

Some Open Problems in Approximation Algorithms

David P. Williamson

School of Operations Research and Information Engineering
Cornell University

February 28, 2011
University of Bonn
Bonn, Germany

David P. Williamson (Cornell University) Open Problems Bonn 1 / 54

The book

Electronic version at www.designofapproxalgs.com.

David P. Williamson (Cornell University) Open Problems Bonn 2 / 54

Outline

Introduction
A brief history and some early results
Ten open problems
Some concluding thoughts and issues

David P. Williamson (Cornell University) Open Problems Bonn 3 / 54

Introduction The Problem

The Problem

The problem: How should we go about solving NP-hard discrete
optimization problems?

An old engineering slogan: “Fast. Cheap. Reliable. Choose any two.”

Similarly, if P 6= NP, then for any NP-hard problem, choose two:
a polynomial-time algorithm
that for every instance
finds the optimal solution.

All work on these problems relaxes at least one of these conditions.

David P. Williamson (Cornell University) Open Problems Bonn 4 / 54

Introduction The Problem

The Problem

The problem: How should we go about solving NP-hard discrete
optimization problems?

An old engineering slogan: “Fast. Cheap. Reliable. Choose any two.”

Similarly, if P 6= NP, then for any NP-hard problem, choose two:

a polynomial-time algorithm
that for every instance
finds the optimal solution.

All work on these problems relaxes at least one of these conditions.

David P. Williamson (Cornell University) Open Problems Bonn 4 / 54

Introduction The Problem

The Problem

The problem: How should we go about solving NP-hard discrete
optimization problems?

An old engineering slogan: “Fast. Cheap. Reliable. Choose any two.”

Similarly, if P 6= NP, then for any NP-hard problem, choose two:
a polynomial-time algorithm

that for every instance
finds the optimal solution.

All work on these problems relaxes at least one of these conditions.

David P. Williamson (Cornell University) Open Problems Bonn 4 / 54

Introduction The Problem

The Problem

The problem: How should we go about solving NP-hard discrete
optimization problems?

An old engineering slogan: “Fast. Cheap. Reliable. Choose any two.”

Similarly, if P 6= NP, then for any NP-hard problem, choose two:
a polynomial-time algorithm
that for every instance

finds the optimal solution.

All work on these problems relaxes at least one of these conditions.

David P. Williamson (Cornell University) Open Problems Bonn 4 / 54

Introduction The Problem

The Problem

The problem: How should we go about solving NP-hard discrete
optimization problems?

An old engineering slogan: “Fast. Cheap. Reliable. Choose any two.”

Similarly, if P 6= NP, then for any NP-hard problem, choose two:
a polynomial-time algorithm
that for every instance
finds the optimal solution.

All work on these problems relaxes at least one of these conditions.

David P. Williamson (Cornell University) Open Problems Bonn 4 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .
Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough

Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .
Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .
Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .
Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases

Con: Often they don’t
3 Drop the optimality requirement: heuristics, metaheuristics, . . .

Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .
Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .

Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .
Pro: Often we only need a solution that is “good enough”

Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

Some Approaches

1 Drop the polynomial-time requirement: integer programming, A∗
search, constraint programming, . . .

Pro: Often fast enough
Con: Sometimes not fast enough if we need solutions in seconds,
or instance is very large; may not terminate in time

2 Drop the every instance requirement: special cases (e.g. planar
graphs)

Pro: Sometimes the instances we have fall in these cases
Con: Often they don’t

3 Drop the optimality requirement: heuristics, metaheuristics, . . .
Pro: Often we only need a solution that is “good enough”
Con: How good is the solution we get?

David P. Williamson (Cornell University) Open Problems Bonn 5 / 54

Introduction The Problem

A Definition

Defined by David S. Johnson in 1974 paper.

Definition
An α-approximation algorithm for a discrete optimization problem Π, for
any instance of Π, runs in polynomial time and produces a solution of
cost within α times the cost of an optimal solution to the instance.

Randomized approximation algorithms: expected value is within α
of optimal.
Additive approximation algorithms: solution is within additive error
of optimal.
Polynomial-time approximation scheme (PTAS): for any ε > 0, a
(1 + ε)-approximation algorithm.

David P. Williamson (Cornell University) Open Problems Bonn 6 / 54

Introduction The Problem

A Definition

Defined by David S. Johnson in 1974 paper.

Definition
An α-approximation algorithm for a discrete optimization problem Π, for
any instance of Π, runs in polynomial time and produces a solution of
cost within α times the cost of an optimal solution to the instance.

Randomized approximation algorithms: expected value is within α
of optimal.

Additive approximation algorithms: solution is within additive error
of optimal.
Polynomial-time approximation scheme (PTAS): for any ε > 0, a
(1 + ε)-approximation algorithm.

David P. Williamson (Cornell University) Open Problems Bonn 6 / 54

Introduction The Problem

A Definition

Defined by David S. Johnson in 1974 paper.

Definition
An α-approximation algorithm for a discrete optimization problem Π, for
any instance of Π, runs in polynomial time and produces a solution of
cost within α times the cost of an optimal solution to the instance.

Randomized approximation algorithms: expected value is within α
of optimal.
Additive approximation algorithms: solution is within additive error
of optimal.

Polynomial-time approximation scheme (PTAS): for any ε > 0, a
(1 + ε)-approximation algorithm.

David P. Williamson (Cornell University) Open Problems Bonn 6 / 54

Introduction The Problem

A Definition

Defined by David S. Johnson in 1974 paper.

Definition
An α-approximation algorithm for a discrete optimization problem Π, for
any instance of Π, runs in polynomial time and produces a solution of
cost within α times the cost of an optimal solution to the instance.

Randomized approximation algorithms: expected value is within α
of optimal.
Additive approximation algorithms: solution is within additive error
of optimal.
Polynomial-time approximation scheme (PTAS): for any ε > 0, a
(1 + ε)-approximation algorithm.

David P. Williamson (Cornell University) Open Problems Bonn 6 / 54

Introduction History

Prehistory

But existed prior to Johnson’s paper (even prior to P and NP!)

Erdős (1967): a random cut has expected value at least half of all
edges in graph.
Graham (1966, 1967): 2-approximation algorithm for a scheduling
problem, and a PTAS in case the number of machines is fixed.
Vizing (1964): edge coloring with additive error of 1.

Johnson’s 1974 paper gives:
(ln n)-approximation algorithm for (unweighted) set cover problem
(see also Lovász (1975))
1/2-approximation algorithm for maximum satisfiability problem
approximation algorithms for vertex coloring and maximum clique
problem

David P. Williamson (Cornell University) Open Problems Bonn 7 / 54

Introduction History

Prehistory

But existed prior to Johnson’s paper (even prior to P and NP!)

Erdős (1967): a random cut has expected value at least half of all
edges in graph.

