof by contradiction. Suppose that for all e € E, 0 < x, < % Given this
hypothesis, we will give a charging scheme in which we distribute charge to the sets S € £
whose total is strictly less than |E|. However, we will also show that each S € L receives a
charge of at least one, for a total charge of at least |£| = |E|. This will give our contradiction.

For each edge e € E we will distribute a charge of 1 —2x,. > 0 to the smallest set S € L that
contains both endpoints of e, if such a set exists, and for each endpoint v of e we distribute a
charge of ., > 0 to the smallest set S € L containing v, if such a set exists. Both 1 — 2z, and
x. are positive since we assume that 0 < x. < 1/2. Thus the total charge distributed is at most
1—2x. + 2z, = 1 per edge. However, notice that for any set S € £ not contained in any other
set of £, there must be edges e € 4(S). These edges will not have both endpoints contained in
some set S € L and for these edges we distribute charge strictly less than 1 since the charge
1 — 2z, > 0 for the edge is not distributed. Thus the total charge distributed is strictly less
than |E|.

Now we show that each S € L receives a charge of at least one. We say a set C' € L is a
child of S if it is strictly contained in S, and no other set C’ € £ that contains C' is also strictly
contained in S. Let C,...,C) be the children of S (if any exist). Since S and the C; are in L,
they are all tight sets so that 2(5(5)) = f(S) and z(6(C;)) = f(C;) for all i. Let C' = |, C;. We
now divide the edges in Eg = §(5) U, 6(C;) into four sets (see Figure 11.5 for an illustration):

e .. is the set of edges e € Eg that have one endpoint in some C; and the other in Cj}
for j # i (“child-child edges”). By the charging scheme such edges contribute a charge of
1 — 2z, to S since S is the smallest set to contain both endpoints.

o I, is the set of edges e € Eg that have one endpoint in C; and the other in S — C
(“child-parent edges”). By the charging scheme such edges contribute a charge of z. to S
for the one endpoint in S —C, and a charge of 1 —2x, since S is the smallest set containing
both endpoints of S. So the total charge given to S is 1 — x, for each edge e € E.

o [, is the set of edges e € Eg that have one endpoint in S — C and the other outside S
(“parent-out edges”). By the charging scheme such edges contribute a charge of z, to S
for the one endpoint in .S — C.

o E, is the set of edges of Eg in both 6(5) and §(C;) for some ¢ (“child-out edges”). Such
edges contribute no charge to S.

We claim that it cannot be the case that all edges of Eg are in E.,. If this were the case,
then an edge is in §(5) if and only if it is in §(C;) for some 4, which implies x5(g) = Zle X5(Cy)-
This contradicts Theorem 11.27, which states that the xs(r) are linearly independent for 7" € L.
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€E,

Figure 11.5: Illustration of the edge sets in the proof of Theorem 11.21.

Thus at least one edge must be in E.., E.p, or E,,; S receives a positive charge for each
such edge, and the total charge received is |Ecc| — 22(Ee.) + |Ecp| — x(Eep) + x(Epo) > 0. By
the definitions of the edge sets above, we note that

2(6(8)) = D 2(8(Cy)) = ¥(Epo) — 2(Eep) — 2(Eec).

i=1

Then we have that the total charge received by S is

k
|Ece| = 22(Eec) + |Eep| — #(Eep) + 2(Epo) = |Eee| + [Eep| + (93(5(5)) - Za:(&@))) :

Since all sets are tight, this total charge is equal to

k
| Ecel + | Ecp| + (f(S) - Zf(@)) .

i=1

Since this last expression is a sum of integers, and we know the total charge is positive, the
total charge must be at least one.

Thus each S € L gets a charge of at least one, for a total charge of at least |£| = |E|, but
we distributed a total charge of strictly less than |E|, which gives the contradiction. O

As we observed at the end of Section 7.4, the linear programming relaxation for the gen-
eralized Steiner tree problem has an integrality gap that is essentially 2. Since the generalized
Steiner tree problem is a special case of the survivable network design problem, and the linear
program used for the generalized Steiner tree problem is a special case of the linear program
(11.17) we use for the survivable network design problem, the integrality gap of (11.17) is also
essentially 2. Thus we cannot obtain any better performance guarantee by comparing the value
of the algorithm’s solution to the value of the LP relaxation as we do in the deterministic
rounding argument above.

As was mentioned at the beginning of the chapter, the motivation for studying the survivable
network design problem comes from wanting to design low-cost networks that can survive
failures in the edges of the network. Suppose we wish to design networks that can also survive
failures in the vertices? In that case, we may wish for there to be r;; vertex-disjoint paths
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between ¢ and j for all 7,5 € V. In Section 16.4, we show that this variant of the survivable
network design problem is substantially harder to approximate that the edge-disjoint version
we have considered above.

Exercises

11.1 We consider a variant of the generalized assignment problem without costs. Suppose we
are given a set of n jobs to be assigned to m machines. Each job j is to be scheduled
on exactly one machine. If job j is scheduled on machine ¢, then it requires p;; units of
processing time. The goal is to find a schedule of minimum length, which is equivalent to
finding an assignment of jobs to machines that minimizes the maximum total processing
time required by a machine. This problem is sometimes called scheduling unrelated parallel
machines so as to minimize the makespan. We show that deterministic rounding of a linear
program can be used to develop a polynomial-time 2-relaxed decision procedure (recall
the definition of a relaxed decision procedure from Exercise 2.4).

Consider the following set of linear inequalities for a parameter 7"

m
inj:L jzl,...,n,
i=1

n
Zplij]STa izla"'vma
j=1

xijZO, izl,...,m,jzl,...,n

Tij = 0, if Dij > T.

If a feasible solution exists, let x be a basic feasible solution for this set of linear in-
equalities. Consider the bipartite graph G on machine nodes M1, ..., M,, and job nodes

Ny, ..

(a)

(b)
()

., Ny, with edges (M;, N;) for each variable z;; > 0.

Prove that the linear inequalities are a relaxation of the problem, in the sense that if
the length of the optimal schedule is T, then there is a feasible solution to the linear
inequalities.

Prove that each connected component of G of k£ nodes has exactly k£ edges, and so is
a tree plus one additional edge.

If z;; = 1, assign job j to machine 7. Once all of these jobs are assigned, use the
structure of the previous part to show that it is possible to assign at most one
additional job to any machine. Argue that this results in a schedule of length at
most 27

Use the previous parts to give a polynomial-time 2-relaxed decision procedure, and
conclude that there is a polynomial-time 2-approximation algorithm for scheduling
unrelated parallel machines to minimize the makespan.

11.2 In this exercise, we prove Theorem 11.27.

(a)

First, prove the following. Given two tight sets A and B, one of the following two
statements must hold:

e AU B and AN B are tight, and x;s.4) + Xs(B) = Xs(AnB) T Xs(AUB); OF
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e A— B and B — A are tight, and x;504) + Xs5(B) = Xs(A—B) T Xs(B—A)-
(b) Use the above to prove Theorem 11.27.

11.3 Consider the following LP relaxation for the traveling salesman problem:

minimize Zceaze
ecE
subject to Z Te > 2, VS cV,S#0,
e€d(S)
0<z. <1, Ve € E.

Show that for any basic feasible solution « to the linear program, there must exist some
e € FE such that z, = 1.

11.4 Recall the definition of a branching from Exercise 7.5: We are given a directed graph
G = (V,A), and a designated root vertex » € V. A branching is a subset F' C A of arcs
such that for every v € V, there is exactly one directed path from r to v. Note that this
implies that in F' the indegree of any node (except the root) is 1.

In the bounded-degree branching problem, we are given degree bounds b,, and the goal
is to find a branching such that the outdegree of v is at most b, for all v € V. In the
following, we will give a polynomial-time algorithm to compute a branching in which the
outdegree of v is at most b, + 2 for all v € V', given that a branching exists with outdegree
b, forallveV.

Given the input graph G = (V, A) and any subset F' C A, let 67(S) be the set of all arcs
in A with their tails in S and heads not in S, and 6 (5) be the set of all arcs in A with
their heads in S and their tails not in S, §5(S) = 67(S)N F, and §,(S) = 6= (S)N F.
Then consider the following linear programming relaxation, defined for a given set of arcs
A FCAand W CV:

minimize g Tq

a€A
subject to Z e > 1—16(9)], VSCV —r,
a€d—(S)
Z Tq < by — |65 (v)], Yv e W,
a€dt(v)
0<z, <1 Va € A— F.

