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The Traveling Salesman Problem (TSP)

The traveling salesman
problem (TSP) is probably
the most famous problem in
all of discrete optimization.

Given a set of cities, find the
shortest tour that visits all
cities and returns to the start.
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The (Symmetric, Metric) TSP

• Complete undirected graph Kn

• Edge costs cij for distinct i, j ∈ [n] = {1, 2, ..., n} with
cij = cji and cij ≤ cik + ckj for all distinct i, j, k
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The (Symmetric, Metric) TSP

• Complete undirected graph Kn

• Edge costs cij for distinct i, j ∈ [n] = {1, 2, ..., n} with
cij = cji and cij ≤ cik + ckj for all distinct i, j, k
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Goal
Find a minimum-cost Hamiltonian cycle: the cheapest cycle
visiting every city exactly once.
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Solving the TSP

“I conjecture that there is no good
[polynomial-time] algorithm for
the traveling salesman problem.
My reasons are the same as for
any mathematical conjecture: (1)
It is a legitimate mathematical
possibility, and (2) I do not know.”

– Jack Edmonds (1967)
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TSP is hard

Finding an optimal solution is known to be NP-hard: no
efficient method known for finding the optimal solution in every
instance aside from complete enumeration.

...but that doesn’t mean that finding the solution to any
particular instance is hard.
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TSP in the Media

From www.twitter.com/wjcook

“It would take a laptop com-
puter 1,000 years to compute
the most efficient route be-
tween 22 cities, for example.”
– Washington Post

“Like reporting the US Na-
tional Debt is $4” – Bill Cook

www.twitter.com/wjcook
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Bill Cook
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The TSP: by Picture
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The TSP: by Picture

Bixby, Chvatal, Applegate, and Cook (1998)
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The TSP: by Picture
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The TSP: by Picture
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The TSP: by Picture

Tour of 647 college campuses from Forbes’ list of America’s Top
Colleges
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The TSP: by Picture
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The TSP: by Picture
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The TSP: by Picture

Solved by Dantzig, Fulkerson, and Johnson (1954)
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Dantzig, Fulkerson, Johnson Method

• Write a linear program (LP) using variables xe
• Idea: if xe = 1 then edge e is in tour, else if xe = 0 edge e
is not in tour.
• Since a linear program, can only restrict 0 ≤ xe ≤ 1
• Start with linear constraints that are satisfied by any
integer tour
• If solution to LP is not integer, add more constraints
(cutting planes) satisfied by any integer tour, but not by
the current LP solution.
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The Subtour Elimination LP Relaxation (1954)

Let δ(S) := {e = {i, j} : |{i, j} ∩ S| = 1} be the set of edges
with exactly one endpoint in S, and let δ(v) := δ({v}).

min
∑
e∈E cexe

subject to
∑
e∈δ(v) xe = 2, v = 1, . . . , n∑
e∈δ(S) xe ≥ 2, S ⊂ V : S 6= ∅, S 6= V

0 ≤ xe ≤ 1, e ∈ E.
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The Subtour Elimination LP Relaxation (1954)

Let δ(S) := {e = {i, j} : |{i, j} ∩ S| = 1} be the set of edges
with exactly one endpoint in S, and let δ(v) := δ({v}).

min
∑
e∈E cexe

subject to
∑
e∈δ(v) xe = 2, v = 1, . . . , n∑
e∈δ(S) xe ≥ 2, S ⊂ V : S 6= ∅, S 6= V

0 ≤ xe ≤ 1, e ∈ E.

Remarks
• If we required that xe ∈ {0, 1} be integral, this is an integer
program that exactly solves the TSP.
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The Subtour Elimination LP Relaxation (1954)

Let δ(S) := {e = {i, j} : |{i, j} ∩ S| = 1} be the set of edges
with exactly one endpoint in S, and let δ(v) := δ({v}).

min
∑
e∈E cexe

subject to
∑
e∈δ(v) xe = 2, v = 1, . . . , n∑
e∈δ(S) xe ≥ 2, S ⊂ V : S 6= ∅, S 6= V

0 ≤ xe ≤ 1, e ∈ E.