Graham (1966, 1967): 2-approximation algorithm for a scheduling
problem, and a PTAS in case the number of machines is fixed.
Vizing (1964): edge coloring with additive error of 1.

Johnson’s 1974 paper gives:
(ln n)-approximation algorithm for (unweighted) set cover problem
(see also Lovász (1975))
1/2-approximation algorithm for maximum satisfiability problem
approximation algorithms for vertex coloring and maximum clique
problem

David P. Williamson (Cornell University) Open Problems Bonn 7 / 54

Introduction History

Prehistory

But existed prior to Johnson’s paper (even prior to P and NP!)

Erdős (1967): a random cut has expected value at least half of all
edges in graph.
Graham (1966, 1967): 2-approximation algorithm for a scheduling
problem, and a PTAS in case the number of machines is fixed.

Vizing (1964): edge coloring with additive error of 1.

Johnson’s 1974 paper gives:
(ln n)-approximation algorithm for (unweighted) set cover problem
(see also Lovász (1975))
1/2-approximation algorithm for maximum satisfiability problem
approximation algorithms for vertex coloring and maximum clique
problem

David P. Williamson (Cornell University) Open Problems Bonn 7 / 54

Introduction History

Prehistory

But existed prior to Johnson’s paper (even prior to P and NP!)

Erdős (1967): a random cut has expected value at least half of all
edges in graph.
Graham (1966, 1967): 2-approximation algorithm for a scheduling
problem, and a PTAS in case the number of machines is fixed.
Vizing (1964): edge coloring with additive error of 1.

Johnson’s 1974 paper gives:
(ln n)-approximation algorithm for (unweighted) set cover problem
(see also Lovász (1975))
1/2-approximation algorithm for maximum satisfiability problem
approximation algorithms for vertex coloring and maximum clique
problem

David P. Williamson (Cornell University) Open Problems Bonn 7 / 54

Introduction History

Prehistory

But existed prior to Johnson’s paper (even prior to P and NP!)

Erdős (1967): a random cut has expected value at least half of all
edges in graph.
Graham (1966, 1967): 2-approximation algorithm for a scheduling
problem, and a PTAS in case the number of machines is fixed.
Vizing (1964): edge coloring with additive error of 1.

Johnson’s 1974 paper gives:
(ln n)-approximation algorithm for (unweighted) set cover problem
(see also Lovász (1975))
1/2-approximation algorithm for maximum satisfiability problem
approximation algorithms for vertex coloring and maximum clique
problem

David P. Williamson (Cornell University) Open Problems Bonn 7 / 54

Introduction History

Johnson’s paper

Paper ends with:
The results described in this paper indicate a possible classification of optimization
problems as to the behavior of their approximation algorithms. Such a classification
must remain tentative, at least until the existence of polynomial-time algorithms for
finding optimal solutions has been proved or disproved. In the meantime, many
questions can be asked. Are there indeed O(log n) coloring algorithms? Are there
any clique finding algorithms better than O(nε) for all ε > 0? Where do other
optimization problems fit into the scheme of things? What is it that makes algorithms
for different problems behave in the same way? Is there some stronger kind of
reducibility than the simple polynomial reducibility that will explain these results, or
are they due to some structural similarity between the problems as we define them?
And what other types of behavior and ways of analyzing and measuring it are
possible?

The community spent the next few decades trying to answer some of
these questions.

David P. Williamson (Cornell University) Open Problems Bonn 8 / 54

Introduction History

Johnson’s paper

Paper ends with:
The results described in this paper indicate a possible classification of optimization
problems as to the behavior of their approximation algorithms. Such a classification
must remain tentative, at least until the existence of polynomial-time algorithms for
finding optimal solutions has been proved or disproved. In the meantime, many
questions can be asked. Are there indeed O(log n) coloring algorithms? Are there
any clique finding algorithms better than O(nε) for all ε > 0? Where do other
optimization problems fit into the scheme of things? What is it that makes algorithms
for different problems behave in the same way? Is there some stronger kind of
reducibility than the simple polynomial reducibility that will explain these results, or
are they due to some structural similarity between the problems as we define them?
And what other types of behavior and ways of analyzing and measuring it are
possible?

The community spent the next few decades trying to answer some of
these questions.

David P. Williamson (Cornell University) Open Problems Bonn 8 / 54

Introduction Some Results

Some Early, Easy Results

Maximum Satisfiability Problem
Input:

n boolean variables x1, x2, . . . , xn
m clauses of disjunctions of variables or negations, e.g.
x1 ∨ x̄5 ∨ x12.
clause weights wj ≥ 0 for 1 ≤ j ≤ m.

Goal: Find a setting of the xi that maximizes the weight of satisfied
clauses.

An easy algorithm: Set each xi true with probability 1/2.

David P. Williamson (Cornell University) Open Problems Bonn 9 / 54

Introduction Some Results

Some Early, Easy Results

Maximum Satisfiability Problem
Input:

n boolean variables x1, x2, . . . , xn
m clauses of disjunctions of variables or negations, e.g.
x1 ∨ x̄5 ∨ x12.
clause weights wj ≥ 0 for 1 ≤ j ≤ m.

Goal: Find a setting of the xi that maximizes the weight of satisfied
clauses.

An easy algorithm: Set each xi true with probability 1/2.

David P. Williamson (Cornell University) Open Problems Bonn 9 / 54

Introduction Some Results

Some Early, Easy Results

Maximum Satisfiability Problem

Expected weight of satisfied clauses =
m∑

j=1

wj · Pr[Clause j satisfied]

≥ 1
2

m∑
j=1

wj

≥ 1
2

OPT .

If each clause has exactly three literals (MAX E3SAT), can show a
7
8 -approximation algorithm (Johnson 1974).

David P. Williamson (Cornell University) Open Problems Bonn 10 / 54

Introduction Some Results

Some Early, Easy Results

Maximum Satisfiability Problem

Expected weight of satisfied clauses =
m∑

j=1

wj · Pr[Clause j satisfied]

≥ 1
2

m∑
j=1

wj

≥ 1
2

OPT .

If each clause has exactly three literals (MAX E3SAT), can show a
7
8 -approximation algorithm (Johnson 1974).

David P. Williamson (Cornell University) Open Problems Bonn 10 / 54

Introduction Some Results

Some Easy, Early Results

Vertex Cover Problem
Input:

Undirected graph G = (V ,E)
weights wv ≥ 0 for all v ∈ V

Goal: Find S ⊆ V of minimum weight so that each edge has at least
one endpoint in S.

minimize
∑
v∈V

wv xv

subject to xu + xv ≥ 1, ∀(u, v) ∈ E ,
xv ≥ 0, ∀v ∈ V .

An easy algorithm (Hochbaum 1982): Solve LP, let
S = {v ∈ V : x∗v ≥ 1/2}.

