

Tight Bounds for Online Tree Augmentation

David P. Williamson Cornell University davidpwilliamson@cornell.edu

Joint work with Joseph (Seffi) Naor (Technion) and Seeun William Umboh (University of Sydney)

Paper to appear in ICALP 2019

June 3, 2019

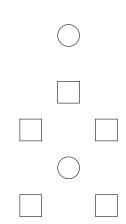
END

E

Survivable Network Design Problem

Given an undirected network G = (V, E), costs $c_e \ge 0$ for $e \in E$, source-sink pairs s_1 - t_1 ,..., s_k - t_k , and requirements r_1 ,..., r_k , find minimum-cost edges $F \subseteq E$ such that at least r_i edge-disjoint paths between s_i and t_i for i = 1, ..., k.

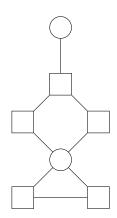
NP-hard even if $r_i = 1$, and $s_i = r$ for all *i* (Karp '72): Steiner tree problem



Survivable Network Design Problem

Given an undirected network G = (V, E), costs $c_e \ge 0$ for $e \in E$, source-sink pairs s_1 - t_1 ,..., s_k - t_k , and requirements r_1 ,..., r_k , find minimum-cost edges $F \subseteq E$ such that at least r_i edge-disjoint paths between s_i and t_i for i = 1, ..., k.

NP-hard even if $r_i = 1$, and $s_i = r$ for all *i* (Karp '72): Steiner tree problem



Online Problems

If network requirements arrive over time, consider an *online* version of the problem. As each requirement arrives, must augment network to satisfy that requirement without knowledge of future requirements.

Online Problems

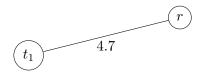
If network requirements arrive over time, consider an *online* version of the problem. As each requirement arrives, must augment network to satisfy that requirement without knowledge of future requirements.

Quality of algorithm determined by its *competitive ratio*: worst-case ratio over all inputs of cost of algorithm's solution to the minimum-cost solution for all requirements in the input.

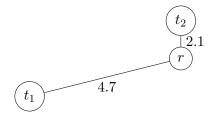
An early case: Imase and Waxman (1991) give an $O(\log k)$ -competitive algorithm for the online Steiner tree problem, which $r_i = 1$ and $s_i = r$ for all *i*. They also show that any algorithm must have competitive ratio at least $\Omega(\log k)$.

An early case: Imase and Waxman (1991) give an $O(\log k)$ -competitive algorithm for the online Steiner tree problem, which $r_i = 1$ and $s_i = r$ for all *i*. They also show that any algorithm must have competitive ratio at least $\Omega(\log k)$.

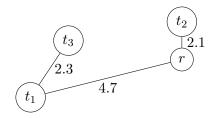
An early case: Imase and Waxman (1991) give an $O(\log k)$ -competitive algorithm for the online Steiner tree problem, which $r_i = 1$ and $s_i = r$ for all *i*. They also show that any algorithm must have competitive ratio at least $\Omega(\log k)$.



An early case: Imase and Waxman (1991) give an $O(\log k)$ -competitive algorithm for the online Steiner tree problem, which $r_i = 1$ and $s_i = r$ for all *i*. They also show that any algorithm must have competitive ratio at least $\Omega(\log k)$.



An early case: Imase and Waxman (1991) give an $O(\log k)$ -competitive algorithm for the online Steiner tree problem, which $r_i = 1$ and $s_i = r$ for all *i*. They also show that any algorithm must have competitive ratio at least $\Omega(\log k)$.



Let c_i be cost algorithm pays to connect t_i when it arrives. Let Z_j be set of indices i with $c_i \in [2^j, 2^{j+1})$.

Algorithm's cost is then

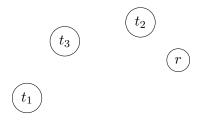
$$\sum_{j} \sum_{i \in Z_j} c_j \le \sum_{j} 2^{j+1} |Z_j|.$$

Lemma

For any j, $OPT \ge 2^{j-1}|Z_j|$.

Proof.

