What Computers Can = David P. Williamson
Compute (Approximately) o ooty

Outline

e The 1930s-40s: What can computers compute?

e The 1960s-70s: What can computers compute efficiently?

e The 1990s-: What can computers compute efficiently approximately?

e Two examples of approximation algorithms

e \When is it hard to compute efficiently approximately?

e Some concluding thoughts

Some terminology (Imprecise)

e “Problem”

¢ Traditional mathematics usage: e.g. Fermat’s Last Problem

e Computational usage: Find an algorithm (computer program) such that
given any valid input, the desired output is produced.

e A decision problem: The output is one of “Yes” or “No”.

Input 1 Algorithm > Output

The 1930s-40s: Can
computers solve any problem?

e No.

e Alan Turing (1936): Cannot solve
the Halting Problem (a decision
problem):

e Given a computer program P,
and an input x for that
program, output “Yes” if the
program ever terminates on the
given input, “No” otherwise.

>j Halt —— Yes/No

The proof

By contradiction. Suppose such a program,
Halt(P,x), exists, that determines if program P
halts on input Xx. Then consider the following
program MyHalt(P)

MyHalt(P)
If Halt(P,P)
then loop forever
Else
S’[Op Programs
Let P4, Po, ... be a list of all programs that take
a single input, and consider whether program P
halts when given P; as input (H = halts, N =
doesn’t halt).
MyHalt

Which program is MyHalt?

Inputs

P4

Po

P4

Ps

Z| | L || Z2[Z2|L
Z | |L|L|Z2|L|Z
LT || Z2|Z2|Z2]|L
T ||| Z2|Z2|Z2]|L
Z | | L L1 Z2[L(Z

Discrete Optimization
Problems

e Appears in many places: scheduling
jobs on computers, locating
facilities, building networks, stocking
iInventory,...

e Famous example: the traveling
salesman problem (TSP).

e Given n cities and the distances
between each pair of cities, find
the shortest tour that visits each
city once and returns to the
starting point.

e Decision version of TSP: Additional
input of a number C, “Is the length of
the shortest tour at most C?”

The Obvious Finite Algorithm

e Consider all n! possible orderings of the cities and compute the length of the
tour for that ordering. Keep track of the shortest one found.

e Problem: n! grows pretty quickly with n. 120! is about 6 x 1098, 1 tour/ns still
is about 10782 years.

“Good” algorithms

Edmonds (1965):

One can find many classes of problems, besides maximum matching and its
generalizations, which have algorithms of exponential order but seemingl_\'J
none better. An example known to organic chemists is that of deciding whether
two given graphs are isomorphic. For practical purposes the difference between
algebraic and exponential order is often more crucial than the difference
between finite and non-finite. \

It w0 -ld ha wafortpnate for anv rigmd ecriterion #n * "0 '~ sl 4

= B
Edmonds (1967):

" We say an algofitiuﬁ is good if there is a polynomial _
function f(n) which, for every positive-integer valued |
n. is an upper bound on the “amount of work™ the §

algorithm does for any input of “size”” n. The concept ¢
S - ~s Ag I --v.a];..(. ___rela';vp cay 'n ~ 'l"« * 'ﬂﬂ'\:r‘ﬂ]

iraveling saleman problem |cf. 4]. [conjecture that
there is no good algorithm for the traveling saleman
problem. My reasons are the same as for any mathe-
matical conjecture: (1) It is a legitimate mathematical
possibility, and (2) 1 do not know. ¢

A ~-d oloarithm g known for fipdine - ~»v aranh

¥

P vs, NP

e Today: polynomial-time algorithms are considered the theoretical measure of
a good, efficient algorithm.

e P is the class of all decision problems solvable by a polynomial-time
algorithm.

e NP is (roughly) the set of all decision problems for which we can “check” in
polynomial time whether the answer is “Yes” (or “No”) if someone gives us a
“proof”.

e (Cook, Levin 1971, Karp 1972) Given a polynomial-time algorithm for the
decision version of the TSP, we can get a polynomial-time algorithm for any

problem in NP
P = NP?

