
The Subtour LP for the
Traveling Salesman

Problem
David P. Williamson
Cornell University

November 22, 2011

Joint work with Jiawei Qian, Frans Schalekamp, and Anke van Zuylen

The Traveling
Salesman Problem

The most famous problem in
discrete optimization: Given n
cities and the cost c(i,j) of
traveling from city i to city j, find a
minimum-cost tour that visits
each city exactly once.

We assume costs are symmetric
(c(i,j)=c(j,i) for all i,j) and obey the
triangle inequality (c(i,j) ≤ c(i,k) +
c(k,j) for all i,j,k).

The Traveling
Salesman Problem

The most famous problem in
discrete optimization: Given n
cities and the cost c(i,j) of
traveling from city i to city j, find a
minimum-cost tour that visits
each city exactly once.

We assume costs are symmetric
(c(i,j)=c(j,i) for all i,j) and obey the
triangle inequality (c(i,j) ≤ c(i,k) +
c(k,j) for all i,j,k).

The Traveling
Salesman Problem

The most famous problem in
discrete optimization: Given n
cities and the cost c(i,j) of
traveling from city i to city j, find a
minimum-cost tour that visits
each city exactly once.

We assume costs are symmetric
(c(i,j)=c(j,i) for all i,j) and obey the
triangle inequality (c(i,j) ≤ c(i,k) +
c(k,j) for all i,j,k).

120 city tour of West Germany due to
M. Grötschel (1977)

A 15112 city
instance solved by
Applegate, Bixby,
Chvátal, and Cook
(2001)

A 15112 city
instance solved by
Applegate, Bixby,
Chvátal, and Cook
(2001)

A 24978 city instance
from Sweden solved
by Applegate, Bixby,
Chvátal, Cook, and
Helsgaun (2004)

A 24978 city instance
from Sweden solved
by Applegate, Bixby,
Chvátal, Cook, and
Helsgaun (2004)

A 42 city instance
solved by Dantzig,
Fulkerson, and
Johnson (1954)

A 42 city instance
solved by Dantzig,
Fulkerson, and
Johnson (1954)

The Dantzig-Fulkerson-
Johnson Method

• G=(V,E) is a complete graph on n vertices

• c(e)=c(i,j) is the cost of traveling on edge
e=(i,j)

• x(e) is a decision variable indicating if edge
e is used in the tour, 0 ≤ x(e) ≤ 1

• Solve linear program; if x(e) are integer
tour, stop, else find a cutting plane

The linear program

Minimize
�

e∈E

c(e)x(e)

subject to�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

Fractional 2-matchings

Fractional (basic) solutions have components
that are cycles of size at least 3 with x(e)=1
or odd cycles with x(e)=1/2 connected by
paths with x(e)=1

2-matchings

Integer solutions have components with
cycles of size at least 3; sometimes called
subtours

“Loop conditions”

�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Dantzig, Fulkerson, and Johnson added
constraints to eliminate subtours as they
occurred; these now called “subtour
elimination constraints”.

Edges in the cut for S

S

Subtour LP

�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Minimize
�

e∈E

c(e)x(e)

subject to
�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

How strong is the
Subtour LP bound?

Johnson, McGeoch, and Rothberg (1996) and
Johnson and McGeoch (2002) report
experimentally that the Subtour LP is very
close to the optimal.

How strong is the
Subtour LP bound?

• What about in theory?

• Define

‣ SUBT(c) as the optimal value of the Subtour LP for costs c

‣ OPT(c) as the length of the optimal tour for costs c

‣ Cn is the set of all symmetric cost functions on n vertices
that obey triangle inequality.

• Then the integrality gap of the Subtour LP is

γ ≡ sup
n

γ(n) where γ(n) ≡ sup
c∈Cn

OPT (c)

SUBT (c)

A lower bound
It’s known that γ ≥ 4/3, where c(i,j) comes from the
shortest i-j path distance in a graph G (graphic TSP).

k

Graph G LP soln Opt tour

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

≤ OPT(c) +

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

≤ OPT(c) + ≤ 1/2 OPT(c)

Christofides’ Algorithm
Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

≤ OPT(c) + ≤ 1/2 OPT(c) ≤ 3/2 OPT(c)

An upper bound

• Wolsey (1980) and Shmoys and W (1990)
show that OPT(c) can be replaced with
SUBT(c), so that Christofides gives a tour
of cost ≤ 3/2 SUBT(c).

