’]e Travel | ng Salesman David P. Williamson, Cornell University

Ebay Research

Problem: An Overvieyw | Jenay i 2ot

(Cook 2012)
A highly readable
introduction

Some terminology (Iimprecise)

* “Problem”

- Traditional mathematics usage: e.g. Fermat’s Last Problem

- Computational usage: Find an algorithm (computer program) such that
given any valid input, the desired output is produced.

* A decision problem: The output is one of “Yes” or “No”.

Input Algorithm > Qutput

Discrete Optimization
Problems

* Appears in many places: scheduling
jobs on computers, locating facilities,
building networks, stocking
inventory,...

- Famous example: the traveling
salesman problem (TSP).

- Given n cities and the distances
between each pair of cities, find
the shortest tour that visits each
city once and returns to the
starting point.

« Decision version of TSP: Additional
input of a number C, “Is the length of
the shortest tour at most C?”

History

Point of origin of “traveling salesman problem” is unknown.
In the US, it seems to have started at Princeton in the 1930s.

Koopmans first became interested in the “48 States Problem” of
Hassler Whitney when he was with me in the Princeton Surveys, as |
tried to solve the problem in connection with the work of Bob
Singleton and me on school bus routing for the State of West
Virginia. | don’t know who coined the peppier name “Iraveling
Salesman Problem” for Whitney’s problem, but that name certainly
caught on (Flood, 1984 interview)

RAND offers a prize for TSP work In the late 1940s. Paper
mentions it in 1949 by name.

History

Of course the problem was faced by
real salesman, who realized the Dex

difficulty. Handlungsreifende

“Business leads the traveling salesman
here and there, and there is not a good tour
for all occurring cases; but through an
expedient choice and division of the tour
so much time can be won that we feel
compelled to give guidelines about this.
Everyone should use as much of the advice
as he thinks useful for his application. We
believe we can ensure as much that it will
not be possible to plan the tours through
Germany in consideration of the distances
and the traveling back and forth, which
deserves the traveler’s special attention,
with more economy. The main thing to
remember is always to visit as many
localities as possible without having to
touch them twice.”

wie er fein foll

ead wab e ju thun bat, wm Asfedge
s chalten wad cine glidliden Qrfolgs
in fcnen Gefddften gerwip 3u fein,

Bon
vinem aliea Comanis - Voyageur,

MiteisemTitelleples

Jimenan 1882,
Oved edd Buclagrees B §r. Boige,

LY
T
S

i ASH

i 29
ey
..3 ’ l 3 \\

The Obvious Finite Algorithm

- Consider all n! possible orderings of the cities and compute the length of the

tour for that ordering, where n/ =n x (n-1) x (n-2) x ... x 1. Keep track of the
shortest one found.

 Problem: n! grows pretty quickly with n. 120! is about 6 x 108, 1 tour/ns still
is about 108 years.

 Can do better than this algorithm by an algorithm using on the order of n%x 2"

operations. But still on the order of 2 x 10° operations; at 1 op/ns still about
1023 years.

XKCD

or you can just sell stuff on Ebay.

TE-FORCE DYNAMIC
BSRgL.UT :gilc PROGRAMMING SELUNG ON ERAY:
(! ALGORITHMS: 0(1)
O (n!) O (m2"

STILL WORKING
ON YOUR ROUTE?

oA
~
SHUT THE
HEW UP

“Good” algorithms

Edmonds (1965):

One can find many classes of problems, besides maximum matching and its
generalizations, which have algorithms of exponential order but seemingly
none better. An example known to organic chemists is that of deciding whether
two given graphs are isomorphic. For practical purposes the difference between
algebraic and exponential order is often more crucial than the difference
between finite and non-finite.

Je ’ 9 ‘* Y P ey ‘e ‘(\r anw r::r;l' ""i"'f‘:" ~ 4

jm———;—m——- L —
Edmonds (1967):

~ We say an algorifhm is g(;od if there is a polynomial
function f(n) which, for every positive-integer valued
n. is an upper bound on the “amount of work™ the

algorithm does for any input of “size” n. The concept
. - r W, | Jp rplﬂ’:"" cay o~ -~ o M ° . N

R — 2 Y ——

raveling saleman problem |[cf. 4]. [conjecture that
there is no good algorithm for the traveling saleman
oroblem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical
possibility, and (2) I do not know.

