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Qutline

A brief intro to the TSP
A standard TSP linear program: the Subtour LP
® Experimental analysis

® Theoretical analysis: an outstanding open
question

A related question: the Boyd-Carr conjecture and
its proof

Some conjectures and more experiments



The Traveling
Salesman Problem

The most famous problem in
discrete optimization: Given n
cities and the cost ¢(i,j) of
traveling from city i to city j, find a
minimum-cost tour that visits
each city exactly once.

We assume costs are symmetric
(c(i,j)=c(j,i) for all i,j) and obey the
triangle inequality (c(ij) < c(i,k) +
c(k,j) for all i,j,k).

120 city tour of West Germany due to
M. Grotschel (1977)
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Applegate, Bixby,

Chvatal, and Cook

(2001)




A 24978 city instance
from Sweden solved
by Applegate, Bixby,
Chvatal, Cook, and
Helsgaun (2004)
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A 42 city instance
solved by Dantzig,
Fulkerson, and
Johnson (1954)




The Dantzig-Fulkerson-
lohnson Method

® G=(V|E) is a complete graph on |V| =n
vertices

® c(e)=c(i,j) is the cost of traveling on edge
e=(i,j)

® X(e) is a decision variable indicating if edge e
is used in the tour, 0 < x(e) < |

® Solve linear program; if x(e) forms integer
tour, stop, else find a cutting plane



The linear program

Minimize Z c(e)z(e)

subject to

Zx(e):Q VoeV

ecd(v)

0<z(e) <1 Ve e E

<




Fractional 2-matchings

® ® o
® ® o
¢ ® ®

Fractional (basic) solutions have components
that are cycles of size at least 3 with x(e)=1 or
odd cycles with x(e)=1/2 connected by paths
with x(e)=1



2-matchings

Integer solutions have components with
cycles of size at least 3; sometimes called
subtours



“Loop conditions™

Dantzig, Fulkerson, and Johnson added
constraints to eliminate subtours as they
occurred; these now called “subtour
elimination constraints’.

Zx(e)22 VS CV,|S| > 2
ecd(S)

Edges in the cut for $



Subtour LP

Minimize Z c(e)x(e)

eclkl
subject to
Z r(e) = 2
ecd(v)
Z x(e) > 2
ecd(S)

0<zxz(e) <1

YVveV

VS CV,|S| > 2

Ve e E



Equivalent constraints

Equivalently can write subtour elimination
constraints to express no cycles in any strict
subset: S

» a(e)<|S|-1  VSCV, 5 >2

ee E(S)



Subtour LP

Minimize Z c(e)z(e)

ec
subject to

Zx(e):2 VveV

ecd(v)

> a(e)<IS[-1  VSCV,[S]>2
ecE(S)

0<z(e) <1 Veec E



How strong is the
Subtour LP bound!?

Johnson, McGeoch, and Rothberg (1996) and
Johnson and McGeoch (2002) report
experimentally that the Subtour LP is very
close to the optimal.



Random Uniform Euclidean

Name
Elk.0
Elk.1
Elk.2
Elk.3
Elk.4
Elk.5
Elk.6
Elk.7
E1k.8
Elk.9
E3k.0
E3k.1
E3k.2
E3k.3
E3k.4

C1k.0
Cik.1
Cik.2
Cik.3
Cilk.4
Cik.5
C1k.6
Cik.7
C1k.8
Cik.9
C3k.0
C3k.1
C3k.2
C3k.3
C3k.4