David P. Williamson (Cornell University) Open Problems Bonn 11 / 54

Introduction Some Results

Some Easy, Early Results

Vertex Cover Problem
Input:

Undirected graph G = (V ,E)
weights wv ≥ 0 for all v ∈ V

Goal: Find S ⊆ V of minimum weight so that each edge has at least
one endpoint in S.

minimize
∑
v∈V

wv xv

subject to xu + xv ≥ 1, ∀(u, v) ∈ E ,
xv ≥ 0, ∀v ∈ V .

An easy algorithm (Hochbaum 1982): Solve LP, let
S = {v ∈ V : x∗v ≥ 1/2}.

David P. Williamson (Cornell University) Open Problems Bonn 11 / 54

Introduction Some Results

Some Easy, Early Results

Algorithm: Solve LP, let S = {v ∈ V : x∗v ≥ 1/2}.

Clearly
∑

v∈S wj ≤ 2
∑

v∈V wv x∗v ≤ 2 OPT .

Also, since x∗u + x∗v ≥ 1 for all (u, v) ∈ V , either u ∈ S or v ∈ S (or
both).

Thus, this is a 2-approximation algorithm.

David P. Williamson (Cornell University) Open Problems Bonn 12 / 54

Introduction Some Results

Some Easy, Early Results

Consider also the dual of LP relaxation:

maximize
∑

(u,v)∈E

y(u,v)

subject to
∑

u:(u,v)∈E

y(u,v) ≤ wv , ∀v ∈ V ,

y(u,v) ≥ 0, ∀(u, v) ∈ E .

A primal-dual algorithm (Bar-Yehuda, Even 1981):
Start with S = ∅, y = 0
While S is not a vertex cover since (u, v) ∈ E uncovered

Increase y(u,v) until
∑

a:(a,b)∈E y(a,b) = wb for some b ∈ V
Add b to S

David P. Williamson (Cornell University) Open Problems Bonn 13 / 54

Introduction Some Results

Some Easy, Early Results

maximize
∑

(u,v)∈E

y(u,v)

subject to
∑

u:(u,v)∈E

y(u,v) ≤ wv , ∀v ∈ V ,

y(u,v) ≥ 0, ∀(u, v) ∈ E .

This algorithm is also a 2-approximation algorithm since∑
v∈S

wv =
∑
v∈S

∑
u:(u,v)∈E

y(u,v)

≤ 2
∑

(u,v)∈E

y(u,v) ≤ 2 OPT

David P. Williamson (Cornell University) Open Problems Bonn 14 / 54

Introduction Some Results

Approximate Min-Max Theorems

Most (not all!) approximation algorithms are approximate min-max
theorems:

For minimization problems, we have some polytime computable bound
R such that

R ≤ OPT ≤ algorithm’s soln ≤ αR.

For vertex cover, R is the value of the linear programming relaxation.

For maximization problems,

R ≥ OPT ≥ algorithm’s soln ≥ αR.

For maximum satisfiability, R is total sum of clause weights.

David P. Williamson (Cornell University) Open Problems Bonn 15 / 54

Introduction Some Results

Approximate Min-Max Theorems

Most (not all!) approximation algorithms are approximate min-max
theorems:

For minimization problems, we have some polytime computable bound
R such that

R ≤ OPT ≤ algorithm’s soln ≤ αR.

For vertex cover, R is the value of the linear programming relaxation.

For maximization problems,

R ≥ OPT ≥ algorithm’s soln ≥ αR.

For maximum satisfiability, R is total sum of clause weights.

David P. Williamson (Cornell University) Open Problems Bonn 15 / 54

Introduction Hardness Results

Hardness Results

Starting in the 1990s, important progress in showing the nonexistence
of approximation algorithms (if P 6= NP).

The breakthrough: Arora, Lund, Motwani, Sudan, and Szegedy
(1998) use a new definition of NP in terms of probabilistically
checkable proofs to show that no PTAS can exist for a large class
of problems unless P = NP.

Lund and Yannakakis (1994) show for some c < 1, no
(c ln n)-approximation algorithm for set cover unless P = NP.
Feige (1998) improves to show that for all c < 1, no
(c ln n)-approximation for set cover unless NP has O(nlog log n) time
algoritms.

David P. Williamson (Cornell University) Open Problems Bonn 16 / 54

Introduction Hardness Results

Hardness Results

Starting in the 1990s, important progress in showing the nonexistence
of approximation algorithms (if P 6= NP).

The breakthrough: Arora, Lund, Motwani, Sudan, and Szegedy
(1998) use a new definition of NP in terms of probabilistically
checkable proofs to show that no PTAS can exist for a large class
of problems unless P = NP.
Lund and Yannakakis (1994) show for some c < 1, no
(c ln n)-approximation algorithm for set cover unless P = NP.

Feige (1998) improves to show that for all c < 1, no
(c ln n)-approximation for set cover unless NP has O(nlog log n) time
algoritms.

David P. Williamson (Cornell University) Open Problems Bonn 16 / 54

Introduction Hardness Results

Hardness Results

Starting in the 1990s, important progress in showing the nonexistence
of approximation algorithms (if P 6= NP).

The breakthrough: Arora, Lund, Motwani, Sudan, and Szegedy
(1998) use a new definition of NP in terms of probabilistically
checkable proofs to show that no PTAS can exist for a large class
of problems unless P = NP.
Lund and Yannakakis (1994) show for some c < 1, no
(c ln n)-approximation algorithm for set cover unless P = NP.
Feige (1998) improves to show that for all c < 1, no
(c ln n)-approximation for set cover unless NP has O(nlog log n) time
algoritms.

David P. Williamson (Cornell University) Open Problems Bonn 16 / 54

Introduction Hardness Results

Hardness Results

Håstad (1999) (together with Zuckerman (2007)) shows that for
any ε > 0, no O(nε−1)-approximation algorithm for maximum
clique problem unless P = NP.

Håstad (2001) shows that for all ε > 0, no (7
8 + ε)-approximation

algorithm for MAX E3SAT unless P = NP.
Dinur and Safra (2002) show no α-approximation algorithm for
vertex cover with α < 10

√
5− 21 ≈ 1.36 unless P = NP.

David P. Williamson (Cornell University) Open Problems Bonn 17 / 54

Introduction Hardness Results

Hardness Results

Håstad (1999) (together with Zuckerman (2007)) shows that for
any ε > 0, no O(nε−1)-approximation algorithm for maximum
clique problem unless P = NP.
Håstad (2001) shows that for all ε > 0, no (7

8 + ε)-approximation
algorithm for MAX E3SAT unless P = NP.

Dinur and Safra (2002) show no α-approximation algorithm for
vertex cover with α < 10

√
5− 21 ≈ 1.36 unless P = NP.