A 1 ~1envithe ig known far findin~ * <= aranh

P vs. NP

- Today: polynomial-time algorithms are considered the theoretical measure of
a good, efficient algorithm.

e P is the class of all decision problems solvable by a polynomial-time
algorithm.

e NP is (roughly) the set of all decision problems for which we can “check” in
polynomial time whether the answer is “Yes” (or “No”) if someone gives us a
“proof”.

e (Cook, Levin 1971, Karp 1972) Given a polynomial-time algorithm for the
decision version of the TSP, we can get a polynomial-time algorithm for any

problem in NP,
P = NP?

~eview articles

DOI:10.1145/1582164,15621868

It's one of the fundamental mathematical
problems of our time, and its importance
grows with the rise of powerful computers.

BY LANCE FORTNOW

The Status of

the P versus
NP Problem

WHEN EDITOR-IN-CHIEF MOSHE Vardi asked me to write
this piece for Communications, my first reaction was
the icle could be written in two words:

en [started graduate school in the mid-1980s,
many believed that the quickly developing area of
circuit complexity would soon settle the P versus
NP problem, whether every algorithmic problem
with efficiently verifiable solutions have efficiently
computable solutions. But circuit complexity and
other approaches to the problem have stalled and
we have little reason to believe we will see a proof
separatine P from NP in the near future.

 RR———

— i — ————

Communications of the ACM, Sept. 2009

The software written for this lllustration
makes a stylized version of a network graph
that draws connections between elements
based on proximity. The graph constantly
changes as the elements sort themselves.

increased, the cost of computing has
dramatically decreased, not to men-
tion the power of the Internet. Com-
putation has become a standard tool
in just about every academic field.
Whole subfields of biology, chemis-
try, physics, economics and others are
devoted to large-scale computational
modeling, simulations, and problem
solving.

As we solve larger and more com-
plex problems with greater computa-
tional power and cleverer algorithms,
the problems we cannot tackle begin
to stand out. The theory of NP-com-
pleteness helps us understand these
limitations and the P versus NP prob-

L . N

l' l'--
. .
WA e Lk
- .lu\.u

R
fa-.u.av‘.'u .
Lt

> X
O = 0O
- QR
> 285
> =

z527
D D T
N O T _-
— O <
Jraluﬂ%._ﬁm\}
T = O S
a2 a =9
AmphO
SOy

A 24978 city instance
from Sweden solved
by Applegate, Bixby,
Chvatal, Cook, and
Helsgaun (2004)

e ‘l.' : o5k
o N R
R
Y %‘«t&kf’ﬁ“"ﬂx
c’ll.u(‘!f‘:,k'\aﬁﬁ,“,’" 3
;,5*71';"'4‘@?‘!.,3,:, “4' ’
el
“.{"F"f Ve " .Y‘ -)

A 42 city instance
solved by Dantzig,
Fulkerson, and
Johnson (1954)

George Dantzig (1914-2005)
and Linear Programming

* Publishes paper on the Simplex Method for
solving linear programs (LPs) in 1947.

* A linear program finds values for variables X,
X2, ..., Xnthat minimizes a linear function (an
objective function) subject to linear
Inequalities or equations on the variables
(constraints).

o Example; Maximize dx1 + 5xo + 3x3
subject to:

1+ 322+ 23 <3

—x1 + 3x3 < 2

2r1 — X9 + 2x3 < 4

201 + 3x9 — x3 < 2

L1,T2,x3 2 0

Any solution x that obeys all the constraints is a feasible solution. Any feasible
solution that maximizes the objective function is an optimal solution.

The Dantzig-Fulkerson-dohnson Method

- Set up a linear program! Create a variable x(i,j) for
each pair of cities i and j. Want x(i,j) = 1 if salesman
travels between i and j, x(i,j) = O if he doesn’t.

- Let c(i,j) be the cost of traveling between cities i and j.

- Let V denote the set of all cities. Let E denote the set
of all (i,j) pairs. Get a complete graph G=(V,E).

- |ldea: Solve the linear program. If the x(i,j) are integers
and form a tour, stop. Otherwise, find a new constraint

to add (a cutting plane).