Remarks
• If we required that xe ∈ {0, 1} be integral, this is an integer
program that exactly solves the TSP.
• With 0 ≤ xe ≤ 1, it is a relaxation of the TSP and can

only find cheaper solutions.
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The Subtour Elimination LP Relaxation (1954)

Let δ(S) := {e = {i, j} : |{i, j} ∩ S| = 1} be the set of edges
with exactly one endpoint in S, and let δ(v) := δ({v}).

min
∑
e∈E cexe

subject to
∑
e∈δ(v) xe = 2, v = 1, . . . , n∑
e∈δ(S) xe ≥ 2, S ⊂ V : S 6= ∅, S 6= V

0 ≤ xe ≤ 1, e ∈ E.

Remarks
The closer the value of the linear program to the value of the
optimal integral solution, the easier it is to find using cutting
planes or other standard techniques of integer programming
(such as branch-and-bound).
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The Subtour Elimination LP Relaxation (1954)

From Johnson, McGeoch 2002
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The Subtour Elimination LP Relaxation (1954)

The Subtour LP bound is good in practice; what can we say
about it in the worst-case?

Integrality Gap
The integrality gap of an LP relaxation is the worst-case ratio
(for any set of metric and symmetric edge costs) of

Optimal TSP Solution
Optimal LP Solution .
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The Subtour Elimination LP Relaxation (1954)

Theorem (Wolsey 1980, Cunningham ’86, Shmoys & W ’90)
The Christofides-Serdyukov algorithm produces a Hamiltonian cycle
whose cost is within a factor of 3

2 of the subtour LP:
Optimal TSP Solution ≤ Christofides’ Cycle

≤ 3
2Optimal LP Solution

≤ 3
2Optimal TSP Solution.
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The Subtour Elimination LP Relaxation (1954)

Theorem (Wolsey 1980, Cunningham ’86, Shmoys & W ’90)
The Christofides-Serdyukov algorithm produces a Hamiltonian cycle
whose cost is within a factor of 3

2 of the subtour LP:
Optimal TSP Solution ≤ Christofides’ Cycle

≤ 3
2Optimal LP Solution

≤ 3
2Optimal TSP Solution.

Corollary
The integrality gap of this relaxation is at most 3

2 . That is, for
any set of metric and symmetric edge costs,

Optimal TSP Solution
Optimal LP Solution ≤

3
2 .
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The Subtour Elimination LP Relaxation (1954)

k
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The Subtour Elimination LP Relaxation (1954)

k

The example shows the integrality gap of this relaxation is at
least 4/3. Thus, for any set of metric and symmetric edge costs,

4
3 ≤

Optimal TSP Solution
Optimal LP Solution ≤

3
2 .
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The Subtour Elimination LP Relaxation (1954)

k

The example shows the integrality gap of this relaxation is at
least 4/3. Thus, for any set of metric and symmetric edge costs,

4
3 ≤

Optimal TSP Solution
Optimal LP Solution ≤

3
2 .

Open problem: Prove tight bound on integrality gap.
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The Subtour Elimination LP Relaxation (1954)

The example shows the integrality gap of this relaxation is at
least 4/3. Thus, for any set of metric and symmetric edge costs,

4
3 ≤

Optimal TSP Solution
Optimal LP Solution ≤

3
2 .

Open problem: Prove tight bound on integrality gap.

Karlin, Klein, and Oveis Gharan (2020) give an algorithm that
finds a tour of cost at most 3

2 − 10−36 times the optimal cost,
though they do not improve the analysis of the integrality gap.
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Looking Under Rocks

Idea
Instead of LP relaxations, try SDP relaxations.



