
The Rank Aggregation
Problem
David P. Williamson
Cornell University

Universidade Federal de Minas Gerais
December 10, 2012

Outline

n  An old problem and one formulation of it
n  Some modern-day applications
n  Related work in approximation

algorithms
n  Some computational results
n  Conclusion

An old question

n  How can the preferences of multiple
competing agents be fairly taken into
account?
– Groups deciding where to go to dinner
– Elections

Rank aggregation

n  Input:
–  N candidates
–  K voters giving (partial)

preference list of
candidates

n  Goal:
–  Want single ordering of

candidates expressing
voters’ preferences

–  ???

Ballot

1.  Labour

2.  Liberal
Democrats

Ballot

1.  Conservative

2.  Liberal
Democrats

3.  Labour

Ballot

1.  Sinn Fein

2.  Labour

3.  Liberal
Democrats

A well-known answer

n  Arrow (1950): They can’t.
n  Can’t simultaneously have a means of

aggregating preferences that has:
–  Non-dictatorship
–  Pareto efficiency (if everyone prefers A to B,

then final order should prefer A to B)
–  Independence of irrelevant alternatives (Given

two inputs in which A and B are ranked
identically by everyone, the two outputs should
order A and B the same)

Still…

n  As with computational intractability, we
still need to do the best we can.

n  Why is this any more relevant now
than before?

The information age

n  Can easily see the preferences of
millions (e.g. Netflix Challenge).

n  …and those of a few.
n  What if the main players are

systematically biased in some way?

The Rank Aggregation
Problem
n  Question raised by Dwork, Kumar,

Naor, Sivakumar, “Rank aggregation
methods for the web”, WWW10, 2001.
– Q: How can search-engine bias be

overcome?
– A: By combining results from multiple

search engines

Sample search: Waterloo
Google
1.  Wikipedia: Battle of Waterloo

2.  Wikipedia: Waterloo, ON

3.  www.city.waterloo.on.ca (City of Waterloo website)

4.  www.uwaterloo.ca (University of Waterloo)

5.  www.waterlooindustries.com (High performance tool storage)

Yahoo!
1.  www.uwaterloo.ca

2.  Wikipedia: Battle of Waterloo

3.  www.city.waterloo.on.ca

4.  Wikipedia: Waterloo, ON

5.  www.waterloorecords.com (Record store in Austin, TX)

MSN
1.  Wikipedia: Battle of Waterloo

2.  Wikipedia: Waterloo Station (in London)

3.  Youtube: Video of ABBA’s “Waterloo”

4.  www.waterloorecords.com

5.  www.waterloo.il.us (City in Illinois)

Kemeny optimal aggregation

Want to find ordering of all elements that minimizes the

total number of pairs "out of order" with respect to all the lists.

Google
1. Wikipedia: Battle of Waterloo
2. Wikipedia: Waterloo, ON
3. www.city.waterloo.on.ca
4. www.uwaterloo.ca
5. www.waterlooindustries.com

Yahoo!
1. www.uwaterloo.ca
2. Wikipedia: Battle of Waterloo
3. www.city.waterloo.on.ca
4. Wikipedia: Waterloo, ON
5. www.waterloorecords.com

www.uwaterloo.ca

Wikipedia: Battle of Waterloo

Wikipedia: Waterloo, ON

www.city.waterloo.on.ca

www.waterloo.il.us

A metric on permutations

Kendall’s tau distance K(S,T)
number of pairs (i,j) that S and T disagree on

B
D
A
C

A
B
C
D

number of disagreements: 3 (AB, AD, CD)

n  Thus given input top k lists T1,…,Tn, we find
permutation S on universe of elements to minimize
K*(S,T1,…,Tn) = Σi K(S,Ti) (essentially)

n  Yields extended Condorcet criterion: if every cand.
in A is preferred by some majority to every cand. in
B, all of A ranked ahead of all of B.

But K* NP-hard to compute for 4 or more lists.

