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The traveling salesman problem

Traveling Salesman Problem (TSP)
Input:

• A complete, undirected graph G = (V ,E );
• Edge costs c(i , j) ≥ 0 for all e = (i , j) ∈ E .

Goal: Find the min-cost tour that visits each city exactly once.

Costs are symmetric (c(i , j) = c(j , i)) and obey the triangle
inequality (c(i , k) ≤ c(i , j) + c(j , k)).

Asymmetric TSP (ATSP) input has complete directed graph, and
c(i , j) may not equal c(j , i).
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Approximation Algorithms

Definition
An α-approximation algorithm is a polynomial-time algorithm that
returns a solution of cost at most α times the cost of an optimal
solution.

Long known: A 3
2 -approximation algorithm due to Christofides

(1976). No better approximation algorithm yet known.



David P. Williamson Experimental Evaluation of Best-of-Many Christofides’

Christofides’ algorithm

Compute minimum spanning tree (MST) F on G , then compute a
minimum-cost perfect matching M on odd-degree vertices of T .
“Shortcut” Eulerian traversal in resulting Eulerian graph of F ∪M.
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Special cases

Some progress in the case of graph TSP:
input is a graph G = (V ,E ), cost c(i , j) is number of edges in
shortest path from i to j .

Oveis Gharan, Saberi, Singh (2011) 3
2 − ε

Mömke, Svensson (2011) 1.462
Mucha (2012) 13

9 ≈ 1.444
Sebő, Vygen (2012) 7

5 = 1.4
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Special cases

Also progress on s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between.

Hoogeveen (1991) 5
3

An, Kleinberg, Shmoys (2012) 1+
√

5
2 ≈ 1.618

Sebő (2013) 8
5 = 1.6

Vygen (2015) 1.5999
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A central idea

Idea: run Christofides’, but start with tree determined by LP
relaxation of TSP, the Subtour LP.

Min
∑
e∈E

cexe

subject to: x(δ(v)) = 2, ∀v ∈ V ,
x(δ(S)) ≥ 2, ∀S ⊂ V ,S 6= ∅,
0 ≤ xe ≤ 1, ∀e ∈ E ,

where δ(S) is the set of all edges with exactly one endpoint in S,
and x(F ) =

∑
e∈F xe .
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The Subtour LP

Min
∑
e∈E

cexe

subject to:
x(δ(v)) = 2, ∀v ∈ V ,
x(δ(S)) ≥ 2, ∀S ⊂ V ,S 6= ∅,
0 ≤ xe ≤ 1, ∀e ∈ E .

For x feasible for LP, n−1
n x in spanning tree polytope

{x ∈ <|E | : x(E ) = n − 1, x(E (S)) ≤ |S| − 1 ∀S ⊆ V , |S| ≥ 2},

where E (S) is the set of edges with both endpoints in S.
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Best-of-Many Christofides’

For Subtour LP soln. x∗, compute decomposition of n−1
n x∗ into

convex combination of spanning trees F1, . . . ,Fk , that

n − 1
n x∗ =

k∑
i=1

λiχFi ,

where λi ≥ 0,
∑k

i=1 λi = 1, and χF ∈ {0, 1}|E | the characteristic
vector of edges in F .
Then run Christofides’ algorithm on each Fi : find matching Mi ,
shortcut Fi ∪Mi . Return best tour found.
Originally proposed by Oveis Gharan, Saberi, Singh (2011), used in
An, Kleinberg, Shmoys (2012), who called it the Best-of-Many
Christofides algorithm.



David P. Williamson Experimental Evaluation of Best-of-Many Christofides’

An alternate perspective

An alternate perspective on Best-of-Many Christofides: for Subtour
LP soln. x∗, have an implicit convex combination F1, . . . ,Fk ,

n − 1
n x∗ =

k∑
i=1

λiχFi ,

and ability to sample a tree Fi with probability λi . Then run
Christofides’ algorithm on Fi , so that expected cost of tree is at
most LP solution, and

Pr[edge e in sampled tree] ≤ x∗e .

Advantage: Don’t need to explicitly construct the convex
combination.
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The question

Best-of-Many Christofides’ (BoMC) is provably better than
Christofides’ for s-t path TSP. What about TSP?

Is BoMC empirically better than Christofides’?
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The algorithms

We implement algorithms to do the following:
• Run the standard Christofides’ algorithm (Christofides 1976);

• Construct explicit convex combination via column generation
(An 2012);

• Construct explicit convex combination via splitting off (Frank
2011, Nagamochi, Ibaraki 1997);

• Add sampling scheme SwapRound to both of above; gives
negative correlation properties (Chekuri, Vondrák, Zenklusen
2010);

• Compute and sample from maximum entropy distribution
(Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010).

Code available on github (pointer on the last slide).
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The instances

We run these algorithms on several types of instances:
• 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103
vertices;

• 5 non-Euclidean TSPLIB instances (gr120, si175, si535,
pa561, si1032);

• 39 Euclidean VLSI instances (Rohe) up to 3694 vertices;
• 9 graph TSP instances (Kunegis 2013) up to 1615 vertices.
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Executive summary

• Standard Christofides’ in general the worst; 9-10% away from
optimal (similar to results in Johnson and McGeoch 2002).
12% away on graph TSP instances (see also Walter and
Wegmann 2014).

• BoMC about 3-7% away from optimal on Euclidean instances,
2-3% away from optimal for non-Euclidean, < 1% for graph
TSP instances.