Outline

1 Introduction: The Traveling Salesman Problem and Linear
Programming

2 Semidefinite Relaxations of the Traveling Salesman Problem
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Semidefinite Programs (SDPs)
A semidefinite program is similar to a linear program, except
that we can take a matrix of variables and enforce that the
matrix is positive semidefinite. Let X � 0 denote that X is
positive semidefinite.

Recall that for real symmetric X, X � 0 if and only if

• yTXy ≥ 0 for all n-vectors y;
• X has all nonnegative eigenvalues.

min
∑n
i,j=1CijXij

subject to
∑
i,j aijkXij = bk k = 1, . . . ,m

X � 0
X = (Xij) real, symmetric

We can solve SDPs efficiently.
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.
Let J denote the all-ones matrix, and e denote the all-ones vector.

min 1
2trace (CX) = 1

2
∑n
i,j=1CijXij

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X +

(
2− 2 cos

(
2π
n

))
(J − I) � 0

X a real, symmetric n× n matrix.

Theorem (Cvetković, Čangalović, and Kovačević-Vujčić 1999)
This semidefinite program is a relaxation of the TSP: the
adjacency matrix of any Hamiltonian cycle is feasible and has
the appropriate objective value.
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X + J −

(
2− 2 cos

(
2π
n

))
I � 0

X a real, symmetric n× n matrix.

X is a fractional adjacency matrix of Kn :

for e = {i, j}, Xij = Xji is the proportion of edge e used.
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A First SDP Relaxation (1999)
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X a real, symmetric n× n matrix.

1
2

1
2

1



Semidefinite Programming Relaxations of the TSP David P. Williamson

A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X + J −

(
2− 2 cos

(
2π
n

))
I � 0

X a real, symmetric n× n matrix.

The weighted graph corresponding to X (as a weighted
adjacency matrix) is at least as connected as a cycle graph,

with respect to algebraic connectivity
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X + J −

(
2− 2 cos

(
2π
n

))
I � 0

X a real, symmetric n× n matrix .

Theorem (Goemans and Rendl, 2000)
This SDP is weaker than the Subtour Elimination LP: any
feasible solution for the Subtour LP is also feasible for this SDP.
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A First SDP Relaxation (1999)
Let C = (cij)ni,j=1 be the matrix of edge costs.

min 1
2trace (CX)

subject to Xe = 2e
Xii = 0, i = 1, ..., n
0 ≤ Xij ≤ 1, i, j = 1, ..., n
2I −X + J −

(
2− 2 cos

(
2π
n

))
I � 0

X a real, symmetric n× n matrix.

Theorem (Gutekunst and W, 2018)
This SDP has an unbounded integrality gap.
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A Second SDP Relaxation (2008)

Let C = (cij)ni,j=1 be the matrix of edge costs and Sn be the set
of real, symmetric n× n matrices. Also let d = bn2 c.

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

Theorem (de Klerk, Pasechnik, and Sotirov 2008)
This semidefinite program is a relaxation of the TSP. Moreover,
it is incomparable with the Subtour Elimination LP.



Semidefinite Programming Relaxations of the TSP David P. Williamson

A Second SDP Relaxation (2008)

Idea
Let C be a Hamiltonian cycle. For i = 1, ..., d = bn2 c, let X

(i) be
the ith distance matrix of C:

X
(i)
jk =

{
1, j and k are distance i apart in C
0, otherwise.

3
4

5

6
1

2
X(1) =



0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0


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A Second SDP Relaxation (2008)

Idea
Let C be a Hamiltonian cycle. For i = 1, ..., d = bn2 c, let X

(i) be
the ith distance matrix of C:

X
(i)
jk =

{
1, j and k are distance i apart in C
0, otherwise.

3
4

5

6
1

2
X(2) =



0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0


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A Second SDP Relaxation (2008)

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

For i = 1, ..., d = bn2 c, these quickly follow from

X
(i)
jk =

{
1, j and k are distance i apart in C
0, otherwise.
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A Second SDP Relaxation (2008)

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

• The distance matrices of a
cycle form an association
scheme.