Cost of path between any pair of vertices in Z_j is at least 2^j . Put disjoint balls of radius 2^{j-1} around each point in Z_j . \Box

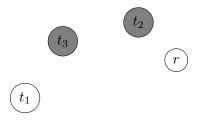


Lemma

For any j, $OPT \ge 2^{j-1}|Z_j|$.

Proof.

Cost of path between any pair of vertices in Z_j is at least 2^j . Put disjoint balls of radius 2^{j-1} around each point in Z_j . \Box

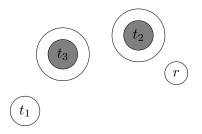


Lemma

For any j, $OPT \ge 2^{j-1}|Z_j|$.

Proof.

Cost of path between any pair of vertices in Z_j is at least 2^j . Put disjoint balls of radius 2^{j-1} around each point in Z_j . \Box



Algorithm's cost at most $\sum_{j} 2^{j+1} |Z_j|$, OPT $\geq 2^{j-1} |Z_j|$ for all j.

Algorithm's cost at most $\sum_{j} 2^{j+1} |Z_j|$, OPT $\geq 2^{j-1} |Z_j|$ for all j.

If ℓ highest index such that $Z_{\ell} \neq \emptyset$, then:

 $2^{\ell+1} |Z_{\ell}| \le 4 \cdot \text{OPT}$ $2^{\ell} |Z_{\ell-1}| \le 4 \cdot \text{OPT}$

÷

$$2^{\ell - \lceil \log_2 k \rceil + 1} |Z_{\ell - \lceil \log_2 k \rceil}| \le 4 \cdot \text{OPT}$$
$$\sum_{j < \ell - \lceil \log_2 k \rceil} 2^{j+1} |Z_j| \le \frac{2^{\ell}}{k} \sum_j |Z_j| \le 2^{\ell} \le 2 \cdot \text{OPT}$$

Algorithm's cost at most $\sum_{j} 2^{j+1} |Z_j|$, OPT $\geq 2^{j-1} |Z_j|$ for all j.

If ℓ highest index such that $Z_{\ell} \neq \emptyset$, then:

 $2^{\ell+1} |Z_{\ell}| \le 4 \cdot \text{OPT}$ $2^{\ell} |Z_{\ell-1}| \le 4 \cdot \text{OPT}$

÷

$$2^{\ell - \lceil \log_2 k \rceil + 1} |Z_{\ell - \lceil \log_2 k \rceil}| \le 4 \cdot \text{OPT}$$
$$\sum_{j < \ell - \lceil \log_2 k \rceil} 2^{j+1} |Z_j| \le \frac{2^{\ell}}{k} \sum_j |Z_j| \le 2^{\ell} \le 2 \cdot \text{OPT}$$

Summing the inequalities together, we get that the algorithm's cost is at most $O(\log k)$ OPT.

Higher Connectivities

 $O(\log k)$ -competitive algorithm known for $r_i = 1$, arbitrary s_i - t_i pairs (Berman, Coulston 1997), other types of connectivity (Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi, Liaghat, Panigrahi 2013).

Higher Connectivities

 $O(\log k)$ -competitive algorithm known for $r_i = 1$, arbitrary s_i - t_i pairs (Berman, Coulston 1997), other types of connectivity (Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi, Liaghat, Panigrahi 2013).

For online survivable network design, Gupta, Krishnaswamy, and Ravi (2012) show a randomized $O(r_{\max} \log^3 n)$ -competitive algorithm, where n = |V| in input graph, $r_{\max} = \max_i r_i$.

Higher Connectivities

 $O(\log k)$ -competitive algorithm known for $r_i = 1$, arbitrary s_i - t_i pairs (Berman, Coulston 1997), other types of connectivity (Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi, Liaghat, Panigrahi 2013).

For online survivable network design, Gupta, Krishnaswamy, and Ravi (2012) show a randomized $O(r_{\max} \log^3 n)$ -competitive algorithm, where n = |V| in input graph, $r_{\max} = \max_i r_i$.

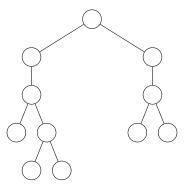
Question

Can we do better? Better competitive ratio? Deterministic algorithm?

