Some Open Problems in Approximation Algorithms

David P. Williamson
School of Operations Research and Information Engineering
Cornell University

August 18, 2011
APPROX 2011

The book

Electronic version at www.designofapproxalgs.com.

Outline

- Three FAQs about the book
- Our ten open problems (Chapter 17)
- Some thoughts about the field

FAQ \#1

FAQ \#1: How long did it take to write the book?

FAQ \#1

FAQ \#1: How long did it take to write the book?
Answer: 13-14 years, depending on how you count.

FAQ \#1

FAQ \#1: How long did it take to write the book?
Answer: 13-14 years, depending on how you count.
Fax from July 16, 1997 with book outline.

The first outline

SENT BY:
7-16-97 : 11:45

1. Introduction
A. What are approximation algorithms? Why approximation algorithms?
B. An introduction to approximation algorithms: 2-approximation algorithms for vertex
cover
2. Unweighted via matohings
3. Linear programming and deterministic rounding (Hochbaum; Nemhauser-Trotter?)
4. Constructing a dual (Bar-Yehuda and Even)
5. Randomization (Pitt)
C. Sel cover
6. Extending arguments: Hochbaum, Bar-Yehuda \& Even, Pitl
7. A Better Algorithm for Unweighted (Johnson, Lovasz) , reaa, biA?
8. A Better Algorithm for Weighted (Chvatal)
9. A Better Algorithm Algorithms for Classic Problems
chep tov A. Traveling Salesman Problem
op flom. Doubling a min-cost spanning tree -Neowot additin
10. Christofides' Algorithm
11. The Prizo-Collecting TSP
i. Solving large LPs: the ellipsoid method
ii. Deterministic Rounding (Bienstock et al.)
B. Steiner Trecs and a simple 2-approximation algorithm
C. Knapsack and Dynamic Programming (lbarra-Kim)
12. Simple proof of a Johnson algorithm? (zuft +1)
13. de la Vega and Lueker
14. Karmarkar and Karp
E. Cliques, Independent Sets, and Colorings
15. Johnson's algorithm
16. Widgerson's $\mathrm{O}(\mathrm{sqri}(\mathrm{n}))$ algorithm for 3 -colorable graphs
17. Boppana-Halldorsson (trow hardis this?)
18. Edge-coloring (Vizing)

VF. Scheduling

1. Graham for $\mathrm{P} \| \mathrm{C}_{\text {_max }}$ (4 pThs for fixeim) LbT ?
2. Dynamic programming: PTAS for P\|C_max (Hochbaum \& Shmoys)
III. The Power of Randomization
A. Flipping Coins and Easy Randomization
3. MAX CU'T (Suhni-Gonzalez) and MAX SAT (Johnson)
(2. Flipping Bent Coins: MAX SAT (Lieberberr and Specker)
4. Derandomization: the Method of Conditional Expectations
B. Randomized Rounding
5. MAX SAT (Goemans-Williamson)
6. Multicommodity Flows (Raghavan-Thompson)
7. Prize-collecting TSP revisited (Goemans)
8. Set cover and oversampling? $V C$ dimins m?
9. MAX CUT in dense graphs (Arore-Karger-Karpinski)
C. Rounding Semidefinite Programs

The first outline (2)

```
            1. MAX CUT (Goemans-Williamson)
            2. Coloring (Karger-Motwani-Sudan)
IV. Finding cuts in graphs & metric methods & applications
    A. A warm-up: multiway cuts (Dahlhaus et al.)
    The metric method: multicuts (Garg-Vazirani-Yannakakis)
    C. Balanced separators (Even-Naor-Rao-Schieber)
    D. Applications of balanced separators (linear arrangement, etc.)
V. Network Design Problems, filtering, and the primal-dual method
    A. Facility location and filtering
        1. Early results (Dyer-Frieze, Hochbuum-Shmoys)
        2. Filtering (Slunoys-Tardos-Aardal)
    B. The primal-dual method
        1. 0-1 proper functions (Goemans-Williamson)
        2. Survivable Network Design with multiple edge copies (Agrawal-Klein-Ravi,
            Givemans-Williamson)
            Prize-collecting TSP revisited again (Goemans-Williamson)?
            k-MST (Garg)?
            5. A non-nctwork design application: feedback vertex sets (Bafna-Berman-Fujito as
            interpreted by Chudak-Goemans-Hochbaum-Williamson)
    C. More network design
            1. Steiner trees (Zelikovsky)
            2. Low-degree trees (Furer-Raghavachari)
    V. Dynarmic Programming
    A. Baker's PTAS for planar graphs
    B. Arora's PTAS for Eurctidean problams TS' , Mitwlel for slemith- Tren
VIL. More Scheduling
VIIL. Hardness resuirs and implications
    A. Statement of ALMSS and proof of hardness of MAX SAT
    B. The label-cover theorem and implications (?)
    C. Statement of hardness of clique, coloring, Hastad's result for equations over GF[2]
        FII
            A. Simple Rules with Somegh Anglyes
                1. EDD in Itrallume (ii hloat-bodntasi form)
```



```
                B. LP-boust rulus
            1. }\mp@subsup{\overline{c}}{j}{}\mathrm{ fon Ilpmol Projc;
            2. Gurenalud exoymnu-t
```



```
                            c. R
                Ramtaned Inqminit
                    1. e/e-1 fo ||ralecj
                            2. 2+in R| Novi|}|\mp@subsup{|}{j}{\prime}\mp@subsup{C}{j}{

\section*{A later outline}
I. Introduction - the book in mini tore
A. The what/uhy of approx. albs.
B. An introutition topproproax. Ales: Set cover
1. Unweighted, grady

5. Date Weighted greedy (Chua'tal)
II TSP 中 deterministic rounding??
TSP Dobbing an MST \& nearest addition
1. Chirsoof ides
3. The PCST
Steiner tree
(0) a. Ellipsoid method
b. Deterministic rounding
B. \(k\)-median - ency dat. rounding from \(C E S T T\) ?
III Dynamic Programming \(\$\) Bin packing
A. Kmpsad
B. PIp Many
1. List ch editing
2. PTAS Aha
\(\}^{c}\)

LPT as
IV Randomization


\(g_{g}\)

\section*{A later outline (2)}
\[
\begin{aligned}
& \text { 6. Max Cut: a case study } \\
& \begin{array}{l}
\text { 1. Eosy } \frac{1}{2} \text {-(SG) } \\
\text { 2. PTA in dense graphs (AKK) }
\end{array} \\
& \text { Rg-Th ma flows as } \\
& \text { YA. Msinnonifor } \\
& \text { D. SDP } \\
& \text { 1. Max } \\
& \text { 2. Quodratic programming (Nesterou) } \\
& \text { a. Widersan's } O\left(F_{n}\right) \text { for } 3 \text {-colorable graphs } \\
& \text { b. MKS ala. } \\
& \text { a. MKS sity. } 2 \text { 2tion? } \\
& \text { I Cuts \& Metrics } \\
& \text { A. Multiwan cots } \\
& \text { 1. Easy } 2 \text { (Dilhaus of al.) } \\
& \text { 2. Inproved } L P+h_{1} \text { metric view (CKR) } \\
& \text { B. Multicuts (GVY) } \\
& \text { C. Balanced separators (ENRS) } \\
& \text { D. Sparsest cut \& LLR low distortion embeodings } \\
& \text { II The Primal-dual method } \\
& \text { A. Intro } \rightarrow \text { Gerearaized Staiver trees } \\
& \text { B. Facility Loation (GV) } \\
& \text { C. PCST ?? } \\
& \text { D. Lagrangean relaxation } \\
& \text { 1. K-median } \\
& \text { 2. K-MST (5) } \\
& \text { E. FVS? }
\end{aligned}
\]

\section*{A later outline (3)}
```

