The Subtour LP for the

Traveling Salesman
Problem

David P. Williamson
Cornell University
November 22, 201 |

Joint work with Jiawei Qian, Frans Schalekamp, and Anke van Zuylen



The Traveling
Salesman Problem

The most famous problem in
discrete optimization: Given n
cities and the cost ¢(i,j) of
traveling from city i to city j, find a
minimum-cost tour that visits
each city exactly once.

We assume costs are symmetric
(c(i,j)=c(j,i) for all i,j) and obey the
triangle inequality (c(ij) < c(i,k) +
c(k,j) for all i,j,k).
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120 city tour of West Germany due to
M. Grotschel (1977)



A 15112 city

tance solved by
Applegate, Bixby,
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A 24978 city instance
from Sweden solved
by Applegate, Bixby,
Chvatal, Cook, and
Helsgaun (2004)
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The Dantzig-Fulkerson-
Johnson Method

® G=(V,E) is a complete graph on n vertices

® c(e)=c(i,j) is the cost of traveling on edge
e=(i,j)

® Xx(e) is a decision variable indicating if edge
e is used in the tour; 0 < x(e) < |

® Solve linear program; if x(e) are integer
tour, stop, else find a cutting plane



The linear program

Minimize Z c(e)z(e)

subject to

Zx(e):Q VoeV

ecd(v)

0<z(e) <1 Ve e E

<




Fractional 2-matchings

® ® o
® ® o
¢ ® ®

Fractional (basic) solutions have components
that are cycles of size at least 3 with x(e)=1I

or odd cycles with x(e)=1/2 connected by
paths with x(e)=1I



2-matchings

Integer solutions have components with
cycles of size at least 3; sometimes called
subtours



“Loop conditions”

Dantzig, Fulkerson, and Johnson added
constraints to eliminate subtours as they
occurred; these now called “subtour
elimination constraints’.

d x(e)>2  VSCV,|S]>2
ecd(S)

Edges in the cut for $



Subtour LP

Minimize Z c(e)x(e)

eclkl
subject to
Z r(e) = 2
ecd(v)
Z x(e) > 2
ecd(S)

0<zxz(e) <1

YVveV

VS CV,|S| > 2

Ve e E



How strong is the
Subtour LP bound!?

Johnson, McGeoch, and Rothberg (1996) and
Johnson and McGeoch (2002) report
experimentally that the Subtour LP is very
close to the optimal.
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TSPLIB
Opttime | HKtime || Name Opttime | HKtime
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1211 2.02 || si1032 25 11.32
956 1.92 || ul060 571 3.62
330 1.69 || vm1084 605 2.40
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8003 1.95 || r11304 189 4.08
4347 1.65 | r11323 3742 1.49
189 2.14 || nrwl379 578 2.40
533368 9.57 || 11400 1549 9.83
425631 10.54 || ul432 224 2.42
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147135 10.30 || d1655 263 6.51
8.07 || vm1748 2224 4.43
tered Euclidean ul817 449231 5.01
337 9.83 || r11889 10023 11.45
534 10.84 || d2103 - 8.19
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768 9.36 || pr2392 117 5.75
139 9.29 || pcb3038 80829 7.26
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4845 44.02
Random Matrices
60 5.47 || M3k.0 612 40.35
137 5.51 || M3k.1 546 39.52
151 5.63 || M10k.0 1377 367.84
169 5.26




How strong is the
Subtour LP bound!?

® What about in theory?

® Define
p SUBT(c) as the optimal value of the Subtour LP for costs c
p OPT(c) as the length of the optimal tour for costs ¢

p nis the set of all symmetric cost functions on n vertices

that obey triangle inequality.

® Then the integrality gap of the Subtour LP is

PT
v = Sup v(n) where v(n) = Cseuca SOUBTZSZ)



A lower bound

It's known that Y = 4/3, where c(i,j) comes from the
shortest i path distance in a graph G (graphic TSP).
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Christofides’ Algorithm

Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.
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Christofides’ Algorithm

Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.
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An upper bound

® Wolsey (1980) and Shmoys and W (1990)
show that OPT(c) can be replaced with
SUBT(c), so that Christofides gives a tour
of cost < 3/2 SUBT (c).

® [herefore,

OPT(c)

3
< — <
OPT(c) < 2SUBT(C) = < SUBT(0

3
< Z
2




Perfect Matching
Polytope

Edmonds (1965) shows that the min-cost
perfect matching can be found as the
solution to the linear program:

Minimize Z c(e)z(e)

eck
subject to Z z(e) =1 VveV
ecs(v)
Z z(e) > 1 VS C V,|S| odd
ecs(S)



Matchings and the
Subtour LP

Then MATCH(c) < 1/2 SUBT(c) since z =
|/2 x is feasible for the matching LP.