David P. Williamson (Cornell University) Open Problems Bonn 17 / 54

Introduction Hardness Results

Hardness Results

Håstad (1999) (together with Zuckerman (2007)) shows that for
any ε > 0, no O(nε−1)-approximation algorithm for maximum
clique problem unless P = NP.
Håstad (2001) shows that for all ε > 0, no (7

8 + ε)-approximation
algorithm for MAX E3SAT unless P = NP.
Dinur and Safra (2002) show no α-approximation algorithm for
vertex cover with α < 10

√
5− 21 ≈ 1.36 unless P = NP.

David P. Williamson (Cornell University) Open Problems Bonn 17 / 54

Introduction Hardness Results

Hardness result: Unique Games

Recent work based on unique games conjecture.

Unique Games Problem
Input:

An undirected graph G = (V ,E)
Labels L
Permutations πuv : L→ L for all (u, v) ∈ E

Goal: Find an assignment σ : L→ V to maximize the number of
satisfied edges; (u, v) satisfied if u labelled with i ∈ L, v labelled
with j ∈ L and πuv (i) = j .

David P. Williamson (Cornell University) Open Problems Bonn 18 / 54

Introduction Hardness Results

Conjecture (Unique Games Conjecture (UGC), Khot (2002))

For every δ > 0, there exists some k such that for |L| = k it is NP-hard
to decide whether

At least (1− δ)|E | edges are satisfiable
or at most δ|E | edges are satisfiable

David P. Williamson (Cornell University) Open Problems Bonn 19 / 54

Introduction Hardness Results

Hardness results: Unique Games

Some examples:
Khot and Regev (2008) show that given UGC, there is no
α-approximation algorithm for vertex cover with α < 2 unless
P = NP.

Raghavendra (2008), Raghavendra and Steurer (2009) show that
the approximability of constraint satisfaction problems tied to
integrality gap of semidefinite program, and given UGC, cannot do
better than integrality gap unless P = NP.
Svensson (2010) shows that given a variant of the UGC, there is
no α-approximation algorithm for a scheduling problem of Graham
with α < 2 unless P = NP.

David P. Williamson (Cornell University) Open Problems Bonn 20 / 54

Introduction Hardness Results

Hardness results: Unique Games

Some examples:
Khot and Regev (2008) show that given UGC, there is no
α-approximation algorithm for vertex cover with α < 2 unless
P = NP.
Raghavendra (2008), Raghavendra and Steurer (2009) show that
the approximability of constraint satisfaction problems tied to
integrality gap of semidefinite program, and given UGC, cannot do
better than integrality gap unless P = NP.

Svensson (2010) shows that given a variant of the UGC, there is
no α-approximation algorithm for a scheduling problem of Graham
with α < 2 unless P = NP.

David P. Williamson (Cornell University) Open Problems Bonn 20 / 54

Introduction Hardness Results

Hardness results: Unique Games

Some examples:
Khot and Regev (2008) show that given UGC, there is no
α-approximation algorithm for vertex cover with α < 2 unless
P = NP.
Raghavendra (2008), Raghavendra and Steurer (2009) show that
the approximability of constraint satisfaction problems tied to
integrality gap of semidefinite program, and given UGC, cannot do
better than integrality gap unless P = NP.
Svensson (2010) shows that given a variant of the UGC, there is
no α-approximation algorithm for a scheduling problem of Graham
with α < 2 unless P = NP.

David P. Williamson (Cornell University) Open Problems Bonn 20 / 54

Ten Open Problems

Next: ten open problems from our book.

David P. Williamson (Cornell University) Open Problems Bonn 21 / 54

Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

Maximum Cut Problem
Input: An undirected graph G = (V ,E) with nonnegative edge weights

wij ≥ 0 for all i , j ∈ V .
Goal: Find a set of vertices S ⊆ V that maximizes

∑
i∈S,j /∈S wij .

S

David P. Williamson (Cornell University) Open Problems Bonn 22 / 54

Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

What’s known?
an (α− ε)-approximation algorithm using semidefinite
programming (Goemans, W 1995) for

α = min
−1≤x≤1

1
π arccos(x)

1
2(1− x)

≈ .87856,

and any ε > 0.

Assuming the unique games conjecture, no (α + ε)-approximation
algorithm is possible unless P = NP (Khot, Kindler, Mossel,
O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2010)
No β-approximation algorithm possible for constant β > 16

17 ≈ .941
unless P = NP (Håstad 1997).

David P. Williamson (Cornell University) Open Problems Bonn 23 / 54

Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

What’s known?
an (α− ε)-approximation algorithm using semidefinite
programming (Goemans, W 1995) for

α = min
−1≤x≤1

1
π arccos(x)

1
2(1− x)

≈ .87856,

and any ε > 0.
Assuming the unique games conjecture, no (α + ε)-approximation
algorithm is possible unless P = NP (Khot, Kindler, Mossel,
O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2010)

No β-approximation algorithm possible for constant β > 16
17 ≈ .941

unless P = NP (Håstad 1997).

David P. Williamson (Cornell University) Open Problems Bonn 23 / 54

Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

What’s known?
an (α− ε)-approximation algorithm using semidefinite
programming (Goemans, W 1995) for

α = min
−1≤x≤1

1
π arccos(x)

1
2(1− x)

≈ .87856,

and any ε > 0.
Assuming the unique games conjecture, no (α + ε)-approximation
algorithm is possible unless P = NP (Khot, Kindler, Mossel,
O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2010)
No β-approximation algorithm possible for constant β > 16

17 ≈ .941
unless P = NP (Håstad 1997).

David P. Williamson (Cornell University) Open Problems Bonn 23 / 54

Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

The problem:
Solving the semidefinite program is computationally expensive. Can
one obtain an (α− ε)-approximation algorithm for the problem via
computationally easier means? E.g. a primal-dual algorithm?

A potential start:
(Trevisan, STOC 2009) gives a .531-approximation algorithm via an
eigenvalue computation.

David P. Williamson (Cornell University) Open Problems Bonn 24 / 54

Ten Open Problems Problem 10: MAX CUT

Problem 10: A primal-dual algorithm for the maximum
cut problem

The problem:
Solving the semidefinite program is computationally expensive. Can
one obtain an (α− ε)-approximation algorithm for the problem via
computationally easier means? E.g. a primal-dual algorithm?

A potential start:
(Trevisan, STOC 2009) gives a .531-approximation algorithm via an
eigenvalue computation.

David P. Williamson (Cornell University) Open Problems Bonn 24 / 54

Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

Coloring 3-colorable graphs

Input: An undirected, 3-colorable graph G = (V ,E).
Goal: Find a k -coloring of the graph with k as small as possible.

David P. Williamson (Cornell University) Open Problems Bonn 25 / 54

Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

What’s known?

A poly-time algorithm using semidefinite programming that uses at
most Õ(n0.211) colors (Arora, Chlamtac, Charikar 2006)

It is NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)
Assuming a variant of the unique games conjecture, for any
constant k > 3, it is NP-hard to decide if a graph needs only 3
colors or at least k colors (Dinur, Mossel, Regev 2009)

The problem:
Give an algorithm that uses O(log n) colors for 3-colorable graphs (or
show this is not possible modulo some complexity theoretic condition).

