
Tight Bounds for Online Tree Augmentation

David P. Williamson
Cornell University

davidpwilliamson@cornell.edu

Joint work with Joseph (Seffi) Naor (Technion)
and Seeun William Umboh (University of Sydney)

Paper to appear in ICALP 2019

June 3, 2019

Tight Bounds for Online TAP David P. Williamson

Survivable Network Design Problem

Given an undirected network
G = (V, E), costs ce ≥ 0 for
e ∈ E, source-sink pairs
s1-t1,. . ., sk-tk, and
requirements r1, . . . , rk, find
minimum-cost edges F ⊆ E
such that at least ri

edge-disjoint paths between si

and ti for i = 1, . . . , k.

NP-hard even if ri = 1, and
si = r for all i (Karp ’72):
Steiner tree problem

Tight Bounds for Online TAP David P. Williamson

Survivable Network Design Problem

Given an undirected network
G = (V, E), costs ce ≥ 0 for
e ∈ E, source-sink pairs
s1-t1,. . ., sk-tk, and
requirements r1, . . . , rk, find
minimum-cost edges F ⊆ E
such that at least ri

edge-disjoint paths between si

and ti for i = 1, . . . , k.

NP-hard even if ri = 1, and
si = r for all i (Karp ’72):
Steiner tree problem

Tight Bounds for Online TAP David P. Williamson

Online Problems

If network requirements arrive over time, consider an online
version of the problem. As each requirement arrives, must
augment network to satisfy that requirement without knowledge
of future requirements.

Quality of algorithm determined by its competitive ratio:
worst-case ratio over all inputs of cost of algorithm’s solution to
the minimum-cost solution for all requirements in the input.

Tight Bounds for Online TAP David P. Williamson

Online Problems

If network requirements arrive over time, consider an online
version of the problem. As each requirement arrives, must
augment network to satisfy that requirement without knowledge
of future requirements.

Quality of algorithm determined by its competitive ratio:
worst-case ratio over all inputs of cost of algorithm’s solution to
the minimum-cost solution for all requirements in the input.

Tight Bounds for Online TAP David P. Williamson

Online Steiner Tree
An early case: Imase and Waxman (1991) give an
O(log k)-competitive algorithm for the online Steiner tree
problem, which ri = 1 and si = r for all i. They also show that
any algorithm must have competitive ratio at least Ω(log k).

Greedy algorithm: When next ti arrives, buy a path to closest
tj for j < i or to root r.

r

t1

t2
t3

4.7

2.1

2.3

Tight Bounds for Online TAP David P. Williamson

Online Steiner Tree
An early case: Imase and Waxman (1991) give an
O(log k)-competitive algorithm for the online Steiner tree
problem, which ri = 1 and si = r for all i. They also show that
any algorithm must have competitive ratio at least Ω(log k).

Greedy algorithm: When next ti arrives, buy a path to closest
tj for j < i or to root r.

r

t1

t2
t3

4.7

2.1

2.3

Tight Bounds for Online TAP David P. Williamson

Online Steiner Tree
An early case: Imase and Waxman (1991) give an
O(log k)-competitive algorithm for the online Steiner tree
problem, which ri = 1 and si = r for all i. They also show that
any algorithm must have competitive ratio at least Ω(log k).

Greedy algorithm: When next ti arrives, buy a path to closest
tj for j < i or to root r.

r

t1

t2
t3

4.7

2.1

2.3

Tight Bounds for Online TAP David P. Williamson

Online Steiner Tree
An early case: Imase and Waxman (1991) give an
O(log k)-competitive algorithm for the online Steiner tree
problem, which ri = 1 and si = r for all i. They also show that
any algorithm must have competitive ratio at least Ω(log k).

Greedy algorithm: When next ti arrives, buy a path to closest
tj for j < i or to root r.

r

t1

t2

t3

4.7

2.1

2.3

Tight Bounds for Online TAP David P. Williamson

Online Steiner Tree
An early case: Imase and Waxman (1991) give an
O(log k)-competitive algorithm for the online Steiner tree
problem, which ri = 1 and si = r for all i. They also show that
any algorithm must have competitive ratio at least Ω(log k).