• Therefore,

OPT (c) ≤ 3

2
SUBT (c) ⇒ γ ≤ OPT (c)

SUBT (c)
≤ 3

2

Perfect Matching
Polytope

Edmonds (1965) shows that the min-cost
perfect matching can be found as the
solution to the linear program:

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd

Matchings and the
Subtour LP

Then MATCH(c) ≤ 1/2 SUBT(c) since z =
1/2 x is feasible for the matching LP.

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd
�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Minimize
�

e∈E

c(e)x(e)

subject to
�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

Shmoys and W (1990) also show that SUBT(c) is
nonincreasing as vertices are removed so that matching
on odd-degree vertices is at most 1/2 SUBT(c).

Recent results
• Some recent progress on graphic TSP (costs c(i,j) are the

shortest i-j path distances in unweighted graph):

‣ Boyd, Sitters, van der Ster, Stougie (2010): Gap is at most
4/3 if graph is cubic.

‣ Oveis Gharan, Saberi, Singh (2010): Gap is at most 3/2 - ε
for a constant ε > 0.

‣ Mömke, Svensson (2011): Gap is at most 1.461.

‣ Mömke, Svensson (2011): Gap is 4/3 if graph is subcubic
(degree at most 3).

‣ Mucha (2011): Gap is at most 13/9 ≈ 1.44.

Current state

• Conjecture (Goemans 1995, others):

4

3
≤ γ ≤ 3

2

γ =
4

3

More ignorance

Let γ₁₂ be the integrality gap for costs c(i,j) ∈
{1,2}. Then all we know is

10

9
≤ γ12 ≤ 3

2

cost 1 edges LP soln OPT

Still more ignorance
We don’t even know the equivalent worst-
case ratio between 2-matching costs 2M(c)
and SUBT(c).

Then all we know is that

Conjecture (Boyd, Carr 2011):

µ ≡ sup
n

µ(n) where µ(n) ≡ sup
c∈Cn

2M(c)

SUBT (c)

10

9
≤ µ ≤ 4

3
(Boyd, Carr 1999)

µ =
10

9

Our contributions

• We can prove the Boyd-Carr conjecture.

• We can show γ₁₂ < 4/3.

Outline

Outline

• μ ≤ 4/3 under a certain condition.

Outline

• μ ≤ 4/3 under a certain condition.

• μ ≤ 10/9 under the same condition.

Outline

• μ ≤ 4/3 under a certain condition.

• μ ≤ 10/9 under the same condition.

• μ ≤ 10/9.

Outline

• μ ≤ 4/3 under a certain condition.

• μ ≤ 10/9 under the same condition.

• μ ≤ 10/9.

• Some conjectures.

Some terminology

Path edge x(e)=1
Cycle edge x(e)=1/2

Some terminology

Path edge x(e)=1
Cycle edge x(e)=1/2

Cut edge

The strategy

The strategy
• Start with an optimal fractional 2-matching; this gives a

lower bound on the Subtour LP.

The strategy
• Start with an optimal fractional 2-matching; this gives a

lower bound on the Subtour LP.

• Add a low-cost set of edges to create a graphical 2-
matching: each vertex has degree 2 or 4; each component
has size at least 3; each edge has 0, 1, or 2 copies.

The strategy
• Start with an optimal fractional 2-matching; this gives a

lower bound on the Subtour LP.

• Add a low-cost set of edges to create a graphical 2-
matching: each vertex has degree 2 or 4; each component
has size at least 3; each edge has 0, 1, or 2 copies.

• “Shortcut” the graphical 2-matching to a 2-matching.

First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.

First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.

Graphical 2M ≤ 4/3 Fractional 2M

First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.

Graphical 2M ≤ 4/3 Fractional 2M2M ≤

First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.

Graphical 2M ≤ 4/3 Fractional 2M2M ≤ ≤ 4/3 Subtour

Create new graph by replacing path edges
with a single edge of cost equal to the path,
cycle edges with negations of their cost.

c -c
c1 c2 c1+c2

c’ -c’

New graph is cubic and 2-edge connected.

In the fractional 2-matching, double any path edge in
matching, remove any cycle edge. Cost is paths + cycles
+ matching edges.

Compute a min-cost perfect matching in new graph.

c
c1 c2

c’

c1+c2

-c’

c1+c2

-c’

2c1+2c2c

0

In the fractional 2-matching, double any path edge in
matching, remove any cycle edge. Cost is paths + cycles
+ matching edges.

Compute a min-cost perfect matching in new graph.

c
c1 c2

c’

c1+c2

-c’

c1+c2

-c’

2c1+2c2c

0

In the fractional 2-matching, double any path edge in
matching, remove any cycle edge. Cost is paths + cycles
+ matching edges.