The minimal, interesting variant of online survivable network design for which we do not have an $O(\log n)$ -competitive algorithm: online tree augmentation.

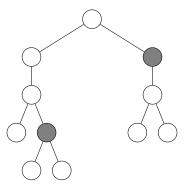
The minimal, interesting variant of online survivable network design for which we do not have an $O(\log n)$ -competitive algorithm: online tree augmentation.

Given a spanning tree T on a node set V, and a set $L \subseteq \binom{V}{2}$ of links, cost $c(\ell)$ for link $\ell \in L$. Requests (s_i, t_i) arrive over time; find minimum-cost $F \subseteq L$ such that for each i, there are at least two edge-disjoint paths between s_i and t_i in $T \cup F$ for all i.



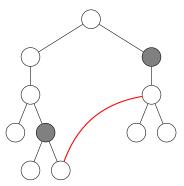
The minimal, interesting variant of online survivable network design for which we do not have an $O(\log n)$ -competitive algorithm: online tree augmentation.

Given a spanning tree T on a node set V, and a set $L \subseteq \binom{V}{2}$ of links, cost $c(\ell)$ for link $\ell \in L$. Requests (s_i, t_i) arrive over time; find minimum-cost $F \subseteq L$ such that for each i, there are at least two edge-disjoint paths between s_i and t_i in $T \cup F$ for all i.



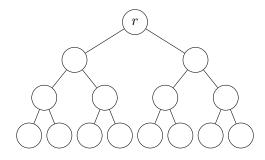
The minimal, interesting variant of online survivable network design for which we do not have an $O(\log n)$ -competitive algorithm: online tree augmentation.

Given a spanning tree T on a node set V, and a set $L \subseteq \binom{V}{2}$ of links, cost $c(\ell)$ for link $\ell \in L$. Requests (s_i, t_i) arrive over time; find minimum-cost $F \subseteq L$ such that for each i, there are at least two edge-disjoint paths between s_i and t_i in $T \cup F$ for all i.

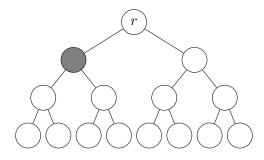


Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.

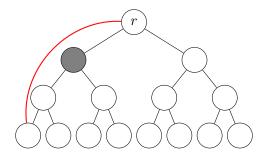
Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.



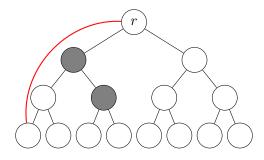
Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.



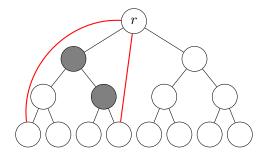
Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.



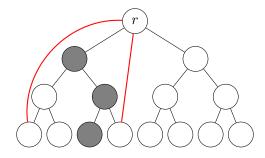
Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.



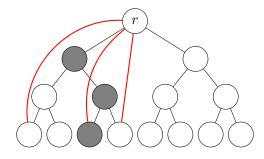
Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.



Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.

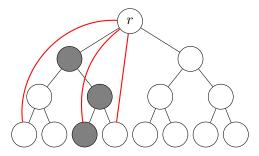


Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.



Gupta, Krishnaswamy, and Ravi show an $\Omega(\log n)$ lower bound on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root, all requests have $s_i = r$.



Optimal only buys last link, algorithm must buy $\log_2 n - 1$ links.

Our Result

Theorem (Naor, Umboh, W 2019)

There is a deterministic $O(\log n)$ -competitive algorithm for the online tree augmentation problem.

Our Result

Theorem (Naor, Umboh, W 2019)

There is a deterministic $O(\log n)$ -competitive algorithm for the online tree augmentation problem.