A 1956 letter from Kurt Godel to John von Neumann

Ihr Zustand sich bald noch weiter bessert u. dass die neuesten Errun-
genschaften der Medizin, wenn moglich, zu einer vollstindigen Heilung
liberty to write to vou about a mathematical problem; your view on it
(" would be of great interest to me: Obviously, it is easy to construct a Tur- N
ing machine that allows us to decide, for each formula F of the restricted
functional calculus® and every natural number n, whether F' has a proof
of length n [length=number of symbols!. Let v:(F,n) be the number of
steps required for the machine to do that, and let gin) X (F.n).

The question is, how rapidly does g(n) grow for an optimal machine? It
is possible to show that ¢(n) > Kn. If there really were a machine with
o(n) ~ Kn (or even just ~ Kn?) then that would have consequences \
of the greatest significance. Namely, this would clearly mean that the
thinking of a mathematician in the case of yes-or-no questions could be

! replaced by machines, in spite of the unsolvability of the

completely
Entscheidungsproblem. n would merely have to be chosen so large that,
when the machine does not provide a result, it also does not make any
sense to think about the problem. Now it seems to me to be quite within
the realm of possibility that o(n) grows that slowly. For 1.) ¢(n) > Kn
seems to be the only estimate obtainable by generalizing the proof of the
unsolvability of the Entscheidungsproblem; 2.) 2(n) ~ Kn (or ~ Kn?)
just means that the number of steps when compared to pure trial and

v) 3\ ‘ . .
error can be reduced from N to log N (or log N*). Such significant re-

when computing the quadratic remainder symbol by repeated applica-
tion of the law of reciprocity. It would be interesting to know what the

case would be, e.g., in determining whether a number is prime, and how
significantly in general for finitist combinatorial problems the number of

Kurt (JOdel steps can be reduced when compared to pure trial and error. I do not

COLLECTED know whether vou have heard that “Post’s problem™ (whether there are
WORKS degrees of unsolvability among the problems (3y)(y, x) with recursive
2) was solved positively by a quite young man by the name of Richard

Volume V Friedberg.” The solution is very elegant. Unfortunately, Friedberg is not
Correspondence H-Z going to study mathematics, but rather medicine (seemingly under the

imfluence of his father).

Ms Vaters).

P vs. NP one of the seven Clay Millenium Problems

@~ - Clay Mathematics Institute

- ‘ Dedicated to increasing and disseminating mathematical knowledge

HOME ABOUT CMI PROGRAMS NEWS & EVENTS AWARDS SCHOLARS PUBLICATIONS

» Birch and Swinnerton-Dyer

First Clay Mathematics Institute Millennium Prize Comscii
Announced » Hodge Conijecture

» Navier-Stokes Equations
»P vs NP

» Poincaré Conjecture

Prize for Resolution of the Poincaré Conjecture
Awarded to Dr. Grigoriy Perelman

» Riemann Hypothesis

March 18, 2010. The Clay Mathematics Institute (CMI) announces today that
Dr. Grigoriy Perelman of St. Petersburg, Russia, is the recipient of the
Millennium Prize for resolution of the Poincaré conjecture. The citation for the » Rules

award reads: » Millennium Meeting Videos

» Yang-Mills Theory

The Clay Mathematics Institute hereby awards the Millennium Prize for
resolution of the Poincaré conjecture to Grigoriy Perelman.

More ...
The Millennium Prize Problems

In order to celebrate mathematics in the new millennium, The Clay
Mathematics Institute of Cambridge, Massachusetts (CMI) established seven
Prize Problems. The Prizes were conceived to record some of the most difficult
problems with which mathematicians were grappling at the turn of the second

millanninim:* tn alavate in the ranceriniienesce nf the neanaral nithliec the farct that

review articles

DOI:10.1145/15621684.15682188

It's one of the fundamental mathematical
problems of our time, and its importance
grows with the rise of powerful computers.

BY LANCE FORTNOW

The Status of

the P versus AN |
NP Problem :

The software written for this lllustration
makes a stylized version of a network graph
that draws connections between elements
based on proximity. The graph constantly
changes as the elements sort themselves.

WHEN EDITOR-IN-CHIEF MOSHE Vardi asked me to write increased, the cost of computing has

this piece for Communications, my first reaction was | dramatically decreased, not to men-
. tion the power of the Internet. Com-

the article could be written in two words: putation has become a standard tool

Still open. in just about every academic field.

en I started graduate school in the mid-1980s, | Whole subfields of biology, chemis-

: f : try, physics, economics and others are

many believed that the quickly developing area of devoted to large-scale computational

circuit complexity would soon settle the P versus m‘;‘!c“"& simulations, and problem
e o o solving.

