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The traveling salesman problem

Traveling Salesman Problem (TSP)
Input:

• A complete, undirected graph G = (V ,E );
• Edge costs c(i , j) ≥ 0 for all e = (i , j) ∈ E .

Goal: Find the min-cost tour that visits each city exactly once.

Costs are symmetric (c(i , j) = c(j , i)) and obey the triangle
inequality (c(i , k) ≤ c(i , j) + c(j , k)).

Asymmetric TSP (ATSP) input has complete directed graph, and
c(i , j) may not equal c(j , i).
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The traveling salesman problem

From Bill Cook, tour of 647 US colleges
(www.math.uwaterloo.ca/tsp/college)
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Approximation Algorithms

Definition
An α-approximation algorithm is a polynomial-time algorithm that
returns a solution of cost at most α times the cost of an optimal
solution.

Long known: A 3
2 -approximation algorithm due to Christofides

(1976). No better approximation algorithm yet known.
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Christofides’ algorithm

Compute minimum spanning tree (MST) F on G , then compute a
minimum-cost perfect matching M on odd-degree vertices of T .
“Shortcut” Eulerian traversal in resulting Eulerian graph of F ∪M.
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Special cases

Some progress in the case of graph TSP:
input is a graph G = (V ,E ), cost c(i , j) is number of edges in
shortest path from i to j .

Oveis Gharan, Saberi, Singh (2011) 3
2 − ε

Mömke, Svensson (2011) 1.462
Mucha (2012) 13

9 ≈ 1.444
Sebő, Vygen (2012) 7

5 = 1.4
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Special cases

Also progress on s-t path TSP:
Usual TSP input plus s, t ∈ V , find a min-cost path from s to t
visiting all other nodes in between.

Hoogeveen (1991) 5
3

An, Kleinberg, Shmoys (2012) 1+
√

5
2 ≈ 1.618

Sebő (2013) 8
5 = 1.6

Vygen (2015) 1.5999
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A central idea

Idea: run Christofides’, but start with tree determined by LP
relaxation of TSP (or s-t path TSP), the Subtour LP.

Min
∑
e∈E

cexe

subject to: x(δ(v)) = 2, ∀v ∈ V ,
x(δ(S)) ≥ 2, ∀S ⊂ V ,S 6= ∅,
0 ≤ xe ≤ 1, ∀e ∈ E ,

where δ(S) is the set of all edges with exactly one endpoint in S,
and x(F ) =

∑
e∈F xe .
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The Subtour LP

Min
∑
e∈E

cexe

subject to:
x(δ(v)) = 2, ∀v ∈ V ,
x(δ(S)) ≥ 2, ∀S ⊂ V ,S 6= ∅,
0 ≤ xe ≤ 1, ∀e ∈ E .

For x feasible for LP, n−1
n x in spanning tree polytope

{x ∈ <|E | : x(E ) = n − 1, x(E (S)) ≤ |S| − 1 ∀S ⊆ V , |S| ≥ 2},

where E (S) is the set of edges with both endpoints in S.
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Best-of-Many Christofides’

For Subtour LP soln. x∗, compute decomposition of n−1
n x∗ into

convex combination of spanning trees F1, . . . ,Fk , that

n − 1
n x∗ =

k∑
i=1

λiχFi ,

where λi ≥ 0,
∑k

i=1 λi = 1, and χF ∈ {0, 1}|E | the characteristic
vector of edges in F .
Then run Christofides’ algorithm on each Fi : find matching Mi ,
shortcut Fi ∪Mi . Return best tour found.
Originally proposed by Oveis Gharan, Saberi, Singh (2011), used in
An, Kleinberg, Shmoys (2012).
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An alternate perspective

An alternate perspective on Best-of-Many Christofides: for Subtour
LP soln. x∗, have an implicit convex combination F1, . . . ,Fk ,

n − 1
n x∗ =

k∑
i=1

λiχFi ,

and ability to sample a tree Fi with probability λi . Then run
Christofides’ algorithm on Fi , so that expected cost of tree is at
most LP solution, and

Pr[edge e in sampled tree] ≤ x∗e .

