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The Traveling Salesman Problem (TSP)

The traveling salesman
problem (TSP) is probably
the most famous problem in
all of discrete optimization.

Given a set of cities, find the
shortest tour that visits all
cities and returns to the start.
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The (Symmetric, Metric) TSP

e Complete undirected graph K,
* Edge costs ¢;; for distinct i, j € [n] = {1,2,...,n} with
Cij = Cji and Cij < Cik + Ckj for all distinct ¢, j, k
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The (Symmetric, Metric) TSP

e Complete undirected graph K,
* Edge costs ¢;; for distinct i, j € [n] = {1,2,...,n} with
Cij = Cjj and Cij < Cik + Ckj for all distinct i, j, k

o

o! O

Find a minimum-cost Hamiltonian cycle: the cheapest cycle
visiting every city exactly once.
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Solving the TSP

“I conjecture that there is no good
[polynomial-time| algorithm for
the traveling salesman problem.
My reasons are the same as for
any mathematical conjecture: (1)
It is a legitimate mathematical
possibility, and (2) I do not know.”

— Jack Edmonds (1967)
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TSP is hard

Finding an optimal solution is known to be NP-hard: no
efficient method known for finding the optimal solution in every
instance aside from complete enumeration.
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TSP is hard

Finding an optimal solution is known to be NP-hard: no
efficient method known for finding the optimal solution in every
instance aside from complete enumeration.

...but that doesn’t mean that finding the solution to any
particular instance is hard.



TSP in the Medla

@he Washington Post

Quantum computers are straight out of science fiction. Take the “traveling
salesman problem,” where a salesperson has to visit a specific set of cities,
each only once, and return to the first city by the most efficient route
possible. As the number of cities increases, the problem becomes
exponentially complex. It would take a laptop computer 1,000 years to

te the most efficient route betwe ities, for example. A
‘qvnnmmpummumdnﬂmmmmmm.pmﬁﬂymndl

From www.twitter.com/wjcook

“It would take a laptop com-
puter 1,000 years to compute
the most efficient route be-
tween 22 cities, for example.”
— Washington Post
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TSP in the Media

@he Washington Post

Quantum computers are straight out of science fiction. Take the “traveling
salesman problem,” where a salesperson has to visit a specific set of cities,
each only once, and return to the first city by the most efficient route
possible. As the number of cities increases, the problem becomes
exponentially complex. It would take a laptop computer 1,000 years to

te the most efficient route betw ities, for example. A
‘qmmm computer could do this within minutes, possibly seconds.

From www.twitter.com/wjcook

“It would take a laptop com-
puter 1,000 years to compute
the most efficient route be-
tween 22 cities, for example.”
— Washington Post

“Like reporting the US Na-
tional Debt is $4” — Bill Cook


www.twitter.com/wjcook
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Bill Cook

The Traveling
Salesman Problem

A Computatonal Stucy

<
David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook
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The TSP: by Picture

Bixby, Chvatal, Applegate, and Cook (1998)
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The TSP: by Picture
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The TSP: by Picture

United States

Tour of 647 college campuses from Forbes’ list of America’s Top
Colleges
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The TSP: by Picture




var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}




DaviD P. WILLIA

.
- .
. * -
- .
- - N
. .



SEMIDEFINITE PROGRAMMING RELAXATIONS OF THE TSP Davib P. WILLIAMSON

The TSP: by Picture

Solved by Dantzig, Fulkerson, and Johnson (1954)
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Dantzig, Fulkerson, Johnson Method

® Write a linear program (LP) using variables z.

® Idea: if xz. = 1 then edge e is in tour, else if z. = 0 edge e
is not in tour.

