A Simple, Greedy Approximation Algorithm for MAX SAT

David P. Williamson

Joint work with Matthias Poloczek (Frankfurt, Cornell) and Anke van Zuylen (William \& Mary)

Greedy algorithms

 right. Greed works." - Gordon Gekko, Wall Street

Another reason

- When I interviewed at Watson, half of my talk was about maximum satisfiability, the other half about the max cut SDP result.
- I thought, "Oh no, I have to talk about
- Hardness of approximation in front of Madhu Sudan,
- Randomized rounding in front of Prabhakar Raghavan,
- And eigenvalue bounds in front of Alan Hoffman."
- Today I revisit the first part of that talk.

Maximum Satisfiability

- Input:
n Boolean variables x_{1}, \ldots, x_{n} m clauses C_{1}, \ldots, C_{m} with weights $w_{j} \geq 0$
- each clause is a disjunction of literals,

$$
\text { e.g. } C_{1}=x_{1} \vee x_{2} \vee \bar{x}_{3}
$$

- Goal: truth assignment to the variables that maximizes the weight of the satisfied clauses

Approximation Algorithms

- An α-approximation algorithm runs in polynomial time and returns a solution of at least α times the optimal.
- For a randomized algorithm, we ask that the expected value is at least α times the optimal.

A $1 / 2$-approximation algorithm

- Set each x_{i} to true with probability $1 / 2$.
- Then if l_{j} is the number of literals in clause j
E [Weight satisfied clauses]

$$
\begin{aligned}
& =\sum_{j=1}^{m} w_{j} \operatorname{Pr}[\text { Clause } j \text { satisfied }] \\
& =\sum_{j=1}^{m} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \frac{1}{2} \sum_{j=1}^{m} w_{j} \geq \frac{1}{2} O P T
\end{aligned}
$$

What about a deterministic algorithm?

- Use the method of conditional expectations (Erdős and Selfridge '73, Spencer '87)
- If $E\left[W \mid x_{1} \leftarrow\right.$ true $] \geq E\left[W \mid x_{1} \leftarrow\right.$ false $]$ then set x_{1} true, otherwise false.
- Similarly, if X_{i-1} is event of how first i 1 variables are set, then if $E\left[W \mid X_{i-1}, x_{i} \leftarrow\right.$ true $] \geq$ $E\left[W \mid X_{i-1}, x_{i} \leftarrow\right.$ false $]$, set x_{i} true.
- Show inductively that $E\left[W \mid X_{i}\right] \geq E[W] \geq \frac{1}{2}$ OPT.

An LP relaxation

$$
\begin{array}{ll}
\operatorname{maximize} & \sum_{j=1}^{m} w_{j} z_{j} \\
\text { subject to } \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) \geq z_{j}, & \forall C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}, \\
0 \leq y_{i} \leq 1, & i=1, \ldots, n \\
0 \leq z_{j} \leq 1, & j=1, \ldots, m
\end{array}
$$

Randomized rounding

Pick any function f such that $1-4^{-x} \leq f(x) \leq 4^{x-1}$. Set x_{i} true with probability $f\left(y_{i}^{*}\right)$, where y^{*} is an optimal LP solution.

Analysis

$\operatorname{Pr}\left[\right.$ clause C_{j} not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$

$$
\begin{aligned}
& \leq \prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)} \\
& \leq 4^{-z_{j}^{*}} .
\end{aligned}
$$

$$
\begin{aligned}
E[W] & \geq \sum_{j=1}^{m} w_{j} \operatorname{Pr}\left[\text { clause } C_{j} \text { satisfied }\right] \\
& \geq \sum_{j=1}^{m} w_{j}\left(1-4^{-z_{j}^{*}}\right) \\
& \geq \frac{3}{4} \sum_{j=1}^{m} w_{j} z_{j}^{*} \geq \frac{3}{4} O P T
\end{aligned}
$$