[II Loal search
A. Faility location (Guha \& Charkar)
B. Lou degrue spanning tree (Fwrer Raghavachari)
VIII Alvanced deterministic rounding: Jin
X Advanced dynamic programming: Aorara Mitchell)
X. Advanced scheduling
A. Simple roles

1. EDD for 1 rimple analyses
2. EPT for ${ }^{\text {P }}{ }^{1}\left|r_{j}\right| \sum \omega_{j} C_{j}$
1. Ci for 1 Ipred $\sum_{w j} C_{i}$
a 3 . SRR for $P \| \sum \mathrm{N}_{j} \mathrm{C}$
C. Randonization
1. 2 for $R \|\left|\Sigma^{2} j\right| C c_{j}$
XI Hardesss bounds
A. Statement of ALMSS \rightarrow no PAAS for MAX SAT
B. Label cure? ? dive, coloring, eqs. over $G F[Z]$
```

Some principles

Guiding principles
- Presentation of simple, elegant algorithms and analysis
- Techniques widely applicable
cicely applicable exhlustive, but hodge-podge coverage of particular problems es resits)
- Illustrate the power of new techniques, formulations by revisiting core problems many times: POST, k-medianffac loci, FUS, Max Sat, Max Cut; Multiway at

\section*{Final structure}
\begin{tabular}{|l|l|}
\hline Intro: Set cover & \\
\hline Greedy and local search & Further greedy and local search \\
\hline Dynamic programming & Further dynamic programming \\
\hline Deterministic rounding & Further deterministic rounding \\
\hline Randomized rounding & Further randomized rounding \\
\hline SDP & Further SDP \\
\hline Primal-dual & Further primal-dual \\
\hline Cuts and metrics & Further cuts and metrics \\
\hline & Hardness \\
\hline & Open problems \\
\hline
\end{tabular}

\section*{Some nice things about the construction}

\section*{Uncapacitated facility location}
- Deterministic rounding: 4 (Chudak and Shmoys)

\section*{Some nice things about the construction}

Uncapacitated facility location
- Deterministic rounding: 4 (Chudak and Shmoys)
- Randomized rounding: 3 (Chudak and Shmoys)

\section*{Some nice things about the construction}

Uncapacitated facility location
- Deterministic rounding: 4 (Chudak and Shmoys)
- Randomized rounding: 3 (Chudak and Shmoys)
- Primal-dual: 3 (Jain and Vazirani)

\section*{Some nice things about the construction}

Uncapacitated facility location
- Deterministic rounding: 4 (Chudak and Shmoys)
- Randomized rounding: 3 (Chudak and Shmoys)
- Primal-dual: 3 (Jain and Vazirani)
- Further greedy and local search: 3,1+ \(\sqrt{2}\) (Charikar, Guha), 2 (Jain et al.)

\section*{Some nice things about the construction}

Uncapacitated facility location
- Deterministic rounding: 4 (Chudak and Shmoys)
- Randomized rounding: 3 (Chudak and Shmoys)
- Primal-dual: 3 (Jain and Vazirani)
- Further greedy and local search: 3,1+ \(\sqrt{2}\) (Charikar, Guha), 2 (Jain et al.)
- Further randomized rounding: \(1+\frac{2}{e}\) (Chudak and Shmoys)

\section*{Problems or techniques?}

A pedagogical issue: teach problems or techniques?

\section*{Problems or techniques?}

A pedagogical issue: teach problems or techniques?
Hard because historically the two are interwined; for example:
- Deterministic rounding/primal-dual and set cover/vertex cover (Hochbaum, Bar-Yehuda and Even)
- Randomized rounding and integer multicommodity flow (Raghavan and Thompson)
- SDP and max cut (Goemans and W)
- Region-growing and multicut (Garg, Vazirani, Yannakakis)

\section*{Problems or techniques?}

A pedagogical issue: teach problems or techniques?
Hard because historically the two are interwined; for example:
- Deterministic rounding/primal-dual and set cover/vertex cover (Hochbaum, Bar-Yehuda and Even)
- Randomized rounding and integer multicommodity flow (Raghavan and Thompson)
- SDP and max cut (Goemans and W)
- Region-growing and multicut (Garg, Vazirani, Yannakakis)

If techniques, then some algorithms are hard to categorize; e.g. what is Christofides' algorithm?

\section*{Problems or techniques?}

A pedagogical issue: teach problems or techniques?
Hard because historically the two are interwined; for example:
- Deterministic rounding/primal-dual and set cover/vertex cover (Hochbaum, Bar-Yehuda and Even)
- Randomized rounding and integer multicommodity flow (Raghavan and Thompson)
- SDP and max cut (Goemans and W)
- Region-growing and multicut (Garg, Vazirani, Yannakakis)

If techniques, then some algorithms are hard to categorize; e.g. what is Christofides' algorithm?
If problems, then what is the main takeaway of the course?

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)
- The multiplicative update algorithm

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)
- The multiplicative update algorithm
- Directed multicut
- ...

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)
- The multiplicative update algorithm
- Directed multicut
- ...

Answers (choose one at random):

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)
- The multiplicative update algorithm
- Directed multicut
- ...

Answers (choose one at random):
- It would have taken another 13-14 years...

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)
- The multiplicative update algorithm
- Directed multicut
- .. .

Answers (choose one at random):
- It would have taken another 13-14 years...
- ..and another 500+ pages...