My home page
Legit.com

Spam.com
Spam.org

How then to compute an
aggregation?
n  Answer in Dwork et al.: heuristics
n  Markov chain techniques: given chain

on candidates, compute stationary
probs, rank by probs.

Local Kemenization

n  Can achieve extended Condorcet by finding
S a local min of K*(S,T1,…,Tn); i.e.
interchanging candidates i and i+1 of S does
not decrease score.

n  Easy to compute.

Uses

n  Internal IBM metasearch engine:
Sangam

n  IBM experimental intranet search
engine: iSearch

Fagin, Kumar, McCurley, Novak, Sivakumar,
Tomlin, W, “Searching the Workplace Web”,
WWW 2003.

Internet vs. intranet search

n  Different social forces at work in content
creation

n  Different types of queries and results; intranet
search closer to ‘home page’ finding

n  No spam
 eAMT

PBC
HR
MTS
ASO
ISSI
Sametime
EA2000
IDP

global print
e-AMT
jobs
TDSP
intranet password
global campus
printers
human resources
ESPP

Travel
Reqcat
PSM
EPP
redbooks
ILC
virus
printer
reserve

Websphere
ITCS204
ITCS300
vacation planner
password
mobility
cell phone
PCF
BPFJ

iSearch

n  Idea: aggregate different ranking heuristics to see what works
best for intranet search

Method and results

n  Found ground truth, determined
“influence” of each ranking heuristic
on getting pages into top spot (top 3,
top 5, top 10, etc.)

n  Best: Anchortext, Titles, PageRank
n  Worst: Content, URL Depth, Indegree
n  Used Dwork et al. random walk

heuristic for aggregation

The Rank Aggregation
Problem
n  Formulate as a graph problem
n  Input:

– Set of elements V
– Pairwise information w(i,j),w(j,i)
 w(j,i) = fraction of voters ranking j before i

– Find a permutation σ that minimizes
 Σσ(i) < σ(j) w(j,i)
 (scaled Kemeny aggregation)

Full vs. partial rank
aggregation
n  Full rank aggregation: input permutations

are total orders
n  Partial rank aggregation: otherwise
n  Inputs from partial rank aggregation obey

triangle inequality:
–  w(i,j) + w(j,k) ≥ w(i,k)

n  Full rank aggregation also obeys probability
constraints:
–  w(i,j) + w(j,i) = 1

Approximation algorithms

n  An α-approximation algorithm is a
polynomial-time algorithm that
produces a solution of cost at most α
times the optimal cost.

Remainder of talk

Approximation algorithms for rank
aggregation
q A very simple 2-approximation algorithm

for full rank aggregation
q Pivoting algorithms
q A simple, deterministic 2-approximation

algorithm for triangle inequality
q Computational experiments

A simple approximation
algorithm
An easy 2-approximation algorithm for full rank

aggregation:
choose one of M input permutations at random
probability i is ranked before j =

 # {πm s.t. πm(i) < πm(j)} / M = w(i,j)
“cost” if i is ranked before j = w(j,i)

 ⇒ expected cost for {i,j} :
 2w(i,j)w(j,i) ≤ 2 min {w(i,j), w(j,i)}

 Every feasible ordering has cost for {i,j} at
 least min {w(i,j), w(j,i)}.

Doing better

n  To do better, consider a more general
problem in which weights obey triangle
inequality and/or probability
constraints
– e.g. problems on tournaments

n  Ailon, Charikar, and Newman (STOC
2005) give first constant-factor
approximation algorithms for these
more general problems.

A Quicksort-style algorithm

n  Choose a vertex k as pivot
n  Order vertex i

 left of k if (i,k) in A
 right of k if (k,i) in A

n  Recurse on left and right

pivot left right

n  If graph is weighted, then form a majority
tournament G=(V,A) that has (i,j) in A if w(i,j)
≥ w(j,i); run algorithm.

n  Ailon et al. show that this gives a 3-
approximation algorithm for weights obeying
triangle inequality

n  Van Zuylen & W ‘07 give a 2-approximation
algorithm that chooses the pivot
deterministically.