Cutting planes

O
@ 6 & o o
® 6 ¢ & o o
@ 6 ¢ & o o
@ & & e o ¢

The linear program

Minimize Z c(t,5)x(i,J)
(1,j)EE
subject to:
Z x(i,5) = 2 forallt eV
j:(2,j)€EE

0<x(t,7) <1 for all (i,7) € F

Initial solution to 42 city problem

From Cook, p. 128

“Loop conditions”

For any subset S of cities, the tour must enter the set S
at least once and leave the set S at least once.

forall S C V.

.
P
- "
l“‘
‘‘‘‘‘
.
a®

Constraints are sometimes called “subtour elimination constraints”.

Subtour Linear Program (Subtour LP)

Minimize) = ¢(i,j)z(i, j)
(,7)€EE

subject to:

Z x(i,j) = 2 for all 2 € V
j:(i,4)EE

Z x(i,j) > 2 forall S CV

(i,§)€E€ES,j¢S

0<x(z,7) <1 for all (i,7) € E

Any integer solution to this LP Is a tour. Any optimal solution is a
lower bound on the cost of the shortest tour.

How strong is the Subtour LP bound?

Johnson, McGeoch, and Rothberg (1996) and
Johnson and McGeoch (2002) report experimentally
that the Subtour LP is very close to the optimal.

Random Uniform Euclidean

Name
Elk.0
Elk.1
Elk.2
Elk.3
Elk.4
Elk.5
Elk.6
Elk.7
El1k.8
Elk.9
E3k.0
E3k.1
E3k.2
E3k.3
E3k.4

C1k.0
Cik.1
Cik.2
Cik.3
Clk.4
Cik.5
C1k.6
Cik.7
C1k.8
Cik.9
C3k.0
C3k.1
C3k.2
C3k.3
C3k.4

M1k.0
Mik.1
M1k.2
MI1k.3

TSPLIB
Opttime | HKtime || Name Opttime | HKtime
1406 2.13 || dsj1000 410 3.68
3855 2.15 || prlo02 34 2.40
1211 2.02 || si1032 25 11.32
956 1.92 || ul060 571 3.62
330 1.69 || vin1084 605 2.40
233 242 || pcb1173 468 1.70
2940 1.67 || 41291 27394 4.54
8003 1.95 || r11304 189 4.08
4347 1.65 || rl1323 3742 1.49
189 2.14 || nrwl379 578 2.40
533368 9.57 || 11400 1549 9.83
425631 10.54 || ul432 224 242
342370 9.41 || A1577 6705 38.19
147135 10.30 || d1655 263 6.51
8.07 || vm1748 2224 4.43
tered Euclidean ul817 449231 5.01
337 9.83 || r11889 10023 11.45
534 10.84 || d2103 - 8.19
320 8.79 || w2152 45205 8.10
214 7.63 || u2319 7068 3.16
768 9.36 || pr2392 117 5.75
139 9.29 || pcb3038 80829 7.26
1247 7.07 || 13795 69886 123.66
449 13.24 || fnl4461 12.47
140 10.40 || 15915 - 42.00
703 9.61 || r15934 56.15
16009 53.03 || pla7397 - 55.42
17754 126.49 || rl11849 102.41
18237 80.39 || usal3509 - 120.20
6349 7157 || d15112 90.13
4845 44.02
Random Matrices
60 547 || M3k.0 612 40.35
137 5.51 || M3k.1 546 39.52
151 5.63 || M10k.0 1377 367.84
169 5.26

More cutting planes

t's possible to find cutting planes to help with other types
of fractional solutions.

Tour must cross four sets ten times

Cook, p. 130

Branch and bound

* Yet another way to make progress is to take a fractional
variable x(i,]), and solve two subproblems, one with X(i,]) set to
1, the other with x(i,)) set to O, take the smaller solution found.

X(1,j) < 0/ X(i,)) < 1

Branch and bound

- Solving the subproblems can be done recursively, leading
to a branch and bound “tree”.

-
o e
&

A better iIdea: branch and cut

- Combine both ideas: branch and bound, plus cutting
planes at each node of the computation.

- Cutting planes generated at a node can be added to a
pool for checking by future nodes.

Heuristics

- Note that the cheaper the tour we find in the course of

the branch and cut tree, the more of the tree we can
avoid searching.