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)
- The multiplicative update algorithm
- Directed multicut
- ...

Answers (choose one at random):
- It would have taken another 13-14 years...
- ..and another 500+ pages...
- Luckily, Sariel Har-Peled just wrote a book on geometric approximation algorithms (362 pages).

\section*{FAQ \#2}

FAQ \#2: Why didn't you cover:
- Online algorithms
- Streaming algorithms
- Geometric approximation algorithms (e.g. coresets)
- The multiplicative update algorithm
- Directed multicut
- ...

Answers (choose one at random):
- It would have taken another 13-14 years...
- ..and another 500+ pages...
- Luckily, Sariel Har-Peled just wrote a book on geometric approximation algorithms (362 pages).
- We consciously decided not to write about approximating problems in \(P\).

\section*{A definitional question}

\section*{Some of the items taken from the following blog post by David Eppstein (7 Nov 2010):}

\author{
Approximate book \\ There's a new book out by Williamson and Shmoys on approximation algorithms, The Design of Approximation Algorithms, available electronically for free as a pdf download. \\ For a book that claims to be a comprehensive reference on approximation algorithms, suitable for a general-purpose graduate course on the subject, it seems to me to have some strange lacunae. It has nothing about core-sets, for instance, and more generally very very little about approximation in geometric algorithms: the only such problem appearing in the table of contents is the Euclidean TSP. It also has similarly scanty coverage of competitive analysis of online algorithms, and absolutely nothing on streaming algorithms. \\ But if you want a book more specifically about how to bound the approximation ratio of linear and semidefinite programming relaxations to integer programming problems, this may be a worthwhile one to consider, despite the misleadingly general title. And the price is definitely right.
}

\section*{A definitional question}

\title{
Some of the items taken from the following blog post by David Eppstein（7 Nov 2010）：
}

\section*{Approximate book}

There＇s a new book out by Williamson and Shmoys on approximation algorithms，The Design of Approximation Algorithms，available electronically for free as a pdf download．
For a book that claims to be a comprehensive reference on approximation algorithms，suitable for a general－purpose graduate course on the subject，it seems to me to have some strange lacunae．It has nothing about core－sets，for instance，and more generally very very little about approximation in geometric algorithms：the only such problem appearing in the table of contents is the Euclidean TSP．It also has similarly scanty coverage of competitive analysis of online algorithms，and absolutely nothing on streaming algorithms．

But if you want a book more specifically about how to bound the approximation ratio of linear and semidefinite programming relaxations to integer programming problems，this may be a worthwhile one to consider，despite the misleadingly general title．And the price is definitely right．

All these types of algorithms do compute things approximately，but is that what the field means by an approximation algorithm？Should these topics get covered in grad courses on approximation algorithms？

\section*{FAQ \#3}

FAQ \#3: Are you going to leave the PDF up on the website?

\section*{FAQ \#3}

FAQ \#3: Are you going to leave the PDF up on the website?
Answer: Yes, with the agreement of the publisher (Cambridge University Press).

\section*{An effect}


\section*{Next: ten open problems from our book.}

\section*{Problem 10: A primal-dual algorithm for the maximum cut problem}

\section*{Maximum Cut Problem}

Input: An undirected graph \(G=(V, E)\) with nonnegative edge weights \(w_{i j} \geq 0\) for all \(i, j \in V\).
Goal: Find a set of vertices \(S \subseteq V\) that maximizes \(\sum_{i \in S, j \notin S} w_{i j}\).


\section*{Problem 10: A primal-dual algorithm for the maximum cut problem}

\section*{What's known?}
- an \((\alpha-\epsilon)\)-approximation algorithm using semidefinite programming (Goemans, W 1995) for
\[
\alpha=\min _{-1 \leq x \leq 1} \frac{\frac{1}{\pi} \arccos (x)}{\frac{1}{2}(1-x)} \approx .87856
\]
and any \(\epsilon>0\).

\section*{Problem 10: A primal-dual algorithm for the maximum cut problem}

\section*{What's known?}
- an \((\alpha-\epsilon)\)-approximation algorithm using semidefinite programming (Goemans, W 1995) for
\[
\alpha=\min _{-1 \leq x \leq 1} \frac{\frac{1}{\pi} \arccos (x)}{\frac{1}{2}(1-x)} \approx .87856
\]
and any \(\epsilon>0\).
- Assuming the unique games conjecture, no \((\alpha+\epsilon)\)-approximation algorithm is possible unless \(\mathrm{P}=\) NP (Khot, Kindler, Mossel, O'Donnell 2007; Mossel, O'Donnell, Oleszkiewicz 2010)

\section*{Problem 10: A primal-dual algorithm for the maximum cut problem}

\section*{What's known?}
- an \((\alpha-\epsilon)\)-approximation algorithm using semidefinite programming (Goemans, W 1995) for
\[
\alpha=\min _{-1 \leq x \leq 1} \frac{\frac{1}{\pi} \arccos (x)}{\frac{1}{2}(1-x)} \approx .87856
\]
and any \(\epsilon>0\).