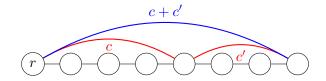
Main ingredients:

- **1.** An algorithm for paths
- 2. Decomposition of trees into paths
- 3. A refined path algorithm

Ingredient 1: An Algorithm for Paths

Suppose tree T is a path P, all requests are rooted: (r, t_i) . Assume WLOG:

• no nonrooted links exist;

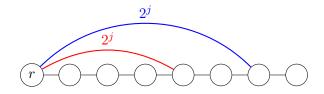


Suppose tree T is a path P, all requests are rooted: (r, t_i) . Assume WLOG:

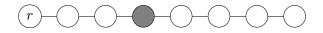
- no nonrooted links exist;
- link costs are 2^j ;

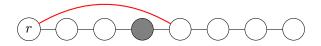
Suppose tree T is a path P, all requests are rooted: (r, t_i) . Assume WLOG:

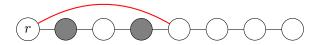
- no nonrooted links exist;
- link costs are 2^j ;
- at most one link of cost 2^j .

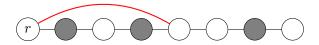


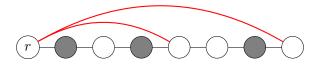












Theorem

The algorithm is O(1)-competitive.

Proof.

Factor of 2 for rounding link costs up to nearest power of 2.

Algorithm buys at most one link of cost 2^j for each j. Consider request (r, t_i) such that cheapest link that covers request is 2^ℓ for ℓ maximum. Then

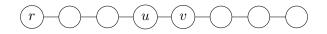
$$OPT \ge 2^{\ell},$$

while algorithm pays at most

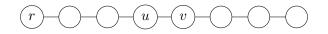
$$2^{\ell} + 2^{\ell-1} + 2^{\ell-2} + \dots = 2^{\ell+1} \le 2 \cdot \text{OPT}.$$

What about non-rooted requests? Assume:

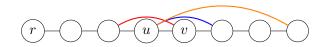
• All link costs 2^j ;



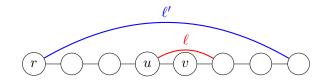
- All link costs 2^j ;
- Requests are only of edges $(u, v) \in P$;



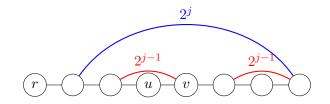
- All link costs 2^j ;
- Requests are only of edges $(u, v) \in P$;
- At most two links of cost 2^j contain any edge $(u, v) \in P$;



- All link costs 2^j ;
- Requests are only of edges $(u, v) \in P$;
- At most two links of cost 2^j contain any edge $(u, v) \in P$;
- Any link ℓ' containing a link ℓ has strictly greater cost.



- All link costs 2^j ;
- Requests are only of edges $(u, v) \in P$;
- At most two links of cost 2^j contain any edge $(u, v) \in P$;
- Any link ℓ' containing a link ℓ has strictly greater cost.
- Any link of cost 2^j contains at most 2^k disjoint links of cost 2^{j-k} .



Algorithm: If request $(u, v) \in P$ not covered, buy (two) cheapest link(s) covering (u, v).

Let Z_j be the set of links of cost 2^j bought by algorithm, so that algorithm's cost is

$$\sum_{j} 2^{j} |Z_j|.$$

Algorithm: If request $(u, v) \in P$ not covered, buy (two) cheapest link(s) covering (u, v).

Let Z_j be the set of links of cost 2^j bought by algorithm, so that algorithm's cost is

$$\sum_{j} 2^{j} |Z_j|.$$

Claim

$$OPT \ge \frac{1}{2} \cdot 2^j \cdot |Z_j|.$$

Algorithm: If request $(u, v) \in P$ not covered, buy (two) cheapest link(s) covering (u, v).

Let Z_j be the set of links of cost 2^j bought by algorithm, so that algorithm's cost is

$$\sum_{j} 2^{j} |Z_j|.$$

Claim

$$OPT \ge \frac{1}{2} \cdot 2^j \cdot |Z_j|.$$

Theorem

The algorithm is $O(\log n)$ -competitive.

Algorithm: If request $(u, v) \in P$ not covered, buy (two) cheapest link(s) covering (u, v).

Let Z_j be the set of links of cost 2^j bought by algorithm, so that algorithm's cost is

$$\sum_{j} 2^{j} |Z_j|.$$

Claim

$$OPT \ge \frac{1}{2} \cdot 2^j \cdot |Z_j|.$$

Theorem

The algorithm is $O(\log n)$ -competitive.