N!’ prot?le?m. whetl'u.er every algprlthmlc prob!em As we solve larger and more com-

with efficiently verifiable solutions have efficiently plex problems with greater computa-

computable solutions. But circuit complexity and R S

the problems we cannot tackle begin

other approaches to the problem have stalled and to stand out. The theory of NP-com-

we have little reason to believe we will see a proof pleteness helps us understand these

limitations and the P versus NP prob-
| P N - e legot ar

separating P from NP in the near future.

VRERre———
Communications of the ACM, Sept. 2009

SO what now?

e One possible response for discrete optimization problems: polynomial-time algorithms to
find near optimal solutions.

e An x-approximation algorithm is a polynomial-time approximation algorithm that produces
solutions within a factor of o of the optimal.

e E.g. A 3/2-approximation algorithm for the TSP would find a tour of length at most 3/2
times the length of the shortest tour.

e For maximization problems, assume & < 1; a 1/2-approximation algorithm finds a
solution whose value is at least 1/2 that of an optimal solution.

e Can consider randomized algorithms, in which case we want the expected value of the
solution to be within o of optimal.

e Significant amount of work on a wide range of problems; will choose just one as an example.

The maximum cut
problem

e Given an undirected graph G=
(V.E), find a set S of vertices
that maximizes the number of
edges with exactly one
endpoint in S (edges in the cut).

e As with the traveling salesman
problem, a polynomial-time
algorithm for this problem
would imply P=NP.

A randomized approximation
algorithm (Erdos 1967)

e Choose set of vertices S
uniformly at random.

e Then probability that any given
edge is in the cut is 1/2.

e Thus expected number of
edges in the cut is 1/2 |E],
which is at least half the
optimal value.

An alternate approach (Goemans, W 1995)

e Suppose we introduce an n-dimensional unit vector v; (where n=|V|) for each
vertex ieV/ and we ask for

1
max§ Z (1—?}2"?}]')

(2,7)€EE
with either vi=(-1,0,0,...) or vi=(1,0,0,...) for each ieV.

e Then if we set S={ieV: vi=(-1,0,0,...) }, the number of edges in the cut is

() eB vi#vll=5 3 (1-v-v)

(4,7)EE:v;#v;

% > (—wi-v))

(,5)€E

A relaxation

¢ \\e can solve the following in
polynomial time

1
max g Z (1 —v;-vy)

(4,5) € E

If the vectors are arbitrary n-
dimensional unit-length vectors
(via semidefinite programming).

® Note that if OPT is the number
of edges in the cut in an
optimal solution, and Z is the
quantity above, Z = OPT.

Getting a solution

¢ \We draw a random n-
dimensional vector r from the
multivariate normal distribution
(i.e. each component r; from
N(0,1)). Let this be the normal
to a hyperplane through the
origin of the unit sphere.

o letS={ieV:vi-r=0}.

e \What is expected number of
edges in this cut?

Probability that edge (i,)) Is in the cut

Vj

e Consider the plane containing vectors v; and v;, and the projection of random
vector r to this plane.

e Of the 211 possible orientations of the projected random vector, 20 of them
correspond to vi and v; on opposite sides of the hyperplane (and hence edge
(i.j) in the cut). So the probability is

20 v 1
— = — = — arccos(v; - v;)
20 mT

since v; - v = ||v;||||v;]| cos @ = cos 6.

F(x)=1/pi * acos(x) Y
g(x)=.5 = (1-x)

~ arccos(z)

= Inin
—1<z<1 (1 — x)

> 878956

The analysis

Then the expected number of edges in the cut is

1 1
Z - arccos(vz- - vj) > .87856 - 9 Z (1 — Ui Uj)

(2,J)EE (i,j)EE
87856 - /4
87856 - OPT.

IV

This gives us a .87856-approximation algorithm for the maximum cut
problem.

What can computers compute approximately
efficiently”?

e A little hard to say, when we don’t even know what is computable in
polynomial time.

e However, there is a significant line of work showing that for a particular

problem, if there is an x-approximation algorithm for a particular &, then
P=NP.

e Huge breakthrough in the early 1990s showing this for a wide range of
problems; many improvements since then.

