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(Cook 2012) 
A highly readable 
introduction



Some terminology (imprecise)

• “Problem”


• Traditional mathematics usage: e.g. Fermat’s Last Problem


• Computational usage: Find an algorithm (computer program) such that 
given any valid input, the desired output is produced.


• A decision problem: The output is one of “Yes” or “No”.

Input OutputAlgorithm



Discrete Optimization 
Problems

• Appears in many places: scheduling 
jobs on computers, locating facilities, 
building networks, stocking 
inventory,...


• Famous example: the traveling 
salesman problem (TSP). 

• Given n cities and the distances 
between each pair of cities, find 
the shortest tour that visits each 
city once and returns to the 
starting point.


• Decision version of TSP: Additional 
input of a number C, “Is the length of 
the shortest tour at most C?”



History

Point of origin of “traveling salesman problem” is unknown.  
In the US, it seems to have started at Princeton in the 1930s. 

	 Koopmans first became interested in the “48 States Problem” of 
Hassler Whitney when he was with me in the Princeton Surveys, as I 
tried to solve the problem in connection with the work of Bob 
Singleton and me on school bus routing for the State of West 
Virginia.  I don’t know who coined the peppier name “Traveling 
Salesman Problem” for Whitney’s problem, but that name certainly 
caught on (Flood, 1984 interview) 

RAND offers a prize for TSP work in the late 1940s. Paper 
mentions it in 1949 by name.



History

Of course the problem was faced by 
real salesman, who realized the 
difficulty.


“Business leads the traveling salesman 
here and there, and there is not a good tour 
for all occurring cases; but through an 
expedient choice and division of the tour 
so much time can be won that we feel 
compelled to give guidelines about this.  
Everyone should use as much of the advice 
as he thinks useful for his application.  We 
believe we can ensure as much that it will 
not be possible to plan the tours through 
Germany in consideration of the distances 
and the traveling back and forth, which 
deserves the traveler’s special attention, 
with more economy.  The main thing to 
remember is always to visit as many 
localities as possible without having to 
touch them twice.”





The Obvious Finite Algorithm

• Consider all n! possible orderings of the cities and compute the length of the 
tour for that ordering, where n! = n x (n-1) x (n-2) x … x 1.  Keep track of the 
shortest one found.


• Problem: n! grows pretty quickly with n.  120! is about 6 x 10198.  1 tour/ns still 
is about 10182 years.


• Can do better than this algorithm by an algorithm using on the order of n2 x 2n 
operations.  But still on the order of 2 x 1040 operations; at 1 op/ns still about 
1023 years.



XKCD

• or you can just sell stuff on Ebay.



“Good” algorithms

Edmonds (1965):


!

Edmonds (1967):



P vs. NP

• Today: polynomial-time algorithms are considered the theoretical measure of 
a good, efficient algorithm.


• P is the class of all decision problems solvable by a polynomial-time 
algorithm.


• NP is (roughly) the set of all decision problems for which we can “check” in 
polynomial time whether the answer is “Yes” (or “No”) if someone gives us a 
“proof”.


• (Cook, Levin 1971, Karp 1972) Given a polynomial-time algorithm for the 
decision version of the TSP, we can get a polynomial-time algorithm for any 
problem in NP.  

P = NP?



Communications of the ACM, Sept. 2009



A 15112 city 
instance solved by 
Applegate, Bixby, 
Chvátal, and Cook 
(2001)



A 24978 city instance 
from Sweden solved 
by Applegate, Bixby, 
Chvátal, Cook, and 
Helsgaun (2004)



A 42 city instance 
solved by Dantzig, 
Fulkerson, and 
Johnson (1954)



George Dantzig (1914-2005) 
and Linear Programming

• Publishes paper on the Simplex Method for 
solving linear programs (LPs) in 1947.


• A linear program finds values for variables x₁, 
x₂, …, xn that minimizes a linear function (an 
objective function) subject to linear 
inequalities or equations on the variables 
(constraints).


• Example: Maximize 5x1 + 5x2 + 3x3

subject to:

x1 + 3x2 + x3  3

�x1 + 3x3  2

2x1 � x2 + 2x3  4

2x1 + 3x2 � x3  2

x1, x2, x3 � 0

Any solution x that obeys all the constraints is a feasible solution.  Any feasible

solution that maximizes the objective function is an optimal solution.



The Dantzig-Fulkerson-Johnson Method

• Set up a linear program!  Create a variable x(i,j) for 
each pair of cities i and j.  Want x(i,j) = 1 if salesman 
travels between i and j, x(i,j) = 0 if he doesn’t.


• Let c(i,j) be the cost of traveling between cities i and j.


• Let V denote the set of all cities.  Let E denote the set 
of all (i,j) pairs.  Get a complete graph G=(V,E).


• Idea: Solve the linear program.  If the x(i,j) are integers 
and form a tour, stop.  Otherwise, find a new constraint 
to add (a cutting plane).



Cutting planes



The linear program

subject to:

Minimize
X

(i,j)2E

c(i, j)x(i, j)

X

j:(i,j)2E

x(i, j) = 2 for all i 2 V

0  x(i, j)  1 for all (i, j) 2 E

i



Initial solution to 42 city problem

From Cook, p. 128



“Loop conditions”
• For any subset S of cities, the tour must enter the set S 

at least once and leave the set S at least once.

S

X

(i,j)2E:i2S,j /2S

x(i, j) � 2 for all S ⇢ V.

Constraints are sometimes called “subtour elimination constraints”. 