Minimize Z c(e)x(e) Minimize Z c(e)z(e)
eckE ck
subject to subject to Z z(e) =1 VoeV
Z x(e) =2 YveV ecov)
e€d(v) Y z2(e)>1 VS CV,IS| odd

Y wle)>2  VSCV,I[S|>2
ecd(S)

0<z(e) <1 Ve ¢ F

Shmoys and W (1990) also show that SUBT(c) is

nonincreasing as vertices are removed so that matching
on odd-degree vertices is at most 1/2 SUBT(c).



Recent results

® Some recent progress on graphic TSP (costs c(i,j) are the
shortest i-j path distances in unweighted graph):

p Boyd, Sitters, van der Ster, Stougie (2010): Gap is at most
4/3 if graph is cubic.

p Oveis Gharan, Saberi, Singh (2010): Gap is at most 3/2 - €
for a constant € > 0.

p Momke, Svensson (201 1): Gap is at most |.461.

p Momke, Svensson (201 1): Gap is 4/3 if graph is subcubic
(degree at most 3).

p Mucha (201 1): Gap is at most 13/9 = 1.44.



Current state

Lo |
VA
D
VA
DO | QO

® Conjecture (Goemans 1995, others): 7 = 3



More ignorance

Let Y12 be the integrality gap for costs c(i,j) €
{l1,2}. Then all we know is

' N N
> ° < > Oi / °
° ° ° ° ° \-

cost | edges LP soln OPT




Still more ignorance

We don’t even know the equivalent worst-

case ratio between 2-matching costs 2M(c)
and SUBT (c).

2M (c
= sgp wu(n) where pu(n) = CSEU_Cp SUB;() )

Then all we know is that

10
9

N

<pu< 3 (Boyd, Carr 1999)

10
Conjecture (Boyd, Carr 201 1): u= 9



Our contributions

® VWe can prove the Boyd-Carr conjecture.

® We can show Y, < 4/3.



Qutline
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® U < 4/3 under a certain condition.
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Qutline

U < 4/3 under a certain condition.

U < 10/9 under the same condition.

u < 10/9.

Some conjectures.
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Some terminology

Cut edge
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matching: each vertex has degree 2 or 4; each component
has size at least 3; each edge has 0, |, or 2 copies.
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The strategy

Start with an optimal fractional 2-matching; this gives a
lower bound on the Subtour LP.

Add a low-cost set of edges to create a graphical 2-
matching: each vertex has degree 2 or 4; each component
has size at least 3; each edge has 0, |, or 2 copies.

— =N\, e

“Shortcut” the graphical 2-matching to a 2-matching.



First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.




First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.

@ @ ®
(A )
2N ’
y
s
2N
.
.
¢
[ @ .‘
¢ 1}
¢ 2}
’ 1}
¢
’
' + 1
1 s
¢ o ®

Graphical 2M < 4/3 Fractional 2M



First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.

@ @ ®
(A )
1N '
¢
1Y
s
LN
¢
¢
@ @ .‘
. LY
’ LY
’ LY
’
’
q + 1
14 s 1
¢ o ®

2M < Graphical 2M < 4/3 Fractional 2M



First consider fractional 2-matchings that have
no cut edge, and show that we can get a
graphical 2-matching with a 4/3 increase in cost.
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2M < Graphical 2M < 4/3 Fractional 2M < 4/3 Subtour



Create new graph by replacing path edges
with a single edge of cost equal to the path,
cycle edges with negations of their cost.

° ®
C 2 citc
C R -C
— < | —
c’ -c’
o ¥

New graph is cubic and 2-edge connected.



Compute a min-cost perfect matching in new graph.

c|tc
_C,

In the fractional 2-matching, double any path edge in
matching, remove any cycle edge. Cost is paths + cycles
+ matching edges.
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Compute a min-cost perfect matching in new graph.

c|tc
_C,

In the fractional 2-matching, double any path edge in
matching, remove any cycle edge. Cost is paths + cycles
+ matching edges.
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WWhy this works

For any given node on the cycle, either its
associated path edge is in the matching or
one of the two cycle edges.




WWhy this works

For any given node on the path, either its
associated path edge is in the matching or
not.

- — e




Bounding the cost

P = total cost of all path edges
C = total cost all cycle edges
So fractional 2-matching costs P + C/2

Claim: Perfect matching in the new graph
costs at most |/3 the cost of all its edges,

so at most |/3(P - C)



Bounding the cost

® Since the graphical 2-matching costs at
most P + C + matching, it costs at most

1 4 2 4 1
p (P-C)=-P+2c=-(P+-C
+CO+5(P=C) =P+ 0 3< +2>
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3

Matching cost

Naddef and Pulleyblank (1981): Any cubic, 2-edge-
connected, weighted graph has a perfect matching
of cost at most a third of the sum of the edge

weights.
Proof: Set z(e)=1/3 for all ecE, then feasible for

matching LP.

3

3

/3 4 eck
subject to Z z(e) =1 YVoeV
15 6 (v)
A Z z(e) > 1 VS C V,|S]| odd
14 s (S)

V3
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Matching cost

® Naddef and Pulleyblank (1981): Any cubic, 2-edge-

connected, weighted graph has a perfect matching
of cost at most a third of the sum of the edge

weights.
® Proof: Set z(e)=1/3 for all ecE, then feasible for

matching LP.