Integrality gap

$$
\begin{aligned}
& \operatorname{maximize} \\
& \text { subject to } \sum_{i \in P_{j}}^{m} y_{i}+\sum_{j \in N_{j}}^{m}\left(1-y_{j}\right) \geq z_{j}, \quad \forall C_{j}=\bigvee_{i \in P_{j}} x_{i} \vee \bigvee_{i \in N_{j}} \bar{x}_{i}, \\
& 0 \leq y_{i} \leq 1, \quad i=1, \ldots, n, \\
& 0 \leq z_{j} \leq 1, \quad j=1, \ldots, m \\
& x_{1} \vee x_{2}, \quad \bar{x}_{1} \vee x_{2}, \quad x_{1} \vee \bar{x}_{2}, \quad \bar{x}_{1} \vee \bar{x}_{2}
\end{aligned}
$$

The result is tight since LP solution $z_{1}=z_{2}=z_{3}=z_{4}=1$ and $y_{1}=y_{2}=\frac{1}{2}$ feasible for instance above, but OPT $=3$.

Current status

- NP-hard to approximate better than 0.875 (Håstad '01)
- Combinatorial approximation algorithms
- Johnson's algorithm (1974): Simple ½-approximation algorithm (Greedy version of the randomized algorithm)
- Improved analysis of Johnson's algorithm: ${ }^{2 / 3}$-approx. guarantee [Chen-Friesen-Zheng '99, Engebretsen '04]
- Randomizing variable order improves guarantee slightly [Costello-Shapira-Tetali '11]
- Algorithms using Linear or Semidefinite Programming
- Yannakakis '94, Goemans-W '94:

Question [W'98]: /s it possible to obtain a 3/4-approximation

algorithm without sobving a linear progran?

(Selected) recent results

- Poloczek-Schnitger '11:
- "randomized Johnson" - combinatorial 3/4approximation algorithm
- Van Zuylen '11:
- Simplification of "randomized Johnson" probabilities and analysis
- Derandomization using Linear Programming
- Buchbinder, Feldman, Naor, and Schwartz '12:
- Another $3 / 4$-approximation algorithm for MAX SAT as a special case of submodular function maximization
- We show MAX SAT alg is equivalent to van Zuylen '11.

(Selected) recent results

- Poloczek-Schnitger'11
- Van Zuylen '11
- Buchbinder, Feldman, Naor and Schwartz '12

Common properties:

- iteratively set the variables in an "online" fashion,
- the probability of setting x_{i} to true depends on clauses containing x_{i} or \bar{x}_{i} that are still undecided.

Today

- Give "textbook" version of Buchbinder et al.'s algorithm with an even simpler analysis

Buchbinder et al.'s approach

- Keep two bounds on the solution
- Lower bound LB = weight of clauses already satisfied
- Upper bound UB = weight of clauses not yet unsatisfied
- Greedy can focus on two things:
- maximize LB,
- maximize UB,
but either choice has bad examples...
- Key idea: make choices to increase $\mathbf{B}=1 / 2$ (LB+UB)

Set x_{1} to true

Set x_{1} to true

Set x_{1} to true

or

Set x_{1} to false

$\left.\begin{array}{l}\text { Set } x_{1} \text { to true } \\ \text { or } \\ \text { Set } x_{1} \text { to false }\end{array}\right] \underbrace{\begin{array}{l}\text { Guaranteed that }\end{array}}_{t_{1}} \begin{aligned} & \left(B_{1}-B_{0}\right)\end{aligned}+\underbrace{\left(B_{1}-B_{0}\right)}_{f_{1}} \geq 0$

Weight of undecided clauses satisfied by $x_{i}=$ true

Remark: This is the algorithm proposed independently by BFNS'12 and vZ'11

Algorithm:

- if $t_{i}<0$, set x_{i} to false
- if $f_{i}<0$, set x_{i} to true
- else, set x_{i} to true with probability $\frac{t_{i}}{t_{i}+f_{i}}$

$$
(\underbrace{B_{i}-B_{i-1}})+(\underbrace{\left(B_{i}-B_{i-1}\right) \geq 0}
$$

Example

Initalize:

- LB $=0$
- UB = 6

Step 1:

- $t_{1}=\frac{1}{2}(\triangle L B+\triangle U B)=\frac{1}{2}(1+(-2))=-\frac{1}{2}$
- $f_{1}=\frac{1}{2}(\Delta L B+\Delta U B)=\frac{1}{2}(2+0)=1$
- Set x_{1} to false