Compute a min-cost perfect matching in new graph.

c
c1 c2

c’

c1+c2

-c’

c1+c2

-c’

2c1+2c2c

0

Why this works
For any given node on the cycle, either its
associated path edge is in the matching or
one of the two cycle edges.

Why this works
For any given node on the path, either its
associated path edge is in the matching or
not.

Bounding the cost

• P = total cost of all path edges

• C = total cost all cycle edges

• So fractional 2-matching costs P + C/2

• Claim: Perfect matching in the new graph
costs at most 1/3 the cost of all its edges,
so at most 1/3(P - C)

Bounding the cost

• Since the graphical 2-matching costs at
most P + C + matching, it costs at most

P + C +
1

3
(P − C) =

4

3
P +

2

3
C =

4

3

�
P +

1

2
C

�

Bounding the cost

• Since the graphical 2-matching costs at
most P + C + matching, it costs at most

P + C +
1

3
(P − C) =

4

3
P +

2

3
C =

4

3

�
P +

1

2
C

�

Graphical 2M ≤ 4/3 Fractional 2M

Bounding the cost

• Since the graphical 2-matching costs at
most P + C + matching, it costs at most

P + C +
1

3
(P − C) =

4

3
P +

2

3
C =

4

3

�
P +

1

2
C

�

Graphical 2M ≤ 4/3 Fractional 2M2M ≤

Bounding the cost

• Since the graphical 2-matching costs at
most P + C + matching, it costs at most

P + C +
1

3
(P − C) =

4

3
P +

2

3
C =

4

3

�
P +

1

2
C

�

Graphical 2M ≤ 4/3 Fractional 2M2M ≤

≤ 4/3 Subtour

Matching cost
• Naddef and Pulleyblank (1981): Any cubic, 2-edge-

connected, weighted graph has a perfect matching
of cost at most a third of the sum of the edge
weights.

• Proof: Set z(e)=1/3 for all e∈E, then feasible for
matching LP.

⅓

⅓

⅓

⅓

⅓

⅓⅓

⅓

⅓

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd

Matching cost
• Naddef and Pulleyblank (1981): Any cubic, 2-edge-

connected, weighted graph has a perfect matching
of cost at most a third of the sum of the edge
weights.

• Proof: Set z(e)=1/3 for all e∈E, then feasible for
matching LP.

⅓

⅓

⅓

⅓

⅓

⅓⅓

⅓

⅓

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd

Matching cost
• Naddef and Pulleyblank (1981): Any cubic, 2-edge-

connected, weighted graph has a perfect matching
of cost at most a third of the sum of the edge
weights.

• Proof: Set z(e)=1/3 for all e∈E, then feasible for
matching LP.

⅓

⅓

⅓

⅓

⅓

⅓⅓

⅓

⅓

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd

By parity argument any odd-sized set S must
have odd |δ(S)|.

How to do better

Idea of Boyd and Carr (1999): Instead of
duplicating an entire path, consider patterns.

pattern 1

pattern 2

pattern 3

In new graph, replace every path with a
pattern gadget; if the corresponding edge is in
the matching, then we will use that pattern in
the 2-matching.

pattern 3

pattern 1

pattern 2

Cost of pattern edge is difference in cost between
pattern and path; other new edges have cost 0

Why does this help?

Intuition: Now we can get a cheaper
matching.

1

9

1

9

1

9
1

9
1

9

1

9

1

9

1

9

1

9

4

9

4

9

4

9

4

94

9

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd

• If any cycle edge in the
cut, then at least two plus
one more by parity: 4/9 +
4/9 + 1/9

• If no cycle edge in the
cut, then at least 9 pattern
edges.

• Can show matching has
cost at most 1/9 P - 4/9 C

1

9

1

9

1

9
1

9
1

9

1

9

1

9

1

9

1

9

4

9

4

9

4

9

4

94

9

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd

• If any cycle edge in the
cut, then at least two plus
one more by parity: 4/9 +
4/9 + 1/9

• If no cycle edge in the
cut, then at least 9 pattern
edges.

• Can show matching has
cost at most 1/9 P - 4/9 C

1

9

1

9

1

9
1

9
1

9

1

9

1

9

1

9

1

9

4

9

4

9

4

9

4

94

9

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd

• If any cycle edge in the
cut, then at least two plus
one more by parity: 4/9 +
4/9 + 1/9

• If no cycle edge in the
cut, then at least 9 pattern
edges.