M1k.0
Milk.1
M1k.2
Ml1k.3

TSPLIB
Opttime | HKtime || Name Opttime | HKtime
1406 2.13 || dsj1000 410 3.68
3855 2.15 || prl0o02 34 2.40
1211 2.02 || si1032 25 11.32
956 1.92 || ul060 571 3.62
330 1.69 || vm1084 605 2.40
233 2.42 || pcbl1173 468 1.70
2940 1.67 || d1291 27394 4.54
8003 1.95 || 11304 189 4.08
4347 1.65 || r11323 3742 1.49
189 2.14 || nrwl379 578 2.40
533368 9.57 || 11400 1549 9.83
425631 10.54 || w1432 224 2.42
342370 9.41 || H1577 6705 38.19
147135 10.30 || d1655 263 6.51
8.07 || vm1748 2224 4.43
tered Euclidean ul817 449231 5.01
337 9.83 || r11889 10023 11.45
534 10.84 || d2103 - 8.19
320 8.79 || w2152 45205 8.10
214 7.63 || w2319 7068 3.16
768 9.36 || pr2392 117 5.75
139 9.29 || pcb3038 80829 7.26
1247 7.07 || 83795 69886 123.66
449 13.24 || fnl4461 12.47
140 10.40 || r15915 - 42.00
703 9.61 || r15934 56.15
16009 53.03 || pla7397 - 55.42
17754 126.49 || r111849 102.41
18237 80.39 (| usal3509 - 120.20
6349 7157 || d15112 90.13
4845 44.02
Random Matrices
60 5.47 || M3k.0 612 40.35
137 5.51 || M3k.1 546 39.52
151 5.63 || M10k.0 1377 367.84
169 5.26




How strong is the
Subtour LP bound!?

® What about in theory!?
® Define
p SUBT(c) as the optimal value of the Subtour LP for costs ¢

p OPT(c) as the length of the optimal tour for costs ¢

p C, is the set of all symmetric cost functions on n vertices that
obey triangle inequality.

® Then the integrality gap of the Subtour LP is

PT
v = Sup v(n) where v(n) = Cseuca SOUBTZSZ)



A lower bound

It's known that Y = 4/3, where c(i,j) comes from the
shortest i-j path distance in a graph G (graph TSP).
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Christofides’ Algorithm

Christofides (1976) shows how to compute a tour
in polynomial time of cost 3/2 optimal: compute a
min-cost spanning tree, compute a matching on the
odd-degree vertices, then “shortcut” a traversal of
the resulting Eulerian graph.

< OPT(c) + < 1/2 OPT(c) < 3/2 OPT(c)



An upper bound

® Wolsey (1980) and Shmoys and W (1990)
show that OPT(c) can be replaced with

SUBT(c), so that Christofides gives a tour of
cost < 3/2 SUBT (c).

® [herefore,

N - OPT(c)
7= SUBT(c)

OPT(c) < gSUBT(c) < ;



Perfect Matching
Polytope

Edmonds (1965) shows that the min-cost
perfect matching can be found as the solution
to the linear program:

Minimize Z c(e)z(e)

eck
subject to Z z(e) =1 VveV
ecs(v)
Z z(e) > 1 VS C V,|S| odd
ecs(S)



Matchings and the
Subtour LP

Then MATCH(c) < 1/2 SUBT(c) since z = |/2
X is feasible for the matching LP.

Minimize )  c(e)(e) Minimize ) ~c(e)z(e)
ecE ck
subject to subject to Z z(e) =1 VoeV
Z x(e) =2 YveV ecov)
e€d(v) Y z(e)>1 VS CV,IS| odd

Y wle)>2  VSCV,I[S|>2
ecd(S)

0<z(e) <1 Ve e B

Shmoys and W (1990) also show that SUBT(c) is

nonincreasing as vertices are removed so that matching
on odd-degree vertices is at most 1/2 SUBT(c).



Spanning Tree Polytope

Similarly, Edmonds (1971) showed that the min-
cost spanning tree can be found as the solution
of the following LP:

N
-
U‘
—
D
®
—
—
O
N
/N
D
N——"
|
=~
|
 —



Spanning Trees and the
Subtour LP

Then MST(c) < ((n-1)/n) SUBT(c) since z =
((n-1)/n) x is feasible for the MST LP.

Minimize Z C(e)gj(e) E fflg]ﬁ%ljze EEC e 65 ! CIZ(@)
© T
ecl €EEb, —eEEl
subject to subject to %z(e) 1_ n 1_
ec T N\ N\
Z z(e) =2 VoeV — ._Q> > T 6)
. 2 1e(e) < Ufu'e(/l eéé(ézf)c
ecE(S)
S ae)<IS|-1  VSC VS| >2 11
ecE(S) — S 27’2,
0<z(e) <1 Ve € E n 2



Recent results

® Some recent progress on graph TSP (costs c(i,j) are the shortest i
path distances in unweighted graph):

p Boyd, Sitters, van der Ster, Stougie (2010); Aggarwal, Garg, Gupta
(2011): Gap is at most 4/3 if graph is cubic.

p Oveis Gharan, Saberi, Singh (2010): Gap is at most 3/2 - € for a
constant € > 0.

p Momke, Svensson (201 I): Gap is at most 1.461.

p Momke, Svensson (201 |): Gap is 4/3 if graph is subcubic (degree at
most 3).