Greedy algorithm: When next ti arrives, buy a path to closest
tj for j < i or to root r.

r

t1

t2
t3

4.7

2.1

2.3

Tight Bounds for Online TAP David P. Williamson

A Quick Analysis

Let ci be cost algorithm pays to connect ti when it arrives. Let
Zj be set of indices i with ci ∈ [2j , 2j+1).

Algorithm’s cost is then∑
j

∑
i∈Zj

cj ≤
∑

j

2j+1|Zj |.

Tight Bounds for Online TAP David P. Williamson

A Quick Analysis
Lemma
For any j, OPT ≥ 2j−1|Zj |.

Proof.
Cost of path between any pair of vertices in Zj is at least 2j .
Put disjoint balls of radius 2j−1 around each point in Zj .

r

t1

t2
t3

Tight Bounds for Online TAP David P. Williamson

A Quick Analysis
Lemma
For any j, OPT ≥ 2j−1|Zj |.

Proof.
Cost of path between any pair of vertices in Zj is at least 2j .
Put disjoint balls of radius 2j−1 around each point in Zj .

r

t1

t2
t3

Tight Bounds for Online TAP David P. Williamson

A Quick Analysis
Lemma
For any j, OPT ≥ 2j−1|Zj |.

Proof.
Cost of path between any pair of vertices in Zj is at least 2j .
Put disjoint balls of radius 2j−1 around each point in Zj .

r

t1

t2
t3

Tight Bounds for Online TAP David P. Williamson

A Quick Analysis

Algorithm’s cost at most
∑

j 2j+1|Zj |, OPT ≥ 2j−1|Zj | for all j.

If ` highest index such that Z` 6= ∅, then:

2`+1|Z`| ≤ 4 ·OPT
2`|Z`−1| ≤ 4 ·OPT

...
2`−dlog2 ke+1|Z`−dlog2 ke| ≤ 4 ·OPT∑

j<`−dlog2 ke
2j+1|Zj | ≤

2`

k

∑
j

|Zj | ≤ 2` ≤ 2 ·OPT

Summing the inequalities together, we get that the algorithm’s
cost is at most O(log k)OPT.

Tight Bounds for Online TAP David P. Williamson

A Quick Analysis

Algorithm’s cost at most
∑

j 2j+1|Zj |, OPT ≥ 2j−1|Zj | for all j.

If ` highest index such that Z` 6= ∅, then:

2`+1|Z`| ≤ 4 ·OPT
2`|Z`−1| ≤ 4 ·OPT

...
2`−dlog2 ke+1|Z`−dlog2 ke| ≤ 4 ·OPT∑

j<`−dlog2 ke
2j+1|Zj | ≤

2`

k

∑
j

|Zj | ≤ 2` ≤ 2 ·OPT

Summing the inequalities together, we get that the algorithm’s
cost is at most O(log k)OPT.

Tight Bounds for Online TAP David P. Williamson

A Quick Analysis

Algorithm’s cost at most
∑

j 2j+1|Zj |, OPT ≥ 2j−1|Zj | for all j.

If ` highest index such that Z` 6= ∅, then:

2`+1|Z`| ≤ 4 ·OPT
2`|Z`−1| ≤ 4 ·OPT

...
2`−dlog2 ke+1|Z`−dlog2 ke| ≤ 4 ·OPT∑

j<`−dlog2 ke
2j+1|Zj | ≤

2`

k

∑
j

|Zj | ≤ 2` ≤ 2 ·OPT

Summing the inequalities together, we get that the algorithm’s
cost is at most O(log k)OPT.

Tight Bounds for Online TAP David P. Williamson

Higher Connectivities

O(log k)-competitive algorithm known for ri = 1, arbitrary si-ti

pairs (Berman, Coulston 1997), other types of connectivity
(Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi,
Liaghat, Panigrahi 2013).

For online survivable network design, Gupta, Krishnaswamy,
and Ravi (2012) show a randomized O(rmax log3 n)-competitive
algorithm, where n = |V | in input graph, rmax = maxi ri.

Question
Can we do better? Better competitive ratio? Deterministic
algorithm?