• Can show matching has
cost at most 1/9 P - 4/9 C

Bounding the cost

• P = total cost of all path edges

• C = total cost all cycle edges

• So fractional 2-matching costs P + C/2

• Perfect matching in the new graph costs at
most 1/9 P - 4/9 C

Bounding the cost

• Can show again that the graphical 2-
matching costs at most P + C + matching,
so it costs at most

P + C +
1

9
P − 4

9
C =

10

9
P +

5

9
C =

10

9

�
P +

1

2
C

�

Bounding the cost

• Can show again that the graphical 2-
matching costs at most P + C + matching,
so it costs at most

Graphical 2M ≤ 10/9 Fractional 2M

P + C +
1

9
P − 4

9
C =

10

9
P +

5

9
C =

10

9

�
P +

1

2
C

�

Bounding the cost

• Can show again that the graphical 2-
matching costs at most P + C + matching,
so it costs at most

Graphical 2M ≤ 10/9 Fractional 2M2M ≤

P + C +
1

9
P − 4

9
C =

10

9
P +

5

9
C =

10

9

�
P +

1

2
C

�

Bounding the cost

• Can show again that the graphical 2-
matching costs at most P + C + matching,
so it costs at most

Graphical 2M ≤ 10/9 Fractional 2M2M ≤

≤ 10/9 Subtour

P + C +
1

9
P − 4

9
C =

10

9
P +

5

9
C =

10

9

�
P +

1

2
C

�

Another route
• To prove stronger results, we give a polyhedral

formulation for graphical 2-matchings.

• For all i∈V, create i’ and i’’

- i’ required: must have degree 2

- i’’ optional: may have degree 0 or 2

• For all (i,j)∈E, create edges (i’,j’), (i’,j’’), (i’’,j’)

i’

i’’

j’ k’

j’’ k’’

The formulation

�

e∈δ(i�)

y(e) = 2 ∀i�

�

e∈δ(i��)

y(e) ≤ 2 ∀i��

�

e∈δ(S)−F

y(e) + |F |−
�

e∈F

y(e) ≥ 1 ∀S ⊆ V, F ⊆ δ(S), F matching, |F | odd

0 ≤ y(e) ≤ 1 ∀e ∈ E

Showing that μ ≤10/9
Given Subtour LP soln x, set

�

e∈δ(i�)

y(e) = 2 ∀i�

�

e∈δ(i��)

y(e) ≤ 2 ∀i��

0 ≤ y(e) ≤ 1 ∀e ∈ E

�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Minimize
�

e∈E

c(e)x(e)

subject to
�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

�

e∈δ(S)−F

y(e) + |F |−
�

e∈F

y(e) ≥ 1

∀S ⊆ V, F ⊆ δ(S), F matching, |F | odd

y(i�, j�) =
8

9
x(i, j)

y(i��, j�) =
1

9
x(i, j)

y(i�, j��) =
1

9
x(i, j)

Edmonds (1967)

Edmonds (1967)

Some conjectures

Some conjectures

• For the 1,2-TSP I conjecture that γ₁₂ =
10/9. We show γ₁₂ ≤ 106/81 ≈ 1.31.

Some conjectures

• For the 1,2-TSP I conjecture that γ₁₂ =
10/9. We show γ₁₂ ≤ 106/81 ≈ 1.31.

• Computation shows the conjecture is true
for n ≤ 12.

An observation

• We know

‣

‣

• We conjecture γ ≤ 4/3, γ₁₂ ≤ 10/9.

• Coincidence?

2M(c)

F2M(c)
≤ 4

3
(Boyd, Carr 1999)

2M(c)

F2M(c)
≤ 10

9
∀c ∈ {1, 2}n (this work)

Final conjecture

Final conjecture

• Conjecture: The worst case for the Subtour
LP integrality gap (both γ and γ₁₂) occurs
for solutions that are fractional 2-matching.

Final conjecture

• Conjecture: The worst case for the Subtour
LP integrality gap (both γ and γ₁₂) occurs
for solutions that are fractional 2-matching.

• Note: we don’t even know tight bounds on
γ and γ₁₂ in this case, though we can show
γ₁₂ ≤ 7/6 in this case.

“Theory is when we understand everything, but nothing works.

Practice is when everything works, but we don’t understand why.

“Theory is when we understand everything, but nothing works.

Practice is when everything works, but we don’t understand why.

At this station, theory and practice are united, so that nothing
works and no one understands why.”

“Theory is when we understand everything, but nothing works.

Thank you for your attention.