® Since a linear program, can only restrict 0 < z, <1

® Start with linear constraints that are satisfied by any
integer tour

e [f solution to LP is not integer, add more constraints
(cutting planes) satisfied by any integer tour, but not by
the current LP solution.
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The Subtour Elimination LP Relaxation (1954)

Let 6(5) :={e={i,5} : [{i,7} N S| =1} be the set of edges
with exactly one endpoint in S, and let 6(v) := §({v}).

min Y ecE CeTe

subject to > c5yTe =2, v=1,...,n
2665(3)w3227 SCV‘S’#@?S#V
0<z. <1, ec k.
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The Subtour Elimination LP Relaxation (1954)

Let §(S) :={e={i,7} : [{i,7} N S| = 1} be the set of edges
with exactly one endpoint in S, and let 6(v) := §({v}).
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subject to Zee(s(v) Te=2, v=1,...,n
2665(5)w8227 SCV‘S’#@?S#V
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The Subtour Elimination LP Relaxation (1954)

Let §(S) :={e={i,7} : [{i,7} N S| = 1} be the set of edges
with exactly one endpoint in S, and let 6(v) := §({v}).

min Y ecE CeTe

subject to > c5yTe =2, v=1,...,n
ZEE(S(S)'%.6227 SCVS#QNS’#V
0<z. <1, ec k.
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The Subtour Elimination LP Relaxation (1954)

Let §(S) :={e={i,7} : [{i,7} N S| = 1} be the set of edges
with exactly one endpoint in S, and let 6(v) := §({v}).

min Y ecE CeTe

subject to > c5yTe =2, v=1,...,n
EeEJ(S)x6’227 SCV‘S’#@?S#V
0<z. <1, ec k.

e If we required that x. € {0, 1} be integral, this is an integer
program that exactly solves the TSP.
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The Subtour Elimination LP Relaxation (1954)

Let §(S) :={e={i,7} : [{i,7} N S| = 1} be the set of edges
with exactly one endpoint in S, and let 6(v) := §({v}).

min Y ecE CeTe

subject to > c5yTe =2, v=1,...,n
EeEJ(S)x8227 SCV‘S’#@?S#V
0<z. <1, ec k.

e If we required that x. € {0, 1} be integral, this is an integer
program that exactly solves the TSP.

® With 0 < z. < 1, it is a relaxation of the TSP and can
only find cheaper solutions.
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The Subtour Elimination LP Relaxation (1954)

Let §(S) :={e={i,7} : [{i,7} N S| = 1} be the set of edges
with exactly one endpoint in S, and let 6(v) := §({v}).

min Y ecE CeTe

subject to > c5yTe =2, v=1,...,n
EeEJ(S)x8227 SCV‘S’#@?S#V
0<z. <1, ec k.

The closer the value of the linear program to the value of the
optimal integral solution, the easier it is to find using cutting
planes or other standard techniques of integer programming
(such as branch-and-bound).




The Subtour Elimination LP Relaxation (1954)

Random Uniform Euclidean

Name | %Gap | Opitime | HKtime || Name
Elk0 077 1406 213 || dsj1000
Elk1 0.64 3855 2.15 || prloo2
Elk2 0.72 1211 2.02 || si1032
Elk3 0.62 956 1.92 || ul060
Elk4 0.69 330 169 || vml084
Elk5 0.59 233 242 (| pcbl173
Elk6 0.79 2940 1.67 || d1291
Elk7 0.94 8003 195 || rl13p4
Elk8 1.01 4347 1.65 || 11323
Elk9 0.61 189
E3k0 0.7 333368
E3k.1 067 | 425631
E3k2 074 | 342370
E3k3 0.67 147135
E3k4 0.73

Random Clustered Euc
Clk.0 0.54 07
Clk.1l 041 534
Cik2 042 320
Clk.3 0.53 214
Clkd | 058 768
Clk.5 0.58 139
Clk.6 0.73 1247
Cik.7 0.58 419
Clks | 034 140
C1k9 | 0.66 703
C3k.0 0.62 16009
C3k.1 0.61 17754
C3k2 0.70 18237
C3k.3 0.57 6340 d15112
C3kd | 057 4845

Matrices

Mi1k.0 0.01 60 M3k.0 0.00 612
Mik1 0.03 137 M3k.1 0.01 546
Mik2 0.01 151 M10k.0 0.00 13717
Mik3 | 001 | 160

From Johnson, McGeoch 2002
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The Subtour Elimination LP Relaxation (1954)
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The Subtour Elimination LP Relaxation (1954)

The integrality gap of an LP relaxation is the worst-case ratio
(for any set of metric and symmetric edge costs) of

Optimal TSP Solution
Optimal LP Solution
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The Subtour Elimination LP Relaxation (1954)

The Christofides-Serdyukov algorithm produces a Hamiltonian cycle
whose cost is within a factor of % of the subtour LP:

Optimal TSP Solution < Christofides’ Cycle

< gOptimal LP Solution

w

< —Optimal TSP Solution.