Consider the following algorithm for the problem. Initially, 7' = () and W = V. While
A—F # (), find a solution to the linear programming relaxation for A, F', and W. Remove
from A any arc a € A — F such that x, = 0. Add to F any arc a € A — F such that
2o = 1. Then for any v € W such that there are at most b, — |§7.(v)| + 2 arcs coming out
of vin A — F, remove v from W and add to F' all outgoing arcs from v in A — F. When
A — F = (), then output any branching rooted at r in F.

(a) Prove that the linear programming relaxation is a relaxation to the problem in the
sense that if there is a feasible solution to the problem given the degree bounds, then
there is a feasible solution to the linear programming relaxation.
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(b) Prove that the following is true for any basic feasible solution z to the linear pro-
gramming relaxation, forany A, F C A,and W CV: I[f0 <z, < lforalla e A—F,
then there exists a set Z C W and a collection £ of subsets of V' such that:

1. 2(67(9)) =1for all S € £ and z(67(v)) = b, — |65 (v)] for all v € Z;

2. The characteristic vectors x;s-(g) over all S € £ and xs+(,) over all v € Z are
linearly independent;

3. |[A=F[=I|L[+]Z];

4. L is laminar.

(c) Show that at the start of any iteration of the algorithm, every arc a € A — F has its
tail in W.

(d) Prove that in each iteration, there must exist some v € W such that there are
at most b, — |05 (v)| + 2 arcs coming out of v in A — F. (Hint: first show that
if |£] < > sca_rTa + 2|W], then such a vertex in W must exist. Then design a
charging argument that charges a total strictly less than ) ., p 24 + 2|W/| such
that each S € L gets at least one unit of charge.)

(e) Prove that the algorithm runs in polynomial time and produces the desired output.

11.5 The minimum k-edge-connected subgraph problem takes as input an undirected graph
G = (V, E) and a positive integer k. The goal is to find the smallest set of edges F' C F
such that there are at least k edge-disjoint paths between each pair of vertices.

Consider the following linear programming relaxation of the problem:

minimize E Te

ecF
subject to Z Te >k, VS CV,
e€d(S)
0<z. <1 ec k.

(a) Prove that the linear program is indeed a relaxation of the problem.
(b) Prove that the linear program can be solved in polynomial time.

(c) Suppose we obtain a basic optimal solution to the LP relaxation and round up every
fractional variable to 1. Prove that this gives a (1 + %)-approximation algorithm for
the problem.

11.6 In this problem, we revisit the generalized assignment problem from Section 11.1 and give
an iterated rounding algorithm for it. We consider a slight generalization of the problem
in which for each machine 7 there can be at most 7} units of processing assigned to .

We now modify the linear programming relaxation of the problem given in Section 11.1.
We let E denote a set of possible (i,7) pairs for which we can assign job j to machine
i. Let M = {1,...,m} be the set of machines and J = {1,...,n} be the set of jobs.
Initially, E consists of all (4, ) such that i € M, j € J and p;; < T;. We also have a
subset M’ C M, where initially M’ = M, and a subset J' C .J, where initially J' = J.
We also have a total amount of processing 77 that can be assigned to machine i € M/,
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where T is initially 7;. Then the relaxation is as follows:

minimize Z CijTij
(L.j)ek
subject to Z x5 =1, VielJ,
i€EM:(i,5)EF
Y pym <T,  VieM,
jeJ:(i,j)EE
Tij 2 0, V(’L,j) € FE.

Consider the following algorithm: While J’ # (), we find a basic optimal solution to the
LP relaxation. We remove from E any pair (4, j) such that 2;; = 0. If there is a variable
z;; = 1, then we assign job j to machine i; remove j from J’ and reduce T} by p;;. Let
J;i be the jobs fractionally assigned to machine ¢ € M’, so that J; = {j € J : x;; > 0}. If
there is a machine ¢ such that either |J;| =1, or |J;| =2 and ) .., z;; > 1, then remove
i from M'.

JE€J;

(a) Show that for any basic feasible solution x to the linear program, the following
is true: there exist subsets J” C J' and M” C M’ such that the LP constraint
ZjEJ:(i,j)eEpijxij = T/ for all i € M", the vectors corresponding to the LP con-
straints for J” and M" are linearly independent, and |J”| + |M"] is equal to the
number of variables x;; > 0.

(b) Prove that for any basic feasible solution z to the LP, either there is some (i,7) € E
such that x;; € {0,1}, or there exists some ¢ € M’ with |J;| = 1, or there exists some
i€ M with |J;] =2 and Y., x;; > 1.

(c) Prove that the algorithm above returns a solution with total cost at most OPT, and
such that machine ¢ is assigned total processing time 27; for all i € M.

j€Ji

Chapter Notes

We have seen in earlier sections some examples of the use of the structure of basic feasible
solutions in approximation algorithms. As mentioned in the introduction, in Exercise 1.5, we
saw that for a linear programming relaxation of the vertex cover problem, for any basic feasible
solution z, each variable z; is either 0, 1, or 1/2. Also, in the algorithm for the bin packing
problem in Section 4.6, we used the fact that for any basic feasible solution to the linear
programming relaxation, the number of nonzero variables is at most the number of distinct
piece sizes.

The first more sophisticated use of the structure of a basic feasible solution in an approx-
imation algorithm is due to Lenstra, Shmoys, and Tardos [215]. They give a 2-approximation
algorithm for scheduling unrelated parallel machines. Their algorithm is given as Exercise 11.1.
This work led to the result of Section 11.1 on the generalized assignment problem; the result
we give there is due to Shmoys and Tardos [263]. This result does not use the properties of
a basic feasible solution; it only uses feasibility. The alternate result in Exercise 11.6 for the
generalized assignment problem that does use the properties of a basic feasible solution is due
to Singh [268].
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The idea of iterated rounding for obtaining approximation algorithms is due to Jain [175];
he introduced the algorithm for the survivable network design problem in Section 11.3. He
also introduced the use of a charging scheme to prove Theorem 11.21. The proof we give is a
simplification due to Nagarajan, Ravi, and Singh [230].

The first algorithm to achieve an additive factor of 2 for the minimum-cost bounded degree
spanning tree problem is due to Goemans [134]. Iterated rounding was then applied by Singh
and Lau [269] to the problem; they obtain the approximation algorithm of Section 11.2 with
the additive factor of 2. Singh and Lau also have the first algorithm bounding the degrees to
within an additive factor of 1. We present a somewhat simplified version of this algorithm and
analysis in Section 11.2 due to Lau and Singh [209] (see also Lau, Ravi, and Singh [208]) that
draws upon work of Bansal, Khandekar, and Nagarajan [32] for a more general problem. Bansal
et al. introduced the idea of a fractional charging scheme. The separation oracle we give for
solving the linear program (11.12) is from Cunningham [85].

Exercise 11.2 is due to Jain [175]. The result of Exercise 11.3 was shown by Boyd and Pul-
leyblank [56] prior to all of the work on iterated rounding. Exercise 11.4 is due to Bansal, Khan-
dekar, and Nagarajan [32]. Exercise 11.5 is due to Gabow, Goemans, Tardos, and Williamson
[120].
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CHAPTER 12

Further uses of random sampling
and randomized rounding of linear
programs

In this chapter, we revisit — for the final time — the uncapacitated facility location problem,
and consider a randomized rounding algorithm for it. As we observed in Section 5.8, a natural
randomized rounding algorithm is to open each facility ¢ independently with probability equal
to its associated variable in an optimal solution to the linear programming relaxation. As we
will show, the difficulty with this algorithm is that it is possible that a client will not be near an
open facility. However, we overcome this difficulty by using a combination of this randomized
rounding algorithm and our previous randomized algorithm that uses clustering to ensure that
each client is not too far away from an open facility. This will result in an approximation
algorithm with a performance guarantee of 1 + % ~ 1.736.

We also introduce a new problem, the single-source rent-or-buy problem, in which we must
either rent or buy edges to connect a set of terminals to a root vertex. Here we make use
once again of random sampling by using a sample-and-augment technique: we draw a random
sample of the terminals, buy edges connecting them to the root, then augment the solution to
a feasible solution by renting whatever edges are needed to make the solution feasible.

We then turn to the Steiner tree problem introduced in Exercise 2.5; recall that the goal
is to find a minimum-cost set of edges that connects a set of terminals. The Steiner tree
problem is a special case of the prize-collecting Steiner tree problem, the generalized Steiner
tree problem, and the survivable network design problem that we have considered in previous
chapters; we introduced various LP rounding and primal-dual algorithms for these problems.
For the Steiner tree problem, we introduce a new linear programming relaxation, and then
combine both iterated and randomized rounding to obtain a good approximation algorithm.