Bounding the cost?

Some arcs in the majority tournament become backward arcs

Observation: backward arcs can be attributed to a particular pivot

cost of forward arc = min{w(i,j),w(j,i)} =: wij
cost of backward arc = max{w(i,j), w(j,i)} =: wij

Idea: choose pivot carefully, so that the total cost of the backward

arcs is not much more than the total budget for these arcs

i j pivot k

“budget” for
{i,j}

How to choose a good
pivot
Choose pivot minimizing

 cost of backward arcs

 budget of backward arcs

Thm: If the weights satisfy the triangle
inequality, there exists a pivot such that
this ratio is at most 2

How to choose a good
pivot
There exists a pivot such that

 cost of backward arcs ≤ 2 (budget of backward arcs)

Proof: By averaging argument:

Σpivots (cost of backward arcs) =

 Σdirected triangles t (backward cost of arcs in t)

Σpivots (budget of backward arcs) =

 Σdirected triangles t(forward cost of all arcs in t)

k

i j j

pivot k

i

k

pivot i j

k

i pivot j

k

i j

How to choose a good
pivot

  Proof (continued):
  Σpivots (cost of backward arcs) =

  Σdirected triangles t (backward cost of arcs in t)
  Σpivots (budget of backward arcs) =

  Σdirected triangles t (forward cost of arcs in t)

k

i j

w(t) = w(j,i) + w(i,k) + w(k,j)

 = 2 w(t)

w(t)

w(t)

⇒ There exists a pivot such that
 cost of backward arcs ≤ 2 (budget of backward arcs)

≤ w(j,k) + w(k,i) + w(i,j) + w(j,k) + w(k,i) + w(i,j)

Not hard to show that

Combining the two 2-
approximations

Can show that running both the random
dictator algorithm and the pivoting
algorithm, choosing best solution,
gives a 1.6-approximation algorithm
for full rank aggregation.

Can be extended to partial rank

aggregation

More results

n  Ailon, Charikar, Newman ’05 give a
randomized LP-rounding 4/3-approximation
algorithm for full rank aggregation.

n  Ailon ’07 gives 3/2-approximation algorithm
for partial rank aggregation.

n  Van Zuylen & W ’07 give deterministic
variants.

n  Kenyon-Mathieu and Schudy ’07 give an
approximation scheme for full rank
aggregation.

Similar problems

The same sort of pivoting algorithms can
be applied to problems in clustering
and hierarchical clustering resulting in
approximation algorithms with similar
performance.

Clustering

n  Input:
–  Set of elements V
–  Pairwise information w+{i,j}, w-{i,j}
–  Assumption: weights satisfy

n  triangle inequality or
n  probability constraints

n  Goal:
–  Find a clustering that minimizes

 Σi,j togetherw-{i,j} + Σi,j separated wÉ{i,j}

Clustering

“Majority tournament” ⇔
–  ‘+’ edge {i,j} if w+{i,j} ≥ w-{i,j}
–  ‘-’edge {i,j} if w-{i,j} ≥ w+{i,j}

Pivoting on vertex k:
–  If {i,k} is a ‘+’ edge, put i in same cluster as k
–  If {i,k} is a ‘-’ edge, separate i from k

Recurse on vertices separated from k

“Directed triangle” ⇔

+ +

-

Hierarchical Clustering

M-level hierarchical clustering :
–  M nested clusterings of same set of objects

n  Input: pairwise information Dij ∈ {0, …, M}
n  Goal: Minimize L1-distance from D: Σi,j |λij - Dij|

i

i j k l

i j l k

j l k

λjk = 2
λij = 1

Hierarchical Clustering

Hierarchical clustering:
–  Construct hierarchical clustering top-down:

n  Use clustering algorithm to get top level clustering
n  Recursively invoke algorithm for each top level cluster

