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Given an undirected network

G = (V,E), costs ¢, > 0 for

e € F, source-sink pairs

Sl—tl,. “ ey Sk—tk, and

requirements r1, ..., 7, find

minimum-cost edges FF C F

such that at least r;

edge-disjoint paths between s; D
and t; fori=1,...,k.

NP-hard even if r; = 1, and
si = r for all i (Karp '72): D
Steiner tree problem
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If network requirements arrive over time, consider an online
version of the problem. As each requirement arrives, must
augment network to satisfy that requirement without knowledge
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Online Problems

If network requirements arrive over time, consider an online
version of the problem. As each requirement arrives, must
augment network to satisfy that requirement without knowledge
of future requirements.

Quality of algorithm determined by its competitive ratio:
worst-case ratio over all inputs of cost of algorithm’s solution to
the minimum-cost solution for all requirements in the input.
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Online Steiner Tree

An early case: Imase and Waxman (1991) give an

O(log k)-competitive algorithm for the online Steiner tree
problem, which r; = 1 and s; = r for all i. They also show that
any algorithm must have competitive ratio at least (log k).
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A Quick Analysis

Let ¢; be cost algorithm pays to connect ¢; when it arrives. Let
Z; be set of indices i with ¢; € [27,271).

Algorithm’s cost is then

Z Z c; <ZQJ+1|Z |.

J i€Z;
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A Quick Analysis

For any j, OPT > 2371 Z;).

Cost of path between any pair of vertices in Z; is at least 27,
Put disjoint balls of radius 2/~! around each point in Z;. O
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A Quick Analysis

Algorithm’s cost at most 3~ 2911 Z;|, OPT > 2771\ Z,] for all j.
If ¢ highest index such that Z, # ), then:

2t 7z, <4-0OPT
2|1 Zy_1| < 4-OPT

2€—|'10g2 k-|+1|Z£—|']Og2 k]’ S 4 OPT
. ot
> 2tz < zZ|Zj| <2°<2.0PT
j

j<t—[logy k]

Summing the inequalities together, we get that the algorithm’s
cost is at most O(log k)OPT.
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Higher Connectivities

O(log k)-competitive algorithm known for r; = 1, arbitrary s;-¢;
pairs (Berman, Coulston 1997), other types of connectivity
(Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi,
Liaghat, Panigrahi 2013).
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Higher Connectivities

O(log k)-competitive algorithm known for r; = 1, arbitrary s;-¢;
pairs (Berman, Coulston 1997), other types of connectivity
(Qian, Umboh, W 2018), node-weighted problems (Hajiaghayi,
Liaghat, Panigrahi 2013).

For online survivable network design, Gupta, Krishnaswamy,
and Ravi (2012) show a randomized O(ryax log® n)-competitive
algorithm, where n = |V in input graph, rmax = max; ;.

Can we do better? Better competitive ratio? Deterministic
algorithm?
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Lower Bound

Gupta, Krishnaswamy, and Ravi show an (logn) lower bound
on the competitive ratio.

Complete binary tree, links of cost 1 from each leaf to the root,
all requests have s; = 7.

Optimal only buys last link, algorithm must buy log, n — 1 links.
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Our Result

There is a deterministic O(logn)-competitive algorithm for the
online tree augmentation problem.
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Our Result

There is a deterministic O(logn)-competitive algorithm for the
online tree augmentation problem.

Main ingredients:

1. An algorithm for paths
2. Decomposition of trees into paths
3. A refined path algorithm
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Suppose tree T is a path P, all requests are rooted: (r,t;).
Assume WLOG:

® no nonrooted links exist;
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Ingredient 1: An Algorithm for Paths

Suppose tree T is a path P, all requests are rooted: (r,t;).
Assume WLOG:

® no nonrooted links exist;
e link costs are 27;

e at most one link of cost 27.
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Ingredient 1: An Algorithm for Paths

Algorithm: Given request (r,t;) not already covered, buy
cheapest link (7, v) that covers request.
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Ingredient 1: An Algorithm for Paths

The algorithm is O(1)-competitive. I

Factor of 2 for rounding link costs up to nearest power of 2.