- Assuming the unique games conjecture, no \((\alpha+\epsilon)\)-approximation algorithm is possible unless \(\mathrm{P}=\) NP (Khot, Kindler, Mossel, O'Donnell 2007; Mossel, O'Donnell, Oleszkiewicz 2010)
- No \(\beta\)-approximation algorithm possible for constant \(\beta>\frac{16}{17} \approx .941\) unless \(\mathrm{P}=\mathrm{NP}\) (Håstad 1997).

\section*{Problem 10: A primal-dual algorithm for the maximum cut problem}

The problem:
Solving the semidefinite program is computationally expensive. Can one obtain an \((\alpha-\epsilon)\)-approximation algorithm for the problem via computationally easier means? E.g. a primal-dual algorithm?

\section*{Problem 10: A primal-dual algorithm for the maximum cut problem}

The problem:
Solving the semidefinite program is computationally expensive. Can one obtain an \((\alpha-\epsilon)\)-approximation algorithm for the problem via computationally easier means? E.g. a primal-dual algorithm?

A potential start:
(Trevisan, STOC 2009) gives a .531-approximation algorithm via an eigenvalue computation.

\section*{Lightweight approximation algorithms}

Lightweight approximation: can we replace more expensive computational primitives with cheaper ones and still get the same guarantees?
SDP \(\rightarrow\) SOCP \(\rightarrow\) LP \(\rightarrow\) Network flow/primal-dual \(\rightarrow\) greedy Ellipsoid \(\rightarrow\) polysized LP \(\rightarrow \cdots\)

\section*{Lightweight approximation algorithms}

Lightweight approximation: can we replace more expensive computational primitives with cheaper ones and still get the same guarantees?
SDP \(\rightarrow\) SOCP \(\rightarrow\) LP \(\rightarrow\) Network flow/primal-dual \(\rightarrow\) greedy Ellipsoid \(\rightarrow\) polysized LP \(\rightarrow \cdots\)
Lots of work already done in this direction (e.g. Poloczek and Schnitger (SODA 2010), randomized \(\frac{3}{4}\)-approximation algorithm for MAX SAT without solving LP or network flow), but let's do more.

\section*{Problem 9: Coloring 3-colorable graphs}

Coloring 3-colorable graphs
Input: An undirected, 3-colorable graph \(G=(V, E)\).
Goal: Find a \(k\)-coloring of the graph with \(k\) as small as possible.


\section*{Problem 9: Coloring 3-colorable graphs}

\section*{What's known?}
- A poly-time algorithm using semidefinite programming that uses at most \(\tilde{O}\left(n^{0.211}\right)\) colors (Arora, Chlamtac, Charikar 2006)

\section*{Problem 9: Coloring 3-colorable graphs}

\section*{What's known?}
- A poly-time algorithm using semidefinite programming that uses at most \(\tilde{O}\left(n^{0.211}\right)\) colors (Arora, Chlamtac, Charikar 2006)
- It is NP-hard to decide if a graph needs only 3 colors or at least 5 colors (Khanna, Linial, Safra 2000)

\section*{Problem 9: Coloring 3-colorable graphs}

\section*{What's known?}
- A poly-time algorithm using semidefinite programming that uses at most \(\tilde{O}\left(n^{0.211}\right)\) colors (Arora, Chlamtac, Charikar 2006)
- It is NP-hard to decide if a graph needs only 3 colors or at least 5 colors (Khanna, Linial, Safra 2000)
- Assuming a variant of the unique games conjecture, for any constant \(k>3\), it is NP-hard to decide if a graph needs only 3 colors or at least \(k\) colors (Dinur, Mossel, Regev 2009)

\section*{Problem 9: Coloring 3-colorable graphs}

\section*{What's known?}
- A poly-time algorithm using semidefinite programming that uses at most \(\tilde{O}\left(n^{0.211}\right)\) colors (Arora, Chlamtac, Charikar 2006)
- It is NP-hard to decide if a graph needs only 3 colors or at least 5 colors (Khanna, Linial, Safra 2000)
- Assuming a variant of the unique games conjecture, for any constant \(k>3\), it is NP-hard to decide if a graph needs only 3 colors or at least \(k\) colors (Dinur, Mossel, Regev 2009)

The problem:
Give an algorithm that uses \(O(\log n)\) colors for 3-colorable graphs (or show this is not possible modulo some complexity theoretic condition).

\section*{Problem 8: Scheduling related machines with precedence constraints ( \(Q|p r e c| C_{\max }\) )}

Scheduling related machines with precedence constraints Input:
- \(n\) jobs with processing requirements \(p_{1}, \ldots, p_{n} \geq 0\).
- \(m\) machines with speeds \(s_{1} \geq s_{2} \geq \cdots \geq s_{m}>0\).
- A precedence relation \(\prec\) on jobs.

Goal: Find a schedule of minimum length in which all jobs are completely scheduled and if \(j \prec j^{\prime}\), then job \(j\) completes before job \(j^{\prime}\) starts. Job \(j\) on machine \(i\) takes \(p_{j} / s_{i}\) units of time.


\section*{Problem 8: Scheduling related machines with precedence constraints}

What's known?
- If machines are identical \(\left(s_{1}=s_{2}=\cdots=s_{m}\right)\) then there is a 2-approximation algorithm (Graham 1966).

\section*{Problem 8: Scheduling related machines with precedence constraints}

\section*{What's known?}
- If machines are identical ( \(s_{1}=s_{2}=\cdots=s_{m}\) ) then there is a 2-approximation algorithm (Graham 1966).
- For general case, an \(O(\log m)\)-approximation algorithm is known (Chudak and Shmoys 1999; Chekuri and Bender 2001).