Advantage: Don’t need to explicitly construct the convex
combination.



David P. Williamson Experimental Evaluation of Best-of-Many Christofides’

The question

Best-of-Many Christofides’ (BoMC) is provably better than
Christofides’ for s-t path TSP. What about TSP?

Is BoMC empirically better than Christofides’?
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The algorithms

We implement algorithms to do the following:
• Run the standard Christofides’ algorithm (Christofides 1976);

• Construct explicit convex combination via column generation
(An 2012);

• Construct explicit convex combination via splitting off (Frank
2011, Nagamochi, Ibaraki 1997);

• Add sampling scheme SwapRound to both of above; gives
negative correlation properties (Chekuri, Vondrák, Zenklusen
2010);

• Compute and sample from maximum entropy distribution
(Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010).

Code available on github (pointer on the last slide).
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The instances

We run these algorithms on several types of instances:
• 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103
vertices;

• 5 non-Euclidean TSPLIB instances (gr120, si175, si535,
pa561, si1032);

• 39 Euclidean VLSI instances (Rohe) up to 3694 vertices;
• 9 graph TSP instances (Kunegis 2013) up to 1615 vertices.
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Executive summary

• Standard Christofides’ in general the worst; 9-10% away from
optimal (similar to results in Johnson and McGeoch 2002).
12% away on graph TSP instances (see also Walter and
Wegmann 2014).

• BoMC about 3-7% away from optimal on Euclidean instances,
2-3% away from optimal for non-Euclidean, < 1% for graph
TSP instances.

• Maximum entropy sampling the best, though splitting-off +
SwapRound also very good.
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Outline

1. Introduction
2. The algorithms
3. The instances
4. The results
5. Some conclusions
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Standard Christofides’

Use Prim’s algorithm to find MST; if Euclidean instance, first find
Delaunay triangulation using Triangle (Shewchuk 1996)
Compute matching via Blossom V code of Kolmogorov (2009).
Do simple optimization on shortcutting.
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Column generation

From An’s Ph.D. thesis. We compute the Subtour LP solution x∗
using Concorde (Applegate, Bixby, Chvátal, Cook). Then consider:

Min
∑
e∈E

se

subject to: ∑
T :e∈T

yT + se =
n − 1
n x∗e , ∀e ∈ E ,

yT ≥ 0, ∀T .
se ≥ 0, ∀e ∈ E .

Optimal solution is s = 0.
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Column generation

Dual is:

Max n − 1
n

∑
e∈E

x∗e ze

subject to: ∑
e∈T

ze ≤ 0, ∀T ,

ze ≤ 1, ∀e ∈ E .

Pricing problem is computing max-weight spanning tree on dual
solution ze .
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Column generation

Because convergence to optimal takes a long time, we stop early if
there isn’t progress in 100 iterations.

Early termination for TSPLIB D198
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Splitting off

Consider Eulerian multigraph represented by Kx∗ for some integer
K , graph will be 2K -edge-connected. Lovász (1976) shows that for
Eulerian multigraphs, vertex v , can split off edges from v : remove
edges (u, v), (v ,w), add edge (u,w) such that remaining vertices
are still 2K -edge-connected.

v

u w G − v

Nagamochi and Ibaraki (1997) show how to compute a complete
splitting off from v in O(nm + n2 log n) time.
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Splitting off

We split off all vertices except two, then inductively construct a
collection of trees by lifting back the split off edges.
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SwapRound

SwapRound (Chekuri, Vondrák, Zenklusen 2010) randomly samples
a spanning tree given an explicit convex combination of trees.
For any fixed set A of edges, the edges of the sampled tree
appearing in A are negatively correlated; if Xe is the event edge e
appears in the tree, then

E

 ∧
e∈A

Xe

 ≤ ∏
e∈A

Pr[Xe].