David P. Williamson (Cornell University) Open Problems Bonn 26 / 54

Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

What’s known?

A poly-time algorithm using semidefinite programming that uses at
most Õ(n0.211) colors (Arora, Chlamtac, Charikar 2006)
It is NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)

Assuming a variant of the unique games conjecture, for any
constant k > 3, it is NP-hard to decide if a graph needs only 3
colors or at least k colors (Dinur, Mossel, Regev 2009)

The problem:
Give an algorithm that uses O(log n) colors for 3-colorable graphs (or
show this is not possible modulo some complexity theoretic condition).

David P. Williamson (Cornell University) Open Problems Bonn 26 / 54

Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

What’s known?

A poly-time algorithm using semidefinite programming that uses at
most Õ(n0.211) colors (Arora, Chlamtac, Charikar 2006)
It is NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)
Assuming a variant of the unique games conjecture, for any
constant k > 3, it is NP-hard to decide if a graph needs only 3
colors or at least k colors (Dinur, Mossel, Regev 2009)

The problem:
Give an algorithm that uses O(log n) colors for 3-colorable graphs (or
show this is not possible modulo some complexity theoretic condition).

David P. Williamson (Cornell University) Open Problems Bonn 26 / 54

Ten Open Problems Problem 9: 3-coloring

Problem 9: Coloring 3-colorable graphs

What’s known?

A poly-time algorithm using semidefinite programming that uses at
most Õ(n0.211) colors (Arora, Chlamtac, Charikar 2006)
It is NP-hard to decide if a graph needs only 3 colors or at least 5
colors (Khanna, Linial, Safra 2000)
Assuming a variant of the unique games conjecture, for any
constant k > 3, it is NP-hard to decide if a graph needs only 3
colors or at least k colors (Dinur, Mossel, Regev 2009)

The problem:
Give an algorithm that uses O(log n) colors for 3-colorable graphs (or
show this is not possible modulo some complexity theoretic condition).

David P. Williamson (Cornell University) Open Problems Bonn 26 / 54

Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

Scheduling related machines with precedence constraints
Input:

n jobs with processing requirements p1, . . . ,pn ≥ 0.
m machines with speeds s1 ≥ s2 ≥ · · · ≥ sm > 0.
A precedence relation ≺ on jobs.

Goal: Find a schedule of minimum length in which all jobs are
completely scheduled and if j ≺ j ′, then job j completes before job
j ′ starts. Job j on machine i takes pj/si units of time.

Machines

Time

David P. Williamson (Cornell University) Open Problems Bonn 27 / 54

Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

What’s known?

If machines are identical (s1 = s2 = · · · = sm) then there is a
2-approximation algorithm (Graham 1966).

For general case, an O(log m)-approximation algorithm is known
(Chudak and Shmoys 1999; Chekuri and Bender 2001).
If machines are identical, and given a variant of the unique games
conjecture, then no α-approximation algorithm is possible for
α < 2 unless P = NP. (Svensson STOC 2010).

The problem:
Give an α-approximation algorithm for some constant α, or show that
O(log m) is the best possible modulo the unique games conjecture.

David P. Williamson (Cornell University) Open Problems Bonn 28 / 54

Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

What’s known?

If machines are identical (s1 = s2 = · · · = sm) then there is a
2-approximation algorithm (Graham 1966).
For general case, an O(log m)-approximation algorithm is known
(Chudak and Shmoys 1999; Chekuri and Bender 2001).

If machines are identical, and given a variant of the unique games
conjecture, then no α-approximation algorithm is possible for
α < 2 unless P = NP. (Svensson STOC 2010).

The problem:
Give an α-approximation algorithm for some constant α, or show that
O(log m) is the best possible modulo the unique games conjecture.

David P. Williamson (Cornell University) Open Problems Bonn 28 / 54

Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

What’s known?

If machines are identical (s1 = s2 = · · · = sm) then there is a
2-approximation algorithm (Graham 1966).
For general case, an O(log m)-approximation algorithm is known
(Chudak and Shmoys 1999; Chekuri and Bender 2001).
If machines are identical, and given a variant of the unique games
conjecture, then no α-approximation algorithm is possible for
α < 2 unless P = NP. (Svensson STOC 2010).

The problem:
Give an α-approximation algorithm for some constant α, or show that
O(log m) is the best possible modulo the unique games conjecture.

David P. Williamson (Cornell University) Open Problems Bonn 28 / 54

Ten Open Problems Problem 8: Scheduling related machines

Problem 8: Scheduling related machines with
precedence constraints

What’s known?

If machines are identical (s1 = s2 = · · · = sm) then there is a
2-approximation algorithm (Graham 1966).
For general case, an O(log m)-approximation algorithm is known
(Chudak and Shmoys 1999; Chekuri and Bender 2001).
If machines are identical, and given a variant of the unique games
conjecture, then no α-approximation algorithm is possible for
α < 2 unless P = NP. (Svensson STOC 2010).

The problem:
Give an α-approximation algorithm for some constant α, or show that
O(log m) is the best possible modulo the unique games conjecture.

David P. Williamson (Cornell University) Open Problems Bonn 28 / 54

Ten Open Problems Problem 7: Scheduling unrelated machines

Problem 7: Scheduling unrelated machines

Scheduling unrelated machines
Input:

m machines.
n jobs with processing requirements pij for scheduling job j on
machine i .

Goal: Find a schedule of minimum length.

David P. Williamson (Cornell University) Open Problems Bonn 29 / 54

Ten Open Problems Problem 7: Scheduling unrelated machines

Problem 7: Scheduling unrelated machines

What’s known?

A 2-approximation algorithm via LP rounding (Lenstra, Shmoys,
Tardos 1990)

A 1.94-approximation algorithm if running time is pij ∈
{

pj ,∞
}

for
all i , j (Svensson STOC 2011).
No α-approximation algorithm with α < 3/2 is possible unless
P = NP (Lenstra, Shmoys, Tardos 1990).

The problem:
Give an α-approximation algorithm for 3/2 ≤ α < 2, or show that this is
not possible.

David P. Williamson (Cornell University) Open Problems Bonn 30 / 54

Ten Open Problems Problem 7: Scheduling unrelated machines

Problem 7: Scheduling unrelated machines

What’s known?

A 2-approximation algorithm via LP rounding (Lenstra, Shmoys,
Tardos 1990)
A 1.94-approximation algorithm if running time is pij ∈

{
pj ,∞

}
for

all i , j (Svensson STOC 2011).

No α-approximation algorithm with α < 3/2 is possible unless
P = NP (Lenstra, Shmoys, Tardos 1990).

The problem:
Give an α-approximation algorithm for 3/2 ≤ α < 2, or show that this is
not possible.