Finally, we consider the maximum cut problem in dense graphs, and we obtain a polynomial-
time approximation scheme for the problem by using a combination of most of our tools in
randomization: random sampling, randomized rounding, and Chernoff bounds.
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12.1 The uncapacitated facility location problem

In this section, we turn to another randomized rounding algorithm for the uncapacitated facility
location problem. This algorithm will give us the best overall performance guarantee for this
problem of all the discussions in this book. Recall that the input to the problem is a set of
clients D and a set of facilities F', with facility costs f; for all facilities ¢ € F', and assignment
costs ¢;; for all facilities ¢ € F' and clients j € D. We assume that the clients and facilities are
in a metric space and that the assignment cost ¢;; is the distance between client j and facility <.
The goal is to select a subset of facilities to open and an assignment of clients to open facilities
so as to minimize the total cost of the open facilities plus the assignment costs.
Recall the following linear programming relaxation of the problem:

minimize Z fiyi + Z CijTij
ieF i€F,jeD
subject to D ay=1, Vj e D, (12.1)
iEF
i < i, VieF,j €D, (122)
ﬂfijzo, Vie F,j €D,
yi > 0, Vi € F.

Recall also the dual of this LP relaxation:

maximize g (o

j€D
subject to Zwij < fi, Vi € F,
j€ED
vj—wijgcij, Vie F,j €D,
wi; > 0, Vie F,jeD.

In Sections 4.5 and 5.8, we said that given an optimal LP solution (z*,y*), a client j
neighbors a facility 7 if 7; > 0, and we set N(j) = {i € F': aj; > 0}. We set N2(j) = {k €
D : k neighbors some i € N(j)}. We also showed the following lemma that relates the dual
variable of a client to the cost of assigning the client to a neighboring facility.

Lemma 12.1 (Lemma 4.11): If (z*,y*) is an optimal solution to the facility location LP and
(v*,w*) is an optimal solution to its dual, then x;‘j > 0 implies c;; < vj.

In Section 5.8, we considered a randomized rounding algorithm for the problem that clus-
tered the clients and facilities as in the algorithm of Section 4.5, but then used randomized
rounding to decide which facility in the cluster to open. In this section, we consider applying
randomized rounding directly to decide which facilities to open. In particular, suppose we de-
cide to open each facility ¢ with probability y;. Then the expected facility cost is ) .. fivy,
which is at most OPT, and if a neighbor of a given client j is open, then the service cost for
J is at most v7 by the lemma above. If all clients have a neighbor open, then the total cost is
Yicr fiyi + ZjeD v; < 2-0OPT. However, it is possible that for a given client j, no neighbor
of j is opened. Using 1 —x < e, the probability that no neighbor of j is opened is

Pr[no neighbor of j open] = H (1—-y) < H e Vi
iEN()) iEN(j)
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12.1 The uncapacitated facility location problem 311

Solve LP, get optimal, complete primal solution (z*,y*) and dual solution (v*,w*)

C<+D
T+ F
k<0
while C' # () do
k—k+1
Choose ji, € C' that minimizes v} over all j € C
Choose exactly one i, € N(ji) with probability Ty, i = v,
Open i
C + C— {jx} — N*(jr)
T <+ T — N(jk)

foreach i € T do open ¢ with probability y;
Assign each client j to nearest open facility

Algorithm 12.1: Randomized rounding algorithm for the uncapacitated facility location problem.

By LP constraint (12.2), j; <y, and by LP constraint (12.1), 3°;c y(; #; = 1, so that this
probability is at most

H e Y < H e %l = ¢~ 2ieN() Tij = ¢~ 1,
€N ) €N ()

It is possible that this upper bound on the probability can be achieved, and in this case we do
not have a good way of bounding the cost of assigning the client to the nearest open facility.
Thus we need a more sophisticated approach.

The main idea of the algorithm in this section is to combine this randomized rounding with
the clustering ideas of earlier chapters. This way, if a client j has no neighboring facility open
via randomized rounding, then we know that there is some facility open that is not too far
away.

Before we give the algorithm, we need a primal solution to the linear program that has a
particular form. We say that a solution is complete if whenever z7; > 0, then z7; = y;. It is
possible to take any optimal solution to the linear program and create an equivalent complete
solution with the same objective function value by making additional copies of each facility
(where the facility costs and service costs of the copy are identical to the original). We leave
this as an exercise (Exercise 12.1) and from here on assume that we have a complete solution.

We give the algorithm in Algorithm 12.1. As in the algorithm in Section 5.8, we choose
cluster centers jj via some criterion (here minimizing v}‘-‘ among the remaining clients), then
randomly choose a neighboring facility i, to open according to the probabilities z; . Note
that by completeness z7, ; =y . After all clients end up in some cluster, for all facilities ¢ not
in some cluster, we open them independently with probability ;.

Note that this algorithm is now not the same as opening each facility ¢ with probability
y; independently: if a client j is chosen in some iteration, then exactly one of its neighboring
facilities will be opened. Thus the probability of a facility being opened is now dependent on
the probability of other facilities being opened. The following lemma shows that this does not
affect the bound on the probability that some neighbor of a given client is opened.

Lemma 12.2: Given an arbitrary client j € D, the probability that no neighbor of j is opened
18 at most %
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Proof. We partition the facilities neighboring j into sets X, as follows. Let X} be the facilities
in N(j) in the cluster formed in the kth iteration, and let each facility ¢ remaining at the end of
the algorithm be put in its own set X,. Let O}, be the event that some facility in X}, is opened.
Note that by the structure of the algorithm, the events Oy are now independent.

Let Y}" be the probability that event Oy occurs. Then Y;" = Pr[Ok] = >, y, y;. Further-
more, by the completeness of the solution,

2V =D D wi=) )

k i€Xp k i€Xy

Then since the X}, partition N(j) and by LP constraint (12.1),

RS I LS

k i€Xy i€F

By following the reasoning as given earlier, we have that

Pr[no neighbor of j open] = H (1-Y)) < Hefyk* —e LW =7,
k k

We can now prove the following theorem.

Theorem 12.3: Algorithm 12.1 is a (1 + %)-appro:zimation algorithm for the uncapacitated
facility location problem, where 1 4+ g ~~ 2.104.

Proof. We follow the proof of Theorem 5.19. In iteration k, the expected cost of the facility

opened is
Z fix l]k— Z fiyi's

’LEN ]k ZGN ]Ic

using the LP constraint

e S y;, so that the expected cost of facilities opened in this way is

SN far

k ieN(jk)

We open each remaining facility i € F'—J,, N(ji) with probability y, so that the total expected
cost of opening facilities is >, p fiys}".

Given an arbitrary client j € D, if some neighbor of j is not opened, then as argued in the
proof of Theorem 4.13, we can assign j to some open facility in its cluster at cost at most 3vj.
Note that for any given facility i € N(j), the probability that i is opened is ¥, so that although
the probabilities that different ¢ € N(j) are opened are dependent, the expected assignment cost
for j given that some i € N(j) is opened is ZiEN(j) Cijy; = ZiEN(j) cijry;, with the equality
following by the completeness of the solution. Thus the expected assignment cost for j is

Pr[some neighbor of j is open] - E[assignment cost|some neighbor of j is open]
+ Pr[no neighbor of j is open]| - Flassignment cost|no neighbor of j is open]

<1- Z CijT;; + - (307).

1EN(5)
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Therefore, the overall expected assignment cost is at most

3
DD e+t ) v

jeDicF jeD

and the overall expected cost is

Zfiy;k—FZZCijxfj—l—gZU; < OPT+Z-OPT: <1+2> OPT.

i€F jeDicF jeD
d

We can improve the algorithm to a (1 + %)—approximation algorithm by making a small
change to how client ji is selected in the kth iteration, and by tightening the analysis. Following
our notation in Section 5.8, we let C’;‘ be the assignment cost incurred by j in the LP solution,
so that C’;‘ = icr cl-jx;‘j. As in our algorithm in that section, in the kth iteration, we choose
the client j that minimizes v; + C7 instead of choosing the client that minimizes vj.

Let p; denote the probability that no neighbor of client j is opened by the algorithm; we
know p; < % The analysis in the theorem above is slightly loose in the sense that in analyzing
the expected assignment cost, we bounded the probability that some neighbor of j is opened
by 1. We can use the following lemma to make this part of the analysis slightly tighter. The
proof of the lemma is quite technical, and so we omit it.

Lemma 12.4: Let A; be the expected assignment cost for j given that mno neighbor of j is
opened. Then the expected assignment cost of client j € D is at most (1 — pj)C’;‘ +p;A;.