P Mucha (2011): Gap is at most 13/9 = 1.44.
p Sebo and Vygen (2012): Gap is at most |.4.



Recent results

® Also some exciting progress on asymmetric TSP (c(i,j) # c(j,i))
with triangle inequality (for related LP):

® Frieze, Galbiati, Maffioli (1982): Gap is O(log n)

® Asadpour, Goemans, Madry, Oveis Gharan, Saberi, Singh
(2010): Gap is O(log n/log log n)

® Anari, Oveis Gharan (2016): Gap is O(poly log log n)
(existential)

® Svensson, Tarnawski,Vegh (August 2017): Gap is constant

® ~ 5500
® Charikar, Goemans, Karloff (2006): Gap is at least 2



Current state

Q| =~
YA
2
YA
DO [ QO

® Conjecture (Goemans 1995, others): + = 3



More ignorance

We don’t even know the equivalent worst-

case ratio between 2-matching costs 2M(c)
and SUBT(c).

_ _ 2M (c)
= sgp u(n) where p(n) = CSEU_Cp SUBT(0

Then all we know is that

10
9

N

<pu< 3 (Boyd, Carr 1999)

Conjecture (Boyd, Carr 201 1): 4 = %O



Our contributions

® VWe can prove the Boyd-Carr conjecture
(with Schalekamp and van Zuylen)



Qutline

® A related question: the Boyd-Carr conjecture and its proof
® L < 4/3 under a certain condition.
® u=<10/9.

® Some conjectures and more experiments



Some terminology

Cut edge
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The strategy

® Start with an optimal fractional 2-matching; this gives a
lower bound on the Subtour LP.

® Add a low-cost set of edges to create a graphical 2-
matching: each vertex has degree 2 or 4; each component
has size at least 3; each edge has 0, |, or 2 copies.

— =N\, e

® “Shortcut” the graphical 2-matching to a 2-matching.



Consider fractional 2-matchings that have no
cut edge; we show that we can get a graphical
2-matching with a 4/3 increase in cost.

® @ @
(RS )
1\ ¢
® @ )
1 v 1
1 s
¢ ® ¥

2M < Graphical 2M < 4/3 Fractional 2M < 4/3 Subtour



Create new graph by replacing path edges
with a single edge of cost equal to the path,
cycle edges with negations of their cost.

C 2 citc
C o -C
—
c’ -c’
o ¥

New graph is cubic and 2-edge connected.



Compute a min-cost perfect matching in new graph.

of o))
_C,

In the fractional 2-matching, double any path edge in
matching, remove any cycle edge. Cost is paths + cycles
+ matching edges.

o P ®
Y C C K
L, "t P 2cit2c /
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VWhy this works

For any given node on the cycle, either its
associated path edge is in the matching or one
of the two cycle edges.




VWhy this works

For any given node on the path, either its
associated path edge is in the matching or
not.

- — e




Bounding the cost

P = total cost of all path edges
C = total cost all cycle edges
So fractional 2-matching costs P + C/2

Claim: Perfect matching in the new graph
costs at most |/3 the cost of all its edges, so

at most |/3(P - C)



Bounding the cost

® Since the graphical 2-matching costs at most
P + C + matching, it costs at most

1 4 2 4 1
p (P-C)=-P+2c=-(P+-C
+CO+5(P=C) =P+ 0 3< +2>

2M < Graphical 2M < 4/3 Fractional 2M
< 4/3 Subtour
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Matching cost

Naddef and Pulleyblank (1981): Any cubic, 2-edge-
connected, weighted graph has a perfect matching of
cost at most a third of the sum of the edge weights.

Proof: Set z(e)=1/3 for all ecE, then feasible for
matching LP.

3

3 eck
subject to Z z(e) =1 YVoeV

3

Z z(e) > 1 VS C V,|S| odd
e€d(S)

3[S| = 2|E(S)| + |8(S)|, so for |S| odd, |8(S)| odd.



Proving U < 10/9

® TJo prove stronger results, we give a polyhedral
formulation for graphical 2-matchings.