[\V)
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The Subtour Elimination LP Relaxation (1954)

The Christofides-Serdyukov algorithm produces a Hamiltonian cycle
whose cost is within a factor of % of the subtour LP:

Optimal TSP Solution < Christofides’ Cycle

< gOptimal LP Solution

w

< iOptimal TSP Solution.
The integrality gap of this relaxation is at most % That is, for
any set of metric and symmetric edge costs,

Optimal TSP Solution
Optimal LP Solution

3
< —.
-2
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The Subtour Elimination LP Relaxation (1954)
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The Subtour Elimination LP Relaxation (1954)

The example shows the integrality gap of this relaxation is at
least 4/3. Thus, for any set of metric and symmetric edge costs,

Optimal TSP Solution
Optimal LP Solution

1 <3
3 — 2
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The Subtour Elimination LP Relaxation (1954)

The example shows the integrality gap of this relaxation is at
least 4/3. Thus, for any set of metric and symmetric edge costs,

Optimal TSP Solution
Optimal LP Solution

1 <3
3 — 2

Open problem: Prove tight bound on integrality gap. J
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The Subtour Elimination LP Relaxation (1954)

The example shows the integrality gap of this relaxation is at
least 4/3. Thus, for any set of metric and symmetric edge costs,

Optimal TSP Solution
Optimal LP Solution

1o <3
3~ -2

Open problem: Prove tight bound on integrality gap.

Karlin, Klein, and Oveis Gharan (2020) give an algorithm that
finds a tour of cost at most % — 10736 times the optimal cost,
though they do not improve the analysis of the integrality gap.
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Looking Under Rocks

Instead of LP relaxations, try SDP relaxations. l




Outline

@ Introduction: The Traveling Salesman Problem and Linear
Programming

® Semidefinite Relaxations of the Traveling Salesman Problem

® Proof Sketch: An SDP with Unbounded Integrality Gap

@ One More SDP Relaxation

@ Conclusion and Open Questions
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Semidefinite Programs (SDPs)

A semidefinite program is similar to a linear program, except
that we can take a matrix of variables and enforce that the
matrix is positive semidefinite. Let X = 0 denote that X is
positive semidefinite.

Recall that for real symmetric X, X > 0 if and only if

e yT Xy > 0 for all n-vectors ¥;
® X has all nonnegative eigenvalues.

min ?,j:l Cinij

subject to >, ;a;Xij =by k=1,....m
X*=0
X = (Xij) real, symmetric

We can solve SDPs efficiently.
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SEMIDEFINITE PROGRAMMING RELAXATIONS OF THE TSP

A First SDP Relaxation (1999)

Let C = (Cij)?,j:l be the matrix of edge costs.
Let J denote the all-ones matrix, and e denote the all-ones vector.

min strace (CX) =1 2”21 Cii Xij

subject to Xe = 2e
Xn-=0, i=1,...,n
0< X <1, ,j=1,...n

21 = X + (2= 2cos (1)) (J 1) = 0
X a real, symmetric n X n matrix.

This semidefinite program is a relaxation of the TSP: the
adjacency matrix of any Hamiltonian cycle is feasible and has
the appropriate objective value.
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A First SDP Relaxation (1999)

Let C = (Cij)?,jzl be the matrix of edge costs.

min trace (CX)

subject to Xe = 2e
Xii =0, i=1,...,n
OSXijﬁl, i,jzl,...,n

20 = X +J — (2= 2cos (%)) 1= 0
X a real, symmetric n X n matrix.