• This is an application of a
more general statement
about association schemes.

(See de Klerk, Filho, Pasechnik
2012)

• The distance matrices of a
cycle are circulant matrices.

• Linear combinations of
circulant matrices are
circulant.

• Circulant matrices have
well-understood eigenvalues.

(see Gutekunst and W. 2018)
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A Second SDP Relaxation (2008)

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.



m0 m1 m2 · · · mn−1
mn−1 m0 m1 · · · mn−2

mn−2 mn−1 m0
. . . mn−3

...
...

...
. . .

...
m1 m2 m3 · · · m0



• The distance matrices of a
cycle are circulant matrices.

• Linear combinations of
circulant matrices are
circulant.

• Circulant matrices have
well-understood eigenvalues.

(see Gutekunst and W. 2018)
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A Second SDP Relaxation (2008)
Goal
For X(j)

st = 1{s and t are distance j apart in C},

I +
d∑
j=1

cos
(2πjk

n

)
X(j) � 0, k = 1, . . . , d.



m0 m1 m2 · · · mn−1
mn−1 m0 m1 · · · mn−2

mn−2 mn−1 m0
. . . mn−3

...
...

...
. . .

...
m1 m2 m3 · · · m0


For ωn = e−

2πi
n ,

λt(M) =
n−1∑
s=0

msω
st
n , t = 1, ..., n− 1, λn(M) =

n−1∑
s=0

ms.
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A Second SDP Relaxation (2008)
Goal
For X(j)

st = 1{s and t are distance j apart in C},

I +
d∑
j=1

cos
(2πjk

n

)
X(j) � 0, k = 1, . . . , d.



1 cos(2πk/n) cos(2π2k/n) · · · cos(2π2k/n) cos(2πk/n)
cos(2πk/n) 1 cos(2πk/n) · · · cos(2π3k/n) cos(2π2k/n)

cos(2π2k/n) cos(2πk/n) 1
. . . cos(2π4k/n) cos(2π3k/n)

...
...

...
. . .

...
...

cos(2πk/n) cos(2π2k/n) cos(2π3k/n) · · · cos(2πk/n) 1



λt(M) =
n−1∑
s=0

msω
st
n , t = 1, ..., n− 1, λn(M) =

n−1∑
s=0

ms.
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A Second SDP Relaxation (2008)
Goal
For X(j)

st = 1{s and t are distance j apart in C},

I +
d∑
j=1

cos
(2πjk

n

)
X(j) � 0, k = 1, . . . , d.

For t ≤ n,

λt(M) =
n−1∑
s=0

msω
st
n

= 1 + cos
(2πkd

n

)
ωdtn +

d−1∑
s=1

cos
(2πsk

n

)(
ωstn + ω(n−s)t

n

)
= · · ·

=


2d, if k = t = d

d, if k 6= d, t ∈ {k, n− k}
0, else.
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A Second SDP Relaxation (2008)
Let C = (cij)ni,j=1 be the matrix of edge costs and Sn be the set
of real, symmetric n× n matrices. Also let d = bn2 c.

min 1
2trace

(
CX(1)

)
subject to X(k) ≥ 0, k = 1, . . . , d∑d

j=1X
(j) = J − I,

I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d.

Theorem (Gutekunst and W, 2018)
This SDP has an unbounded integrality gap. That is, there exists no
constant α > 0 such that

OPTTSP(C)
OPTSDP(C) ≤ α

for all cost matrices C with metric, symmetric edge costs.
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Our Main Theorem: Proof Sketch
Let n be even and consider the cost matrix

Ĉ :=



0 · · · 0 1 · · · 1
... . . . ...

... . . . ...
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0
... . . . ...

... . . . ...
1 · · · 1 0 · · · 0


=
(

0 1
1 0

)
⊗ Jd.

1

2

3

4

5

6

ce = 1

ce = 0
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Our Main Theorem: Proof Sketch
Let n be even and consider the cost matrix

Ĉ :=



0 · · · 0 1 · · · 1
... . . . ...