David P. Williamson (Cornell University) Open Problems Bonn 30 / 54

Ten Open Problems Problem 7: Scheduling unrelated machines

Problem 7: Scheduling unrelated machines

What’s known?

A 2-approximation algorithm via LP rounding (Lenstra, Shmoys,
Tardos 1990)
A 1.94-approximation algorithm if running time is pij ∈

{
pj ,∞

}
for

all i , j (Svensson STOC 2011).
No α-approximation algorithm with α < 3/2 is possible unless
P = NP (Lenstra, Shmoys, Tardos 1990).

The problem:
Give an α-approximation algorithm for 3/2 ≤ α < 2, or show that this is
not possible.

David P. Williamson (Cornell University) Open Problems Bonn 30 / 54

Ten Open Problems Problem 7: Scheduling unrelated machines

Problem 7: Scheduling unrelated machines

What’s known?

A 2-approximation algorithm via LP rounding (Lenstra, Shmoys,
Tardos 1990)
A 1.94-approximation algorithm if running time is pij ∈

{
pj ,∞

}
for

all i , j (Svensson STOC 2011).
No α-approximation algorithm with α < 3/2 is possible unless
P = NP (Lenstra, Shmoys, Tardos 1990).

The problem:
Give an α-approximation algorithm for 3/2 ≤ α < 2, or show that this is
not possible.

David P. Williamson (Cornell University) Open Problems Bonn 30 / 54

Ten Open Problems Problem 6: Generalized Steiner tree

Problem 6: Generalized Steiner tree

Generalized Steiner tree
Input:

Undirected graph G = (V ,E).
Nonnegative edge costs ce ≥ 0 for all e ∈ E .
k source-sink pairs s1-t1, s2-t2, . . . , sk -tk .

Goal: Find edges F of minimum cost so that for each i , si and ti are
connected in (V ,F).

s1

t1

s2

t2

s3 t3

David P. Williamson (Cornell University) Open Problems Bonn 31 / 54

Ten Open Problems Problem 6: Generalized Steiner tree

Problem 6: Generalized Steiner tree

What’s known?

A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi
1995; see also Goemans and W 1995).

If si = s for all i , have the Steiner tree problem; then a
1.39-approximation algorithm known using LP rounding (Byrka,
Grandoni, Rothvoß, Sanità STOC 2010).
No α-approximation algorithm possible for Steiner tree for
α < 96

95 ≈ 1.01 unless P = NP (Chlebík, Chlebíková 2008)

The problem
Find an α-approximation algorithm for the generalized Steiner tree
problem for constant α < 2.

David P. Williamson (Cornell University) Open Problems Bonn 32 / 54

Ten Open Problems Problem 6: Generalized Steiner tree

Problem 6: Generalized Steiner tree

What’s known?

A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi
1995; see also Goemans and W 1995).
If si = s for all i , have the Steiner tree problem; then a
1.39-approximation algorithm known using LP rounding (Byrka,
Grandoni, Rothvoß, Sanità STOC 2010).

No α-approximation algorithm possible for Steiner tree for
α < 96

95 ≈ 1.01 unless P = NP (Chlebík, Chlebíková 2008)

The problem
Find an α-approximation algorithm for the generalized Steiner tree
problem for constant α < 2.

David P. Williamson (Cornell University) Open Problems Bonn 32 / 54

Ten Open Problems Problem 6: Generalized Steiner tree

Problem 6: Generalized Steiner tree

What’s known?

A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi
1995; see also Goemans and W 1995).
If si = s for all i , have the Steiner tree problem; then a
1.39-approximation algorithm known using LP rounding (Byrka,
Grandoni, Rothvoß, Sanità STOC 2010).
No α-approximation algorithm possible for Steiner tree for
α < 96

95 ≈ 1.01 unless P = NP (Chlebík, Chlebíková 2008)

The problem
Find an α-approximation algorithm for the generalized Steiner tree
problem for constant α < 2.

David P. Williamson (Cornell University) Open Problems Bonn 32 / 54

Ten Open Problems Problem 6: Generalized Steiner tree

Problem 6: Generalized Steiner tree

What’s known?

A primal-dual 2-approximation algorithm (Agrawal, Klein, Ravi
1995; see also Goemans and W 1995).
If si = s for all i , have the Steiner tree problem; then a
1.39-approximation algorithm known using LP rounding (Byrka,
Grandoni, Rothvoß, Sanità STOC 2010).
No α-approximation algorithm possible for Steiner tree for
α < 96

95 ≈ 1.01 unless P = NP (Chlebík, Chlebíková 2008)

The problem
Find an α-approximation algorithm for the generalized Steiner tree
problem for constant α < 2.

David P. Williamson (Cornell University) Open Problems Bonn 32 / 54

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

Capacitated facility location
Input:

A set F of facilities; each i ∈ F has facility cost fi ≥ 0.
A set D of clients.
A metric cij on locations i , j ∈ F ∪ D.
A capacity U on each facility.

Goal: Find S ⊂ F and assignment σ : D → S such that |σ−1(i)| ≤ U
for all i ∈ S that minimizes

∑
i∈S fi +

∑
j∈D cσ(j),j .

David P. Williamson (Cornell University) Open Problems Bonn 33 / 54

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

What’s known?
A local search algorithm: Let S be a set of currently open facilities. As
long as it improves the overall cost,

Add: S ← S ∪ {i} for i /∈ S;
Drop: S ← S − {i} for i ∈ S; or
Swap: S ← S ∪ {i} − {j} for i /∈ S, j ∈ S.

Can show this gives an (α + ε)-approximation algorithm for
α = 8 (Koropolu, Plaxton, Rajaraman 2000)
α = 6 (Chudak, W 2005)
α = 3 (Aggarwal et al. 2010)

David P. Williamson (Cornell University) Open Problems Bonn 34 / 54

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

What’s known?
A local search algorithm: Let S be a set of currently open facilities. As
long as it improves the overall cost,

Add: S ← S ∪ {i} for i /∈ S;
Drop: S ← S − {i} for i ∈ S; or
Swap: S ← S ∪ {i} − {j} for i /∈ S, j ∈ S.

Can show this gives an (α + ε)-approximation algorithm for
α = 8 (Koropolu, Plaxton, Rajaraman 2000)
α = 6 (Chudak, W 2005)
α = 3 (Aggarwal et al. 2010)

David P. Williamson (Cornell University) Open Problems Bonn 34 / 54

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

Let S be local optimal solution, with assignment σ; let S∗ be optimal
solution with assignment σ∗.
For any i ∈ O, since locally optimal,

fi +
∑

j∈σ∗−1(i)

(cij − cσ(j),j) ≥ 0.

Summing over all i ∈ O,∑
i∈O

fi +
∑
j∈D

(cσ∗(j),j − cσ(j),j) ≥ 0,

or ∑
j∈D

cσ(j),j ≤
∑
i∈O

fi +
∑
j∈D

cσ∗(j),j .