Proof.

Essentially the same as for online Steiner tree. \Box

Can get $O(\log n)$ -competitive algorithm using primal-dual/dual-fitting arguments.

Can get $O(\log n)$ -competitive algorithm using primal-dual/dual-fitting arguments.

Theorem (Naor, Umboh, W 2019)

Any deterministic algorithm for the online path augmentation problem has competitive ratio $\Omega(\log n)$.

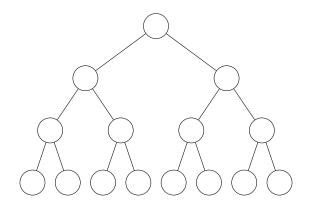
Improves on a result of Meyerson (2005) of $\Omega(\log n / \log \log n)$.

Theorem (Sleator, Tarjan (1983))

Any rooted tree T can be decomposed into disjoint paths \mathcal{P} such that each path in \mathcal{P} is rooted (has an LCA closest to root), any path in T intersects at most $O(\log n)$ paths in \mathcal{P} .

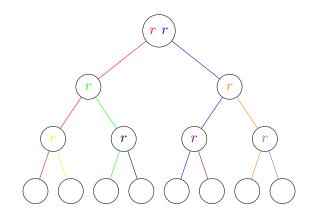
Theorem (Sleator, Tarjan (1983))

Any rooted tree T can be decomposed into disjoint paths \mathcal{P} such that each path in \mathcal{P} is rooted (has an LCA closest to root), any path in T intersects at most $O(\log n)$ paths in \mathcal{P} .



Theorem (Sleator, Tarjan (1983))

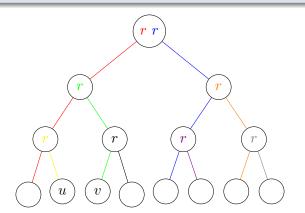
Any rooted tree T can be decomposed into disjoint paths \mathcal{P} such that each path in \mathcal{P} is rooted (has an LCA closest to root), any path in T intersects at most $O(\log n)$ paths in \mathcal{P} .



Let \mathcal{P} be a decomposition of tree T into rooted paths.

Definition

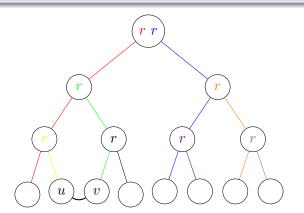
The projection of a link (u, v) on to a rooted path $P \in \mathcal{P}$ is the link whose endpoints are the endpoints of $P \cap T(u, v)$, where T(u, v) is the u-v path in T.



Let \mathcal{P} be a decomposition of tree T into rooted paths.

Definition

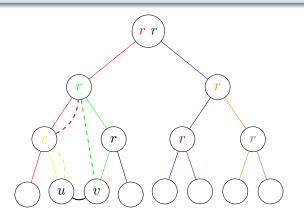
The projection of a link (u, v) on to a rooted path $P \in \mathcal{P}$ is the link whose endpoints are the endpoints of $P \cap T(u, v)$, where T(u, v) is the u-v path in T.



Let \mathcal{P} be a decomposition of tree T into rooted paths.

Definition

The projection of a link (u, v) on to a rooted path $P \in \mathcal{P}$ is the link whose endpoints are the endpoints of $P \cap T(u, v)$, where T(u, v) is the u-v path in T.



Assume WLOG each request (s_i, t_i) is an edge of the tree.

Assume WLOG each request (s_i, t_i) is an edge of the tree.

Idea:

• When request $(s_i, t_i) \in T$ arrives, run an online algorithm for path $P \in \mathcal{P}$ such that $(s_i, t_i) \in P$.

Assume WLOG each request (s_i, t_i) is an edge of the tree.

Idea:

- When request $(s_i, t_i) \in T$ arrives, run an online algorithm for path $P \in \mathcal{P}$ such that $(s_i, t_i) \in P$.
- Consider projections of all links ℓ on to P, and buy ℓ if online algorithm buys the projected link.

Assume WLOG each request (s_i, t_i) is an edge of the tree.

