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The Traveling 
Salesman Problem

The most famous problem in 
discrete optimization: Given n 
cities and the cost c(i,j) of 
traveling from city i to city j, find a 
minimum-cost tour that visits 
each city exactly once.

We assume costs are symmetric 
(c(i,j)=c(j,i) for all i,j) and obey the 
triangle inequality (c(i,j) ≤ c(i,k) + 
c(k,j) for all i,j,k).
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The Dantzig-Fulkerson-
Johnson Method

• G=(V,E) is a complete graph on n vertices

• c(e)=c(i,j) is the cost of traveling on edge 
e=(i,j)

• x(e) is a decision variable indicating if edge 
e is used in the tour, 0 ≤ x(e) ≤ 1

• Solve linear program; if x(e) are integer 
tour, stop, else find a cutting plane



The linear program

Minimize
�

e∈E

c(e)x(e)

subject to�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E



Fractional 2-matchings

Fractional (basic) solutions have components 
that are cycles of size at least 3 with x(e)=1 
or odd cycles with x(e)=1/2 connected by 
paths with x(e)=1



2-matchings

Integer solutions have components with 
cycles of size at least 3; sometimes called 
subtours



“Loop conditions”

�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Dantzig, Fulkerson, and Johnson added 
constraints to eliminate subtours as they 
occurred; these now called “subtour 
elimination constraints”.

Edges in the cut for S

S



Subtour LP

�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Minimize
�

e∈E

c(e)x(e)

subject to
�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E



How strong is the 
Subtour LP bound?

Johnson, McGeoch, and Rothberg (1996) and 
Johnson and McGeoch (2002) report 
experimentally that the Subtour LP is very 
close to the optimal.





How strong is the 
Subtour LP bound?

• What about in theory?

• Define 

‣ SUBT(c) as the optimal value of the Subtour LP for costs c

‣ OPT(c) as the length of the optimal tour for costs c

‣ Cn is the set of all symmetric cost functions on n vertices 
that obey triangle inequality.

• Then the integrality gap of the Subtour LP is

γ ≡ sup
n

γ(n) where γ(n) ≡ sup
c∈Cn

OPT (c)

SUBT (c)



A lower bound
It’s known that γ ≥ 4/3, where c(i,j) comes from the 
shortest i-j path distance in a graph G (graphic TSP).

k

Graph G LP soln Opt tour



Christofides’ Algorithm
Christofides (1976) shows how to compute a tour 
in polynomial time of cost 3/2 optimal: compute a 
min-cost spanning tree, compute a matching on the 
odd-degree vertices, then “shortcut” a traversal of 
the resulting Eulerian graph.
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An upper bound

• Wolsey (1980) and Shmoys and W (1990) 
show that OPT(c) can be replaced with 
SUBT(c), so that Christofides gives a tour 
of cost ≤ 3/2 SUBT(c).

• Therefore,

OPT (c) ≤ 3

2
SUBT (c) ⇒ γ ≤ OPT (c)

SUBT (c)
≤ 3

2



Perfect Matching 
Polytope

Edmonds (1965) shows that the min-cost 
perfect matching can be found as the 
solution to the linear program:

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd



Matchings and the 
Subtour LP

Then MATCH(c) ≤ 1/2 SUBT(c) since z = 
1/2 x is feasible for the matching LP.

Minimize
�

e∈E

c(e)z(e)

subject to
�

e∈δ(v)

z(e) = 1 ∀v ∈ V

�

e∈δ(S)

z(e) ≥ 1 ∀S ⊂ V, |S| odd
�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Minimize
�

e∈E

c(e)x(e)

subject to
�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

Shmoys and W (1990) also show that SUBT(c) is 
nonincreasing as vertices are removed so that matching 
on odd-degree vertices is at most 1/2 SUBT(c).



Recent results
• Some recent progress on graphic TSP (costs c(i,j) are the 

shortest i-j path distances in unweighted graph):

‣ Boyd, Sitters, van der Ster, Stougie (2010): Gap is at most 
4/3 if graph is cubic.

‣ Oveis Gharan, Saberi, Singh (2010): Gap is at most 3/2 - ε 
for a constant ε > 0.

‣ Mömke, Svensson (2011): Gap is at most 1.461.

‣ Mömke, Svensson (2011): Gap is 4/3 if graph is subcubic 
(degree at most 3).

‣ Mucha (2011): Gap is at most 13/9 ≈ 1.44.



Current state

• Conjecture (Goemans 1995, others): 

4

3
≤ γ ≤ 3

2

γ =
4

3



More ignorance

Let γ₁₂ be the integrality gap for costs c(i,j) ∈ 
{1,2}.  Then all we know is

10

9
≤ γ12 ≤ 3

2

cost 1 edges LP soln OPT



Still more ignorance
We don’t even know the equivalent worst-
case ratio between 2-matching costs 2M(c) 
and SUBT(c).

Then all we know is that 

Conjecture (Boyd, Carr 2011): 

µ ≡ sup
n

µ(n) where µ(n) ≡ sup
c∈Cn

2M(c)

SUBT (c)

10

9
≤ µ ≤ 4

3
(Boyd, Carr 1999)

µ =
10

9



Our contributions

• We can prove the Boyd-Carr conjecture.

• We can show γ₁₂ < 4/3.
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• μ ≤ 10/9 under the same condition.

• μ ≤ 10/9.

• Some conjectures.
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lower bound on the Subtour LP.

• Add a low-cost set of edges to create a graphical 2-
matching: each vertex has degree 2 or 4; each component 
has size at least 3; each edge has 0, 1, or 2 copies.