David P. Williamson (Cornell University) Open Problems Bonn 35 / 54

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

Let S be local optimal solution, with assignment σ; let S∗ be optimal
solution with assignment σ∗.
For any i ∈ O, since locally optimal,

fi +
∑

j∈σ∗−1(i)

(cij − cσ(j),j) ≥ 0.

Summing over all i ∈ O,∑
i∈O

fi +
∑
j∈D

(cσ∗(j),j − cσ(j),j) ≥ 0,

or ∑
j∈D

cσ(j),j ≤
∑
i∈O

fi +
∑
j∈D

cσ∗(j),j .

David P. Williamson (Cornell University) Open Problems Bonn 35 / 54

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

The problem:
Is there a polytime-computable relaxation R of the problem within a
constant factor of the optimal?

Or, what’s the approximate min-max relaxation?

R ≤ OPT ≤ algorithm’s soln ≤ αR.

David P. Williamson (Cornell University) Open Problems Bonn 36 / 54

Ten Open Problems Problem 5: Capacitated facility location

Problem 5: Capacitated facility location

The problem:
Is there a polytime-computable relaxation R of the problem within a
constant factor of the optimal?

Or, what’s the approximate min-max relaxation?

R ≤ OPT ≤ algorithm’s soln ≤ αR.

David P. Williamson (Cornell University) Open Problems Bonn 36 / 54

Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

Survivable network design
Input:

An undirected graph G = (V ,E)
Costs ce ≥ 0 for all e ∈ E
Integer connectivity requirements rij for all i , j ∈ V

Goal: Find a minimum-cost set of edges F so that for all i , j ∈ V , there
are at least rij edge-disjoint paths between i and j in (V ,F).

David P. Williamson (Cornell University) Open Problems Bonn 37 / 54

Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

Survivable network design
Input:

An undirected graph G = (V ,E)
Costs ce ≥ 0 for all e ∈ E
Integer connectivity requirements rij for all i , j ∈ V

Goal: Find a minimum-cost set of edges F so that for all i , j ∈ V , there
are at least rij edge-disjoint paths between i and j in (V ,F).

David P. Williamson (Cornell University) Open Problems Bonn 37 / 54

Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

What’s known?
A primal-dual 2HR-approximation algorithm (Goemans, Goldberg,
Plotkin, Shmoys, Tardos, W ’94), where Hn = 1 + 1

2 + 1
3 + · · ·+ 1

n
and R = maxi,j rij .
An LP rounding 2-approximation algorithm (Jain 2001)

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe ≥ max
i∈S,j /∈S

rij , ∀S ⊂ V ,

0 ≤ xe ≤ 1, ∀e ∈ E .

Theorem (Jain 2001)
For any basic feasible solution x∗ of the LP relaxation, there exists
some edge e ∈ E such that x∗e ≥ 1/2.

David P. Williamson (Cornell University) Open Problems Bonn 38 / 54

Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

What’s known?
A primal-dual 2HR-approximation algorithm (Goemans, Goldberg,
Plotkin, Shmoys, Tardos, W ’94), where Hn = 1 + 1

2 + 1
3 + · · ·+ 1

n
and R = maxi,j rij .
An LP rounding 2-approximation algorithm (Jain 2001)

minimize
∑
e∈E

cexe

subject to
∑

e∈δ(S)

xe ≥ max
i∈S,j /∈S

rij , ∀S ⊂ V ,

0 ≤ xe ≤ 1, ∀e ∈ E .

Theorem (Jain 2001)
For any basic feasible solution x∗ of the LP relaxation, there exists
some edge e ∈ E such that x∗e ≥ 1/2.

David P. Williamson (Cornell University) Open Problems Bonn 38 / 54

Ten Open Problems Problem 4: Survivable network design

Problem 4: Survivable network design

The problem:
Is there a 2-approximation algorithm that doesn’t require solving the
LP? E.g. a primal-dual algorithm?

David P. Williamson (Cornell University) Open Problems Bonn 39 / 54

Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

Bin packing

Input: bi pieces of size si , 0 < si < 1, for i = 1, . . . ,m
Goal: Find a packing of pieces into bins of size 1 that minimizes the

total number of bins used

David P. Williamson (Cornell University) Open Problems Bonn 40 / 54

Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

What’s known?
An LP-rounding algorithm that uses OPT +O(log2 OPT) bins
(Karmarkar, Karp 1982)

Enumerate all N possible ways of packing a bin. j th configuration uses
aij pieces of size i .

minimize
N∑

j=1

xj

subject to
N∑

j=1

aijxj ≥ bi , i = 1, . . . ,m,

xj integer, j = 1, . . . ,N.

David P. Williamson (Cornell University) Open Problems Bonn 41 / 54

Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

What’s known?
An LP-rounding algorithm that uses OPT +O(log2 OPT) bins
(Karmarkar, Karp 1982)

Enumerate all N possible ways of packing a bin. j th configuration uses
aij pieces of size i .

minimize
N∑

j=1

xj

subject to
N∑

j=1

aijxj ≥ bi , i = 1, . . . ,m,

xj integer, j = 1, . . . ,N.

David P. Williamson (Cornell University) Open Problems Bonn 41 / 54

Ten Open Problems Problem 3: Bin packing

Problem 3: Bin packing

The problem:
Find a polytime algorithm that uses at most OPT +c bins for some
constant c.

Note that there are instances known for which

OPT > dLPe+ 1,

but currently no known instances for which

OPT > dLPe+ 2.

David P. Williamson (Cornell University) Open Problems Bonn 42 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

Traveling salesman problem
Input:

Set of cities V
Travel costs cij such that cij ≤ cik + ckj for all i , j , k ∈ V

Goal: Find a minimum-cost tour of all the cities

David P. Williamson (Cornell University) Open Problems Bonn 43 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

Problem 2: the asymmetric case (cij 6= cji)
What’s known?

An O(log n)-approximation algorithm (Frieze, Galbiati, Maffioli
1982)
An LP rounding O(log n/ log log n)-approximation algorithm
(Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010)
Can’t approximate better than 117

116 ≈ 1.008 unless P = NP
(Papadimitriou, Vempala 2006)

David P. Williamson (Cornell University) Open Problems Bonn 44 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

minimize
∑
i,j∈V

cijxij

subject to
∑
j∈V

xij =
∑
j∈V

xji i ∈ V ,

∑
i∈S,j /∈S

xij ≥ 1 ∀S ⊂ V

xij ≥ 0 ∀i , j ∈ V .

No instance known for which the integrality gap is worse than 2
(Charikar, Goemans, Karloff 2006)

The problem:
Find an α-approximation algorithm for α constant for the asymmetric
case.

David P. Williamson (Cornell University) Open Problems Bonn 45 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

minimize
∑
i,j∈V

cijxij

subject to
∑
j∈V

xij =
∑
j∈V

xji i ∈ V ,

∑
i∈S,j /∈S

xij ≥ 1 ∀S ⊂ V

xij ≥ 0 ∀i , j ∈ V .