Example

Clause	Weight
\bar{x}_{1}	2
$x_{1} \forall x_{2}$	1
$\bar{x}_{2} \vee x_{3}$	3

Step 2:

- $t_{2}=\frac{1}{2}(\triangle L B+\triangle U B)=\frac{1}{2}(1+0)=\frac{1}{2}$
- $f_{2}=\frac{1}{2}(\triangle L B+\Delta U B)=\frac{1}{2}(3+(-1))=1$
- Set x_{2} to true with probability $1 / 3$ and to false with probability $2 / 3$

Example

Clause	
\bar{x}_{1}	Weight
$x_{1} \vee x_{2}$	1
$\bar{x}_{2} \vee x_{3}$	3

Algorithm's solution:

$$
\begin{aligned}
& x_{1}=\text { false } \\
& x_{2}=\text { true w.p. } 1 / 3 \text { and false w.p. } 2 / 3 \\
& x_{3}=\text { true }
\end{aligned}
$$

Expected weight of satisfied clauses: $5 \frac{1}{3}$

Different Languages

- Bill, Baruch, and I would say:

Let G be a graph...

- Alan would say:

Let A be a matrix...

And we would be talking about the same thing!

Relating Algorithm to Optimum

Let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be an optimal truth assignment

Let $O P T_{i}=$ weight of clauses satisfied if setting x_{1}, \ldots, x_{i} as the algorithm does, and $x_{i+1}=$ $x_{i+1}^{*}, \ldots, x_{n}=x_{n}^{*}$

Key Lemma:

$$
E\left[B_{i}-B_{i-1}\right] \geq E\left[O P T_{i-1}-O P T_{i}\right]
$$

Key Lemma:

$$
E\left[B_{i}-B_{i-1}\right] \geq E\left[O P T_{i-1}-O P T_{i}\right]
$$

Key Lemma:
Conclusion: expected weight of ALG's solution is

$$
E\left[B_{n}\right] \geq B_{0}+\frac{1}{2}\left(O P T-B_{0}\right)=\frac{1}{2}\left(O P T+B_{0}\right) \geq \frac{3}{4} O P T
$$

Relating Algorithm to Optimum

Weight of

 undecided clauses satisfied by $x_{i}=$ If algorithm sets x_{i} to true,

- $B_{i}-B_{i-1}=t_{i}$
- $O P T_{i-1}-O P T_{i}=0$

If algorithm sets x_{i} to false,

- $B_{i}-B_{i-1}=f_{i}$
- $O P T_{i-1}-O P T_{i} \leq L B_{i}-L B_{i-1}+\left(U B_{i}-U B_{i-1}\right)$

$$
=2\left(B_{i}-B_{i-1}\right)=2 t_{i}
$$

Relating Algorithm to Optimum

Want to show:

Key Lemma:

$$
E\left[B_{i}-B_{i-1}\right] \geq E\left[O P T_{i-1}-O P T_{i}\right]
$$

Know:
If algorithm sets x_{i} to true,

- $B_{i}-B_{i-1}=t_{i}$
- $O P T_{i-1}-O P T_{i}=0$

If algorithm sets x_{i} to false,

- $B_{i}-B_{i-1}=f_{i}$
- $O P T_{i-1}-O P T_{i} \leq 2 t_{i}$

Case 1: $f_{i}<0$ (algorithm sets x_{i} to true):

$$
E\left[B_{i}-B_{i-1}\right]=t_{i}>0=E\left[O P T_{i-1}-O P T_{i}\right]
$$

Case 2: $t_{i}<0$ (algorithm sets x_{i} to false):

$$
E\left[B_{i}-B_{i-1}\right]=f_{i}>0>2 t_{i} \geq E\left[O P T_{i-1}-O P T_{i}\right]
$$

Relating Algorithm to Optimum

Want to show:

Key Lemma:

$$
E\left[B_{i}-B_{i-1}\right] \geq E\left[O P T_{i-1}-O P T_{i}\right]
$$

Know:
If algorithm sets x_{i} to true,

- $B_{i}-B_{i-1}=t_{i}$
- $O P T_{i-1}-O P T_{i}=0$

Case 3: $t_{i} \geq 0, f_{i} \geq 0$ (algorithm sets x_{i} to trun w.p. $t_{i} / t_{i}+f_{i}$): $E\left[B_{i}-B_{i-1}\right]=t_{i} \frac{t_{i}}{t_{i}+f_{i}}+f_{i} \frac{f_{i}}{t_{i}+f_{i}}=\frac{1}{t_{i}+f_{i}} t_{i_{i}^{2}+f_{i}^{2}}$ $E\left[O P T_{i-1}-O P T_{i}\right] \leq 0 \frac{t_{i}}{t_{i}+f_{i}}+2 t_{i} \frac{f_{i}}{t_{i}+f_{i}}=\frac{1}{t_{i}+f_{i}}\left(2 t_{i} f_{i}\right)$

Email

Hi David,

After seeing your email, the very next thing I did this morning was to read a paper I'd earmarked from the end of the day yesterday:

Walter Gander, Gene H. Golub, Urs von Matt
"A constrained eigenvalue problem"
Linear Algebra and its Applications, vol. 114-115, March-April 1989, Pages 815-839.
"Special Issue Dedicated to Alan J. Hoffman On The Occasion Of His 65th Birthday"

The table of contents of that special issue:
http://www.sciencedirect.com.proxy.library.cornell.edu/science/journal/00243795/114/supp/C

Citations for papers in this issue:

Johan Ugander

Question

Is there a simple combinatorial deterministic 3/4-approximation algorithm?

Deterministic variant??

Greedily maximizing B_{i} is not good enough:

Clause	
x_{1}	1
$\bar{x}_{1} \vee x_{2}$	$2+\varepsilon$
x_{2}	1
$\bar{x}_{2} \vee x_{3}$	$2+\varepsilon$
$\ldots .$.	
x_{n-1}	1
$\bar{x}_{n-1} \vee x_{n}$	$2+\varepsilon$

Optimal assignment sets all variables to true OPT $=(n-1)(3+\varepsilon)$

Greedily increasing B_{i} sets variables
x_{1}, \ldots, x_{n-1} to false GREEDY $=(n-1)(2+\varepsilon)$

A negative result

Poloczek '11: No deterministic "priority algorithm" can be a $3 / 4$-approximation algorithm, using scheme introduced by Borodin, Nielsen, and Rackoff '03.

- Algorithm makes one pass over the variables and sets them.
- Only looks at weights of clauses in which current variable appears positively and negatively (not at the other variables in such clauses).
- Restricted in information used to choose next variable to set.

But...

- It is possible...
- ... with a two-pass algorithm (Joint work with Ola Svensson).
- First pass: Set variables x_{i} fractionally (i.e. probability that x_{i} true), so that $E[W] \geq$ $\frac{3}{4} O P T$.
- Second pass: Use method of conditional expectations to get deterministic solution of value at least as much.

Buchbinder et al.'s approach

- Keep two bounds expected ractional solution
- Lower bound LB = weight of clauses already satisfied
- Upper bound UB = weight of clauses not yet unsatisfied
- Greedy can focus on two things:
- maximize LB,
- maximize UB,
but either choice has bad examp
- Key idea: make choices to increase $B=1 / 2(L B+U B)$

As before

Let t_{i} be (expected) increase in bound B_{i-1} if we set x_{i} true; f_{i} be (expected) increase in bound if we set x_{i} false.

Algorithm:

For $i \leftarrow 1$ to n

- if $t_{i}<0$, set x_{i} to 0
- if $f_{i}<0$, set x_{i} to 1
- else, set x_{i} to $\frac{t_{i}}{t_{i}+f_{i}}$

For $i \leftarrow 1$ to n
If $E\left[W \mid X_{i-1}, x_{i} \leftarrow\right.$ true $] \geq$
$E\left[W \mid X_{i-1}, x_{i} \leftarrow\right.$ false $]$, set x_{i} true

- Else set x_{i} false

Analysis

- Proof that after the first pass $E[W] \geq \frac{3}{4} O P T$ is identical to before.
- Proof that final solution output has value at least $E[W] \geq \frac{3}{4} O P T$ is via method of conditional expectation.

Conclusion

- We show this two-pass idea works for other problems as well (e.g. deterministic ½approximation algorithm for MAX DICUT).
- Can we characterize the problems for which it does work?

Thank you for your attention and Happy Birthday Alan!