Algorithm buys at most one link of cost 2/ for each j. Consider
request (r,t;) such that cheapest link that covers request is pe
for £ maximum. Then

OPT > 2¢,

while algorithm pays at most

of L ot=1 4 ot=2 ... _ ot+tl < 9. OPT.
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Ingredient 1: An Algorithm for Paths

What about non-rooted requests? Assume:

e All link costs 27;
® Requests are only of edges (u,v) € P;

® At most two links of cost 2/ contain any edge (u,v) € P;
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Ingredient 1: An Algorithm for Paths

What about non-rooted requests? Assume:

e All link costs 27;
Requests are only of edges (u,v) € P;

At most two links of cost 2/ contain any edge (u,v) € P;

Any link ¢ containing a link ¢ has strictly greater cost.

Any link of cost 27 contains at most 2% disjoint links of cost
20—k,
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Ingredient 1: An Algorithm for Paths

Algorithm: If request (u,v) € P not covered, buy (two)
cheapest link(s) covering (u,v).
Let Z; be the set of links of cost 2/ bought by algorithm, so
that algorithm’s cost is

> 2|z

J
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Ingredient 1: An Algorithm for Paths

Algorithm: If request (u,v) € P not covered, buy (two)
cheapest link(s) covering (u,v).

Let Z; be the set of links of cost 2/ bought by algorithm, so
that algorithm’s cost is

> 27|z,
J

The algorithm is O(logn)-competitive.

Essentially the same as for online Steiner tree. O I
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Ingredient 1: An Algorithm for Paths

Can get O(logn)-competitive algorithm using
primal-dual/dual-fitting arguments.

Any deterministic algorithm for the online path augmentation
problem has competitive ratio Q(logn).

Improves on a result of Meyerson (2005) of 2(logn/loglogn).
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Ingredient 2: Tree Decomposition

Any rooted tree T' can be decomposed into disjoint paths P such
that each path in P is rooted (has an LCA closest to root), any
path in T intersects at most O(logn) paths in P.
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Ingredient 2: Tree Decomposition

Let P be a decomposition of tree T into rooted paths.

The projection of a link (u,v) on to a rooted path P € P is the
link whose endpoints are the endpoints of P NT'(u,v), where
T(u,v) is the u-v path in T.
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Algorithm Idea

Assume WLOG each request (s;,t;) is an edge of the tree.

Idea:

® When request (s;,t;) € T arrives, run an online algorithm
for path P € P such that (s;,t;) € P.

® Consider projections of all links ¢ on to P, and buy /¢ if
online algorithm buys the projected link.

Decomposition tells us each link projects onto O(logn) paths
PeP.

Together with our O(logn)-competitive online path
augmentation algorithm, this gives an O(log? n)-competitive
algorithm for online tree augmentation.

How can we do better?
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Ingredient 2: Tree Decomposition

A projection of a link (u,v) on to a rooted path P is rooted if
one endpoint of the projection is the root of the path P.

For any given link (u,v), its projection on to all but one path
P € P is rooted.
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Ingredient 3: Refined Path Algorithm

An online algorithm for path augmentation is nice if for any
feasible solution F™* it produces a solution of cost at most

O(1)e(R*) 4+ O(logn)e(S™),

where R* are the rooted links in F* and S* are the non-rooted
links in F™.
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Ingredient 3: Refined Path Algorithm

An online algorithm for path augmentation is nice if for any
feasible solution F™* it produces a solution of cost at most

O(1)e(R*) 4+ O(logn)e(S™),

where R* are the rooted links in F* and S* are the non-rooted
links in F™.

Given a deterministic nice algorithm for online path
augmentation, we get a deterministic O(logn)-competitive
algorithm for online tree augmentation.
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Proof Sketch
‘Theorem

Given a deterministic nice algorithm for online path
augmentation, we get a deterministic O(logn)-competitive
algorithm for online tree augmentation.

For feasible solution F* for the tree augmentation problem, let
R% be links of F* whose projections on to P € P are rooted,
Sp be links of F™* that have projections on to P are non-rooted.
Then cost of algorithm’s solution is at most

> (0O(M)e(Rp) + O(logn)e(Sp)) < O(logn)e(F™).
PcP
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The Rest

Some amount of work needed to get all of the ideas to work
together.
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Open Questions

Recall that Gupta, Krishnaswamy, Ravi (2012) give a
O (rmax log® n)-competitive algorithm for online survivable
network design.

® [s the linear dependence on rpy,x necessary?
® Are the polylogs necessary?

¢ Is there an O(logn)-competitive algorithm in the case
Tmax = 27
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Other Work
Network Flow
Algorithms
I also spent the semester finishing a book, SR iAvESN

to be published by Cambridge this fall.

Online PDF available at
www.networkflowalgs.com/book.pdf .
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Thanks for your attention.
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