Tight Bounds for Online TAP David P. Williamson

Higher Connectivities

O(log k)-competitive algorithm known for ri = 1, arbitrary si-ti

pairs (Berman, Coulston 1997), other types of connectivity
(Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi,
Liaghat, Panigrahi 2013).

For online survivable network design, Gupta, Krishnaswamy,
and Ravi (2012) show a randomized O(rmax log3 n)-competitive
algorithm, where n = |V | in input graph, rmax = maxi ri.

Question
Can we do better? Better competitive ratio? Deterministic
algorithm?

Tight Bounds for Online TAP David P. Williamson

Higher Connectivities

O(log k)-competitive algorithm known for ri = 1, arbitrary si-ti

pairs (Berman, Coulston 1997), other types of connectivity
(Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi,
Liaghat, Panigrahi 2013).

For online survivable network design, Gupta, Krishnaswamy,
and Ravi (2012) show a randomized O(rmax log3 n)-competitive
algorithm, where n = |V | in input graph, rmax = maxi ri.

Question
Can we do better? Better competitive ratio? Deterministic
algorithm?

Tight Bounds for Online TAP David P. Williamson

Tree Augmentation Problem
The minimal, interesting variant of online survivable network
design for which we do not have an O(log n)-competitive
algorithm: online tree augmentation.

Given a spanning tree T on a node set V , and a set L ⊆
(V

2
)
of

links, cost c(`) for link ` ∈ L. Requests (si, ti) arrive over time;
find minimum-cost F ⊆ L such that for each i, there are at least
two edge-disjoint paths between si and ti in T ∪ F for all i.

Tight Bounds for Online TAP David P. Williamson

Tree Augmentation Problem
The minimal, interesting variant of online survivable network
design for which we do not have an O(log n)-competitive
algorithm: online tree augmentation.
Given a spanning tree T on a node set V , and a set L ⊆

(V
2
)
of

links, cost c(`) for link ` ∈ L. Requests (si, ti) arrive over time;
find minimum-cost F ⊆ L such that for each i, there are at least
two edge-disjoint paths between si and ti in T ∪ F for all i.

Tight Bounds for Online TAP David P. Williamson

Tree Augmentation Problem
The minimal, interesting variant of online survivable network
design for which we do not have an O(log n)-competitive
algorithm: online tree augmentation.
Given a spanning tree T on a node set V , and a set L ⊆

(V
2
)
of

links, cost c(`) for link ` ∈ L. Requests (si, ti) arrive over time;
find minimum-cost F ⊆ L such that for each i, there are at least
two edge-disjoint paths between si and ti in T ∪ F for all i.

Tight Bounds for Online TAP David P. Williamson

Tree Augmentation Problem
The minimal, interesting variant of online survivable network
design for which we do not have an O(log n)-competitive
algorithm: online tree augmentation.
Given a spanning tree T on a node set V , and a set L ⊆

(V
2
)
of

links, cost c(`) for link ` ∈ L. Requests (si, ti) arrive over time;
find minimum-cost F ⊆ L such that for each i, there are at least
two edge-disjoint paths between si and ti in T ∪ F for all i.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Lower Bound
Gupta, Krishnaswamy, and Ravi show an Ω(log n) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have si = r.

r

Optimal only buys last link, algorithm must buy log2 n− 1 links.

Tight Bounds for Online TAP David P. Williamson

Our Result

Theorem (Naor, Umboh, W 2019)
There is a deterministic O(log n)-competitive algorithm for the
online tree augmentation problem.

Main ingredients:

1. An algorithm for paths
2. Decomposition of trees into paths
3. A refined path algorithm

Tight Bounds for Online TAP David P. Williamson

Our Result

Theorem (Naor, Umboh, W 2019)
There is a deterministic O(log n)-competitive algorithm for the
online tree augmentation problem.