Idea:

- When request $(s_i, t_i) \in T$ arrives, run an online algorithm for path $P \in \mathcal{P}$ such that $(s_i, t_i) \in P$.
- Consider projections of all links ℓ on to P, and buy ℓ if online algorithm buys the projected link.

Decomposition tells us each link projects onto $O(\log n)$ paths $P \in \mathcal{P}$.

Together with our $O(\log n)$ -competitive online path augmentation algorithm, this gives an $O(\log^2 n)$ -competitive algorithm for online tree augmentation.

Assume WLOG each request (s_i, t_i) is an edge of the tree.

Idea:

- When request $(s_i, t_i) \in T$ arrives, run an online algorithm for path $P \in \mathcal{P}$ such that $(s_i, t_i) \in P$.
- Consider projections of all links ℓ on to P, and buy ℓ if online algorithm buys the projected link.

Decomposition tells us each link projects onto $O(\log n)$ paths $P \in \mathcal{P}$.

Together with our $O(\log n)$ -competitive online path augmentation algorithm, this gives an $O(\log^2 n)$ -competitive algorithm for online tree augmentation.

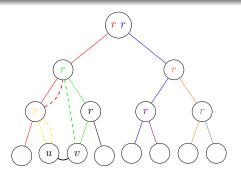
How can we do better?

Definition

A projection of a link (u, v) on to a rooted path P is *rooted* if one endpoint of the projection is the root of the path P.

Lemma

For any given link (u, v), its projection on to all but one path $P \in \mathcal{P}$ is rooted.



Ingredient 3: Refined Path Algorithm

Definition

An online algorithm for path augmentation is *nice* if for any feasible solution F^* it produces a solution of cost at most

$$O(1)c(R^*) + O(\log n)c(S^*),$$

where R^* are the rooted links in F^* and S^* are the non-rooted links in F^* .

Ingredient 3: Refined Path Algorithm

Definition

An online algorithm for path augmentation is *nice* if for any feasible solution F^* it produces a solution of cost at most

$$O(1)c(R^*) + O(\log n)c(S^*),$$

where R^* are the rooted links in F^* and S^* are the non-rooted links in F^* .

Theorem

Given a deterministic nice algorithm for online path augmentation, we get a deterministic $O(\log n)$ -competitive algorithm for online tree augmentation.

Proof Sketch

Theorem

Given a deterministic nice algorithm for online path augmentation, we get a deterministic $O(\log n)$ -competitive algorithm for online tree augmentation.

Proof.

For feasible solution F^* for the tree augmentation problem, let R_P^* be links of F^* whose projections on to $P \in \mathcal{P}$ are rooted, S_P^* be links of F^* that have projections on to P are non-rooted. Then cost of algorithm's solution is at most

$$\sum_{P \in \mathcal{P}} \left(O(1)c(R_P^*) + O(\log n)c(S_P^*) \right) \le O(\log n)c(F^*).$$

The Rest

Some amount of work needed to get all of the ideas to work together.

Recall that Gupta, Krishnaswamy, Ravi (2012) give a $O(r_{\max}\log^3 n)\text{-competitive algorithm for online survivable network design.$

Recall that Gupta, Krishnaswamy, Ravi (2012) give a $O(r_{\max}\log^3 n)\text{-competitive algorithm for online survivable network design.$

• Is the linear dependence on r_{max} necessary?

Recall that Gupta, Krishnaswamy, Ravi (2012) give a $O(r_{\max}\log^3 n)\text{-competitive algorithm for online survivable network design.$

- Is the linear dependence on r_{max} necessary?
- Are the polylogs necessary?

Recall that Gupta, Krishnaswamy, Ravi (2012) give a $O(r_{\max}\log^3 n)\text{-competitive algorithm for online survivable network design.$

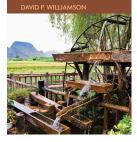
- Is the linear dependence on r_{max} necessary?
- Are the polylogs necessary?
- Is there an $O(\log n)$ -competitive algorithm in the case $r_{\max} = 2$?

Other Work

I also spent the semester finishing a book, to be published by Cambridge this fall.

Online PDF available at www.networkflowalgs.com/book.pdf.

Network Flow Algorithms



Thanks for your attention.