—Xample

e Hastad (1996) considers the problem of maximizing the number of satisified
equations of three variables over GF[2]; e.qg.

r1 + x3 + 9 = 0(mod 2)

Tro + x3 + 15 = 1(mod 2)

r1 + 7 + 12 = 0(mod 2)

e Hastad shows that if there is any (1/2 + €)-approximation algorithm for
constant € > 0, then P = NP.

e But there is a very simple 1/2-approximation algorithm!

What about the maximum cut problem?/

e Bellare, Goldreich, Sudan 1998 and Trevisan, Sorkin, Sudan, W 2000 show
how to translate the previous result into one for the maximum cut problem.

X2

X1

e Show that there is no (16/17+¢€)-approximation algorithm for € > 0 unless P =
NP. (16/17 = 0.941).

The 2000s: The Unigue Games Problem and the
Unigue Games Conjecture

e The unique games problem: For a parameter k, find values of x; € {0, ..., k-1}
to maximize the number of satisfied difference equations mod k. E.qg.

rs5 — 3 = 3(mod 21)
r3 — X9 = 2(mod 21)
L19 — Iy = 15(mod 21)

The Unigue Games
Conjecture

e The conjecture was formulated
by Subhash Khot in 2002.

e Conjecture: If PNP, then for all
0 > 0, there exists a k such that
In polynomial time it is not
possible to distinguish between
sets of difference equations
mod k in which at least a 1-0
fraction of the equations are
satisfiable, and those for which
at most a o fraction are
satisfiable.

SOMmMe Cconsequences

e |f the conjecture is true, then there is no (2-g)-approximation algorithm for the
vertex cover problem for any constant € > 0 unless P = NP (Khot, Regev
2008).

e |f the conjecture is true, then there is no (x+€)-approximation algorithm for the
maximum cut problem for any constant € > 0 unless P = NP (Khot, Kindler,
Mossel, O’Donnell 2007; Mossel, O’Donnell, Oleszkiewicz 2008), where

= arccos(x)

> .87856

a = 1min
1
—1<z<l1 B) (1 — ZU)
e |f the conjecture is true, then for every maximum constraint satisfaction
problem there is a (p-€)-approximation algorithm, and there can be no (p+¢)-
approximation algorithm unless P=NP (Raghavendra 2008; Raghavendra,
Steurer 2009).

Some open questions

e Resolve the Unique Games Conjecture.

e How well can the Traveling Salesman Problem be approximated for cities in a
general metric space?

e Long known: A 1.5-approximation algorithm (Christofides 1976)

e | ast decade: In Euclidean plane, given any € > 0, there is a (1 + ¢g)-
approximation algorithm (Arora 1998, Mitchell 1999).

e \ery recent: A 1.461-approximation algorithm for a special case of metric
spaces (Momke, Svensson April 2011).

* No (x-g)-approximation algorithm for x=221/220 and € > 0 unless P = NP.

A critigue”

e Perhaps too much of a gap between polynomial time as a theoretical measure
of efficiency and computational realities?

e Edmonds (1965)

.- ate

It would be unfortunate for any rigid criterion to inhibit the practical
development of algorithms which are either not known or known not to con- {
form nicely to the criterion. Many of the best algorithmic ideas known today
would suffer by such theoretical pedantry. In fact, an outstanding open
question is, essentially: “how good" is a particular algorithm for linear pro-
gramming, the simplex method? And, on the other hand, many important
algorithmic ideas in electrical switching theory are obviously not “good’ in

our sense.
L { o Ve 4 ‘_.-~,'_‘“ f‘\n ansprel fag e J “ -9 .

- .-lu\. u...

. .
A T

- -.oa.

Conclusions

e Computational work in solving particular instances of hard discrete
optimization problems has been remarkable. Perhaps we need a better
theory to capture this reality?

e More nuanced notion of efficient computation than polynomial time?

e Some notion of ‘real-life’ instances of problems (such as TSP)?

Conclusions

“Or who shut in the sea with doors,
when it burst out from the womb,
when | made clouds its garment
and thick aarkness its swaddling band,
and prescribed limits for it
and set bars and doors,
and said, ‘Thus far shall you come, and no farther,
and here shall your proud waves be stayed’?”
-- Job 38:8-11

e \We’ve come a long way in understanding the power of efficient approximate
computation for discrete optimization.

e But it is all relative to our understanding of efficient computation.