In the algorithm of Figure 12.1, we chose client jj, in the kth iteration to minimize v}, which
gave us a bound A; < 3v}. By choosing ji to minimize v; + C7, we have that A; < 2v} + C7
(as in the analysis in Theorem 5.19). Thus we get that the expected assignment cost of the
modified algorithm is

* * * * * * 2 *

Given that the expected facility cost is at most ) .. fiy;, we get that the overall expected cost
is at most 9 9
D fwi + 3 Ci+ 2 Y v < OPT+-OPT.
i€F jeD jeD
This yields the following theorem.
Theorem 12.5: Algorithm 12.1, modified to choose jj to minimize v; + C7, is a (1+ 2)-

e
approzimation algorithm for the uncapacitated facility location problem, where 1 + % ~ 1.736.

12.2 The single-source rent-or-buy problem

In this section, we consider the single-source rent-or-buy problem. The input for the problem
is an undirected graph G = (V, E) with edge costs ¢, > 0 for all e € E, a root vertex r € V,
a set of terminals X C V', and a parameter M > 1. We need to design a network connecting
all terminals to the root; for each terminal we specify a path of edges from the terminal to the
root. We say that a terminal uses an edge if the edge is on the terminal’s path to the root. To
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build the paths, we can both buy and rent edges. We can buy edges at cost Mc,., and once
bought, any terminal can use the edge. We can also rent edges at cost ce, but then we need to
pay the rental cost for each terminal using the edge. The goal is to find a feasible network that
minimizes the total cost. We can formalize this by letting B C E be the set of edges that are
bought, and letting R; be the set of edges that are rented by terminal ¢ € X. Then for each
t € X, the set of edges B U R; must contain a path from ¢ to the root r. Let c¢(F) = > cpce
for any F' C E. Then the total cost of the solution is Mc(B)+ 3", x c(R;). We must find edges
B to buy and R; to rent that minimizes this overall cost.

We will give a randomized approximation algorithm for the problem that cleverly trades
off the cost of buying versus renting. The sample-and-augment algorithm draws a sample of
terminals by marking each terminal ¢ with probability 1/M independently. Let D be the random
set of marked terminals. We then find a Steiner tree T on the set of terminals D plus the root,
and buy the edges of T'. To find a Steiner tree, we use the 2-approximation algorithm of Exercise
2.5 that computes a minimum spanning tree on the metric completion of the graph. We then
augment the solution by renting paths from the unmarked terminals to the tree T. To do this,
we find the shortest path from each unmarked ¢ to the closest vertex in 7', and rent these edges.

The analysis of the sample-and-augment algorithm begins by observing that the expected
cost of buying the edges in the tree T is at most twice the cost of an optimal solution to the
rent-or-buy problem.

Lemma 12.6:
E[Mc(T)] <20PT.

Proof. To prove the lemma, we demonstrate a Steiner tree 7™ on the set of marked terminals
such that the expected cost of buying the edges of 7™ is at most OPT. Since we are using a
2-approximation algorithm to find 7', the lemma statement then follows.

We consider an optimal solution to the problem: let B* be the set of bought edges, and let
R} be the edges rented by terminal ¢. Consider the edges from B* together with the union of
edges of R} over the marked terminals . Note that this set of edges certainly contains some
Steiner tree T on the set of marked terminals plus the root. We now want to analyze the cost
of buying this set of edges. The essential idea of the analysis is that although we now have
to pay M times the cost of the rented edges in each R} for marked ¢, since we marked ¢ with
probability 1/M, the expected cost of these edges will be the same as the renting cost of the
optimal solution. To see this formally, if D is the random set of marked terminals, then

E[Mc(T*)] < Mc(B*)+E[MY  ¢(Ry)]
teD
= Mc(B*)+ M c(Ry)Prft € D
teX
= Mc(B*)+ ) c(R})
teX
= OPT.

O]

To complete the analysis, we show that the expected renting cost is no more than the
expected buying cost.
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Lemma 12.7:

E

> e(Ry)

teX

< E[Mc(T)].

Proof. To prove this, let us be a bit more precise about the algorithm; then we will alter the
algorithm to give an equivalent algorithm, and prove the statement for the equivalent algorithm.

Let D be the (random) set of marked terminals. We run Prim’s minimum spanning tree
algorithm on the metric completion of the graph, starting with the root r (see Section 2.4 for
a discussion of Prim’s algorithm). Prim’s algorithm maintains a set S C D U {r} of vertices in
the spanning tree, and chooses the cheapest edge e that has one endpoint in S and the other
in D — S to add next to the spanning tree; the endpoint of e in D — S is then added to S.

We now alter the algorithm by not choosing D in advance. Rather, we choose the cheapest
edge e with one endpoint in S and the other from the set of all terminals whose marking status
has not been determined. Let ¢ be the endpoint of e whose marking status is not determined.
At this point, we decide, with probability 1/M whether to mark ¢. If ¢ is marked, then we add
t to D and to S, and add the edge e to the tree. If ¢ is not marked, then we do not add t to
D or S, and edge e is not added to the tree. Note that we get the same tree T' on D via this
process as in the case that the random set D was drawn before running the algorithm.

We let S for a terminal ¢ be a random variable associated with the cost of connecting ¢ to
the tree via bought edges; we call it the buying cost. We let 5; of a marked terminal t be M
times the cost of the edge that first connects it to the tree, and we let §; be zero if ¢ is not
marked. In our modified algorithm above, 3; is the cost of the edge that connects ¢ to S when
t is marked. The total cost of the tree is then the sum of the buying costs of all the marked
terminals in the tree, so that ), B = Mc(T'). In a similar way, we let p; for a terminal ¢ be
a random variable giving the cost of renting edges to connect ¢ to the tree.

Now consider a given terminal ¢ at the time we decide whether to mark ¢ or not. Let S be
the set of vertices already selected by Prim’s algorithm at this point in time, and let e be the
edge chosen by Prim’s algorithm with ¢ as one endpoint and with the other endpoint in S. If we
mark ¢, we buy edge e at cost Mce. If we do not mark ¢, then we could rent edge e at cost c,
and since all the vertices in S are marked, this will connect t to the root; thus p; < c.. Hence
the expected buying cost of ¢ is E[f;] = ﬁ - Mc. = ce, whereas its expected cost of renting
edges to connect ¢ to the root is E[p:] < (1 — ﬁ) - ce < ce. Observe that this is true no matter
what point in the algorithm ¢ is considered. Thus

Z C(Rt) Z Pt Z Bt

teX teX teX

> B

teD

= E[Mc(T)).

The following theorem is then immediate.

Theorem 12.8: The sample-and-augment algorithm described above is a randomized 4-approzimation
algorithm for the single-source rent-or-buy problem.

Proof. For the solution B =T and R; computed by the randomized algorithm, we have that

E |Mc(T)+ > c(Ry)

teX

<2.E[Mc¢(T) < 40PT.
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In Exercise 12.2, we consider the multicommodity rent-or-buy problem, which is an extension
of the single-source rent-or-buy problem to multiple source-sink pairs. We see that the sample-
and-augment algorithm also leads to a good approximation algorithm for this problem.

12.3 The Steiner tree problem

The Steiner tree problem provides an excellent example of a problem for which our understand-
ing of its combinatorial structure has worked hand-in-hand with the design and analysis of a
linear programming-based approach to approximation algorithm design. Furthermore, we will
combine two techniques already discussed for rounding LP solutions, by relying on an iterative
use of randomized rounding. The Steiner tree problem, as discussed in Exercise 2.5, is as follows:
given an undirected graph G = (V| E), and a subset of nodes R C V, along with a nonnegative
edge cost c. > 0 for each edge e € F, find a minimum-cost subset of edges F' C FE, such that
G = (V, F) contains a path between each pair of nodes in R. As discussed in that exercise, by
considering the metric completion of the graph, we may assume without loss of generality that
the input graph G is complete, and that the costs satisfy the triangle inequality. In Section 7.4,
we showed that the primal-dual method, based on a relatively weak LP formulation, provides
a 2-approximation algorithm for a more general problem in which the connectivity requirement
must be satisfied for only specified pairs of nodes. The nodes in R for which there is a con-
nectivity requirement are traditionally called terminals, whereas the remaining nodes are called
Steiner nodes.

