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The book

Electronic version at www.designofapproxalgs.com.
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Outline

Three FAQs about the book
Our ten open problems (Chapter 17)
Some thoughts about the field
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Writing the book

FAQ #1

FAQ #1: How long did it take to write the book?

Answer: 13-14 years, depending on how you count.

Fax from July 16, 1997 with book outline.
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The first outline
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Writing the book

The first outline (2)
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Writing the book

A later outline
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Writing the book

A later outline (2)
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Writing the book

A later outline (3)
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Writing the book

Some principles
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Writing the book

Final structure

Intro: Set cover
Greedy and local search Further greedy and local search
Dynamic programming Further dynamic programming
Deterministic rounding Further deterministic rounding
Randomized rounding Further randomized rounding
SDP Further SDP
Primal-dual Further primal-dual
Cuts and metrics Further cuts and metrics

Hardness
Open problems
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Writing the book

Some nice things about the construction

Uncapacitated facility location

Deterministic rounding: 4 (Chudak and Shmoys)

Randomized rounding: 3 (Chudak and Shmoys)
Primal-dual: 3 (Jain and Vazirani)
Further greedy and local search: 3, 1 +

√
2 (Charikar, Guha), 2

(Jain et al.)
Further randomized rounding: 1 + 2

e (Chudak and Shmoys)
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Writing the book

Problems or techniques?

A pedagogical issue: teach problems or techniques?

Hard because historically the two are interwined; for example:

Deterministic rounding/primal-dual and set cover/vertex cover
(Hochbaum, Bar-Yehuda and Even)
Randomized rounding and integer multicommodity flow
(Raghavan and Thompson)
SDP and max cut (Goemans and W)
Region-growing and multicut (Garg, Vazirani, Yannakakis)

If techniques, then some algorithms are hard to categorize; e.g. what
is Christofides’ algorithm?
If problems, then what is the main takeaway of the course?
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Writing the book

FAQ #2

FAQ #2: Why didn’t you cover:

Online algorithms
Streaming algorithms
Geometric approximation algorithms (e.g. coresets)
The multiplicative update algorithm
Directed multicut
. . .

Answers (choose one at random):
It would have taken another 13-14 years...
..and another 500+ pages...
Luckily, Sariel Har-Peled just wrote a book on geometric
approximation algorithms (362 pages).
We consciously decided not to write about approximating
problems in P.
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Writing the book

A definitional question

Some of the items taken from the following blog post by David
Eppstein (7 Nov 2010):

All these types of algorithms do compute things approximately, but is
that what the field means by an approximation algorithm? Should
these topics get covered in grad courses on approximation algorithms?
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Writing the book

FAQ #3

FAQ #3: Are you going to leave the PDF up on the website?

Answer: Yes, with the agreement of the publisher (Cambridge
University Press).
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Writing the book

An effect
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Ten Open Problems

Next: ten open problems from our book.

David P. Williamson (Cornell University) Open Problems APPROX 2011 18 / 56



 

Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

Maximum Cut Problem
Input: An undirected graph G = (V ,E) with nonnegative edge weights

wij ≥ 0 for all i , j ∈ V .
Goal: Find a set of vertices S ⊆ V that maximizes

∑
i∈S,j /∈S wij .

S
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Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

What’s known?
an (α− ε)-approximation algorithm using semidefinite
programming (Goemans, W 1995) for

α = min
−1≤x≤1

1
π arccos(x)

1
2(1− x)

≈ .87856,

and any ε > 0.

Assuming the unique games conjecture, no (α+ ε)-approximation
algorithm is possible unless P = NP (Khot, Kindler, Mossel,
O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2010)
No β-approximation algorithm possible for constant β > 16

17 ≈ .941
unless P = NP (Håstad 1997).
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Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

The problem:
Solving the semidefinite program is computationally expensive. Can
one obtain an (α− ε)-approximation algorithm for the problem via
computationally easier means? E.g. a primal-dual algorithm?

A potential start:
(Trevisan, STOC 2009) gives a .531-approximation algorithm via an
eigenvalue computation.
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Ten Open Problems Problem 10: MAX CUT

Lightweight approximation algorithms

Lightweight approximation: can we replace more expensive
computational primitives with cheaper ones and still get the same
guarantees?