Negative correlation allows the proof of concentration of measure
results (used by Asadpour et al. for ATSP).
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SwapRound

SwapRound maintains a single tree (initially the first tree of the
combination), and iteratively calls MergeBasis on the current tree
and the next tree in the combination.
MergeBasis randomly swaps edges (base exchanges) between the
two trees until the two are identical.
We run 1000 samples per instance, using four threads.
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The maximum entropy distribution

Inf
∑

T∈T
p(T ) log p(T )

subject to: ∑
T :e∈T

p(T ) =
n − 1
n x∗e , ∀e ∈ E ,

∑
T∈T

p(T ) = 1

p(T ) ≥ 0, ∀T .

Asadpour et al. show that there exist γe such that the optimal
p(T ) ∼ exp (

∑
e∈T γe), and give an algorithm to approximately

calculate the γ. They also give a poly-time algorithm to sample a
tree T given the γ.
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The maximum entropy distribution

We implemented the algorithms of Asadpour et al. but also
algorithms in a code of Oveis Gharan. The latter were faster in
practice.

As with SwapRound, we compute 1000 samples for each instance
in parallel with four threads.
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The experiments

The algorithms were implemented in C++, run on a machine with
a 4.00Ghz Intel i7-875-K processor with 8GB DDR3 memory.

We run these algorithms on several types of instances:
• 59 Euclidean TSPLIB (Reinelt 1991) instances up to 2103
vertices (avg. 524);

• 5 non-Euclidean TSPLIB instances (gr120, si175, si535,
pa561, si1032);

• 39 Euclidean VLSI instances (Rohe) up to 3694 vertices (avg.
1473);

• 9 graph TSP instances (Kunegis 2013) up to 1615 vertices
(avg. 363).
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The results

Std ColGen ColGen+SR
Best Ave Best Ave

TSPLIB (E) 9.56% 4.03% 6.44% 3.45% 6.24%
VLSI 9.73% 7.00% 8.51% 6.40% 8.33%
TSPLIB (N) 5.40% 2.73% 4.41% 2.22% 4.08%
Graph 12.43% 0.57% 1.37% 0.39% 1.29%

MaxEnt Split Split+SR
Best Ave Best Ave Best Ave

TSPLIB (E) 3.19% 6.12% 5.23% 6.27% 3.60% 6.02%
VLSI 5.47% 7.61% 6.60% 7.64% 5.48% 7.52%
TSPLIB (N) 2.12% 3.99% 2.92% 3.77% 1.99% 3.82%
Graph 0.31% 1.23% 0.88% 1.77% 0.33% 1.20%

Costs given as percentages in excess of optimal.
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The results

Standard Christofides MST (Rohe VLSI instance XQF131)

Splitting off + SwapRound
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The results
BoMC yields more vertices in the tree of degree two.
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The results

So while the tree costs more (as percentage of optimal tour)...

Std BOM
TSPLIB (E) 87.47% 98.57%
VLSI 89.85% 98.84%
TSPLIB (N) 92.97% 99.36%
Graph 79.10% 98.23%
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The results

...the matching costs much less.

Std CG CG+SR MaxE Split Sp+SR
TSPLIB (E) 31.25% 11.43% 11.03% 10.75% 10.65% 10.41%
VLSI 29.98% 14.30% 14.11% 12.76% 12.78% 12.70%
TSPLIB (N) 24.15% 9.67% 9.36% 8.75% 8.77% 8.56%
Graph 39.31% 5.20% 4.84% 4.66% 4.34% 4.49%
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Conclusion

Q: Are there empirical reasons to think BoMC might be provably
better than Christofides’ algorithm?

A: Yes.

Maximum entropy sampling, or splitting off with SwapRound seem
like the best candidates.
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Conclusion
However, we have to be careful, as the following, very recent,
example of Schalekamp and van Zuylen shows.
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Conclusions

So it seems that randomization, or at least, careful construction of
the convex combination is needed.

Vygen (2015) also uses careful construction to improve s-t path
TSP from 1.6 to 1.5999.

If we want to use the best sample from Max Entropy or
SwapRound, then might need to prove some tail bounds.
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Thanks for your attention.

Paper available at
http://arxiv.org/abs/1506.07776.

Code available at
http://github.com/kylegenova/best-of-many.

Feedback? Contact me at
dpw@cs.cornell.edu.
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