... . . . ...
0 · · · 0 1 · · · 1
1 · · · 1 0 · · · 0
... . . . ...

... . . . ...
1 · · · 1 0 · · · 0


=
(

0 1
1 0

)
⊗ Jd.

Ĉ corresponds to:
• a cut semimetric: costs where, for some S ⊂ V , cij = 1 if
{i, j} ∈ δ(S) and cij = 0 otherwise.
• an instance of Euclidean TSP: vertices 1, ..., n2 are at 0 ∈ R1

and vertices n
2 + 1, ..., n are at 1 ∈ R1. Costs are given by

the Euclidean distance between corresponding vertices.
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Corollary
There exists no constant α > 0 such that

OPTTSP(C)
OPTSDP(C) ≤ α

for all cost matrices C with metric, symmetric edge costs.
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Strategy:
1. Look within a class of feasible solutions that respect the

symmetry of Ĉ.
2. Exploit the structure of such solutions by reducing the

SDP to an LP for solutions in that class.
3. Find a feasible solution to the LP achieving the desired

cost.
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Our Main Theorem: Proof Sketch
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For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Candidate solutions:

X(j) =
((

aj bj
bj aj

)
⊗ Jd

)
−ajIn, bj =


4
n −

(
1− 2

n

)
aj , j ≤ d− 1

2
n −

(
1− 2

n

)
aj , j = d.

1

2

3

4

5

6

X
(j)
e = bj

X
(j)
e = aj
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

1

2

3

4

5

6

X
(j)
e = bj , cost 1

X
(j)
e = aj , cost 0

TSP Solutions

OPTTSP(Ĉ) = 2

SDP Solutions

OPTSDP(Ĉ) = 1
2trace

(
CX(1)

)
= 0× 2

(
n/2
2

)
a1 + 1×

(n
2

)2
b1
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Let

X(j) =
((

aj bj
bj aj

)
⊗ Jd

)
−ajIn, bj =


4
n −

(
1− 2

n

)
aj , j ≤ d− 1

2
n −

(
1− 2

n

)
aj , j = d.

Want to verify that it satisfies

X(k) ≥ 0, k = 1, . . . , d∑d
j=1X

(j) = J − I,
I +

∑d
j=1 cos

(
2πjk
n

)
X(j) � 0, k = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d,

so need aj ≥ 0, bj ≥ 0,
∑d
j=1 aj = 1.
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Let

X(j) =
((

aj bj
bj aj

)
⊗ Jd

)
−ajIn, bj =


4
n −

(
1− 2

n

)
aj , j ≤ d− 1

2
n −

(
1− 2

n

)
aj , j = d.

The SDP constraint I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0 becomes

((
a(k) b(k)

b(k) a(k)

)
⊗ Jd

)
+ (1− a(k))In � 0,

where a(k) and b(k) are linear combinations of a1, ..., ad.
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(
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)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

The SDP constraint I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0 becomes

((
a(k) b(k)

b(k) a(k)

)
⊗ Jd

)
+ (1− a(k))In � 0,

for

a(k) =
d∑
i=1

cos
(2πik

n

)
ai, b(k) =

d∑
i=1

cos
(2πik

n

)
bi.



Semidefinite Programming Relaxations of the TSP David P. Williamson

Our Main Theorem: Proof Sketch
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For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

The SDP constraint I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0 becomes

((
a(k) b(k)

b(k) a(k)

)
⊗ Jd

)
+ (1− a(k))In � 0.

• The eigenvalues of A⊗B are λi(A)λj(B).
• Jd has one eigenvalue d, all other eigenvalues are zero.

• The eigenvalues of
(
a b
b a

)
are a+ b and a− b.
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Our Main Theorem: Proof Sketch
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For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

((
a(k) b(k)

b(k) a(k)

)
⊗ Jd

)
+ (1− a(k))In � 0.