\section*{Problem 8: Scheduling related machines with precedence constraints}

\section*{What's known?}
- If machines are identical ( \(s_{1}=s_{2}=\cdots=s_{m}\) ) then there is a 2-approximation algorithm (Graham 1966).
- For general case, an \(O(\log m)\)-approximation algorithm is known (Chudak and Shmoys 1999; Chekuri and Bender 2001).
- If machines are identical, and given a variant of the unique games conjecture, then no \(\alpha\)-approximation algorithm is possible for \(\alpha<2\) unless \(\mathbf{P}=\) NP. (Svensson STOC 2010).

\section*{Problem 8: Scheduling related machines with precedence constraints}

\section*{What's known?}
- If machines are identical \(\left(s_{1}=s_{2}=\cdots=s_{m}\right)\) then there is a 2-approximation algorithm (Graham 1966).
- For general case, an \(O(\log m)\)-approximation algorithm is known (Chudak and Shmoys 1999; Chekuri and Bender 2001).
- If machines are identical, and given a variant of the unique games conjecture, then no \(\alpha\)-approximation algorithm is possible for \(\alpha<2\) unless \(\mathbf{P}=\) NP. (Svensson STOC 2010).

The problem:
Give an \(\alpha\)-approximation algorithm for some constant \(\alpha\), or show that \(O(\log m)\) is the best possible modulo the unique games conjecture.

\section*{Problem 7: Scheduling unrelated machines \(\left(R \| C_{\max }\right)\)}

Scheduling unrelated machines Input:
- m machines.
- \(n\) jobs with processing requirements \(p_{i j}\) for scheduling job \(j\) on machine \(i\).

Goal: Find a schedule of minimum length.

\section*{Problem 7: Scheduling unrelated machines}

\section*{What's known?}
- A 2-approximation algorithm via LP rounding (Lenstra, Shmoys, Tardos 1990)

\section*{Problem 7: Scheduling unrelated machines}

\section*{What's known?}
- A 2-approximation algorithm via LP rounding (Lenstra, Shmoys, Tardos 1990)
- A 1.94-approximation algorithm if running time is \(p_{i j} \in\left\{p_{j}, \infty\right\}\) for all \(i, j\) (Svensson STOC 2011).

\section*{Problem 7: Scheduling unrelated machines}

\section*{What's known?}
- A 2-approximation algorithm via LP rounding (Lenstra, Shmoys, Tardos 1990)
- A 1.94-approximation algorithm if running time is \(p_{i j} \in\left\{p_{j}, \infty\right\}\) for all \(i, j\) (Svensson STOC 2011).
- No \(\alpha\)-approximation algorithm with \(\alpha<3 / 2\) is possible unless P = NP (Lenstra, Shmoys, Tardos 1990).

\section*{Problem 7: Scheduling unrelated machines}

\section*{What's known?}
- A 2-approximation algorithm via LP rounding (Lenstra, Shmoys, Tardos 1990)
- A 1.94-approximation algorithm if running time is \(p_{i j} \in\left\{p_{j}, \infty\right\}\) for all \(i, j\) (Svensson STOC 2011).
- No \(\alpha\)-approximation algorithm with \(\alpha<3 / 2\) is possible unless \(\mathrm{P}=\) NP (Lenstra, Shmoys, Tardos 1990).

The problem:
Give an \(\alpha\)-approximation algorithm for \(3 / 2 \leq \alpha<2\), or show that this is not possible.

\section*{Problem 6: Generalized Steiner tree}

Generalized Steiner tree (aka Steiner forest) Input:
- Undirected graph \(G=(V, E)\).
- Nonnegative edge costs \(c_{e} \geq 0\) for all \(e \in E\).
- \(k\) source-sink pairs \(s_{1}-t_{1}, s_{2}-t_{2}, \ldots, s_{k}-t_{k}\).

Goal: Find edges \(F\) of minimum cost so that for each \(i, s_{i}\) and \(t_{i}\) are connected in \((V, F)\).


\section*{Problem 6: Generalized Steiner tree}

\section*{What's known?}
- A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi 1995; see also Goemans and W 1995).

\section*{Problem 6: Generalized Steiner tree}

\section*{What's known?}
- A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi 1995; see also Goemans and W 1995).
- If \(s_{i}=s\) for all \(i\), have the Steiner tree problem; then a 1.39-approximation algorithm known using LP rounding (Byrka, Grandoni, Rothvoß, Sanità STOC 2010).

\section*{Problem 6: Generalized Steiner tree}

\section*{What's known?}
- A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi 1995; see also Goemans and W 1995).
- If \(s_{i}=s\) for all \(i\), have the Steiner tree problem; then a 1.39-approximation algorithm known using LP rounding (Byrka, Grandoni, Rothvoß, Sanità STOC 2010).
- No \(\alpha\)-approximation algorithm possible for Steiner tree for \(\alpha<\frac{96}{95} \approx 1.01\) unless \(\mathrm{P}=\) NP (Chlebík, Chlebíková 2008)

\section*{Problem 6: Generalized Steiner tree}

\section*{What's known?}
- A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi 1995; see also Goemans and W 1995).
- If \(s_{i}=s\) for all \(i\), have the Steiner tree problem; then a 1.39-approximation algorithm known using LP rounding (Byrka, Grandoni, Rothvoß, Sanità STOC 2010).
- No \(\alpha\)-approximation algorithm possible for Steiner tree for \(\alpha<\frac{96}{95} \approx 1.01\) unless \(\mathrm{P}=\) NP (Chlebík, Chlebíková 2008)

\section*{The problem}

Find an \(\alpha\)-approximation algorithm for the generalized Steiner tree problem for constant \(\alpha<2\).

\section*{A belief about approximation algorithms}

A proof of approximation guarantee \(\alpha\) for algorithm \(A\) is always a proof about a polytime-computable relaxation \(R\) :
\[