For the Steiner tree problem, a (minimal) feasible solution corresponds to a tree (a Steiner
tree) in which all leaves are nodes in R; furthermore, there is a decomposition of each such
Steiner tree into its full components, which will play a critical role in this discussion. A full
component of a Steiner tree is a maximal subgraph in which no non-leaf node is a terminal. A
Steiner tree and its decomposition into full components is shown in Figure 12.1. It is easy to
see that if we start with the optimal Steiner tree, and this decomposition yields full components
with node sets Vi, Vs, ..., Vs, then the full component on V; must be an optimal Steiner tree
for the input on the subgraph induced by V;, i = 1,...,s. Furthermore, it is also easy to see
that if we contract the nodes in V; in this optimal Steiner tree, then the tree resulting from
this contraction must also be an optimal Steiner tree for the induced subproblem. Finally, an
optimal Steiner tree for G that spans the set of nodes V/ C V must be a minimum spanning
tree for the input induced by the subset V’. This suggests a very natural approach to designing
an approximation algorithm (or even an optimization algorithm!): identify a full component to
contract, contract that component, and iterate. Indeed, all known approximation algorithms
for the Steiner tree problem with constant performance guarantee better than 2 are based on
variants of this idea.

One natural approach to providing a stronger LP relaxation for the Steiner tree problem, as
compared to the one discussed in Section 7.4, is to select one of the terminal nodes (arbitrarily)
as a root node r, and to view each undirected edge connecting nodes u and v as two directed
edges (u,v) and (v, u), both of cost equal to the cost of the original undirected edge. We then
consider a directed network design problem in which we wish to select a subset F' of these
directed edges such that, for each non-root node v € R, there is a path from v to r using just
edges in F'. This gives rise to an integer programming formulation, known as the bidirected cut
formulation, in which we require that, for each non-empty subset S C V — {r} with SN R # 0,
there exists an edge (u,v) € F that crosses this cut, that is, v € S and v € S. Let §1(S5) be
the set of arcs in which (u,v) € S when u € S and v ¢ S. Let A be the set of arcs. Then the
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Figure 12.1: A Steiner tree. The terminals are squares, and the Steiner nodes are
circles. The dashed ovals indicate the full components of the Steiner tree.

linear programming relaxation of this integer program is

minimize Z CeYe
ecA
subject to Z Ye > 1, VSCV —{r},SNR#0,
e€dt(S)
Ye > 0, Ve € A.

Although not the most direct proof, one consequence of Exercise 7.5 is that if we consider an
input for which V' = R, i.e., there are no Steiner nodes, and hence this is really a minimum
spanning tree instance, then this LP relaxation of this bidirected cut formulation has integer
extreme points, and hence the LP relaxation is the initial integer program.

We shall present algorithms for the Steiner tree problem that combine this idea with the
notion of the full component decomposition. Again, we select one of the terminals as the root
node r. Then, for any Steiner tree, we orient its edges towards the root, and decompose this
tree into its full components. Each full component is now a directed graph (as shown in Figure
12.2). Furthermore, if we label each node in the graph with its distance (in terms of the number
of edges in the (unique) path) to the root r, for each full component C, we shall call the node
with minimum distance label the sink(C') — of course, this sink must be a terminal node, and
the induced directed Steiner tree on C' is directed toward sink(C), in much the same way that
the entire Steiner tree is directed toward the root r. Such directed full components, with their
specified sink nodes, will be the building blocks of our new integer programming formulation.
Abusing notation slightly, let C' now denote a directed full component with specified sink node;
we let R(C) denote the terminals of C' (which includes sink(C')). Let C denote the set of all
such directed full components.

We introduce a 0-1 decision variable z¢ for each such directed full component C' € C. Note
that ¢(C) denotes the total cost of the edges in the directed full component C. To specify a
Steiner tree, we merely list its directed full components. Of course, we need to formulate a set
of constraints that enforces that a given set of directed full components is, in fact, a feasible
Steiner tree. We can do this again by cut constraints: for each subset S C R — {r}, we require
that there is a directed full component C' included such that sink(C) & S, but there exists some
other terminal node v € R(C) — {sink(C)} such that v € S. Extending the usual notation in
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Figure 12.2: The Steiner tree of Figure 12.1, in which each full component is directed.
The sink of each full component is indicated by a black square.

which 6(S) denotes the set of edges that cross the cut S, we introduce the notation that A(S)
is the set of directed full components that satisfy this cut-crossing condition.
Thus, we obtain the following linear programming relaxation of the Steiner tree problem:

minimize Z c(C)zc (12.3)
ceC
subject to Z xc>1, VSCR-—{r}, S#0, (12.4)
Cec:Cen(s)

zo > 0, vC e C.

This LP reflects the beauty of mathematical notation: at a glance, it seems like a perfectly
innocuous linear program. But encoded in this notation, we see that there are an exponential
number of variables, and an exponential number of constraints. This means that we cannot
make direct use of the ellipsoid method in order to solve this linear program in polynomial time.
Fortunately, we can limit our attention to a weaker LP, without too great a loss in the quality
of the bound that it provides: simply restrict attention to those full components with at most
k terminals, where k is some fixed constant. If we do this for integer solutions, we obtain a
formulation of the so-called k-restricted Steiner tree problem and it has been shown that the
optimal solution to this problem has the following strong property.

Theorem 12.9: For each input to the Steiner tree problem, and for each fixed integer k, the
optimal value of the k-restricted Steiner tree problem is within o factor of 1+ m of the
optimal value for the Steiner tree problem.

We give a special case of this theorem as Exercise 12.6.

This suggests that we consider a relaxed version of the linear program (12.3), in which we
replace C by the set of directed full components with at most k& terminals. In fact, without
loss of generality, we can be even more restrictive in setting up this linear program. Recall
that in an optimal (integer) solution, we know that each full component must be an optimal
Steiner tree on the given set of terminals. Similarly, in any optimal fractional solution, we can
restrict attention to those variables x¢ for which the directed full component C is an optimal
Steiner tree on that set of terminals (with the specified sink node). Furthermore, since we
have instances obeying the triangle inequality, we can assume without loss of generality that no
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Steiner node has degree 2, since that node can be shortcut from the solution to yield a Steiner
tree with one fewer node of no greater cost. Since the average degree of a node in a tree is
less than 2 (in fact, exactly 2 — 2/n in an n-node graph), we see that in a full component with
k terminals (each of degree 1), there can be at most k — 2 Steiner nodes (each of degree at
least 3). Once we specify the terminals and the Steiner nodes for a full component, then an
optimal Steiner tree is a minimum spanning tree on this combined set of nodes, and so, with a
specified sink, we know that there are at most kn?*~2 directed full components that need to be
considered for the k-restricted component linear programming relaxation. Let Cp denote this
restricted set of directed full components, and let M = |Cy]|.

By applying Theorem 12.9 to each full component in the support of the optimal fractional
solution, it is straightforward to obtain the following corollary: if we consider the k-restricted
LP to be variant of the LP (12.3) in which each occurrence of the set C is replaced by the set
Cp, then the two optimal LP values are within a factor of 1+ 10 7 of each other. Thus, if we
can round the optimal solution of the k-restricted component LP to yield a Steiner tree, while
losing a factor of «, then the resulting approximation algorithm is “nearly” an a-approximation
algorithm, in that, for any fixed € > 0, we can obtain an (« + €)-approximation algorithm by
setting k£ to a sufficiently large constant. Of course, we must still argue that the k-restricted
component linear program is polynomial-time solvable, since there are still an exponential
number of constraints. There are a number of approaches that suffice; once again, simple
minimum-cut computations show that either the inequalities corresponding to (12.4) are all
satisfied, or else identify a violated inequality. We leave the proof that the linear program is
polynomial-time solvable to Exercise 12.5.

We can solve this LP relaxation, but how do we make use of the optimal fractional solution?
We shall combine randomized rounding with an iterative rounding approach. We start with
the minimum spanning tree on the graph induced by the set of terminals (which we call the
minimum terminal spanning tree), and in each iteration, we randomly select a directed full
component in proportion to its fractional value in the optimal fractional solution, contract that
component by identifying its terminals, and then iterate. This process continues for a fixed
number of iterations, at which point, we settle for the final minimum terminal spanning tree
to connect the remaining terminals. Since the set of terminals evolves over the execution of
the algorithm, we shall let mst(R’) denote the cost of the minimum terminal spanning tree
when R’ C R is the terminal set. In a given iteration, we start with a minimum terminal
spanning tree T" and perform a “contraction” defined by a directed full component C' to yield
a remaining set of terminals R’; the contraction reflects the commitment to include the edges
in C in the solution, incurring a cost equal to ¢(C'), whereas it also “simplifies” the residual
problem providing a savings of

dropr(C) = ¢(T) — mst(R).

The analysis of the algorithm is based on the following lemma that links the value of the
fractional solution to these incremental improvements.

