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The k-median problem
I t A t f i t (P) i t i d i t• Input: A set of points (P) in a metric space and an integer 
k. Let |P| = n, cij be the distance from i to j.

• Output: A set S of k points to “open” minimizing the sumOutput: A set S of k points to open minimizing the sum 
of distances of each point to the nearest open point. 

k = 3

openopen



The k-median problem

• NP-hard, so work done on approximation algorithms
• An -approximation algorithm is a polynomial timeAn  approximation algorithm is a polynomial time 

algorithm for finding a solution S such that 

where OPTk is cost of optimal solution on k points.
Factor MethodFactor Method

Charikar, Guha, Shmoys, Tardos
(1999) 

6.66 LP rounding

Jain Vazirani (1999) 6 Primal dual algorithm with Lagrangean relaxationJain, Vazirani (1999) 6 Primal-dual algorithm with Lagrangean relaxation

Jain, Mahdian, Markakis, Saberi, 
Vazirani (2003)

4 Greedy algorithm with Lagrangean relaxation

Arya, Garg, Khandekar, 
Meyerson, Munagala, Pandit
(2001)

3 + ε Local search 



The incremental k-median problem

• Goal: find a sequence of all the points such that opening 
the first k in the sequence is a near-optimal solution tothe first k in the sequence is a near optimal solution to 
the k-median problem, for every k.



The incremental k-median problem
• Input:  Same as the k-median problem without the integer k
• Output:  An ordering of points i1,i2,…,in

• Competitive ratio = 

• Goal: Find an ordering with minimum competitive ratio.
Competitive ratio Note

Mettu and Plaxton (2003) 29.86 Complicated greedy algorithm

Chrobak Kenyon Noga Young 24 +  Uses k-median α-approx alg as a black boxChrobak, Kenyon, Noga, Young 
(2008)

Lin, Nagarajan, Rajaraman, W 
(2010)

24 +  Uses k-median α-approx alg as a black box 
(factor is 8α)

Lin, Nagarajan, Rajaraman, W 
(2010)

16 Uses Langrangean multiplier preserving facility 
location algorithm



Incremental k-median algorithm

• Use an -approximation algorithm for the k-median 
problem to get solutions for k = 1 to nproblem to get solutions for k  1 to n.

• Bucket these solutions according to their costs into 
buckets of form (2l,2l+1] for integer l.

• Pick the maximum cost solutions from each bucket to 
obtain S1,S2,…,Sr.  

S1 S2
SrSr-1Cost decreases

2l2l+1

1 2 r 1Cost decreases    



Algorithm (cont’d)

• Recursively combine these solutions using a nesting routine
S1 S2

SrSr-1

• Recursively combine these solutions using a nesting routine

Vr = Srr Sr

Nr-1
N2

N1 Nr-2

• Obtain an ordering maintaining this nesting

N1 N2 N3 N3 Nr



Hierarchical clustering
• Hierarchical clustering:

– Collection of k-clusterings for all values of k
(k 1) clustering is formed by merging two clusters in k clustering– (k-1)-clustering is formed by merging two clusters in k-clustering.



Hierarchical clustering with cluster centers

• Hierarchical clustering with a center for each cluster in 
the clusteringthe clustering

• Merged clusters center should be one of the two original
centers



Hierarchical median problem

• Output: Hierarchical clustering with cluster centers.
• Clustering cost = sum of the distances of points to their• Clustering cost = sum of the distances of points to their 

cluster center. 
• Competitive ratio =p

• Objective: Minimize the competitive ratio.
Competitive 

ratio
Note

Plaxton (2006) 238.9 Uses incremental k-median β-competitive alg
as a black box (factor is 8β)

Lin, Nagarajan,
Rajaraman, W (2010)

62.13 Uses k-median α-approx alg as a black box 
(factor is 20.71α)

Lin, Nagarajan,
Rajaraman, W (2010)

48 Uses Langrangean multiplier preserving 
facility location algorithm



Experimental Results
• Comparisons

– k-median algorithms
I t l k di l ith– Incremental k-median algorithms

– Hierarchical k-median algorithms

• The k-median datasets
– OR library datasets (40) [Beasley 1985]
– Galvao datasets (2) [Galvao and ReVelle 1996] 

Alb t d t t [Al E k t D 2003]– Alberta dataset [Alp, Erkut, Drezner 2003]

• We compare the quality of solutions and the running times of these 
algorithms on the datasetsg



The k-median algorithms

• We compare the following k-median algorithms on the datasets
– CPLEX LP optimump
– CPLEX IP optimum
– Single swap local search algorithm (=5)

• Arya, Garg,  Khandekar, Meyerson, Munagala, Pandit [2004] 
– Greedy facility location algorithm (=2)

• Jain, Mahdian, Markakis, Saberi, Vazirani [2003]
– LP rounding algorithm (=8)

• Charikar, Guha, Tardos, Shmoys [1999]



Quality of the k-median solutionsQ y



Quality of k-median solutions



Running times of k-median algorithms



Incremental k-median algorithms

• We compare the following incremental k-median algorithms
– Our incremental k-median algorithmg

• using Arya et al.’s local search k-median solutions 
– 5-approximation algorithm → Competitive ratio = 40

• using Jain et al.’s greedy facility location algorithm 
2 i ti l ith C titi ti 16– 2-approximation algorithm → Competitive ratio = 16

• using Charikar et al.’s LP rounding solutions 
– 8-approximation algorithm → Competitive ration = 64

– Mettu and Plaxton’s incremental k-median algorithm (Competitive Ratio 
= 29.86)



Quality of incremental k-median solutions



Quality of incremental k-median solutions



Running times of Incremental k-median algorithms



Hierarchical k-median algorithms

• We compare the following hierarchical k-median algorithms
– Our hierarchical k-median algorithm

using Arya et al ’s local search k median solutions• using Arya et al. s local search k-median solutions
• using Jain et al.’s bounded envelope
• using Charikar et al.’s LP rounding solutions

Pla ton’s hierarchical k median algorithm– Plaxton’s hierarchical k-median algorithm
• using Mettu and Plaxton’s incremental k-median solutions
• using our incremental k-median solutions obtained by using Arya et al.’s  k-

median solutions



Quality of hierarchical k-median solutions



Quality of hierarchical k-median solutions



Summary of experimental results

• Charikar et al.’s LP rounding k-median algorithm works faster

• Arya et al.’s local search k-median algorithm gives better solutions

• Our incremental algorithms better in terms of quality than Mettu and 
Plaxton’s algorithmPlaxton s algorithm

• Our hierarchical algorithms are better in terms of quality than Plaxton’s 
algorithm, even when Plaxton is given our incremental solutions

• However the running times of our incremental algorithms are much worse
than Mettu and Plaxton’s algorithm

• Main takeaway: despite the strong constraints of coming up with 
incremental and hierarchical solutions, these algorithms deliver quite good 
solutions in practice.



Open questions

• Implementations are slowed because we need calculate 
approximate k-medians for all values of k but we reallyapproximate k medians for all values of k, but we really 
only need the solution of at most cost 2l for all values of l.
– Can this be computed faster than by doing binary search?

O b th i iti ld fi d l ti b k t?– Or maybe another primitive could find a solution per bucket?

• How do these algorithms compare with standard 
hierarchical clustering algorithms that have no provable g g p
competitive ratio?



Thanks Any questions?Thanks.  Any questions?