X is a fractional adjacency matrix of K, :

for e = {,j}, Xi; = Xj; is the proportion of edge e used.
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A First SDP Relaxation (1999)

Let C = (Cij)?,jzl be the matrix of edge costs.

min trace (CX)

subject to Xe = 2e
Xy =0, i=1,..,n
OSXZ']'SL i,j=1,...,n

20— X +J — (2= 2cos (X)) 1= 0
X a real, symmetric n X n matrix.
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A First SDP Relaxation (1999)

Let C = (Cij)?,jzl be the matrix of edge costs.

min trace (CX)

subject to Xe = 2e
Xy =0, i=1,..,n
OSXijSL i,j=1,...,n

20— X +J — (2= 2cos (%)) 1= 0
X a real, symmetric n X n matrix.

The weighted graph corresponding to X (as a weighted
adjacency matrix) is at least as connected as a cycle graph,
with respect to algebraic connectivity
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A First SDP Relaxation (1999)

Let C = (cij)?,jzl be the matrix of edge costs.

min trace (CX)

subject to Xe = 2e
Xii:[), izl,...,n
OSXijgl, i,j=1,...,n

20— X +J — (2= 2cos (X)) 1= 0
X a real, symmetric n X n matrix .

This SDP is weaker than the Subtour Elimination LP: any
feasible solution for the Subtour LP is also feasible for this SDP.
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A First SDP Relaxation (1999)

Let C = (Cij);l,jzl be the matrix of edge costs.

min trace (CX)

subject to Xe = 2e
Xii:[), izl,...,n
OSXijgl, i,j=17...,n

20— X +J — (2= 2cos (X)) 1= 0
X a real, symmetric n X n matrix.

This SDP has an unbounded integrality gap. l
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A Second SDP Relaxation (2008)

DaviD P. WILLIAMSON

Let C = (cij);';=1 be the matrix of edge costs and S™ be the set

of real, symmetric n x n matrices. Also let d = [5].

min %trace (C’X(l))

subject to  X®*) > 0, k=1,...

E?:IX(]) = J_Iv

I+Z?:1€OS(M)XU)EO’ k=1,...

n

X k) e gn k=1,...

This semidefinite program is a relaxation of the TSP. Moreover,
it is incomparable with the Subtour Elimination LP.
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A Second SDP Relaxation (2008)

Let C be a Hamiltonian cycle. For i = 1,...,d = [ §], let X @ be
the ith distance matrix of C:

x@ _ {1, j and k are distance ¢ apart in C
jk =

0, otherwise.

01 0 0 0 1
Q 1 010 0O
G 9 Yo _ |01 0100
G (® 50010
e 1 0 0 01 O
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A Second SDP Relaxation (2008)

Let C be a Hamiltonian cycle. For i = 1,...,d = [ §], let X @ be
the ith distance matrix of C:

x@ _ {1, j and k are distance ¢ apart in C
jk =

0, otherwise.

00 1 0 1 0
Q 00 0 1 0 1
G 9 @ _ |1 000 10
OO Tl 0o
e 01 01 0O
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A Second SDP Relaxation (2008)

%trace (CX(I))

X&) >0, k=1,...
4 x6) = g7,

I+Z§-l:1 cos (#) X0 =0, k=1,

X (k) ¢ gn k=1,

_J1, jand k are distance ¢ apart in C
0, otherwise.

Davib P. WILLIAMSON
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A Second SDP Relaxation (2008)

min %trace (CX(I))

subject to X *) >0,

I X0 =71,
I+ZJ 1005(

(k) c Sn’

¢ The distance matrices of a
cycle form an association
scheme.

® This is an application of a
more general statement

about association schemes.

(See de Klerk, Filho, Pasechnik
2012)

k=1,....d

) XD =0, k=1,....d
k=1,....d.

® The distance matrices of a
cycle are circulant matrices.

® Linear combinations of
circulant matrices are
circulant.

¢ Circulant matrices have
well-understood eigenvalues.