Lemma 12.10: Let T be a terminal spanning tree and let x be a feasible solution to the directed
component cut-covering relaxation (12.8); then

T) <) dropr(C)zc. (12.5)
ceC

Before proving this lemma, we first show how it provides the key to the analysis of our
iterative approximation algorithm. Focus on one iteration of the algorithm; let T denote the

Electronic web edition. Copyright 2011 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press



320 Further uses of random sampling and randomized rounding of linear programs

minimum terminal spanning tree at the start of the iteration, let = denote the optimal fractional
solution to the directed component relaxation, and let ¥ = 3"~ z¢. Let C' denote the directed
full component selected in this iteration (which occurred with probability xz¢/%), and let T”
denote the resulting minimum terminal spanning tree. Then, by taking into account the random
selection of the component C', we see that

Ele(T")] = ¢(T) - Eldropr(C)]
= o(T) =) (xc/T)dropr(C)

c
(1 - ;) e(T)
e

where OPT denotes the optimal value for the given Steiner tree input. In fact, we can strengthen
this final inequality by the following lemma, which relates the cost of the minimum terminal
spanning tree to the optimal value of the directed component linear programming relaxation.

IN

IN

Lemma 12.11: For any input to the Steiner tree problem, the cost of the minimum terminal
spanning tree T is at most twice the cost of the optimal fractional solution x for the directed
component linear programming relazation (12.3).

Proof. We first transform z into a feasible fractional solution y to the bidirected cut relaxation
for the input induced on the terminals R. The cost of y will be at most twice the cost of x,
and by the integrality of the bidirected cut relaxation in this case (since then all nodes are
terminals), we may conclude that the minimum terminal spanning tree costs no more than y.
This completes the proof of the lemma.

To construct y, we initially set y = 0, then, in turn, consider each directed component C
for which z¢ > 0. Consider the “doubling” of each edge in the Steiner tree for this component
C' (ignoring edge directions), to yield an Eulerian graph. This Eulerian tour can then be
shortcut to yield a cycle on the terminals of C'; R(C). We delete one edge of the cycle (chosen
arbitrarily), and then orient the edges of this terminal spanning tree on R(C') towards the root
of the component, sink(C). For each of the edges in this directed spanning tree, we increment
its current value y, by x¢. If we view each component C as providing capacity for z¢ to flow
from each terminal in R(C) to the node sink(C), then we see that we have provided exactly
the same additional capacity from each terminal to sink(C') in the shortcut solution that uses
only terminal nodes. Since the feasibility of = ensures that for each node there is at least total
capacity 1 from that node to the root, so must the modified construction for y. But this means
that y is a feasible fractional solution for the bidirected cut relaxation, and this completes the
proof of the lemma. O

Intuitively, if in each iteration we decrease the cost of a minimum terminal spanning tree by
a factor of (1 —1/3), then if we apply the same technique for ¥ iterations, we decrease the cost
of the minimum terminal spanning tree by a factor that is at most 1/e. Therefore, if consider
(¥, iterations, we decrease the resulting cost by a factor of (1/e)’. By Lemma 12.11, we know in
fact that, if we start with the minimum terminal spanning tree, the end result has expected cost
at most 2(1/e) times the optimal value of the directed component relaxation. However, in each
iteration, this decrease is paid for by the connection cost ¢(C') of the selected component C.
Due to the random selection rule, the expected cost incurred is equal to >~ (zc/X)c(C), which
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is 1/% times the cost of the optimal fractional solution x for the current directed component
relaxation. One technical convenience of bounding this cost by the optimal fractional value is
that this value is nonincreasing over the course of the algorithm (by again taking the capacity
installation view of the directed component relaxation as in the proof of Lemma 12.11). Hence
after /3 iterations, we incur a total cost that is at most £ times the cost of the initial optimal
solution to the directed component relaxation. In total, the result after £ iterations has cost
at most (2¢ ¢ +¢) times this LP value; if we set £ so as to minimize this quantity, then £ = In),
and we obtain a performance guarantee (and an integrality gap) of 1 +In2 < 1.694.

This intuition oversimplifies one further technical issue — there is no reason that the variables
of the relaxation need sum to ¥ in each iteration. This can be avoided by the following simple
workaround. We know that ¥ < M, the number of variables in the k-restricted component LP
in which we only have directed full components for the optimal Steiner tree on each set of at
most k terminals. We add a dummy full component, corresponding to just the root node, and
then can add the constraint that the variables must sum to M, and so we run the algorithm for
(In2)M iterations, which is a polynomial bound. (It is significant to note that by stating the
algorithm in this way, we have made it much less efficient, since an overwhelming fraction of
the time, we will sample the dummy full component, which results in no contraction but incurs
no additional cost.)

We turn next to gaining a greater structural understanding of dropp(C'), which we will use
to prove Lemma 12.10.

Let T be a minimum terminal spanning tree, and consider the contraction corresponding to
some full component C', and hence we identify the nodes R(C'); what happens to the minimum
terminal spanning tree? Since |R(C)| nodes are replaced by 1 node, we need |R(C)| — 1 fewer
edges to connect the resulting terminals. Suppose we first just identify two terminal nodes
u and v. This is equivalent to having an edge connecting them of cost 0, and so the effect
on the minimum terminal spanning tree is to delete from T the maximum cost edge on the
(unique) path between u and v in T'. More generally, in identifying all of the vertices in R(C),
we can again consider the effect of adding an edge of cost 0 between each pair of vertices in
R(C). It is easy to see that a new minimum terminal spanning tree 7" can be formed from a
spanning tree on R(C') (of cost 0) plus a subset of the edges in T": if this is not the case and
there is a new edge e used in 7" but not in T' (other than the dummy edges of cost 0), then
we could do an interchange and replace e by a cheapest edge in T" that crosses the cut defined
by deleting e from T”. Thus, we can define Dropr(C) as the set of |[R(C)| — 1 edges in T that
are deleted from the minimum terminal spanning tree by contracting the nodes in R(C), and
dropr(C) is the total cost of these edges. Notice also that we could find the set Dropr(C) by
building an auxiliary complete graph with node set corresponding to R(C'), where the weight
for each edge (u,v) is the maximum cost edge in the path from u to v in T, and then finding
a maximum-weight spanning tree in this auxiliary graph. One interpretation is that there is
a correspondence between the edges of T in Dropr(C') and edges in selected maximum-weight
spanning tree in this auxiliary graph.

We now turn to the proof of Lemma 12.10.

Proof of 12.10. At the core of this proof is the integrality of the bidirected cut formulation for
the minimum spanning tree problem. The basic steps of this proof are as follows: we construct
an undirected multigraph H = (R, F') with (new) edge costs, and devise a feasible fractional
solution y to the bidirected cut formulation of cost equal to the right-hand side of (12.5); on
the other hand, we show that any spanning tree of H has cost at least ¢(T"). The integrality of
the formulation implies the lemma.
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Consider in turn each directed full component C'; each component C will cause us to include
certain edges in H, and to adjust the fractional solution y, which is initially equal to 0. For
the directed component C, consider the auxiliary (undirected) graph built on R(C) in the
construction above. Take the maximum-weight spanning tree on R(C') (whose edges correspond
to Dropr(C)), and include each of these edges in H with cost equal to its weight in the auxiliary
graph. Now direct this tree towards the node sink(C) and for each edge e in this directed tree,
increment y. by x¢. It is clear that this process generates a fractional solution of total cost
exactly equal to ), xcdropr(C).

We need to establish that y is a feasible fractional solution for the bidirected cut formulation
for the multigraph H. The solution z is a feasible fractional solution to the directed component
formulation and we can view this as installing, for each component C, capacity x¢ from each
non-sink node in R(C) to the node sink(C); by the max-flow min-cut theorem, the feasibility
of x means that in total, these installations support a flow of 1 from each node in R to the root
node r. However, the solution y does this as well; for each component C', we increment y so as
to install an additional capacity of x¢ (through a directed spanning tree) from each non-sink
node in R(C) to the node sink(C). Hence, in total, we have installed sufficient capacity so that
a flow of 1 can be sent from each terminal to the root. Hence, y is a feasible solution to the
bidirected cut formulation.

Finally, we show that the cost of any spanning tree in H is at least ¢(T). It suffices to show
that if we consider G’ which is the union of H and T, then T is a minimum spanning tree in
G’. A sufficient condition for a spanning tree T to be minimum-cost is that the cost of each
edge (u,v) not in T is at least the maximum cost in the path in 7' connecting v and v. But
note that by our construction, each edge inserted in H has cost exactly equal to that maximum
cost, and so T' is a minimum spanning tree in G'. O

Putting the pieces together, we have now proved the following theorem.

Theorem 12.12: The iterated randomized rounding algorithm yields a 1.694-approximation
algorithm for the Steiner tree problem, and furthermore, the integrality gap of the directed
component relaxation is at most 1.694.