Main ingredients:

1. An algorithm for paths
2. Decomposition of trees into paths
3. A refined path algorithm

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Suppose tree T is a path P , all requests are rooted: (r, ti).
Assume WLOG:

• no nonrooted links exist;

• link costs are 2j ;
• at most one link of cost 2j .

r
c

c′

c + c′

2j

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Suppose tree T is a path P , all requests are rooted: (r, ti).
Assume WLOG:

• no nonrooted links exist;
• link costs are 2j ;

• at most one link of cost 2j .

r

c
c′

c + c′

2j

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Suppose tree T is a path P , all requests are rooted: (r, ti).
Assume WLOG:

• no nonrooted links exist;
• link costs are 2j ;
• at most one link of cost 2j .

r

c
c′

c + c′

2j

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Algorithm: Given request (r, ti) not already covered, buy
cheapest link (r, v) that covers request.

r

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Algorithm: Given request (r, ti) not already covered, buy
cheapest link (r, v) that covers request.

r

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Algorithm: Given request (r, ti) not already covered, buy
cheapest link (r, v) that covers request.

r

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Algorithm: Given request (r, ti) not already covered, buy
cheapest link (r, v) that covers request.

r

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Algorithm: Given request (r, ti) not already covered, buy
cheapest link (r, v) that covers request.

r

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Algorithm: Given request (r, ti) not already covered, buy
cheapest link (r, v) that covers request.

r

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
Theorem
The algorithm is O(1)-competitive.

Proof.
Factor of 2 for rounding link costs up to nearest power of 2.

Algorithm buys at most one link of cost 2j for each j. Consider
request (r, ti) such that cheapest link that covers request is 2`

for ` maximum. Then
OPT ≥ 2`,

while algorithm pays at most

2` + 2`−1 + 2`−2 + · · · = 2`+1 ≤ 2 ·OPT.

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
What about non-rooted requests? Assume:

• All link costs 2j ;
• Requests are only of edges (u, v) ∈ P ;
• At most two links of cost 2j contain any edge (u, v) ∈ P ;
• Any link `′ containing a link ` has strictly greater cost.
• Any link of cost 2j contains at most 2k disjoint links of cost

2j−k.

r u v

`

`′

2j−1 2j−1

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
What about non-rooted requests? Assume:

• All link costs 2j ;

• Requests are only of edges (u, v) ∈ P ;
• At most two links of cost 2j contain any edge (u, v) ∈ P ;
• Any link `′ containing a link ` has strictly greater cost.
• Any link of cost 2j contains at most 2k disjoint links of cost

2j−k.

r u v

`

`′

2j−1 2j−1

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
What about non-rooted requests? Assume:

• All link costs 2j ;
• Requests are only of edges (u, v) ∈ P ;

• At most two links of cost 2j contain any edge (u, v) ∈ P ;
• Any link `′ containing a link ` has strictly greater cost.
• Any link of cost 2j contains at most 2k disjoint links of cost

2j−k.

r u v

`

`′

2j−1 2j−1

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
What about non-rooted requests? Assume:

• All link costs 2j ;
• Requests are only of edges (u, v) ∈ P ;
• At most two links of cost 2j contain any edge (u, v) ∈ P ;

• Any link `′ containing a link ` has strictly greater cost.
• Any link of cost 2j contains at most 2k disjoint links of cost

2j−k.

r u v

`

`′

2j−1 2j−1

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
What about non-rooted requests? Assume:

• All link costs 2j ;
• Requests are only of edges (u, v) ∈ P ;
• At most two links of cost 2j contain any edge (u, v) ∈ P ;
• Any link `′ containing a link ` has strictly greater cost.

• Any link of cost 2j contains at most 2k disjoint links of cost
2j−k.

r u v

`

`′

2j−1 2j−1

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
What about non-rooted requests? Assume:

• All link costs 2j ;
• Requests are only of edges (u, v) ∈ P ;
• At most two links of cost 2j contain any edge (u, v) ∈ P ;
• Any link `′ containing a link ` has strictly greater cost.
• Any link of cost 2j contains at most 2k disjoint links of cost

2j−k.

r u v

`

`′

2j−1 2j−1

2j

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
Algorithm: If request (u, v) ∈ P not covered, buy (two)
cheapest link(s) covering (u, v).
Let Zj be the set of links of cost 2j bought by algorithm, so
that algorithm’s cost is ∑

j

2j |Zj |.

Claim

OPT ≥ 1
2 · 2

j · |Zj |.