(see Gutekunst and W. 2018)
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A Second SDP Relaxation (2008)

min %trace (CX(I))

subject to  X*) >0, k=1,...,d
I X0 =71,
I+ZJ 1005(27”) XW =0, k=1,...,d

X k) e gn k=1,...,d.
® The distance matrices of a
mo mi Mo -+ Mp_1 cycle are circulant matrices.
Mn-1 Mo M1 *** Mn-2 e Linear combinations of
Mp—2 Mnp_1 Mo - Mp_3 c%rculant matrices are
circulant.
[ ] 1 ]
my ms  ms .-+ mo Circulant matrices have

well-understood eigenvalues.

(see Gutekunst and W. 2018)
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A Second SDP Relaxation (2008)

() _
For X - ]l{s and t are distance j apart in C}»

I+Zc( )XU)H) k=1,...,d.

Mnp—1 Mo my - Mp—2

Mp—2 Mp—-1 Mo - Mp_3

For w, =e™ ",

n—1 n—1

MM) =Y "mewf, t=1,..n—1, A\(M)=> ms.
s=0 s=0
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A Second SDP Relaxation (2008)

) _
For Xst - ]l{s and ¢ are distance j apart in C}»

d 21k (s
I+Zcos(—>X(J) =0, k=1,....,d
=1 K

1 cos(2wk/n) cos(2w2k/n) -+ cos(2m2k/n) cos(2mk/n)
cos(2mk/n) 1 cos(2rk/n) -+ cos(2w3k/n) cos(2mw2k/n)
cos(2m2k/n)  cos(2wk/n) 1 . cos(2mdk/n) cos(2m3k/n)
cos(27'rk/n) cos(27;2k/n) cos(271:3k/n) . cos(27.rk/n) 1

n—1 n—1
MM) =Y "mewf, t=1,..n—1, A(M)=> ms.
=0 5=0
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A Second SDP Relaxation (2008)

() _
For X - ]l{s and t are distance j apart in C}»

I+Zc< )XU)H) k=1,...,d.

For t < m,

n—1
(M) = stwff
s=0
d—
=1 + cos ( ) Z ( ) St + wgnfs)t)

2d, ifk=t=d
d, ifk#d,te{k,n—k}
0, else.
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A Second SDP Relaxation (2008)

Let C = (c;j)i ;= be the matrix of edge costs and S™ be the set
of real, symmetric n x n matrices. Also let d = [§].
min Ltrace (CX(l))
subject to X&) >, k=1,...,d
Y XD =g -1,
I+Z§lzlcos (2—7;1“) X0 -0, k=1,....d
Xk e gn. k=1,...,d

This SDP has an unbounded integrality gap. That is, there exists no
constant « > 0 such that

OPT1sp (C)

—= TSP
OPTSDP(C) S @

for all cost matrices C' with metric, symmetric edge costs.
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Our Main Theorem: Proof Sketch

Let n be even and consider the cost matrix

0O --- 01 -+ 1

. 01 1 01

C= 1y 10 0 (1 0>®Jd
1 10 0

ce =1
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Our Main Theorem: Proof Sketch

Let n be even and consider the cost matrix

0O --- 0 1 --- 1

R 0 --- 01 --- 1 0 1

C = L i 1.0 - 0 —(1 0>®Jd.
1 -~ 1.0 --- 0

C corresponds to:
® a cut semimetric: costs where, for some S C V, ¢;; = 1 if
{i,7} € 8(S) and ¢;; = 0 otherwise.
® an instance of Euclidean TSP: vertices 1,..., 5 are at 0 € R!

and vertices 5§ +1,...,n are at 1 € R!. Costs are given by
the Euclidean distance between corresponding vertices.
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Our Main Theorem: Proof Sketch

For ¢ — <‘f é) ® Ja, we have OPTspp(C) < ™ = E2OPTrgp(C).

There exists no constant o« > 0 such that

OPTrsp(C) _
OPTspp(C) —

for all cost matrices C' with metric, symmetric edge costs.
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Our Main Theorem: Proof Sketch

0 1
10

For C‘=<

> ® Ja, we have OPTspp(C) < = = T OPTrsp(C).