In fact, a similar framework can be used to prove a significantly stronger performance
guarantee of 1.5. The key observation is that when one selects a directed full component C
and identifies its endpoints, not only does the minimum terminal spanning tree cost decrease,
but the cost of the optimal Steiner tree decreases as well, albeit by a factor of (1 — 1/(2M))
instead. Nonetheless, this allows for a somewhat different balancing of terms, and yields the
stronger performance guarantee. Interestingly, this technique does not prove a stronger upper
bound on the integrality gap of the directed component LP.

12.4 Everything at once: finding a large cut in a dense graph

We now turn to a result which will require most of the tools we developed in Chapter 5:
randomized rounding, Chernoff bounds, and random sampling. We will apply these to the
maximum cut problem (MAX CUT) introduced in Section 5.1. Recall that in the maximum
cut problem, the input is an undirected graph G = (V, E), and nonnegative weights w;; > 0 for
each edge (i,7) € F, and the goal is to partition the vertex set into two parts, U and W =V —U,
so as to maximize the weight of the edges whose two endpoints are in different parts, one in U
and one in W. In the case w;; = 1 for all edges (i,j) € E, we have an unweighted maximum
cut problem.
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In this section, we will show that we can obtain a PTAS for the unweighted maximum cut
problem in dense graphs by using a sophisticated combination of the randomization techniques
introduced in the Chapter 5. Recall that a graph is dense if it has at least a(g) edges for some
constant « > 0. In Theorem 5.3 of Section 5.1, we gave a simple %—approximation algorithm for
the maximum cut problem. The analysis shows that the algorithm finds a cut whose expected

value is at least %E(i,j)eE w;j. Thus it must be the case that OPT > % Z(i,j)eE w;;. It follows

that in an unweighted dense graph, we know that OPT > %(3)

Recall that in Section 5.12 we introduced a sampling technique for coloring dense 3-colorable
graphs. We would like to use the same sampling technique for the maximum cut problem on
unweighted dense graphs. That is, suppose we can draw a sample of the vertices of the graph
and assume that we know whether each vertex of the sample is in U or W for an optimal cut.
If the sample size is O(logn) we can enumerate all the possible placements of these vertices in
U and W including the one corresponding to an optimal cut. In the case of trying to color a
3-colorable graph, a knowledge of the correct coloring of the sample was enough to infer the
coloring of the rest of the graph. What can we do in this case? In the case of coloring, we
showed that with high probability, each vertex in the graph had some neighbor in the sample
S. Here we will show that by using the sample we can get an estimate for each vertex of how
many neighbors are in U in an optimal solution that is accurate to within +en. Once we have
such estimates we can use randomized rounding of a linear program in order to determine which
of the remaining vertices should be placed in U. Finally, we use Chernoff bounds to show that
the solution obtained by randomized rounding is close to the optimal solution.

We draw our sample in a slightly different fashion than we did for the 3-coloring algorithm.
Given a constant ¢ > 0 and a constant ¢, 0 < ¢ < 1, we draw a multiset S of exactly (clogn)/e?
vertices by choosing vertices at random with replacement. As in the case of 3-coloring a graph
we can now in polynomial time enumerate all possible ways of splitting the sample set S into
two parts. Let us say that x; = 0 if we assign vertex ¢ to U and x; = 1 if we assign vertex ¢ to
W. Let z* be an optimal solution to the maximum cut problem. Let u;(x) be the number of
neighbors of vertex ¢ in U given an assignment x of vertices. Observe that > " | u;(z)z; gives
the value of cut for the assignment x: when x; = 1 and i € W, there are u;(x) edges from i
to vertices in U, so that this sum counts exactly the set of edges in the cut. We can give a
reasonably good estimate of u;(z) for all vertices i by calculating the number of neighbors of i
that are in S and assigned to U, then scaling by n/|S|. In other words, if @;(x) is our estimate
of the neighbors of ¢ in U, then

()= Y. (1-az).
jES:(i,j)EE
Note that we can calculate this estimate given only the values of the z; for j € S.

To prove that these estimates are good, we will need the following inequality, known as
Hoeffding’s inequality.

Fact 12.13 (Hoeffding’s inequality): Let X1, Xo, ..., Xy be ¢ independent 0-1 random vari-
ables, not necessarily identically distributed. Then for X = Zle X; and p = E[X], and b > 0,
then

Pr]|X — p| > b < e /L,

We can now prove bounds on the quality of the estimates.
Lemma 12.14: With probability 1 — 2n=2¢,
ui(z) —en < 4;(x) < ui(x) + en
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for any given i € V.

Proof. Let N(i) be the neighbors of i in G; that is, N(i) = {j € V : (i,j) € E}. Let Y; be
a random variable for the jth vertex in S. If the jth vertex in S is some k € N(i), we let
Yj =1 —xj and let Y; = 0 otherwise. Note that the probability that & € N (i) is [N (i)|/n since
we chose the jth vertex of S randomly with replacement. Then the expected value of Y} given
that j € N(7) is m >_ken(i)(1 — z), so that the unconditional expected value of Yj is

n NG Z (1—m) = %Ui(x)-

kEN (i)

Thus if Y = Z‘]i‘l Yj, we have p = E[Y] = %'ul(a:) Note that u;(z) = %Y. If we now apply

the Hoeffding inequality with b = ¢€|S|, we have that

)

e Sl

> 6’5’] < 26—2(6\5\)2/|S| — 26—2€2|S\ _ 26—2clnn _ 2n—2¢

so that Lfbluz(w) — eS| <Y < |—‘2'11,,(56) + €S| with probability at least 1 — 2n=2¢. Multiplying

the inequalities by n/|S|, we get the desired result. O

Since |S] is sufficiently small, we can enumerate all the possible settings of the z; for i € S;
one of these will correspond to an optimal solution x*, and thus we will have good estimates
@;(x*) for this particular setting. We will now turn to showing how to use these estimates to
obtain a good cut. Note that in enumerating all possible settings of x; for i € S, we will not
know which one corresponds to z*. However, we will show that for the setting that corresponds
to z*, we will produce a cut of size at least (1 — ¢') OPT, for a specified ¢ > 0. Thus if we
return the largest cut produced, we are guaranteed to produce a cut of size at least this large.

From now on, we assume that we have estimates @;(z*) for all i such that u;(z*) —en <
U;(x*) < ui(x*)+en. To produce a good cut given these estimates, we use randomized rounding.
Consider the following linear program:

n
maximize Z i (x™)y;
i=1
subject to Z (1—vyj) >a;(z*)—en, i=1,...,n, (12.6)
J:(i.g)er
Z (1—-y;j) <a(z*)+en, i=1,...,n,
§:(,5)EE
0<y; <1 1=1,...,n.

Suppose that the variables y; are integer. Then since u;(y) = 3_;.; yep(1 —¥;), the constraints
enforce that 4;(x*) — en < u;(y) < 4;(x*) 4+ en. Note then that y = z* is a feasible solution
for the linear program. Furthermore, if the objective function were Y | u;(x*)y; (rather than
using the estimates 4;(z*)), then the value of the LP solution with y = z* would be OPT, since
we earlier observed that Y " | u;(xz*)x} counts the number of edges in the cut of the assignment
x*.

We show below that by using the known estimates ;(x*) in the objective function instead of

the unknown values u;(z*) the value of this linear program is still nearly OPT. Our algorithm
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then will be to apply randomized rounding to the solution to the linear program. Using Chernoff
bounds, we can then show that the solution obtained is only slightly smaller than that of the
LP, and hence almost OPT.

Lemma 12.15: The value of the linear programming relazation (12.6) is at least (1— ) OPT.

Proof. As observed above, the solution y = x* is a feasible solution to the linear program. Since
the objective function is Y. ; @;(x*)y; the solution y = z* has value

n

> ai(at)ar = ) (ui(a®) - en)a}
=1

=1

v

OPT —en i x;.

i=1
Since we assume there is at least one node in U in an optimal cut, we know that Y ;" | «F < n—1.

Then since we know that OPT > %(Z), we have

Zﬁl(:c*)arf > OPT —en(n—1)

i=1

(1 - 46) OPT.
e

We now show that randomized rounding of the linear programming relaxation gives a good
solution. Let y* be an optimal solution to the linear program, and let i be the integer solution
obtained from y* by randomized rounding. We prove the following theorem.

v

O

Lemma 12.16: For n sufficiently large, the randomized rounding of the linear program produces
a solution of value at least (1 — %) OPT with probability at least 1 — 2n~¢T1,

Proof. From the discussion, we know that the value of the integral solution g is 1" | u;(y)7;.
We know from Lemma 12.15 that > ;| 4;(z*)y; is close in value to OPT. We'll first show that
u;(y) is close in value to 4;(z*), and then that > ;" | 4;(z*)y; is close in value to > ;| u;(z*)y],
so that we prove that the solution 7 has value that is close to OPT.