SDP→ SOCP→ LP→ Network flow/primal-dual→ greedy
Ellipsoid→ polysized LP→ · · ·

Lots of work already done in this direction (e.g. Poloczek and Schnitger
(SODA 2010), randomized 3

4 -approximation algorithm for MAX SAT
without solving LP or network flow), but let’s do more.
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Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

Coloring 3-colorable graphs

Input: An undirected, 3-colorable graph G = (V ,E).
Goal: Find a k -coloring of the graph with k as small as possible.
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Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

What’s known?

A poly-time algorithm using semidefinite programming that uses at
most Õ(n0.211) colors (Arora, Chlamtac, Charikar 2006)

It is NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)
Assuming a variant of the unique games conjecture, for any
constant k > 3, it is NP-hard to decide if a graph needs only 3
colors or at least k colors (Dinur, Mossel, Regev 2009)

The problem:
Give an algorithm that uses O(log n) colors for 3-colorable graphs (or
show this is not possible modulo some complexity theoretic condition).
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Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints (Q|prec|Cmax)

Scheduling related machines with precedence constraints
Input:

n jobs with processing requirements p1, . . . ,pn ≥ 0.
m machines with speeds s1 ≥ s2 ≥ · · · ≥ sm > 0.
A precedence relation ≺ on jobs.

Goal: Find a schedule of minimum length in which all jobs are
completely scheduled and if j ≺ j ′, then job j completes before job
j ′ starts. Job j on machine i takes pj/si units of time.

Machines

Time
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Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

What’s known?

If machines are identical (s1 = s2 = · · · = sm) then there is a
2-approximation algorithm (Graham 1966).

For general case, an O(log m)-approximation algorithm is known
(Chudak and Shmoys 1999; Chekuri and Bender 2001).
If machines are identical, and given a variant of the unique games
conjecture, then no α-approximation algorithm is possible for
α < 2 unless P = NP. (Svensson STOC 2010).

The problem:
Give an α-approximation algorithm for some constant α, or show that
O(log m) is the best possible modulo the unique games conjecture.
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Ten Open Problems Problem 7: Scheduling unrelated machines

Problem 7: Scheduling unrelated machines (R||Cmax)

Scheduling unrelated machines
Input:

m machines.
n jobs with processing requirements pij for scheduling job j on
machine i .

Goal: Find a schedule of minimum length.
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Ten Open Problems Problem 7: Scheduling unrelated machines

Problem 7: Scheduling unrelated machines

What’s known?

A 2-approximation algorithm via LP rounding (Lenstra, Shmoys,
Tardos 1990)

A 1.94-approximation algorithm if running time is pij ∈
{

pj ,∞
}

for
all i , j (Svensson STOC 2011).
No α-approximation algorithm with α < 3/2 is possible unless
P = NP (Lenstra, Shmoys, Tardos 1990).

The problem:
Give an α-approximation algorithm for 3/2 ≤ α < 2, or show that this is
not possible.
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Ten Open Problems Problem 6: Generalized Steiner tree

Problem 6: Generalized Steiner tree

Generalized Steiner tree (aka Steiner forest)
Input:

Undirected graph G = (V ,E).
Nonnegative edge costs ce ≥ 0 for all e ∈ E .
k source-sink pairs s1-t1, s2-t2, . . . , sk -tk .

Goal: Find edges F of minimum cost so that for each i , si and ti are
connected in (V ,F ).

s1

t1

s2

t2

s3 t3
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Ten Open Problems Problem 6: Generalized Steiner tree

Problem 6: Generalized Steiner tree

What’s known?

A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi
1995; see also Goemans and W 1995).

If si = s for all i , have the Steiner tree problem; then a
1.39-approximation algorithm known using LP rounding (Byrka,
Grandoni, Rothvoß, Sanità STOC 2010).
No α-approximation algorithm possible for Steiner tree for
α < 96

95 ≈ 1.01 unless P = NP (Chlebík, Chlebíková 2008)

The problem
Find an α-approximation algorithm for the generalized Steiner tree
problem for constant α < 2.
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Ten Open Problems Interlude: A belief

A belief about approximation algorithms

A proof of approximation guarantee α for algorithm A is always a proof
about a polytime-computable relaxation R:

R ≤ OPT ≤ A ≤ αR.