R \leq O P T \leq A \leq \alpha R .
\]

\section*{A belief about approximation algorithms}

A proof of approximation guarantee \(\alpha\) for algorithm \(A\) is always a proof about a polytime-computable relaxation \(R\) :
\[
R \leq O P T \leq A \leq \alpha R .
\]

The aim of this paper is to look for one or two guiding principles [in analyzing heuristics], and in particular principles relating the analysis of heuristics to such traditional preoccupations of operations researchers as linear programming and branch and bound... We assume problem can be formulated as a linear integer program, and the essential step is to relate the heuristic solution to a dual feasible solution of the given integer problem.

Wolsey, Heuristic analysis, linear programming and branch and bound (1980)

\section*{Problem 5: Capacitated facility location}

Capacitated facility location Input:
- A set \(F\) of facilities; each \(i \in F\) has facility cost \(f_{i} \geq 0\).
- A set \(D\) of clients.
- A metric \(c_{i j}\) on locations \(i, j \in F \cup D\).
- A capacity \(U\) on each facility.

Goal: Find \(S \subset F\) and assignment \(\sigma: D \rightarrow S\) such that \(\left|\sigma^{-1}(i)\right| \leq U\) for all \(i \in S\) that minimizes \(\sum_{i \in S} f_{i}+\sum_{j \in D} c_{\sigma(j), j}\).


\section*{Problem 5: Capacitated facility location}

\section*{What's known?}

A local search algorithm: Let \(S\) be a set of currently open facilities. As long as it improves the overall cost,
- Add: \(S \leftarrow S \cup\{i\}\) for \(i \notin S\);
- Drop: \(S \leftarrow S-\{i\}\) for \(i \in S\); or
- Swap: \(S \leftarrow S \cup\{i\}-\{j\}\) for \(i \notin S, j \in S\).

\section*{Problem 5: Capacitated facility location}

What's known?
A local search algorithm: Let \(S\) be a set of currently open facilities. As long as it improves the overall cost,
- Add: \(S \leftarrow S \cup\{i\}\) for \(i \notin S\);
- Drop: \(S \leftarrow S-\{i\}\) for \(i \in S\); or
- Swap: \(S \leftarrow S \cup\{i\}-\{j\}\) for \(i \notin S, j \in S\).
- Can show this gives an \((\alpha+\epsilon)\)-approximation algorithm for
- \(\alpha=8\) (Koropolu, Plaxton, Rajaraman 2000)
- \(\alpha=6\) (Chudak, W 2005)
- \(\alpha=3\) (Aggarwal et al. 2010)

\section*{Problem 5: Capacitated facility location}

The problem:
Is there a polytime-computable relaxation \(R\) of the problem within a constant factor of the optimal?

\section*{Problem 5: Capacitated facility location}

The problem:
Is there a polytime-computable relaxation \(R\) of the problem within a constant factor of the optimal?

Or, what's the approximate min-max relaxation?
\[
R \leq \mathrm{OPT} \leq A \leq \alpha R .
\]

\section*{Problem 4: Survivable network design}

Survivable network design Input:
- An undirected graph \(G=(V, E)\)
- Costs \(c_{e} \geq 0\) for all \(e \in E\)
- Integer connectivity requirements \(r_{i j}\) for all \(i, j \in V\)

Goal: Find a minimum-cost set of edges \(F\) so that for all \(i, j \in V\), there are at least \(r_{i j}\) edge-disjoint paths between \(i\) and \(j\) in \((V, F)\).


\section*{Problem 4: Survivable network design}

Survivable network design Input:
- An undirected graph \(G=(V, E)\)
- Costs \(c_{e} \geq 0\) for all \(e \in E\)
- Integer connectivity requirements \(r_{i j}\) for all \(i, j \in V\)

Goal: Find a minimum-cost set of edges \(F\) so that for all \(i, j \in V\), there are at least \(r_{i j}\) edge-disjoint paths between \(i\) and \(j\) in \((V, F)\).


\section*{Problem 4: Survivable network design}

\section*{What's known?}
- A primal-dual \(2 H_{R}\)-approximation algorithm (Goemans, Goldberg, Plotkin, Shmoys, Tardos, W '94), where \(H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\) and \(R=\max _{i, j} r_{i j}\).
- An LP rounding 2-approximation algorithm (Jain 2001)

\section*{Problem 4: Survivable network design}

\section*{What's known?}
- A primal-dual \(2 H_{R}\)-approximation algorithm (Goemans, Goldberg, Plotkin, Shmoys, Tardos, W '94), where \(H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}\) and \(R=\max _{i, j} r_{i j}\).
- An LP rounding 2-approximation algorithm (Jain 2001)
\[
\begin{array}{ll}
\operatorname{minimize} & \sum_{e \in E} c_{e} x_{e} \\
\text { subject to } \sum_{e \in \delta(S)} x_{e} \geq \max _{i \in S, j \notin S} r_{i j}, & \forall S \subset V, \\
& 0 \leq x_{e} \leq 1,
\end{array} \forall e \in E . \quad . \quad . \quad . \quad .
\]

Theorem (Jain 2001)
For any basic feasible solution \(x^{*}\) of the LP relaxation, there exists some edge \(e \in E\) such that \(x_{P}^{*} \geq 1 / 2\).

\section*{Problem 4: Survivable network design}

The problem:
Is there a lightweight 2-approximation algorithm? E.g. a primal-dual algorithm?

\section*{Problem 3: Bin packing}

Bin packing
Input: \(b_{i}\) pieces of size \(s_{i}, 0<s_{i}<1\), for \(i=1, \ldots, m\)
Goal: Find a packing of pieces into bins of size 1 that minimizes the total number of bins used


\section*{Problem 3: Bin packing}

\section*{What's known?}

An LP-rounding algorithm that uses OPT \(+O\left(\log ^{2} \mathrm{OPT}\right)\) bins (Karmarkar, Karp 1982)

\section*{Problem 3: Bin packing}