Cook, p. 129



Subtour Linear Program (Subtour LP)

subject to:

Minimize
X

(i,j)2E

c(i, j)x(i, j)

X

j:(i,j)2E

x(i, j) = 2 for all i 2 V

0  x(i, j)  1 for all (i, j) 2 E

X

(i,j)2E:i2S,j /2S

x(i, j) � 2 for all S ⇢ V

Any integer solution to this LP is a tour. Any optimal solution is a 
lower bound on the cost of the shortest tour.



How strong is the Subtour LP bound?

Johnson, McGeoch, and Rothberg (1996) and 
Johnson and McGeoch (2002) report experimentally 
that the Subtour LP is very close to the optimal.





More cutting planes
• It’s possible to find cutting planes to help with other types 

of fractional solutions.

Tour must cross four sets ten times



Cook, p. 130



Branch and bound

• Yet another way to make progress is to take a fractional 
variable x(i,j), and solve two subproblems, one with x(i,j) set to 
1, the other with x(i,j) set to 0, take the smaller solution found.

143.2

155.4162.9

x(i,j) ← 0 x(i,j) ← 1



Branch and bound

• Solving the subproblems can be done recursively, leading 
to a branch and bound “tree”.

143.2

155.4162.9

164.3 169 
Tour 

170.3 Infeas

171.2 173 
Tour



A better idea: branch and cut

• Combine both ideas: branch and bound, plus cutting 
planes at each node of the computation. 

• Cutting planes generated at a node can be added to a 
pool for checking by future nodes.



Cook, p. 149



Heuristics

• Note that the cheaper the tour we find in the course of 
the branch and cut tree, the more of the tree we can 
avoid searching. 

• Don’t need to wait until the tree finds an integer solution: 
can find some suboptimal one, and use that.



Heuristics: Two types

• Tour construction: Find an initial tour 

• E.g. nearest neighbor, nearest addition 

• Tour improvement: Given a starting tour, find a better one 

• E.g. 2-OPT, 3-OPT, k-OPT…



Nearest neighbor



Nearest addition



2-OPT



The Kings

• Lin-Kernighan (LK) (1973) and an extension due to 
Helsgaun (LKH) (1998): complex way of extending k edge 
changes to k+1 edge changes if it helps. 

• (Cook 2012) points out that LK is usually enough to find 
the optimal 42-city tour from a random tour.



Approximation algorithms

• An α-approximation algorithm is a polynomial-time 
algorithm (a “good” algorithm) that always returns a 
solution of cost within a factor of α of the optimal 
solution.



Christofides’ algorithm

• Christofides (1976) shows how to compute a tour in polynomial 
time of cost 3/2 optimal: compute a min-cost spanning tree, 
compute a matching on the odd-degree vertices, then 
“shortcut” a traversal of the resulting Eulerian graph.

≤ OPT           + ≤ 1/2 OPT   ≤ 3/2 OPT



An open question

• Can we do better than this?   

• For problems from Euclidean plane, approximation scheme possible. 

• For problems of the sort we’ve seen, not known. 

• Wolsey (1980) and Shmoys & W (1990) show that Christofides’ 
algorithm produces a solution within a factor of 3/2 of the Subtour LP 
bound. 

• Examples known where optimal tour is 4/3 times the Subtour LP bound.

4

3
 Optimal tour

Subtour LP
 3

2



But how did we get here?



And why should we care?



How we got here

• Moore’s law + commodity computing, sure (Sweden 
computation took 85 CPU years in 2003). 

• Huge improvements in LP solver codes. 

• Bixby (2002, 2004) shows experimentally that 
codes got roughly 3300 times faster between 
1988 and 2004 (machine independent), while 
machines got 1600 times faster. 

• So total speedup 3300 x 1600 = 5,300,000. 

• E.g. a problem that took two months to solve in 
1988 took 1 second in 2004.



How we got here

• Much better cutting plane generation, node selection, 
branching rules, heuristics, etc.

(Applegate, Bixby, Chvátal, Cook 2006) 
A technical summary of their 20  
years of work in 600 pages.



Codes

• Concorde: A TSP code by Cook available at 
www.math.uwaterloo.ca/tsp. Source code available, 
binaries for Windows and Linux. 

• Also available as an iOS app.

http://www.math.uwaterloo.ca/tsp


Bob Bixby

• Starts a company which sells CPLEX, a simplex 
method code written in C, in 1987.  Also contains 
code for solving mixed-integer programming 
(linear programs in which variables can be 
constrained to be integer). 

• The company sold to ILOG in 1997. 

• ILOG sold to IBM in 2009 (mostly for business 
rules management software). 

• In 2008, starts alternative LP/MIP code company 
Gurobi (with two developers from CPLEX, Gu and 
Rothberg).



Mixed-integer programming (MIP) codes

• Same techniques used in solving the TSP also used in 
commercial MIP codes … and same sort of speedups 
seen.

1991 2007 (Bixby 2010)



MIP codes

• (Bixby 2010) reports yet another factor 16 speedup since 2007, 
so roughly 500,000x speedup (machine independent) since 1991. 

• E.g. California Unit Commitment Problem (from power generation) 

• 1989: 8 hours, no progress for 2 day problem; 1 hour to solve 
initial LP for 7 day problem (“theoretically complicated, 
computationally cumbersome”). 

• 1999: 22 minutes on desktop PC for 7 day problem 

• 2008: 43 seconds for 7 day problem



– Jon Bentley 1991

“Christos Papadimitriou told me that the 
traveling salesman problem is not a problem.  

It’s an addiction.”



What if P ≠ NP, but it doesn’t matter in practice?