The aim of this paper is to look for one or two guiding principles [in
analyzing heuristics], and in particular principles relating the analysis of
heuristics to such traditional preoccupations of operations researchers as
linear programming and branch and bound... We assume problem can be
formulated as a linear integer program, and the essential step is to relate
the heuristic solution to a dual feasible solution of the given integer
problem.

Wolsey, Heuristic analysis, linear programming and branch and bound
(1980)
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Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

Capacitated facility location
Input:

A set F of facilities; each i ∈ F has facility cost fi ≥ 0.
A set D of clients.
A metric cij on locations i , j ∈ F ∪ D.
A capacity U on each facility.

Goal: Find S ⊂ F and assignment σ : D → S such that |σ−1(i)| ≤ U
for all i ∈ S that minimizes

∑
i∈S fi +

∑
j∈D cσ(j),j .

David P. Williamson (Cornell University) Open Problems APPROX 2011 32 / 56



 

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

What’s known?
A local search algorithm: Let S be a set of currently open facilities. As
long as it improves the overall cost,

Add: S ← S ∪ {i} for i /∈ S;
Drop: S ← S − {i} for i ∈ S; or
Swap: S ← S ∪ {i} − {j} for i /∈ S, j ∈ S.

Can show this gives an (α+ ε)-approximation algorithm for
α = 8 (Koropolu, Plaxton, Rajaraman 2000)
α = 6 (Chudak, W 2005)
α = 3 (Aggarwal et al. 2010)
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Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

The problem:
Is there a polytime-computable relaxation R of the problem within a
constant factor of the optimal?

Or, what’s the approximate min-max relaxation?

R ≤ OPT ≤ A ≤ αR.
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Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

Survivable network design
Input:

An undirected graph G = (V ,E)
Costs ce ≥ 0 for all e ∈ E
Integer connectivity requirements rij for all i , j ∈ V

Goal: Find a minimum-cost set of edges F so that for all i , j ∈ V , there
are at least rij edge-disjoint paths between i and j in (V ,F ).
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Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

What’s known?
A primal-dual 2HR-approximation algorithm (Goemans, Goldberg,
Plotkin, Shmoys, Tardos, W ’94), where Hn = 1 + 1

2 + 1
3 + · · ·+ 1

n
and R = maxi,j rij .
An LP rounding 2-approximation algorithm (Jain 2001)

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe ≥ max
i∈S,j /∈S

rij , ∀S ⊂ V ,

0 ≤ xe ≤ 1, ∀e ∈ E .

Theorem (Jain 2001)
For any basic feasible solution x∗ of the LP relaxation, there exists
some edge e ∈ E such that x∗e ≥ 1/2.
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Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

The problem:
Is there a lightweight 2-approximation algorithm? E.g. a primal-dual
algorithm?
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Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

Bin packing

Input: bi pieces of size si , 0 < si < 1, for i = 1, . . . ,m
Goal: Find a packing of pieces into bins of size 1 that minimizes the

total number of bins used
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Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

What’s known?
An LP-rounding algorithm that uses OPT+O(log2 OPT) bins
(Karmarkar, Karp 1982)

Enumerate all N possible ways of packing a bin. j th configuration uses
aij pieces of size i .

minimize
N∑

j=1

xj

subject to
N∑

j=1

aijxj ≥ bi , i = 1, . . . ,m,

xj integer, j = 1, . . . ,N.
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Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

The problem:
Find a polytime algorithm that uses at most OPT+c bins for some
constant c.

Note that there are instances known for which

OPT > LP + 1,

but currently no known instances for which

OPT > LP + 2.

Possibly
OPT ≤ dLPe+ 1.
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Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

Traveling salesman problem
Input:

Set of cities V
Travel costs cij such that cij ≤ cik + ckj for all i , j , k ∈ V

Goal: Find a minimum-cost tour of all the cities
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Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

Problem 2: the asymmetric case (cij 6= cji )
What’s known?

An O(log n)-approximation algorithm (Frieze, Galbiati, Maffioli
1982)
An LP rounding O(log n/ log log n)-approximation algorithm
(Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010)
Can’t approximate better than 117

116 ≈ 1.008 unless P = NP
(Papadimitriou, Vempala 2006)
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Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

minimize
∑
i,j∈V

cijxij

subject to
∑
j∈V

xij =
∑
j∈V

xji i ∈ V ,

∑
i∈S,j /∈S

xij ≥ 1 ∀S ⊂ V

xij ≥ 0 ∀i , j ∈ V .