Strategy:

1. Look within a class of feasible solutions that respect the
symmetry of C.

2. Exploit the structure of such solutions by reducing the
SDP to an LP for solutions in that class.

3. Find a feasible solution to the LP achieving the desired
cost.
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Our Main Theorem: Proof Sketch

DaviD P. WILLIAMSON

For ¢ — <2 (1)> ® Ja, we have OPTspp(C) < ™ = T2 OPTrsp(C)
Candidate solutions:
4 .
) ) ) 2 (1- a;, <d-1
X(]) = 4 b] ® Jy —ajIn, bj = Z 9 i J
bj a; 2_(1-2)a;, j=d
X9 =,
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Our Main Theorem: Proof Sketch

0 1

For C=<1 0

) ® Ja, we have OPTspp(C) < = = T OPTrsp(C).
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Our Main Theorem: Proof Sketch

0 1
10

For é = < > ® Jd, we have OPTSDP(

Let

4 2\ _
X(j): a; bj ®Jd —ail b — n 1_5 aj, ]Sd 1
b; a; s 2 _(1-2Vy: i=d
J J n n) 4 J .

Want to verify that it satisfies

X®) >0, k=1,....d
?:1 X0 =1,

I—i—Z?:lcos #) X0 =0, k=1,....d

X® e gn, k=1,...,d,

so need a; > 0, b; > 0, Z?:l aj = 1.



DaviD P. WILLIAMSON

SEMIDEFINITE PROGRAMMING RELAXATIONS OF THE TSP

Our Main Theorem: Proof Sketch

For ¢ = <(1) é) ® Jg, we have OPTgpp(

Let
4 2 :
) ) ) 2—(1-2)ay, <d-1
X(]) = 4 b] ® Jy —ajIn, bj = ; ; / ]
The SDP constraint I + E?:l cos (2—2&) X0U) > 0 becomes

(k) pk)
<<Z(k> a(k)> ® Jd) + (1= a1, =0,

where a®) and b*) are linear combinations of ay, ..., aq.
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Our Main Theorem: Proof Sketch

0 1
10

For C = < ) ® Jg, we have OPTspp(C) <

The SDP constraint I + Z;-lzl cos (%) XU = 0 becomes

k) k)
((Zoc) f;k)) ® Jd) +(1—a")1, =0,

for
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Our Main Theorem: Proof Sketch

0 1
10

%ré=< >®%wamumnm@5;

The SDP constraint I + Z;-lzl cos (%) X = 0 becomes
(k) p(k)
a
(Qm NQ®JO+O—JWQEO

® The eigenvalues of A ® B are \;(A)\;(B).

® J; has one eigenvalue d, all other eigenvalues are zero.

® The eigenvalues of <Z

2) are a + b and a — b.
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Our Main Theorem: Proof Sketch

0 1
10

For é = < > ® Jd, we have OPTSDP(

k) plk)
((Z(k) a(k)) ® Jd) +(1—a"™)1, = 0.

® The eigenvalues of A ® B are \;(A)\;(B).
® J; has one eigenvalue d, all other eigenvalues are zero.

a

b) are a + b and a — b.
b a

® The eigenvalues of <

So eigenvalues are

_ (k) &) (k) (k) _ k) (k) (k)
1a,1a+2(a +b),1a+2(a b).
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Our Main Theorem: Proof Sketch

0 1
10

n

For C‘=<

> ® Ja, we have OPTspp(C) < = = T OPTrsp(C).

The SDP constraint I + Z;-lzl cos (%) XU = 0 becomes

(k) p)
((Z(k) fZ(k)) ® Jd) +(1—a), = 0.

So eigenvalues are
— ) —a® L (g g k) —a® 1D (g pk)
1—a'", 1-—a —1—2((1 +b ), 1—a +2(a b ),

for

k) . ZCOS (271'2]{3) a, b( y ZCOS (271'1]{:)
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Our Main Theorem: Proof Sketch

0 1
10

n

For C‘=<

> ® Ja, we have OPTspp(C) < = = T OPTrsp(C).