Theorem
The algorithm is O(log n)-competitive.

Proof.
Essentially the same as for online Steiner tree.

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
Algorithm: If request (u, v) ∈ P not covered, buy (two)
cheapest link(s) covering (u, v).
Let Zj be the set of links of cost 2j bought by algorithm, so
that algorithm’s cost is ∑

j

2j |Zj |.

Claim

OPT ≥ 1
2 · 2

j · |Zj |.

Theorem
The algorithm is O(log n)-competitive.

Proof.
Essentially the same as for online Steiner tree.

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
Algorithm: If request (u, v) ∈ P not covered, buy (two)
cheapest link(s) covering (u, v).
Let Zj be the set of links of cost 2j bought by algorithm, so
that algorithm’s cost is ∑

j

2j |Zj |.

Claim

OPT ≥ 1
2 · 2

j · |Zj |.

Theorem
The algorithm is O(log n)-competitive.

Proof.
Essentially the same as for online Steiner tree.

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths
Algorithm: If request (u, v) ∈ P not covered, buy (two)
cheapest link(s) covering (u, v).
Let Zj be the set of links of cost 2j bought by algorithm, so
that algorithm’s cost is ∑

j

2j |Zj |.

Claim

OPT ≥ 1
2 · 2

j · |Zj |.

Theorem
The algorithm is O(log n)-competitive.

Proof.
Essentially the same as for online Steiner tree.

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Can get O(log n)-competitive algorithm using
primal-dual/dual-fitting arguments.

Theorem (Naor, Umboh, W 2019)
Any deterministic algorithm for the online path augmentation
problem has competitive ratio Ω(log n).

Improves on a result of Meyerson (2005) of Ω(log n/ log log n).

Tight Bounds for Online TAP David P. Williamson

Ingredient 1: An Algorithm for Paths

Can get O(log n)-competitive algorithm using
primal-dual/dual-fitting arguments.

Theorem (Naor, Umboh, W 2019)
Any deterministic algorithm for the online path augmentation
problem has competitive ratio Ω(log n).

Improves on a result of Meyerson (2005) of Ω(log n/ log log n).

Tight Bounds for Online TAP David P. Williamson

Ingredient 2: Tree Decomposition
Theorem (Sleator, Tarjan (1983))
Any rooted tree T can be decomposed into disjoint paths P such
that each path in P is rooted (has an LCA closest to root), any
path in T intersects at most O(log n) paths in P.

Tight Bounds for Online TAP David P. Williamson

Ingredient 2: Tree Decomposition
Theorem (Sleator, Tarjan (1983))
Any rooted tree T can be decomposed into disjoint paths P such
that each path in P is rooted (has an LCA closest to root), any
path in T intersects at most O(log n) paths in P.

Tight Bounds for Online TAP David P. Williamson

Ingredient 2: Tree Decomposition
Theorem (Sleator, Tarjan (1983))
Any rooted tree T can be decomposed into disjoint paths P such
that each path in P is rooted (has an LCA closest to root), any
path in T intersects at most O(log n) paths in P.

r r

r

r r

r

r r

Tight Bounds for Online TAP David P. Williamson

Ingredient 2: Tree Decomposition
Let P be a decomposition of tree T into rooted paths.

Definition
The projection of a link (u, v) on to a rooted path P ∈ P is the
link whose endpoints are the endpoints of P ∩ T (u, v), where
T (u, v) is the u-v path in T .

r r

r

r

u

r

v

r

r r

Tight Bounds for Online TAP David P. Williamson

Ingredient 2: Tree Decomposition
Let P be a decomposition of tree T into rooted paths.

Definition
The projection of a link (u, v) on to a rooted path P ∈ P is the
link whose endpoints are the endpoints of P ∩ T (u, v), where
T (u, v) is the u-v path in T .

r r

r

r

u

r

v

r

r r

Tight Bounds for Online TAP David P. Williamson

Ingredient 2: Tree Decomposition
Let P be a decomposition of tree T into rooted paths.