• The eigenvalues of A⊗B are λi(A)λj(B).
• Jd has one eigenvalue d, all other eigenvalues are zero.

• The eigenvalues of
(
a b
b a

)
are a+ b and a− b.

So eigenvalues are

1−a(k), 1−a(k) + n

2
(
a(k) + b(k)

)
, 1−a(k) + n

2
(
a(k) − b(k)

)
.
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For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

The SDP constraint I +
∑d
j=1 cos

(
2πjk
n

)
X(j) � 0 becomes

((
a(k) b(k)

b(k) a(k)

)
⊗ Jd

)
+ (1− a(k))In � 0.

So eigenvalues are

1−a(k), 1−a(k) + n

2
(
a(k) + b(k)

)
, 1−a(k) + n

2
(
a(k) − b(k)

)
,

for

a(k) =
d∑
i=1

cos
(2πik

n

)
ai, b(k) = −

(
1− 2

n

)
a(k) − 2

n
.
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Intermediate step: Rewriting b(k) in terms of a(k), and impos-
ing that the eigenvalues, aj , and bj , are nonnegative, and finding
minimum-cost solution becomes linear program:

max a1

subject to
∑d
i=1 cos

(
2πik
n

)
ai ≥ − 2

n−2 , k = 1, ..., d∑d
i=1 cos

(
2πik
n

)
ai ≤ 1, k = 1, ..., d∑d

i=1 ai = 1
ai ≤ 4

n−2 , i = 1, ..., d− 1
ad ≤ 2

n−2
ai ≥ 0, i = 1, ..., d.
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

max a1

subject to
∑d
i=1 cos

(
2πik
n

)
ai ≥ − 2

n−2 , k = 1, ..., d∑d
i=1 cos

(
2πik
n

)
ai ≤ 1, k = 1, ..., d∑d

i=1 ai = 1
ai ≤ 4

n−2 , i = 1, ..., d− 1
ad ≤ 2

n−2
ai ≥ 0, i = 1, ..., d.

Guess and verify that the following solution is feasible.

aj = 2
n− 2

(
cos

(
πj

d

)
+ 1

)
, j = 1, ..., d.
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Our Main Theorem: Proof Sketch
Theorem (Gutekunst and W, 2018)

For Ĉ =
(

0 1
1 0

)
⊗ Jd, we have OPTSDP(Ĉ) ≤ π2

n = π2

2nOPTTSP(Ĉ).

Thus we find solutions where

1

2

3

4

5

6
b1 = 1−cos(πd )

n ∼ 1
n3

a1 = 2 cos(πd )+2
n−2

OPTSDP(Ĉ) ≤ n2

4 b1 ∼
1
n
.
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Summary

• The 2008 SDP relaxation has an unbounded integrality gap
• To show that it produces arbitrarily bad solutions, we:

1. Looked within a class of feasible solutions that respect the
symmetry of Ĉ.

2. Exploited the structure of such solutions by reducing the
SDP to an LP for solutions in that class.

3. Found a feasible solution to the LP achieving the whose
cost decreases like 1

n3 .
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Corollaries of Our Theorem

Theorem (Gutekunst and W, 2018)
The SDP has an unbounded integrality gap.

Corollary
The SDP is non-monotonic, unlike the TSP and subtour
elimination LP.

We’ve found SDP solutions costing n2

4 b1 ≈ 1
n , which become

arbitrarily small with n

1

2

3

4

5

6
b1 = 1−cos(πd )

n ∼ 1
n3

a1 = 2 cos(πd )+2
n−2
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Corollaries of Our Theorem

Theorem (Gutekunst and W, 2018)
The SDP has an unbounded integrality gap.

Corollary
The earlier SDP of Cvetković, Čangalović, and Kovačević-Vujčić
has an unbounded integrality gap: the same X(1) we found is
feasible (and has exactly the same algebraic connectivity as a
cycle).
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Corollaries of Our Theorem

Theorem (Gutekunst and W, 2018)
The SDP has an unbounded integrality gap.