• Maximum entropy sampling the best, though splitting-off +
SwapRound also very good.
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Outline

1. Introduction
2. The algorithms
3. The instances
4. The results
5. Some conclusions
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Standard Christofides’

Use Prim’s algorithm to find MST; if Euclidean instance, first find
Delaunay triangulation using Triangle (Shewchuk 1996)
Compute matching via Blossom V code of Kolmogorov (2009).
Do simple optimization on shortcutting.

For Best-of-Many Christofides’ algorithms, compute the Subtour
LP solution x∗ using Concorde (Applegate, Bixby, Chvátal, Cook).



David P. Williamson Experimental Evaluation of Best-of-Many Christofides’

Standard Christofides’

Use Prim’s algorithm to find MST; if Euclidean instance, first find
Delaunay triangulation using Triangle (Shewchuk 1996)
Compute matching via Blossom V code of Kolmogorov (2009).
Do simple optimization on shortcutting.

For Best-of-Many Christofides’ algorithms, compute the Subtour
LP solution x∗ using Concorde (Applegate, Bixby, Chvátal, Cook).



David P. Williamson Experimental Evaluation of Best-of-Many Christofides’

Splitting off

Consider Eulerian multigraph represented by Kx∗ for some integer
K , graph will be 2K -edge-connected. Lovász (1976) shows that for
Eulerian multigraphs, vertex v , can split off edges from v : remove
edges (u, v), (v ,w), add edge (u,w) such that remaining vertices
are still 2K -edge-connected.

v

u w G − v

Nagamochi and Ibaraki (1997) show how to compute a complete
splitting off from v in O(nm + n2 log n) time.
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We split off all vertices except two, then inductively construct a
collection of trees by lifting back the split off edges.
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SwapRound

SwapRound (Chekuri, Vondrák, Zenklusen 2010) randomly samples
a spanning tree given an explicit convex combination of trees.

For any fixed set A of edges, the edges of the sampled tree
appearing in A are negatively correlated. Negative correlation
allows the proof of concentration of measure results (used by
Asadpour et al. for ATSP).

High-level idea: given pairs of trees in the combination, we make
random edge swaps (base exchanges) between the trees until the
two are identical.
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The maximum entropy distribution

Inf
∑

T∈T
p(T ) log p(T )

subject to: ∑
T :e∈T

p(T ) =
n − 1
n x∗e , ∀e ∈ E ,

∑
T∈T

p(T ) = 1

p(T ) ≥ 0, ∀T .
Asadpour et al. show how to sample from this distribution in
polynomial time. We implemented the algorithms of Asadpour et
al. but also algorithms in a code of Oveis Gharan. The latter were
faster in practice.
As with SwapRound, we compute 1000 samples for each instance
in parallel with four threads.
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The experiments

The algorithms were implemented in C++, run on a machine with
a 4.00Ghz Intel i7-875-K processor with 8GB DDR3 memory.

We run these algorithms on several types of instances:
• 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103
vertices (avg. 524);

• 5 non-Euclidean TSPLIB instances (gr120, si175, si535,
pa561, si1032);

• 39 Euclidean VLSI instances (Rohe) up to 3694 vertices (avg.
1473);

• 9 graph TSP instances (Kunegis 2013) up to 1615 vertices
(avg. 363).
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The results

Std ColGen ColGen+SR
Best Ave Best Ave

TSPLIB (E) 9.56% 4.03% 6.44% 3.45% 6.24%
VLSI 9.73% 7.00% 8.51% 6.40% 8.33%
TSPLIB (N) 5.40% 2.73% 4.41% 2.22% 4.08%
Graph 12.43% 0.57% 1.37% 0.39% 1.29%

MaxEnt Split Split+SR
Best Ave Best Ave Best Ave

TSPLIB (E) 3.19% 6.12% 5.23% 6.27% 3.60% 6.02%
VLSI 5.47% 7.61% 6.60% 7.64% 5.48% 7.52%
TSPLIB (N) 2.12% 3.99% 2.92% 3.77% 1.99% 3.82%
Graph 0.31% 1.23% 0.88% 1.77% 0.33% 1.20%

Costs given as percentages in excess of optimal.
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The results

Standard Christofides MST (Rohe VLSI instance XQF131)

Splitting off + SwapRound
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The results
BoMC yields more vertices in the tree of degree two.
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The results

So while the tree costs more (as percentage of optimal tour)...

Std BOM
TSPLIB (E) 87.47% 98.57%
VLSI 89.85% 98.84%
TSPLIB (N) 92.97% 99.36%
Graph 79.10% 98.23%
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The results

...the matching costs much less.

Std CG CG+SR MaxE Split Sp+SR
TSPLIB (E) 31.25% 11.43% 11.03% 10.75% 10.65% 10.41%
VLSI 29.98% 14.30% 14.11% 12.76% 12.78% 12.70%
TSPLIB (N) 24.15% 9.67% 9.36% 8.75% 8.77% 8.56%
Graph 39.31% 5.20% 4.84% 4.66% 4.34% 4.49%
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Conclusion

Q: Are there empirical reasons to think BoMC might be provably
better than Christofides’ algorithm?

A: Yes.

Maximum entropy sampling, or splitting off with SwapRound seem
like the best candidates.
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Conclusion
However, we have to be careful, as the following, very recent,
example of Schalekamp and van Zuylen shows.
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Conclusions

So it seems that randomization, or at least, careful construction of
the convex combination is needed.

Vygen (2015) also uses careful construction to improve s-t path
TSP from 1.6 to 1.5999.

If we want to use the best sample from Max Entropy or
SwapRound, then might need to prove some tail bounds.
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Thanks for your attention.

Paper available at
http://arxiv.org/abs/1506.07776.

Code available at
http://github.com/kylegenova/best-of-many.
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