⇒  (M+2)-approximation algorithm (M = # levels)

Matches bound of a more complicated, randomized
algorithm of Ailon and Charikar (FOCS ’05)

Empirical results

n  How well do the ranking algorithms do in
practice?

n  Two data sets:
–  Repeat of Dwork et al. experiments

n  37 queries to Ask, Google, MSN, Yahoo!
n  Take top 100 results of each; pages are “same” if

canonicalized URLs are same
–  Web Communities Data Set

n  From 9 full rankings of 25 million documents
n  50 samples of 100 documents, induced 9 rankings of

the 100 documents

Pivoting variants

n  Deterministic algorithm too slow
n  Take K elements at random, use best

of K for pivot (using ratio test)

Dwork et al.

Web Communities

Concentration

Other heuristics

n  Borda scoring
–  Sort vertices in ascending order of weighted

indegree
n  MC4

–  The Dwork et al. Markov Chain heuristic
n  Local Kemenization

–  Interchange neighbors to improve overall score
n  Local search

–  Move single vertices to improve overall score
n  CPLEX LP/IP

–  Most LP solutions integral

Dwork et al.

Web Communities

Open questions

n  Approximation scheme for partial rank
aggregation?

n  Does the model accurately capture
“good” combined rankings?
– Back to metasearch?

Open questions

n  Hope for other linear ordering problems?
–  Recent results seem to say no:

n  Guruswami, Manokaran, Raghavendra (FOCS 2008): can’t
do better than ½ for Max Acyclic Subgraph if Unique Games
has no polytime algorithms.

n  Bansal, Khot (FOCS 2009): can’t do better than 2 for single
machine scheduling with precedence to minimize weighted
completion time if variant of Unique Games has no polytime
algorithms.

n  Svensson (STOC 2010): can’t do better than 2 for scheduling
identical parallel machines with precedence constraints to
minimize schedule length if variant of Unique Games has no
polytime algorithms.

n  Perhaps prove that 4/3 is best possible given
Unique Games?

Obrigado.

Any questions?

dpw@cs.cornell.edu

www.davidpwilliamson.net/work

Open questions

n  Linear ordering polytope has integrality gap of 4/3
for weights from full rank aggregation:
 Min Σi,j x(i,j)w(j,i) + x(j,i)w(i,j)
 s.t. x(i,j) + x(j,i) = 1 for all i,j
 x(i,k) + x(k,j) + x(j,i) ≥ 1 for

 all distinct i,j,k
 x(i,j) ¸ 0

when w(i,j) + w(j,i) = 1,
 w(i,j) + w(k,j) + w(j,i) ¸ 1.

Is this the worst case for these instances?

Remainder of talk

Approximation algorithms for rank aggregation
ü A very simple 2-approximation algorithm for full

rank aggregation
ü Pivoting algorithms
ü A simple, deterministic 2-approximation

algorithm for triangle inequality
ü A 1.6-approximation algorithm for full rank

aggregation
q LP-based pivoting

Further results

n  To get results for other classes of weights
(e.g. for tournaments) and stronger results
for rank aggregation, we need linear
programming based algorithms.

n  Ailon, Charikar, Newman (STOC ’05) and
Ailon (SODA ’07) give randomized rounding
algorithms; made deterministic by Van
Zuylen, Hegde, Jain, W (SODA ’06) and
Van Zuylen, W ’07.

Why LP based?

Consider tournaments
 w(i,j) = 1 if (i,j) in tournament
 0 otherwise

⇒  wij ≡ 0
⇒  ∑ij wij = 0
⇒  Lower bound of 0!

⇒ Need better lower bound!