14 V3 /1/3 eck
subject to Z z(e) =1 YVoeV
14 ecd(v)
A Z z(e) > 1 VS C V,|S]| odd
14 14 e€s(S)
By parity argument any odd-sized set S must

have odd |0(S)].



How to do better

ldea of Boyd and Carr (1999): Instead of
duplicating an entire path, consider patterns.

P N Y
pattern 1 @ M 0 @ 8 9 @€ 8 ® ©

pattern 2 @ @ M 9 @€ W 9 @€ 89
pattern 3 @0 € 88 € 88 @9



In new graph, replace every path with a

pattern gadget; if the corresponding edge is in
the matching, then we will use that pattern in
the 2-matching.

\ /
\ 4
o000 0o¢ '
( oo 0 ¢
V4 \
4 \

p

|

pattern 2

attern 1

/.

pattern 3

.\

Cost of pattern edge is difference in cost between
pattern and path; other new edges have cost 0



Why does this help!?

Intuition: Now we can get a cheaper
matching.

1\
-
) 3




Minimize Z c(e)z(e)

ec kb
é é é subject to Z z(e) =1 YvoeV
ecd(v)
Z z(e) > 1 VS C V,|S| odd
ec€d(S)

* If any cycle edge in the
cut, then at least two plus

one more by parity: 4/9 +
4/9 + 1/9

O RO RO ==

* If no cycle edge in the
cut, then at least 9 pattern
edges.

e Can show matching has
cost at most |/9 P - 4/9 C

1 1 1
9 9 9
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Bounding the cost

P = total cost of all path edges
C = total cost all cycle edges
So fractional 2-matching costs P + C/2

Perfect matching in the new graph costs at
most |/9 P -4/9 C
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® Can show again that the graphical 2-
matching costs at most P + C + matching,
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Bounding the cost

® Can show again that the graphical 2-
matching costs at most P + C + matching,
SO it costs at most

1 4. 10_ 5 10
P+C+-P——-C="P+-C= P
+C+ P -3 G P+C=% ( + (J>

2M < Graphical 2M < 10/9 Fractional 2M
< 10/9 Subtour



Another route

® To prove stronger results, we give a polyhedral
formulation for graphical 2-matchings.

® Foralli€eV, createi’ andi”’

- i required: must have degree 2
- i optional: may have degree 0 or 2
® For all (i,j)eE, create edges (i’,j’), (i",j), (i"sj)
X i kK’

'
o o

*9)9 *99 "
| ] k




The formulation

ST yle)+IF =Y yle) =1 VS CV,F C4S),F matching, |F| odd



Showing that 4 <10/9

Given Subtour LP soln x,set 4@, j/) = gaz(i,j)
1
y(iﬂaj/) — 533(27])

g | I
y(i',7") = 556(%,])

Z y(e) = 2 " Minimize ;Ec(e)x(e)
e€o () subject to
Z yle) < 2 Vi Z z(e) =2 YVveV
ecd(i’) ecd(v)
> e+ IFI=D yle) =1 S a(e)>2  VSCV,S|>2
e€S(S)—F eCF eca(S)

VS CV,F C4(S), F matching, |F'| odd
0<yle) <1 Ve € E 0<z(e)<1 VeekFE
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Edmonds (1967)

- -

traveling saleman problem [cf. 4]. I conjecture that
there is no good algorithm for the traveling saleman
problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical
possibility, and (2) 1 do not know.

A orad sloorithm is known for finding in anv graph

-

3

.



Some conjectures



Some conjectures

® For the |,2-TSP | conjecture that Y1, =
10/9. We show Yi2 =< 106/81 = |.31.



Some conjectures

® For the |,2-TSP | conjecture that Y1, =
10/9. We show Yi2 =< 106/81 = |.31.

® Computation shows the conjecture is true
forn < 12.



An observation

® VWe know

2M (c) 4
< — B 1
} FoM(c) = 3 (Boyd, Carr 1999)
oM(c) 10 .
< — 1,2}" h k
FoM (o) = 9 Ve € {1,2} (this work)

® We conjecture Y < 4/3,Y12 < 10/9.

® Coincidence!
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® Conjecture: The worst case for the Subtour

LP integrality gap (both Y and Y1) occurs
for solutions that are fractional 2-matching.



Final conjecture

® Conjecture: The worst case for the Subtour

LP integrality gap (both Y and Y1) occurs
for solutions that are fractional 2-matching.

® Note: we don’t even know tight bounds on
Y and Y12 in this case, though we can show
Y12 < 7/6 in this case.
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PRAKSIS ER NAR ALT VIRKER
MEN INGEN FORSTAR HVORFOR
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“Theory is when we understand everything, but nothing works.

Practice is when everything works, but we don’t understand why.
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“Theory is when we understand everything, but nothing works.
Practice is when everything works, but we don’t understand why.

At this station, theory and practice are united, so that nothing
works and no one understands why.”



Thank you for your attention.