Corollary
A related SDP from de Klerk, de Oliveira Filho, and Pasechnik
2012 for the k-cycle cover problem also has an unbounded
integrality gap.

1

2

3

4

5

6
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A Third SDP Relaxation (2012)

De Klerk and Sotirov (2012) introduce one more SDP
relaxation based on an SDP relaxation of the quadratic
assignment problem (QAP) due to Povh and Rendl (2009).

Idea of the QAP version: let X ∈ Πn be n× n permutation
matrix, with Xij = 1 iff the ith city we visit is j, for some
ordering of the tour. Then

XTA(n)X

gives the adjacency matrix of a tour, where A(n) is the
adjacency matrix of the tour 1, 2, 3, . . . , n, and its cost is

1
2trace

(
A(n)XCXT

)
= 1

2
〈
XTA(n)X,C

〉
.
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A Third SDP Relaxation (2012)

Idea: Create a matrix

Y =


Y (11) Y (12) · · · Y (1n)

Y (21) Y (22) · · · Y (2n)

...
... . . . ...

Y (n1) Y (n2) · · · Y (nn)

 ,

where Y (ij) = XiX
T
j , for Xi the ith column of X, and

Y (ij) = Est for some s, t, where Est the matrix of all 0s, with
one 1 in the s, t entry.

Also, Y (ii) = Ekk for some k, and Y (ii) 6= Y (jj) for i 6= j.

Finally, Y = vec(X)vec(X)T , where vec(X) converts X to a
vector by stacking its columns.
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A Third SDP Relaxation (2012)

The Povh and Rendl (2009) relaxation is

min 1
2trace

((
C ⊗A(n)

)
Y
)

subject to trace((In ⊗ E(n)
jj )Y ) = 1 j = 1, ..., n

trace((E(n)
jj ⊗ In)Y ) = 1 j = 1, ..., n

trace((In ⊗ (Jn − In) + (Jn − In)⊗ In)Y ) = 0
trace(Jn2Y ) = n2

Y ≥ 0, Y � 0, Y ∈ Sn2×n2
.

Theorem (de Klerk, Pasechbik, Sotirov 2008; Povh &
Rendl, 2009)
This SDP has the same optimal value as the SDP of de Klerk,
Pasechnik, and Sotirov.
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A Third SDP Relaxation (2012)

De Klerk and Sotirov (2012) apply symmetry reduction: assume
X11 = 1 in the permutation matrix and derive the associated
SDP relaxation as before.

Computational results are again promising: better than the
subtour LP on small instances of the TSP.
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A Third SDP Relaxation (2012)

Theorem (Gutekunst & W)
Previous instances give an integrality gap of at least 2 for the
de Klerk-Sotirov SDP relaxation.

Theorem (Gutekunst & W)
For any constant c, can prove an integrality gap of at least c for
the de Klerk-Sotirov SDP relaxation.

Idea: We generalize our previous instances to a simplicial
instances on g groups of n/g vertices: cost 0 for edges within
each group, cost 1 for edges between groups.
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Open Questions

1. How does this SDP perform on special cases of the TSP?
• We’ve shown that the integrality gap is unbounded on the
general metric and symmetric TSP, as well as on Euclidean
TSP.
• On graphic TSP (where edge costs correspond to shortest
paths in a connected input graph), the integrality gap is at
most 2. Is it strictly better?
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Open Questions

1. How does this SDP perform on special cases of the TSP?
2. If you combine both this SDP and the subtour LP, can you

guarantee an integrality gap of 1.5− ε for any ε > 0?
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Big Open Questions

Open Problem
Prove tight bound on integrality gap of Subtour LP.

Open Problem
Is there some other TSP relaxation with a provably tighter
integrality gap than 3/2?

Open Problem
Is there some other way of understanding the surprising
practical effectiveness of the Subtour LP?
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Thanks for your attention.
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