® For all i€V, createi’ and i’

- i’ required: must have degree 2
- i’ optional: may have degree 0 or 2
® For all (i,j)€E, create edges (i’,j), (i’,]”), (i",j)
} ¥ K

‘

*9 *9 ’
| ] k




The formulation

ST yle)+IF =Y yle) =1 VS CV,F C4S),F matching, |F| odd
ecd(S)—F ecF

0<yle) <1 Ve e E

Can show that the extreme points of this LP are graphical 2-matchings.



Proving U <10/9

Given Subtour LP soln x, set y(i', 7)) = gsc(z‘,j)
o, ) = 5a(i )

g | I
y(i',7") = 556(%,])

Z y(e) = 2 " Minimize ;Ec(e)x(e)
e€o () subject to
Z yle) < 2 Vi Z z(e) =2 YvoeV
ecd(i’) ecd(v)
> @ +IFI=D yle) =1 S a(e)>2  VSCV,S|>2
e€S(S)—F eCF eca(S)

VS CV,F C4(S), F matching, |F'| odd
0<yle) <1 Ve € E 0<z(e)<1 Ve€ekE



Edmonds (1967)

v ponh adoe I hiq 1§ g verainn aAr The wall.knnwr

traveling saleman problem [cf. 4]. I conjecture that
there is no good algorithm for the traveling saleman
problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical

possibility, and (2) I do not know.
A arad alearithm is known for findine i~ anv graoh
- | —— s ...

——— .
.



A conjecture

® Conjecture: The worst case for the Subtour

LP integrality gap occurs for solutions that
are fractional 2-matchings.

® Note: we don’t even know tight bounds on Y
in this case.



Best-of-Many
Christofides’

A conjectured algorithm (Oveis Gharan, Saberi, Singh
2010; An, Kleinberg, Shmoys 2012):

® Solve Subtour LP for x.

® Since ((n-1)/n)x in spanning tree polytope,
express ((n-1)/n)x as a convex combination of
spanning trees.

® Sample a spanning tree from convex
combination, run Christofides’ algorithm on it.



Experimental Results

Max Max e e
Splitting  Splitting
Std Entropy Entropy
(Best) (Ave) Off (Best) Off (Ave)

TSPLIB

VLSI

Graph 12.43%

Percentages expressed with respect to cost of an optimal tour

(With Kyle Genova)



Why does this help!?

Experimentally, almost all degrees of sampled spanning tree are
two. The tree costs more, and matching edges are more
expensive, but there are a lot fewer edges in the matching.

X

\

N\
N

Standard Christofides’ Best-of-Many Christofides’
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0.00%

20.00% 4000% ©60.00% 80.00% 100.00%
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Experimental Results

Tree Matching

Best of
Many

Max  Splitting
Entropy Off

Std

IRSIHBIS 87.47% | 98.57% | 31.25% | 10.75% | 10.65%

89.85% | 98.84% | 29.98% | 12.7/6% | 12./8%

79.10% | 98.23% | 39.31% | 4.66% 4.34%

Percentages expressed with respect to cost of an optimal tour



Analysis

® E[cost of tree] < SUBT(c) by construction.

® Would need to show E[cost of matching] <
(1/2 - €) SUBT(c) for some € > 0.



s-t TSP path

Given a fixed start vertex s and end vertex t, find the
minimum-cost path from s to t visiting every other
vertex exactly once.

* Analog of Christofides’: 5/3 (Hoogeveen 1991)

* Lower bound on integrality gap: 3/2

Best-of-Many Christofides’: 1.618 (An, Kleinberg, Shmoys 2012)

* Improved analysis: 1.6 (Sebo 2013)

Improved decomposition of trees:

* 1.599 (Vygen 2015)
* |.56 (Gottschalk and Vygen 2015)

« 3/2 + 1/34 (SebO and Van Zuylen, April 2016)



%g INI OPS staslion |
JAN MAYEN

TEORI ER NAR MAN FORSTAR ALT
MEN [NGEN TING VIRKER

PRAKSIS ER NAR ALT VIRKER
MEN INGEN FORSTAR HVORFOR

PA DENNE STASJONEN FORENER VI TEORI 0G PRAKSIS

“Theory is when we understand everything, but nothing works.
Practice is when everything works, but we don’t understand why.

At this station, theory and practice are united, so that nothing
works and no one understands why.”



Thank you for your attention.