The SDP constraint I + Z;-lzl cos (%) XU = 0 becomes

(k) p)
((Z(k) fZ(k)) ® Jd) +(1—a), = 0.

So eigenvalues are
— ) —a® L (g g k) —a® 1D (g pk)
1—a'", 1-—a —1—2((1 +b ), 1—a +2(a b ),

for

2mik 2 2
k)—Zcos< >ai, b(k):_(l_ﬁ) a(k)_ﬁ‘
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Our Main Theorem: Proof Sketch
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0 1
10

For C‘=<

> ® Jg, we have OPTSDP(

Intermediate step: Rewriting b*) in terms of a®, and impos-
ing that the eigenvalues, a;, and b;, are nonnegative, and finding
minimum-cost solution becomes linear program:

max

subject to

a
d 2mik

> i—1 cos (T ) a;
d 2mik .
;=1 COS n a;
d

i1 i

a;

ad

a;

AV VAN VAN | I VAN AV
O3 _ =

1)
TS

3
|

[\

[\

=
V]

k=1
k=1
i =

1=1,.



SEMIDEFINITE PROGRAMMING RELAXATIONS OF THE TSP DaviD P. WILLIAMSON

Our Main Theorem: Proof Sketch

A 0 1 A N
For C = <1 0> ® Jg, we have OPTspp(C) < % = %OPTTSP(C)-
max ay
subject to % cos (ZE) q; > 2o k=1,..,
le cos % a; <1, =1,..,d
L a =1
a; <A i=1,.,d-1
2
ad N
a; >0, i=1,..,d

Guess and verify that the following solution is feasible.

2 mj .
aj—n_2<cos<7>+1>, 7=1,...d.
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Our Main Theorem: Proof Sketch

A 0 1 A N
For C = <1 0) ® Jg, we have OPTSDP(C) < % = %OPTTSP(C).
Thus we find solutions where
_ bl — 17025(3) ~ %
o a1 = 2002(_52)-!-2
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Summary

® The 2008 SDP relaxation has an unbounded integrality gap

¢ To show that it produces arbitrarily bad solutions, we:

1.

Looked within a class of feasible solutions that respect the
symmetry of C'.

. Exploited the structure of such solutions by reducing the

SDP to an LP for solutions in that class.

. Found a feasible solution to the LP achieving the whose

cost decreases like #
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Corollaries of Our Theorem

The SDP has an unbounded integrality gap.

The SDP is non-monotonic, unlike the TSP and subtour
elimination LP.

We’ve found SDP solutions costing "szl ~ %, which become
arbitrarily small with n

T o=t
o 2cos(§)+2
ap = n—2
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Corollaries of Our Theorem

The SDP has an unbounded integrality gap. I

The earlier SDP of Cvetkovi¢, Cangalovié, and Kovacevié-Vujéié
has an unbounded integrality gap: the same X we found is
feasible (and has exactly the same algebraic connectivity as a
cycle).
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Corollaries of Our Theorem

The SDP has an unbounded integrality gap. |

A related SDP from de Klerk, de Oliveira Filho, and Pasechnik
2012 for the k-cycle cover problem also has an unbounded

integrality gap.
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A Third SDP Relaxation (2012)

De Klerk and Sotirov (2012) introduce one more SDP
relaxation based on an SDP relaxation of the quadratic
assignment problem (QAP) due to Povh and Rendl (2009).

Idea of the QAP version: let X € II,, be n x n permutation
matrix, with X;; = 1 iff the ith city we visit is j, for some
ordering of the tour. Then

xTAMx
gives the adjacency matrix of a tour, where A(™ is the
adjacency matrix of the tour 1,2,3,...,n, and its cost is

%trace (A(”)XC’XT) = <XTA(")X, C> .

1
2
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A Third SDP Relaxation (2012)

Idea: Create a matrix

y(ay y(@a2 ... yn)
vy y(22) ... y(2n)

Y = ,
vyl ym2) ...y

where Y () = XinT, for X; the ith column of X, and

YW = E, for some s, ¢, where Eg the matrix of all 0s, with
one 1 in the s,t entry.