No instance known for which the integrality gap is worse than 2
(Charikar, Goemans, Karloff 2006)

The problem:
Find an α-approximation algorithm for α constant for the asymmetric
case.
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Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

Problem 1: the symmetric case cij = cji for all i , j ∈ V
What’s known?

A 3
2 -approximation algorithm (Christofides 1976)

Can’t approximate better than 220
219 ≈ 1.004 unless P = NP

(Papadimitriou, Vempala 2006)

Graphical case: given graph G = (V ,E), cij is shortest-length path
between i and j in G

Oveis Gharan, Saberi, Singh (December 2010): 3
2 − 10−12

Mömke, Svensson (April 2011): 14(
√

2−1)
12
√

2−13
≈ 1.461

Mucha (August 2011): 35
24 ≈ 1.458
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Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

minimize
∑

i,j∈V :i<j

cijxij

subject to
∑

j∈V :i<j

xij +
∑

j∈V :i>j

xji = 2 i ∈ V

∑
i∈S,j /∈S or i /∈S,j∈S

xij ≥ 2 ∀S ⊂ V

xij ≥ 0 ∀i , j ∈ V , i < j .

Integrality gap at most 3
2 (Wolsey 1980). No instance known with gap

worse than 4
3 .
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Ten Open Problems Problems 1 and 2: traveling salesman

k
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Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

The problem:
Find an α-approximation algorithm for constant α < 3

2 .
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Ten Open Problems Problems 1 and 2: traveling salesman

A hard, simple case

Suppose LP solution is a fractional 2-matching (all xij ∈ {0,1/2,1}).
Can we do better than 3/2 whenever this is the case?

Conjecture (Schalekamp, W, van Zuylen 2011):
Such instances give the worst-case integrality gap.
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Ten Open Problems Other problems

Problems that didn’t make the cut

Problems that didn’t make the cut:
Directed Steiner tree
LP-based Steiner tree (then Byrka et al. came out)
Feedback arc set in directed graphs (improve O(log n log log n))
P|prec|Cmax (then Svensson came out)
Edge coloring multigraphs (+1 result)
Flow shop, job shop scheduling
Minimum-cost k -connected subgraph
Subset feedback vertex set (better than 8)
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Ten Open Problems An observation

An observation

No open problem of the form “this problem has an α-approximation
algorithm for constant α, find a PTAS.”
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Conclusion

Success in computation?

The field has successfully generated interesting algorithmic ideas and
mathematical understandings of approximate computation.

But how much effect on actual computational practice?

Some cases in network design codes:
Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual
survivable network design algorithm
Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting
Steiner tree algorithm

Also cases for problems that are theoretically solvable in polytime, but
for which approximation algorithms are much faster: e.g. Müller,
Radke, Vygen (2010)

But in graph partitioning and traveling salesman problem, most used
codes and ideas are from outside the area.

Can the theory help explain the realities of practice?
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Conclusion

Lightweight approximation algorithms (again)

Perhaps part of the problem of adopting approximation algorithms is
that the theoretically best algorithms are too computationally
demanding compared to heuristics. E.g.

Jain’s algorithm for survivable network design requires solving LP
via ellipsoid method
Goemans-W algorithm for max cut requires solving semidefinite
program

Hence lightweight, implementable, versions of these algorithms give us
a chance to compete with heuristics more often used in practice.
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Conclusion

How hard are problems really?
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Conclusion

A quest for theory?

Can we explain theoretically why solvers for NP-hard real-world
problems work so well on “real-life” instances? Possible directions:

A more nuanced notion of efficient computation than polynomial
time?
Some empirically justifiable notion of “real-life” instances?
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Conclusion

One reason I like the field

Once I start thinking “maybe all the really interesting stuff has been
done,” someone proves me wrong.

Just in the last year or so
The Asadpour et al. O(log n/ log log n)-approximation algorithm for
asymmetric traveling salesman problem
The Byrka et al. 1.39-approximation algorithm for Steiner tree
All the progress in graphical TSP (mostly using “old” techniques!)

And perhaps your work will be next!
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Conclusion

The End

Thanks for your attention.
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