No instance known for which the integrality gap is worse than 2
(Charikar, Goemans, Karloff 2006)

The problem:
Find an α-approximation algorithm for α constant for the asymmetric
case.

David P. Williamson (Cornell University) Open Problems Bonn 45 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

Problem 1: the symmetric case cij = cji for all i , j ∈ V
What’s known?

A 3
2 -approximation algorithm (Christofides 1976)

Can’t approximate better than 220
219 ≈ 1.004 unless P = NP

(Papadimitriou, Vempala 2006)

David P. Williamson (Cornell University) Open Problems Bonn 46 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

minimize
∑

i,j∈V :i<j

cijxij

subject to
∑

j∈V :i<j

xij +
∑

j∈V :i>j

xji = 2 i ∈ V

∑
i∈S,j /∈S or i /∈S,j∈S

xij ≥ 2 ∀S ⊂ V

xij ≥ 0 ∀i , j ∈ V , i < j .

Integrality gap at most 3
2 (Wolsey 1980). No instance known with gap

worse than 4
3 .

David P. Williamson (Cornell University) Open Problems Bonn 47 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

k

David P. Williamson (Cornell University) Open Problems Bonn 48 / 54

Ten Open Problems Problems 1 and 2: traveling salesman

Problems 1 and 2: the traveling salesman problem

The problem:
Find an α-approximation algorithm for constant α < 3

2 .

David P. Williamson (Cornell University) Open Problems Bonn 49 / 54

Ten Open Problems An observation

An observation

No open problem of the form “this problem has an α-approximation
algorithm for constant α, find a PTAS.”

David P. Williamson (Cornell University) Open Problems Bonn 50 / 54

Conclusion

Success in computation?

The field has certainly successfully generated interesting algorithmic
ideas and mathematical understandings of approximate computation.

But how much effect on actual computational practice?

Some cases in network design codes:
Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual
survivable network design algorithm
Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting
Steiner tree algorithm

Also cases for problems that are theoretically solvable in polytime, but
for which approximation algorithms are much faster: e.g. Müller,
Radke, Vygen (2010)

But in graph partitioning and traveling salesman problem, most used
codes and ideas are from outside the area.

Can the theory help explain the realities of practice?

David P. Williamson (Cornell University) Open Problems Bonn 51 / 54

Conclusion

Success in computation?

The field has certainly successfully generated interesting algorithmic
ideas and mathematical understandings of approximate computation.

But how much effect on actual computational practice?

Some cases in network design codes:
Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual
survivable network design algorithm
Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting
Steiner tree algorithm

Also cases for problems that are theoretically solvable in polytime, but
for which approximation algorithms are much faster: e.g. Müller,
Radke, Vygen (2010)

But in graph partitioning and traveling salesman problem, most used
codes and ideas are from outside the area.

Can the theory help explain the realities of practice?

David P. Williamson (Cornell University) Open Problems Bonn 51 / 54

Conclusion

Success in computation?

The field has certainly successfully generated interesting algorithmic
ideas and mathematical understandings of approximate computation.

But how much effect on actual computational practice?

Some cases in network design codes:
Mihail, Shallcross, Dean, Mostrel (1996): Use primal-dual
survivable network design algorithm
Johnson, Minkoff, Phillips (2000): Use primal-dual prize-collecting
Steiner tree algorithm

Also cases for problems that are theoretically solvable in polytime, but
for which approximation algorithms are much faster: e.g. Müller,
Radke, Vygen (2010)

But in graph partitioning and traveling salesman problem, most used
codes and ideas are from outside the area.

Can the theory help explain the realities of practice?
David P. Williamson (Cornell University) Open Problems Bonn 51 / 54

Conclusion

Lightweight approximation algorithms

Perhaps part of the problem of adopting approximation algorithms is
that the theoretically best algorithms are too computationally
demanding compared to heuristics.

Examples:
Best approximation algorithm for survivable network design
requires solving LP via ellipsoid method
Best approximation algorithm for max cut requires solving
semidefinite program

Can we create lightweight approximation algorithms that deliver the
same performance guarantees but with more practical computational
requirements?

David P. Williamson (Cornell University) Open Problems Bonn 52 / 54

Conclusion

Maturity as a field

The area has become relatively mature, so substantial progress on
open problems is likely to be difficult.

But still possible! For example,
O(log n/ log log n)-approximation algorithm for asymmetric
traveling salesman problem (Asadpour et al. SODA 2010)
A 1.39-approximation algorithm for the minimum-cost Steiner tree
problem (Byrka et al. STOC 2010).
Some progress announced on symmetric TSP (when metric is
from an unweighted graph) (Oveis Gharan, Saberi, Singh,
December 2010)

And perhaps you!

David P. Williamson (Cornell University) Open Problems Bonn 53 / 54

Conclusion

Maturity as a field

The area has become relatively mature, so substantial progress on
open problems is likely to be difficult.

But still possible! For example,
O(log n/ log log n)-approximation algorithm for asymmetric
traveling salesman problem (Asadpour et al. SODA 2010)
A 1.39-approximation algorithm for the minimum-cost Steiner tree
problem (Byrka et al. STOC 2010).
Some progress announced on symmetric TSP (when metric is
from an unweighted graph) (Oveis Gharan, Saberi, Singh,
December 2010)

And perhaps you!

David P. Williamson (Cornell University) Open Problems Bonn 53 / 54

Conclusion

Maturity as a field

The area has become relatively mature, so substantial progress on
open problems is likely to be difficult.

But still possible! For example,
O(log n/ log log n)-approximation algorithm for asymmetric
traveling salesman problem (Asadpour et al. SODA 2010)
A 1.39-approximation algorithm for the minimum-cost Steiner tree
problem (Byrka et al. STOC 2010).
Some progress announced on symmetric TSP (when metric is
from an unweighted graph) (Oveis Gharan, Saberi, Singh,
December 2010)

And perhaps you!

David P. Williamson (Cornell University) Open Problems Bonn 53 / 54

Conclusion

The End

Thanks for your attention.

www.designofapproxalgs.com

David P. Williamson (Cornell University) Open Problems Bonn 54 / 54

	Introduction
	The Problem
	A Brief History
	Some Early, Easy Results
	Hardness Results

	Ten Open Problems
	Problem 10: A primal-dual algorithm for the maximum cut problem
	Problem 9: Coloring 3-colorable graphs
	Problem 8: Scheduling related machines with precedence constraints
	Problem 7: Scheduling unrelated machines
	Problem 6: Generalized Steiner tree
	Problem 5: Capacitated facility location
	Problem 4: Survivable network design
	Problem 3: Bin packing
	Problems 1 and 2: the traveling salesman problem
	An observation

	Concluding thoughts