What's known?
An LP-rounding algorithm that uses OPT \(+O\left(\log ^{2} \mathrm{OPT}\right)\) bins (Karmarkar, Karp 1982)

Enumerate all \(N\) possible ways of packing a bin. jth configuration uses \(a_{i j}\) pieces of size \(i\).
\[
\begin{array}{ll}
\operatorname{minimize} & \sum_{j=1}^{N} x_{j} \\
\text { subject to } & \sum_{j=1}^{N} a_{i j} x_{j} \geq b_{i}, \quad i=1, \ldots, m, \\
& x_{j} \text { integer, } \quad j=1, \ldots, N .
\end{array}
\]

\section*{Problem 3: Bin packing}

The problem:
Find a polytime algorithm that uses at most OPT \(+c\) bins for some constant c.

\section*{Problem 3: Bin packing}

The problem:
Find a polytime algorithm that uses at most OPT \(+c\) bins for some constant \(c\).

Note that there are instances known for which
\[
\mathrm{OPT}>L P+1
\]
but currently no known instances for which
\[
\mathrm{OPT}>L P+2
\]

Possibly
\[
\mathrm{OPT} \leq\lceil L P\rceil+1
\]

\section*{Problems 1 and 2: the traveling salesman problem}

Traveling salesman problem
Input:
- Set of cities \(V\)
- Travel costs \(c_{i j}\) such that \(c_{i j} \leq c_{i k}+c_{k j}\) for all \(i, j, k \in V\)

Goal: Find a minimum-cost tour of all the cities


\section*{Problems 1 and 2: the traveling salesman problem}

Problem 2: the asymmetric case \(\left(c_{i j} \neq c_{j i}\right)\)
What's known?
- An \(O(\log n)\)-approximation algorithm (Frieze, Galbiati, Maffioli 1982)
- An LP rounding \(O(\log n / \log \log n)\)-approximation algorithm (Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010)
- Can't approximate better than \(\frac{117}{116} \approx 1.008\) unless \(P=N P\) (Papadimitriou, Vempala 2006)

\section*{Problems 1 and 2: the traveling salesman problem}
\[
\begin{aligned}
\operatorname{minimize} & \sum_{i, j \in V} c_{i j} x_{i j} \\
\text { subject to } & \sum_{j \in V} x_{i j}
\end{aligned}=\sum_{j \in V} x_{j i} \quad i \in V,
\]

No instance known for which the integrality gap is worse than 2 (Charikar, Goemans, Karloff 2006)

\section*{Problems 1 and 2: the traveling salesman problem}
\[
\begin{aligned}
\operatorname{minimize} & \sum_{i, j \in V} c_{i j} x_{i j} \\
\text { subject to } \sum_{j \in V} x_{i j} & =\sum_{j \in V} x_{j i} \quad i \in V, \\
\sum_{i \in S, j \notin S} x_{i j} & \geq 1 \quad \forall S \subset V \\
x_{i j} & \geq 0 \quad \forall i, j \in V .
\end{aligned}
\]

No instance known for which the integrality gap is worse than 2 (Charikar, Goemans, Karloff 2006)

The problem:
Find an \(\alpha\)-approximation algorithm for \(\alpha\) constant for the asymmetric case.

\section*{Problems 1 and 2: the traveling salesman problem}

Problem 1: the symmetric case \(c_{i j}=c_{j i}\) for all \(i, j \in V\) What's known?
- A \(\frac{3}{2}\)-approximation algorithm (Christofides 1976)
- Can't approximate better than \(\frac{220}{219} \approx 1.004\) unless \(P=\) NP (Papadimitriou, Vempala 2006)

\section*{Problems 1 and 2: the traveling salesman problem}

Problem 1: the symmetric case \(c_{i j}=c_{j i}\) for all \(i, j \in V\) What's known?
- \(\mathrm{A} \frac{3}{2}\)-approximation algorithm (Christofides 1976 )
- Can't approximate better than \(\frac{220}{219} \approx 1.004\) unless \(P=N P\) (Papadimitriou, Vempala 2006)
Graphical case: given graph \(G=(V, E), c_{i j}\) is shortest-length path between \(i\) and \(j\) in \(G\)
- Oveis Gharan, Saberi, Singh (December 2010): \(\frac{3}{2}-10^{-12}\)
- Mömke, Svensson (April 2011): \(\frac{14(\sqrt{2}-1)}{12 \sqrt{2}-13} \approx 1.461\)
- Mucha (August 2011): \(\frac{35}{24} \approx 1.458\)

\section*{Problems 1 and 2: the traveling salesman problem}
\[
\begin{array}{rll}
\text { minimize } & \sum_{i, j \in V: i<j} c_{i j} x_{i j} & \\
\text { subject to } \sum_{j \in V: i<j} x_{i j}+\sum_{j \in V: i>j} x_{j i}=2 & i \in V \\
\sum_{i \in S, j \notin S} \text { or } x_{i \neq S, j \in S} \geq 2 & \forall S \subset V \\
x_{i j} \geq 0 & \forall i, j \in V, i<j .
\end{array}
\]

Integrality gap at most \(\frac{3}{2}\) (Wolsey 1980). No instance known with gap worse than \(\frac{4}{3}\).


\section*{Problems 1 and 2: the traveling salesman problem}

The problem:
Find an \(\alpha\)-approximation algorithm for constant \(\alpha<\frac{3}{2}\).

\section*{A hard, simple case}

Suppose LP solution is a fractional 2-matching (all \(x_{i j} \in\{0,1 / 2,1\}\) ). Can we do better than \(3 / 2\) whenever this is the case?

\section*{A hard, simple case}

Suppose LP solution is a fractional 2-matching (all \(x_{i j} \in\{0,1 / 2,1\}\) ). Can we do better than \(3 / 2\) whenever this is the case?
Conjecture (Schalekamp, W, van Zuylen 2011):
Such instances give the worst-case integrality gap.

\section*{Problems that didn't make the cut}

Problems that didn't make the cut:
- Directed Steiner tree
- LP-based Steiner tree (then Byrka et al. came out)
- Feedback arc set in directed graphs (improve \(O(\log n \log \log n)\) )
- \(P|p r e c| C_{\text {max }}\) (then Svensson came out)
- Edge coloring multigraphs (+1 result)
- Flow shop, job shop scheduling
- Minimum-cost \(k\)-connected subgraph
- Subset feedback vertex set (better than 8 )

\section*{An observation}