Definition
The projection of a link (u, v) on to a rooted path P ∈ P is the
link whose endpoints are the endpoints of P ∩ T (u, v), where
T (u, v) is the u-v path in T .

r r

r

r

u

r

v

r

r r

Tight Bounds for Online TAP David P. Williamson

Algorithm Idea
Assume WLOG each request (si, ti) is an edge of the tree.

Idea:

• When request (si, ti) ∈ T arrives, run an online algorithm
for path P ∈ P such that (si, ti) ∈ P .
• Consider projections of all links ` on to P , and buy ` if

online algorithm buys the projected link.

Decomposition tells us each link projects onto O(log n) paths
P ∈ P.

Together with our O(log n)-competitive online path
augmentation algorithm, this gives an O(log2 n)-competitive
algorithm for online tree augmentation.

How can we do better?

Tight Bounds for Online TAP David P. Williamson

Algorithm Idea
Assume WLOG each request (si, ti) is an edge of the tree.

Idea:

• When request (si, ti) ∈ T arrives, run an online algorithm
for path P ∈ P such that (si, ti) ∈ P .

• Consider projections of all links ` on to P , and buy ` if
online algorithm buys the projected link.

Decomposition tells us each link projects onto O(log n) paths
P ∈ P.

Together with our O(log n)-competitive online path
augmentation algorithm, this gives an O(log2 n)-competitive
algorithm for online tree augmentation.

How can we do better?

Tight Bounds for Online TAP David P. Williamson

Algorithm Idea
Assume WLOG each request (si, ti) is an edge of the tree.

Idea:

• When request (si, ti) ∈ T arrives, run an online algorithm
for path P ∈ P such that (si, ti) ∈ P .
• Consider projections of all links ` on to P , and buy ` if

online algorithm buys the projected link.

Decomposition tells us each link projects onto O(log n) paths
P ∈ P.

Together with our O(log n)-competitive online path
augmentation algorithm, this gives an O(log2 n)-competitive
algorithm for online tree augmentation.

How can we do better?

Tight Bounds for Online TAP David P. Williamson

Algorithm Idea
Assume WLOG each request (si, ti) is an edge of the tree.

Idea:

• When request (si, ti) ∈ T arrives, run an online algorithm
for path P ∈ P such that (si, ti) ∈ P .
• Consider projections of all links ` on to P , and buy ` if

online algorithm buys the projected link.

Decomposition tells us each link projects onto O(log n) paths
P ∈ P.

Together with our O(log n)-competitive online path
augmentation algorithm, this gives an O(log2 n)-competitive
algorithm for online tree augmentation.

How can we do better?

Tight Bounds for Online TAP David P. Williamson

Algorithm Idea
Assume WLOG each request (si, ti) is an edge of the tree.

Idea:

• When request (si, ti) ∈ T arrives, run an online algorithm
for path P ∈ P such that (si, ti) ∈ P .
• Consider projections of all links ` on to P , and buy ` if

online algorithm buys the projected link.

Decomposition tells us each link projects onto O(log n) paths
P ∈ P.

Together with our O(log n)-competitive online path
augmentation algorithm, this gives an O(log2 n)-competitive
algorithm for online tree augmentation.

How can we do better?

Tight Bounds for Online TAP David P. Williamson

Ingredient 2: Tree Decomposition
Definition
A projection of a link (u, v) on to a rooted path P is rooted if
one endpoint of the projection is the root of the path P .

Lemma
For any given link (u, v), its projection on to all but one path
P ∈ P is rooted.

r r

r

r

u

r

v

r

r r

Tight Bounds for Online TAP David P. Williamson

Ingredient 3: Refined Path Algorithm

Definition
An online algorithm for path augmentation is nice if for any
feasible solution F ∗ it produces a solution of cost at most

O(1)c(R∗) + O(log n)c(S∗),

where R∗ are the rooted links in F ∗ and S∗ are the non-rooted
links in F ∗.

Theorem
Given a deterministic nice algorithm for online path
augmentation, we get a deterministic O(log n)-competitive
algorithm for online tree augmentation.

Tight Bounds for Online TAP David P. Williamson

Ingredient 3: Refined Path Algorithm

Definition
An online algorithm for path augmentation is nice if for any
feasible solution F ∗ it produces a solution of cost at most

O(1)c(R∗) + O(log n)c(S∗),

where R∗ are the rooted links in F ∗ and S∗ are the non-rooted
links in F ∗.