Also, Y1) = Ey;. for some k, and Y £ Y9 for £ ;.
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A Third SDP Relaxation (2012)

Idea: Create a matrix

y(ay y(@a2 ... yn)
vy y(22) ... y(2n)

Y = . . . . 5
vyl ym2) ...y

where Y () = XinT, for X; the ith column of X, and

YW = E, for some s, ¢, where Eg the matrix of all 0s, with
one 1 in the s,t entry.

Also, Y1) = Ey;. for some k, and Y £ Y9 for £ ;.

Finally, Y = vec(X)vec(X)T, where vec(X) converts X to a
vector by stacking its columns.
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A Third SDP Relaxation (2012)

The Povh and Rendl (2009) relaxation is

min %trace ((C ® A(”)) Y)

subject to trace((I, ® EJ(;L))Y) =1 j=1,..,n
trace((E\ @ [)Y) =1  j=1,.,n
trace((In ® (Jn — In) + (Jp — I,) @ I,)Y) = 0
trace(J,2Y) = n?
Y >0,Y =0,Y € S¥*xn%,
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A Third SDP Relaxation (2012)

The Povh and Rendl (2009) relaxation is

min %trace <<C ® A(")) Y)

subject to trace((I, ® E](?))Y) =1 j=1,..,n
trace((E(") ®I,)Y)=1 j=1,.
trace((In, @ (Jn — 1) + (Jn —I)®I)Y):0
trace(J,2Y) = n?
Y >0,Y =0,Y € S¥*xn%,

This SDP has the same optimal value as the SDP of de Klerk,
Pasechnik, and Sotirov.
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A Third SDP Relaxation (2012)

De Klerk and Sotirov (2012) apply symmetry reduction: assume
X11 =1 in the permutation matrix and derive the associated
SDP relaxation as before.
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A Third SDP Relaxation (2012)

De Klerk and Sotirov (2012) apply symmetry reduction: assume
X11 =1 in the permutation matrix and derive the associated
SDP relaxation as before.

Computational results are again promising: better than the
subtour LP on small instances of the T'SP.
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A Third SDP Relaxation (2012)

Previous instances give an integrality gap of at least 2 for the
de Klerk-Sotirov SDP relaxation.
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A Third SDP Relaxation (2012)

Previous instances give an integrality gap of at least 2 for the
de Klerk-Sotirov SDP relaxation.

For any constant ¢, can prove an integrality gap of at least ¢ for
the de Klerk-Sotirov SDP relaxation.

Idea: We generalize our previous instances to a simplicial
instances on g groups of n/g vertices: cost 0 for edges within
each group, cost 1 for edges between groups.
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Open Questions

1. How does this SDP perform on special cases of the TSP?

® We’ve shown that the integrality gap is unbounded on the
general metric and symmetric TSP, as well as on Euclidean
TSP.

¢ On graphic TSP (where edge costs correspond to shortest
paths in a connected input graph), the integrality gap is at
most 2. Is it strictly better?



SEMIDEFINITE PROGRAMMING RELAXATIONS OF THE TSP Davib P. WILLIAMSON

Open Questions

1. How does this SDP perform on special cases of the TSP?

2. If you combine both this SDP and the subtour LP, can you
guarantee an integrality gap of 1.5 — e for any € > 0?7
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Big Open Questions
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Big Open Questions




Samuel C. Gutekunst and David P. Williamson, The Unbounded
Integrality Gap of a Semidefinite Relaxation of the Traveling Salesman
Problem, SIAM Journal on Optimization 28:2073-2096, 2018.

Samuel C. Gutekunst and David P. Williamson, Semidefinite
Programming Relaxations of the Traveling Salesman Problem and
Their Integrality Gaps, To appear, Mathematics of Operations
Research.




SEMIDEFINITE PROGRAMMING RELAXATIONS OF THE TSP Davib P. WILLIAMSON

Thanks for your attention.
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