First, we show that u;(y) = >_;.; yep(1 —¥;) is close in value to @;(z*). To do this, observe
that

Elu(y)] = E 'Z (1-75)

We now want to show that w;(y) > (ui(y*) — v/(2¢lnn)u;(y*)) with high probability via a
Chernoff bound. To do this, set §; = 4 /3‘;(1;[; >0,letY; =(1—-y;),and let Y = ij(i,j)eE Y; =
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u;(y), so that u; = E[Y] = u;(y*). By applying Corollary 5.28, we obtain that u;(y) > (1 —
di)u;(y*) with probability at least

clnn

1-— e_ﬂi(ﬁ/? >1- e_ui(y*)ui(y*) =1-n"¢

Thus with probability at least 1 — n="! w;(7) is close to u;(y*) for all i € V. Then we have
that the value of the cut obtained by randomized rounding is

Z uwi(§)yi > Z(l — 6i)ui(y") i
=1 =1
S (wily) — VEeInjuily))

i=1

v

> z": <al(:c*) —€en — \/W) Ui,

=1

where the last inequality follows by the linear programming constraints of (12.6), since u;(y*) =
> (i j)er(l —y;) = 4i(z*) — en. Then since Yo, Ui < n, we have that

n n
Zui(g)ﬂi > Zﬁi(:c*)gi —en? — nV2enInn. (12.7)
i=1 i=1

We would now like to bound the value of the term > ;" ;| 4;(2*)g; and show that it is close to
OPT. Note that its expected value is Y ;- 4;(x*)yF, which is just the objective function value
of the linear program, and hence close to OPT by Lemma 12.15. Let Z = max; 4;(z*). We will
show via a Chernoff bound that with high probability,

n n
Zm(x*)ﬂz > Zﬂ:(w*)y;‘ - 20Z1nnZul i
=1 i=1

Let 6 = % > 0, let X; = ;(2*)y;/Z, and let X = 3" | X;, so that p = E[X] =
=1 "7

% o Gi(2*)yr. Note that since we have scaled by Z, either X; = 0 or some value no greater
than 1. Then by Corollary 5.28,

1 n
21:1711'(%') 1—6

Pr

N a—

] > 1o eI /22
—C

= 1-—n

Thus with high probability we have that

n
Yy > (19 ZUz Yi
i=1
2chnn
= (1 /=" )Y
( e )zz i
n n
= Zﬂz(x*)yf— QCZlnnZﬂi(x*)y;.
=1

=1
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Using Z <n and Y., 4;(z*)y; < n?, we have that
n n
S ai(a)g > Y ai(a*)y; — nV2enlnn.
i=1 i-1

Plugging this into inequality (12.7), we obtain

n

Z Y)Y > Zuz )yi —2nV2cenlnn — en?.

=1

Recall that Y " | @;(x*)y} is the objective function of the linear program, and its value is at
least (1 — a)OPT by Lemma 12.15. Thus the value of the randomized rounding solution,

Z?:l ul(g)gﬁ is
4
Zuz )y > <1 — 6) OPT —2nV2enlInn — en?.

For n sufficiently large 2nv2cnInn < en(n — 1)/4 and en? < 4e(}). Recall also that OPT >

% (Z) Thus the value of the solution is at least

(1 - 46) opT—< opT - opT,
(6% (6%

(0]
<1 — 136) OPT.
(6]

or at least

O

To recap, our algorithm draws a multiset S of exactly (clogn)/e? vertices by choosing
vertices randomly with replacement. We then enumerate all 2/°! possible placements of the
vertices in S on each side of the cut (in U and W) by setting «; to either 0 or 1 for each j € S.
For each setting x, we get estimates u;(z), which we use in the linear program (12.6), and
apply randomized rounding to the solution of the linear program to obtain the cut. Since one
of the settings of the x variables corresponds to an optimal cut x*, during this iteration of the
algorithm, the lemmas above will apply, and we will obtain a near optimal cut. This gives the
following theorem.

Theorem 12.17: For n sufficiently large, the algorithm above obtains a cut of value at least
(1- %’6) OPT with probability at least 1 — 4n—¢T1,

Proof. From Lemma 12.14, we have that u;(z*) — en < 4;(x*) < w;(2*) + en for all i € V with
probability at least 1 — 2n~2¢t1 > 1 — 2n=¢*! when we consider the solution z* for our sample
S. Given that the estimates hold, we have from Lemma 12.16 that with probability at least
1 — 2n=¢*! that the randomized rounding of the linear program produces a solution of value
at least (1 — 12¢) OPT. Thus the algorithm produces a solution of value at least (1 — 12¢) OPT
with probability at least 1 — 4n—¢t1, O
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Exercises

12.1 Show how to transform any solution to the linear programming relaxation of the unca-
pacitated facility location problem into a complete solution as defined on page 311, so

that whenever z7; > 0 then zj; = y;.

12.2 In the multicommodity rent-or-buy problem, we are given an undirected graph G = (V, E)
with edge costs ¢, > 0 for all e € E, a set of k source-sink pairs s;-t; for i = 1,...,k,
and a parameter M > 1. For each source-sink pair, we need a path P; in the solution
connecting s; to t;. As in the single-source rent-or-buy problem, we can either buy edges
e at cost Mc., which then any pair can use, or we can rent edges e at cost ce, but every
pair using edge e must pay the rental cost. If we let B be the set of bought edges, and
R; the set of rented edges for pair ¢, then there must be a path from s; to ¢; in the set of
edges B U R; for each 4, and the cost of this solution is M¢(B) + Zle c(R;).

Consider a sample-and-augment algorithm that samples every source-sink pair with prob-
ability 1/M. Let D be the set of sampled pairs. We run the generalized Steiner tree
algorithm of Section 7.4 on the demand pairs in D and buy the edges given by the algo-
rithm; let these edges be B. Then for any s;-t; pair not in D we rent edges on the shortest
path from s; to t; in which the edges in B are given cost 0.

(a) Show that the expected cost of the bought edges B is at most 2 OPT.

To analyze the cost of the rented edges, we use a notion of a-strict cost shares for the
generalized Steiner tree problem. Suppose we have an instance of the generalized Steiner
tree problem with s;-t; pairs for ¢ € R. We say we have an algorithm returning a-strict
cost shares y; for all i € R, if two conditions are met: first, the sum of the cost shares,
> ick Xi, is at most the optimum cost of the generalized Steiner tree on the pairs in R;
and second, for any ¢ € R, the algorithm running on the instances with source-sink pairs
from R — {i} returns a solution F' such that the cost of the shortest path from s; to ¢;,
treating edges in F' as having cost 0, is at most ay;.

(b) Use the idea of cost shares to show that the expected cost of the rented edges is at
most « OPT. (Hint: define a random variable 3; to be My; if i € D and 0 otherwise,
and a random variable p; to be the renting cost of the pair i if i ¢ D and 0 otherwise.
Show that conditioned on the set D — {i}, the expected value of p; is at most a3;).

It is known that the primal-dual generalized Steiner tree algorithm of Section 7.4 can
produce 3-strict cost shares.

(c) Show that the sample-and-augment algorithm given above is a randomized 5-approximation
algorithm for the multicommodity rent-or-buy problem.

12.3 In the unweighted maximum directed cut problem we are given as input a directed graph
G = (V,A), and the goal is to partition V into two sets U and W = V — U so as to
maximize the total weight of the arcs going from U to W (that is, arcs (i,7) with i € U
and j € W). Suppose that the graph (V, A) is dense; that is, for some constant o > 0,
the total number of arcs is at least an?. Give a polynomial-time approximation scheme
for the unweighted maximum directed cut problem in dense graphs.
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12.4 In this exercise, we revisit the metric asymmetric traveling salesman problem introduced

in Exercise 1.3. Recall that we are given as input a complete directed graph G = (V, A)
with costs ¢;; > 0 for all arcs (4, j) € A, such that the arc costs obey the triangle inequality:
for all 7,7,k € V, we have that ¢;; + c¢jr > c;. The goal is to find a tour of minimum
cost; that is, a directed cycle that contains each vertex exactly once, such that the sum of
the cost of the arcs in the cycle is minimized. As in Exercise 1.3, we will find a low-cost,
strongly connected Eulerian graph and shortcut this to a tour. Recall that a directed
graph is strongly connected if for any pair of vertices i, j € V there is a path from ¢ to j
and a path from j to i. A directed graph is Eulerian if it is strongly connected and the
indegree of each vertex equals its outdegree.

We will show that we can obtain an O(logn)-approximation algorithm for the problem via
randomized 