- Don't need to wait until the tree finds an integer solution:
can find some suboptimal one, and use that.

Heuristics: Two types

- Tour construction: FInd an initial tour

- E.g. nearest neighbor, nearest addition

our improvement: Given a starting tour, find a better one

- E.g. 2-OPT, 3-OPT, k-OPT...

Nearest neighbor

Nearest addition

2-OPT

The Kings

- Lin-Kernighan (LK) (1973) and an extension due to
Helsgaun (LKH) (1998): complex way of extending k edge
changes to k+1 edge changes if it helps.

+ (Cook 2012) points out that LK is usually enough to find
the optimal 42-city tour from a random tour.

Approximation algorithms

-+ An a-approximation algorithm is a polynomial-time
algorithm (a “good” algorithm) that always returns a

solution of cost within a factor of a of the optimal
solution.

Christofides’ algorithm

- Christofides (1976) shows how to compute a tour in polynomial
time of cost 3/2 optimal: compute a min-cost spanning tree,
compute a matching on the odd-degree vertices, then
“shortcut” a traversal of the resulting Eulerian graph.

< OPT + <1/2 OPT < 3/2 OPT

An open guestion

- Can we do better than this?

- For problems from Euclidean plane, approximation scheme possible.

- For problems of the sort we’ve seen, not known.

- Wolsey (1980) and Shmoys & W (1990) show that Christofides’

algorithm produces a solution within a factor of 3/2 of the Subtour LP
bound.

- Examples known where optimal tour is 4/3 times the Subtour LP bound.

Optimal tour
Subtour LP

4 3
< <
3 -2

BSut how did we get here?

And why should we care?

How we got here

- Moore’s law + commodity computing, sure (Sweden
computation took 85 CPU years in 2003).

- Huge improvements in LP solver codes.

- Bixby (2002, 2004) shows experimentally that
codes got roughly 3300 times faster between
1988 and 2004 (machine independent), while
machines got 1600 times faster.

- S0 total speedup 3300 x 1600 = 5,300,000.

- E.g. a problem that took two months to solve in
1988 took 1 second in 2004.

How we got here

Much better cutting plane generation, node selection,
branching rules, heuristics, etc.

The Traveling
Salesman Problem

(Applegate, Bixby, Chvatal, Cook 2006)
A technical summary of their 20
years of work in 600 pages.

David L. Applegate,
Robert E. Bixby, Vasek Chvatal,
and William J. Cook

Codes

-+ Concorde: A TSP code by Cook avallable at
www.math.uwaterloo.ca/tsp. Source code available,
binaries for Windows and Linux.

+ Also available as an 10S app.

http://www.math.uwaterloo.ca/tsp

S0 Bixby

- Starts a company which sells CPLEX, a simplex
method code written in C, in 1987. Also contains
code for solving mixed-integer programming
(linear programs in which variables can be
constrained to be integer).

- The company sold to [LOG in 1997.

- |LOG sold to IBM in 2009 (mostly for business
rules management software).

- In 2008, starts alternative LP/MIP code company
Gurobi (with two developers from CPLEX, Gu and
Rothberg).

Mixed-integer programming (MIP) codes

Same techniques used in solving the TSP also used in
commercial MIP codes ... and same sort of speedups

Seen.

[VY Soaecus = Cum ative Spoodup]

100000

T 10000

g 7
2 a
<
@ &1 no:ni
3 &
- 9 e
>
3 :
= 4 1 1035
r 10

1221 213 B 4-45 [3 G-+8.5 G571 718
CPLEX Version-to-Version Pairs

1991 2007 (Bixby 2010)

MIP codes

- (Bixby 2010) reports yet another factor 16 speedup since 2007,
so roughly 500,000x speedup (machine independent) since 1991,

- E.g. California Unit Commitment Problem (from power generation)
- 1989: 8 hours, no progress for 2 day problem; 1 hour to solve
initial LP for 7 day problem (“theoretically complicated,
computationally cumbersome”).

- 1999: 22 minutes on desktop PC for 7 day problem

- 2008: 43 seconds for 7 day problem

“Christos Papadimitriou told me that the
traveling salesman problem is not a problem.
lt's an addiction.”

— Jon Bentley 1991

What if

P = N

P put it doesn’t matter in practice”