• “Shortcut” the graphical 2-matching to a 2-matching.
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Create new graph by replacing path edges 
with a single edge of cost equal to the path, 
cycle edges with negations of their cost.

c -c
c1 c2 c1+c2

c’ -c’

New graph is cubic and 2-edge connected.



In the fractional 2-matching, double any path edge in 
matching, remove any cycle edge.  Cost is paths + cycles 
+ matching edges.

Compute a min-cost perfect matching in new graph. 
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In the fractional 2-matching, double any path edge in 
matching, remove any cycle edge.  Cost is paths + cycles 
+ matching edges.

Compute a min-cost perfect matching in new graph. 

c
c1 c2

c’

c1+c2

-c’

c1+c2

-c’

2c1+2c2c

0



Why this works
For any given node on the cycle, either its 
associated path edge is in the matching or 
one of the two cycle edges.



Why this works
For any given node on the path, either its 
associated path edge is in the matching or 
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Bounding the cost

• P = total cost of all path edges

• C = total cost all cycle edges

• So fractional 2-matching costs P + C/2

• Claim: Perfect matching in the new graph 
costs at most 1/3 the cost of all its edges, 
so at most 1/3(P - C)



Bounding the cost

• Since the graphical 2-matching costs at 
most P + C + matching, it costs at most

P + C +
1

3
(P − C) =

4

3
P +

2

3
C =

4

3

�
P +

1

2
C

�
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Matching cost
• Naddef and Pulleyblank (1981):  Any cubic, 2-edge-

connected, weighted graph has a perfect matching 
of cost at most a third of the sum of the edge 
weights.

• Proof: Set z(e)=1/3 for all e∈E, then feasible for 
matching LP.
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By parity argument any odd-sized set S must 
have odd |δ(S)|.



How to do better

Idea of Boyd and Carr (1999): Instead of 
duplicating an entire path, consider patterns.

pattern 1

pattern 2

pattern 3



In new graph, replace every path with a 
pattern gadget; if the corresponding edge is in 
the matching, then we will use that pattern in 
the 2-matching.

pattern 3

pattern 1

pattern 2

Cost of pattern edge is difference in cost between 
pattern and path; other new edges have cost 0



Why does this help?

Intuition: Now we can get a cheaper 
matching.
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cut, then at least 9 pattern 
edges.

• Can show matching has 
cost at most 1/9 P - 4/9 C 
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Bounding the cost

• P = total cost of all path edges

• C = total cost all cycle edges

• So fractional 2-matching costs P + C/2

• Perfect matching in the new graph costs at 
most 1/9 P - 4/9 C



Bounding the cost

• Can show again that the graphical 2-
matching costs at most P + C + matching, 
so it costs at most

P + C +
1
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Bounding the cost

• Can show again that the graphical 2-
matching costs at most P + C + matching, 
so it costs at most

Graphical 2M ≤ 10/9 Fractional 2M2M ≤

≤ 10/9 Subtour

P + C +
1

9
P − 4

9
C =

10

9
P +

5

9
C =

10

9

�
P +

1

2
C

�



Another route
• To prove stronger results, we give a polyhedral 

formulation for graphical 2-matchings.

• For all i∈V, create i’ and i’’

- i’ required: must have degree 2

- i’’ optional: may have degree 0 or 2

• For all (i,j)∈E, create edges (i’,j’), (i’,j’’), (i’’,j’)

i’

i’’

j’ k’

j’’ k’’



The formulation

�

e∈δ(i�)

y(e) = 2 ∀i�

�

e∈δ(i��)

y(e) ≤ 2 ∀i��

�

e∈δ(S)−F

y(e) + |F |−
�

e∈F

y(e) ≥ 1 ∀S ⊆ V, F ⊆ δ(S), F matching, |F | odd

0 ≤ y(e) ≤ 1 ∀e ∈ E



Showing that μ ≤10/9
Given Subtour LP soln x, set 

�

e∈δ(i�)

y(e) = 2 ∀i�

�

e∈δ(i��)

y(e) ≤ 2 ∀i��

0 ≤ y(e) ≤ 1 ∀e ∈ E

�

e∈δ(S)

x(e) ≥ 2 ∀S ⊆ V, |S| ≥ 2

Minimize
�

e∈E

c(e)x(e)

subject to
�

e∈δ(v)

x(e) = 2 ∀v ∈ V

0 ≤ x(e) ≤ 1 ∀e ∈ E

�

e∈δ(S)−F

y(e) + |F |−
�

e∈F

y(e) ≥ 1

∀S ⊆ V, F ⊆ δ(S), F matching, |F | odd

y(i�, j�) =
8

9
x(i, j)

y(i��, j�) =
1

9
x(i, j)

y(i�, j��) =
1

9
x(i, j)
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Some conjectures

• For the 1,2-TSP I conjecture that γ₁₂ = 
10/9.  We show γ₁₂ ≤ 106/81 ≈ 1.31.

• Computation shows the conjecture is true 
for n ≤ 12.



An observation

• We know

‣   

‣    

• We conjecture γ ≤ 4/3, γ₁₂ ≤ 10/9.

• Coincidence?

2M(c)

F2M(c)
≤ 4

3
(Boyd, Carr 1999)

2M(c)

F2M(c)
≤ 10

9
∀c ∈ {1, 2}n (this work)
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Final conjecture

• Conjecture: The worst case for the Subtour 
LP integrality gap (both γ and γ₁₂) occurs 
for solutions that are fractional 2-matching.

• Note: we don’t even know tight bounds on 
γ and γ₁₂ in this case, though we can show 
γ₁₂ ≤ 7/6 in this case.
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Practice is when everything works, but we don’t understand why.

At this station, theory and practice are united, so that nothing 
works and no one understands why.”

“Theory is when we understand everything, but nothing works.



Thank you for your attention.