No open problem of the form "this problem has an \(\alpha\)-approximation algorithm for constant \(\alpha\), find a PTAS."

\section*{Success in computation?}

The field has successfully generated interesting algorithmic ideas and mathematical understandings of approximate computation.

\section*{Success in computation?}

The field has successfully generated interesting algorithmic ideas and mathematical understandings of approximate computation.
But how much effect on actual computational practice?
Some cases in network design codes:
- Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual survivable network design algorithm
- Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting Steiner tree algorithm

\section*{Success in computation?}

The field has successfully generated interesting algorithmic ideas and mathematical understandings of approximate computation.
But how much effect on actual computational practice?
Some cases in network design codes:
- Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual survivable network design algorithm
- Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting Steiner tree algorithm
Also cases for problems that are theoretically solvable in polytime, but for which approximation algorithms are much faster: e.g. Müller, Radke, Vygen (2010)

\section*{Success in computation?}

The field has successfully generated interesting algorithmic ideas and mathematical understandings of approximate computation.
But how much effect on actual computational practice?
Some cases in network design codes:
- Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual survivable network design algorithm
- Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting Steiner tree algorithm

Also cases for problems that are theoretically solvable in polytime, but for which approximation algorithms are much faster: e.g. Müller, Radke, Vygen (2010)

But in graph partitioning and traveling salesman problem, most used codes and ideas are from outside the area.

\section*{Success in computation?}

The field has successfully generated interesting algorithmic ideas and mathematical understandings of approximate computation.
But how much effect on actual computational practice?
Some cases in network design codes:
- Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual survivable network design algorithm
- Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting Steiner tree algorithm

Also cases for problems that are theoretically solvable in polytime, but for which approximation algorithms are much faster: e.g. Müller, Radke, Vygen (2010)

But in graph partitioning and traveling salesman problem, most used codes and ideas are from outside the area.

Can the theory help explain the realities of practice?

\section*{Lightweight approximation algorithms (again)}

Perhaps part of the problem of adopting approximation algorithms is that the theoretically best algorithms are too computationally demanding compared to heuristics. E.g.
- Jain's algorithm for survivable network design requires solving LP via ellipsoid method
- Goemans-W algorithm for max cut requires solving semidefinite program

\section*{Lightweight approximation algorithms (again)}

Perhaps part of the problem of adopting approximation algorithms is that the theoretically best algorithms are too computationally demanding compared to heuristics. E.g.
- Jain's algorithm for survivable network design requires solving LP via ellipsoid method
- Goemans-W algorithm for max cut requires solving semidefinite program
Hence lightweight, implementable, versions of these algorithms give us a chance to compete with heuristics more often used in practice.

\section*{How hard are problems really?}

\section*{How hard are problems really?}


\section*{A quest for theory?}

Can we explain theoretically why solvers for NP-hard real-world problems work so well on "real-life" instances? Possible directions:
- A more nuanced notion of efficient computation than polynomial time?
- Some empirically justifiable notion of "real-life" instances?

\section*{One reason I like the field}

Once I start thinking "maybe all the really interesting stuff has been done," someone proves me wrong.

\section*{One reason I like the field}

Once I start thinking "maybe all the really interesting stuff has been done," someone proves me wrong.
Just in the last year or so
- The Asadpour et al. \(O(\log n / \log \log n)\)-approximation algorithm for asymmetric traveling salesman problem
- The Byrka et al. 1.39-approximation algorithm for Steiner tree
- All the progress in graphical TSP (mostly using "old" techniques!)

\section*{One reason I like the field}

Once I start thinking "maybe all the really interesting stuff has been done," someone proves me wrong.

Just in the last year or so
- The Asadpour et al. \(O(\log n / \log \log n)\)-approximation algorithm for asymmetric traveling salesman problem
- The Byrka et al. 1.39-approximation algorithm for Steiner tree
- All the progress in graphical TSP (mostly using "old" techniques!)

And perhaps your work will be next!

\section*{The End}

\section*{Thanks for your attention.}```