LP based algorithms

Solve LP relaxation, and round solution:
 x(i,j) = 1 if i before j, 0 otherwise

Min Σi,j x(i,j)w(j,i) + x(j,i)w(i,j)
s.t. x(i,j) + x(j,i) = 1 for all i,j

 x(i,k) + x(k,j) + x(j,i) ≥ 1 for all distinct i,j,k
 x(i,j) ∈ {0,1} ≥ 0

i j

k

LP based algorithms

Two types of rounding:
1.  - Form tournament G=(V,A) that has (i,j) in A if

 x(i,j)≥1/2
 - Pivot to get an acyclic solution (where a pivot is
 chosen similar to before)

2.  - Choose a vertex j as pivot
 order i left of j with probability x(i,j)
 order i right of j with probability x(j,i)
 - Recurse on left and right

use method of
conditional

expectation to
derandomize

LP based algorithms:
approximation guarantees
1.  “Deterministic rounding”

 probability constraints: 3

2.  “Conditional expectation”
 probability constraints: 5/2

 triangle inequality constraints
 (partial rank aggregation): 3/2

 full rank aggregation: 4/3

Randomized versions due to Ailon et al. and Ailon; deterministic versions by

Van Zuylen et al. and Van Zuylen and W.

Remainder of talk

Approximation algorithms for rank aggregation
ü A very simple 2-approximation algorithm for full

rank aggregation
ü Pivoting algorithms
ü A simple, deterministic 2-approximation

algorithm for triangle inequality
ü A 1.6-approximation algorithm for partial rank

aggregation
ü LP-based pivoting

Combining the two 2-
approximations
Recall: majority tournament has (i,j) if

w(i,j) ≥ w(j,i)
 wij = min {w(i,j), w(j,i)}
 wij = max {w(i,j), w(j,i)}

New cost of forward arc:

 α zij + (1-α) wij
New cost of backward arc:

 α zij + (1-α) wij

budget for
{i,j}

wil show:
total new cost ≤

(1+α) total budget
for α=0.6

Combining the two 2-
approximations

Forward costs:
 α zij + (1-α) wij · α (2wij) + (1- α) wij

 ≤ (1+α) wij

 C

Combining the two 2-
approximations

Backward costs:
 new cost for backward arc = α zij + (1-α) wij
 “budget” for backward arc = wij

Lemma: there exists a pivot such that

 new cost of backward arcs ≤
 (1+α) (budget of backward arcs)
 for α = 0.6

⇒ the combined algorithm is a 1.6 approximation algorithm

C

Σpivots (new cost of backward arcs) =
 Σdirected triangles t Σ(i,j) in t (αzij + (1-α)wij)

Σpivots (budget of backward arcs) =
 Σdirected triangles t Σ(i,j) in t wij

Fact: for α=0.6

 Σ(i,j) in t (αzij + (1-α)wij) ≤ (1+α)Σ(i,j) in t wij for all directed
triangles t

⇒ there exists a pivot such that
new cost of backward arcs ≤ 1.6 (budget of backward arcs)

Combining the two 2-
approximations – proof of
Lemma

pivot k

i j

k

i pivot j

k

pivot i j

k

i j

Clustering

n  Input:
–  Set of elements V
–  Pairwise information w+{i,j}, w-{i,j}
–  Assumption: weights satisfy

n  triangle inequality or
n  probability constraints

n  Goal:
–  Find a clustering that minimizes

 Σi,j togetherw-{i,j} + Σi,j separated wÉ{i,j}

Clustering

“Majority tournament” ⇔
–  ‘+’ edge {i,j} if w+{i,j} ≥ w-{i,j}
–  ‘-’edge {i,j} if w-{i,j} ≥ w+{i,j}

Pivoting on vertex k:
–  If {i,k} is a ‘+’ edge, put i in same cluster as k
–  If {i,k} is a ‘-’ edge, separate i from k

Recurse on vertices separated from k

“Directed triangle” ⇔

+ +

-

More results

n  Kenyon-Mathieu and Schudy ’07 give
an approximation scheme for full rank
aggregation.

n  Empirical study of these algorithms in
progress (Van Zuylen).