Theorem
Given a deterministic nice algorithm for online path
augmentation, we get a deterministic O(log n)-competitive
algorithm for online tree augmentation.

Tight Bounds for Online TAP David P. Williamson

Proof Sketch

Theorem
Given a deterministic nice algorithm for online path
augmentation, we get a deterministic O(log n)-competitive
algorithm for online tree augmentation.

Proof.
For feasible solution F ∗ for the tree augmentation problem, let
R∗P be links of F ∗ whose projections on to P ∈ P are rooted,
S∗P be links of F ∗ that have projections on to P are non-rooted.
Then cost of algorithm’s solution is at most∑

P∈P
(O(1)c(R∗P) + O(log n)c(S∗P)) ≤ O(log n)c(F ∗).

Tight Bounds for Online TAP David P. Williamson

The Rest

Some amount of work needed to get all of the ideas to work
together.

Tight Bounds for Online TAP David P. Williamson

Open Questions

Recall that Gupta, Krishnaswamy, Ravi (2012) give a
O(rmax log3 n)-competitive algorithm for online survivable
network design.

• Is the linear dependence on rmax necessary?
• Are the polylogs necessary?
• Is there an O(log n)-competitive algorithm in the case

rmax = 2?

Tight Bounds for Online TAP David P. Williamson

Open Questions

Recall that Gupta, Krishnaswamy, Ravi (2012) give a
O(rmax log3 n)-competitive algorithm for online survivable
network design.

• Is the linear dependence on rmax necessary?

• Are the polylogs necessary?
• Is there an O(log n)-competitive algorithm in the case

rmax = 2?

Tight Bounds for Online TAP David P. Williamson

Open Questions

Recall that Gupta, Krishnaswamy, Ravi (2012) give a
O(rmax log3 n)-competitive algorithm for online survivable
network design.

• Is the linear dependence on rmax necessary?
• Are the polylogs necessary?

• Is there an O(log n)-competitive algorithm in the case
rmax = 2?

Tight Bounds for Online TAP David P. Williamson

Open Questions

Recall that Gupta, Krishnaswamy, Ravi (2012) give a
O(rmax log3 n)-competitive algorithm for online survivable
network design.

• Is the linear dependence on rmax necessary?
• Are the polylogs necessary?
• Is there an O(log n)-competitive algorithm in the case

rmax = 2?

Tight Bounds for Online TAP David P. Williamson

Other Work

I also spent the semester finishing a book,
to be published by Cambridge this fall.

Online PDF available at
www.networkflowalgs.com/book.pdf.

Cover image courtesy of © RedChopsticks/Getty Images

Cover design by

Network Flow
Algorithms

W
illiam

son
N

etw
ork Flow

 A
lgorithm

s

Network flow theory has been used across a number of disciplines, including
theoretical computer science, OR, and discrete math, to model not only
problems in the transportation of goods and information but also a wide range of
applications from image segmentation problems in computer vision to deciding
when a baseball team has been eliminated from contention.

This graduate text and reference presents a succinct, unified view of a wide
variety of efficient combinatorial algorithms for network flow problems, including
many results not found in other books. It covers maximum flows, minimum-
cost flows, generalized flows, multicommodity flows, and global minimum cuts
and also presents recent work on computing electrical flows along with recent
applications of these flows to classical problems in network flow theory.

David P. Williamson is a professor at Cornell University in the School of
Operations Research and Information Engineering. He has won several
awards for his work in discrete optimization, including the 2000 Fulkerson
Prize, sponsored by the American Mathematical Society and the Mathematical
Programming Society. His previous book, The Design of Approximation
Algorithms, coauthored with David B. Shmoys, won the 2013 INFORMS
Lanchester Prize. He has served on several editor boards, and was editor-in-chief
of the SIAM Journal on Discrete Mathematics. He is a Fellow of the ACM and of
SIAM.

David P. Williamson

Tight Bounds for Online TAP David P. Williamson

Thanks for your attention.

	Network Design

