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An old question 

n  How can the preferences of multiple 
competing agents be fairly taken into 
account? 
– Groups deciding where to go to dinner 
– Elections 



Rank aggregation 

n  Input: 
–  N candidates 
–  K voters giving (partial) 

preference list of 
candidates 

n  Goal: 
–  Want single ordering of 

candidates expressing 
voters’ preferences 

–  ??? 

Ballot 

1.  Labour 

2.  Liberal 
Democrats 

Ballot 

1.  Conservative 

2.  Liberal 
Democrats 

3.  Labour 

Ballot 

1.  Sinn Fein 

2.  Labour 

3.  Liberal 
Democrats 



A well-known answer 

n  Arrow (1950): They can’t. 
n  Can’t simultaneously have a means of 

aggregating preferences that has: 
–  Non-dictatorship 
–  Pareto efficiency (if everyone prefers A to B, 

then final order should prefer A to B) 
–  Independence of irrelevant alternatives (Given 

two inputs in which A and B are ranked 
identically by everyone, the two outputs should 
order A and B the same) 



Still… 

n  As with computational intractability, we 
still need to do the best we can. 

n  Why is this any more relevant now 
than before? 



The information age 

n  Can easily see the preferences of 
millions (e.g. Netflix Challenge). 

n  …and those of a few. 
n  What if the main players are 

systematically biased in some way? 



The Rank Aggregation 
Problem 
n  Question raised by Dwork, Kumar, 

Naor, Sivakumar, “Rank aggregation 
methods for the web”, WWW10, 2001. 
– Q: How can search-engine bias be 

overcome? 
– A: By combining results from multiple 

search engines 



Sample search: Waterloo 
Google 
1.  Wikipedia: Battle of Waterloo 

2.  Wikipedia: Waterloo, ON 

3.  www.city.waterloo.on.ca (City of Waterloo website) 

4.  www.uwaterloo.ca (University of Waterloo) 

5.  www.waterlooindustries.com (High performance tool storage) 

Yahoo! 
1.  www.uwaterloo.ca 

2.  Wikipedia: Battle of Waterloo 

3.  www.city.waterloo.on.ca 

4.  Wikipedia: Waterloo, ON 

5.  www.waterloorecords.com (Record store in Austin, TX) 

MSN 
1.  Wikipedia: Battle of Waterloo 

2.  Wikipedia: Waterloo Station (in London) 

3.  Youtube: Video of ABBA’s “Waterloo” 

4.  www.waterloorecords.com 

5.  www.waterloo.il.us (City in Illinois) 



Kemeny optimal aggregation 

Want to find ordering of all elements that minimizes the 

total number of pairs "out of order" with respect to all the lists. 

Google 
1. Wikipedia: Battle of Waterloo 
2. Wikipedia: Waterloo, ON 
3. www.city.waterloo.on.ca  
4. www.uwaterloo.ca  
5. www.waterlooindustries.com  
 
Yahoo! 
1. www.uwaterloo.ca 
2. Wikipedia: Battle of Waterloo 
3. www.city.waterloo.on.ca 
4. Wikipedia: Waterloo, ON 
5. www.waterloorecords.com 

 

www.uwaterloo.ca 

Wikipedia: Battle of Waterloo 

Wikipedia: Waterloo, ON 

www.city.waterloo.on.ca 

www.waterloo.il.us 



A metric on permutations 

Kendall’s tau distance K(S,T) 
number of pairs (i,j) that S and T disagree on 

 

B 
D 
A 
C 

A 
B 
C 
D 

number of disagreements: 3 (AB, AD, CD) 

 



n  Thus given input top k lists T1,…,Tn, we find 
permutation S on universe of elements to minimize 
K*(S,T1,…,Tn) = Σi K(S,Ti) (essentially) 

n  Yields extended Condorcet criterion: if every cand. 
in A is preferred by some majority to every cand. in 
B, all of A ranked ahead of all of B. 

But K* NP-hard to compute for 4 or more lists. 

My home page 
Legit.com 

Spam.com 
Spam.org 



How then to compute an 
aggregation? 
n  Answer in Dwork et al.: heuristics 
n  Markov chain techniques: given chain 

on candidates, compute stationary 
probs, rank by probs. 



Local Kemenization 

n  Can achieve extended Condorcet by finding 
S a local min of K*(S,T1,…,Tn); i.e. 
interchanging candidates i and i+1 of S does 
not decrease score. 

n  Easy to compute. 



Uses 

n  Internal IBM metasearch engine: 
Sangam 

n  IBM experimental intranet search 
engine: iSearch 

Fagin, Kumar, McCurley, Novak, Sivakumar, 
Tomlin, W, “Searching the Workplace Web”, 
WWW 2003. 



Internet vs. intranet search 

n  Different social forces at work in content 
creation 

n  Different types of queries and results; intranet 
search closer to ‘home page’ finding 

n  No spam 
 eAMT 

PBC 
HR 
MTS 
ASO 
ISSI 
Sametime 
EA2000 
IDP 

global print 
e-AMT 
jobs 
TDSP 
intranet password 
global campus 
printers 
human resources 
ESPP 

Travel 
Reqcat 
PSM 
EPP 
redbooks 
ILC 
virus 
printer 
reserve 

Websphere 
ITCS204 
ITCS300 
vacation planner 
password 
mobility 
cell phone 
PCF 
BPFJ 



iSearch 

n  Idea: aggregate different ranking heuristics to see what works 
best for intranet search 



Method and results 

n  Found ground truth, determined 
“influence” of each ranking heuristic 
on getting pages into top spot (top 3, 
top 5, top 10, etc.) 

n  Best: Anchortext, Titles, PageRank 
n  Worst: Content, URL Depth, Indegree 
n  Used Dwork et al. random walk 

heuristic for aggregation 



The Rank Aggregation 
Problem 
n  Formulate as a graph problem 
n  Input: 

– Set of elements V 
– Pairwise information w(i,j),w(j,i)  
 w(j,i) = fraction of voters ranking j before i 

– Find a permutation σ that minimizes  
    Σσ(i) < σ(j) w(j,i) 
 (scaled Kemeny aggregation) 

 



Full vs. partial rank 
aggregation 
n  Full rank aggregation: input permutations 

are total orders 
n  Partial rank aggregation: otherwise 
n  Inputs from partial rank aggregation obey 

triangle inequality: 
–  w(i,j) + w(j,k) ≥ w(i,k) 

n  Full rank aggregation also obeys probability 
constraints: 
–  w(i,j) + w(j,i) = 1 



Approximation algorithms 

n  An α-approximation algorithm is a 
polynomial-time algorithm that 
produces a solution of cost at most α 
times the optimal cost. 



Remainder of talk 

Approximation algorithms for rank 
aggregation 
q A very simple 2-approximation algorithm 

for full rank aggregation 
q Pivoting algorithms  
q A simple, deterministic 2-approximation 

algorithm for triangle inequality 
q Computational experiments 



A simple approximation 
algorithm 
An easy 2-approximation algorithm for full rank 

aggregation: 
choose one of M input permutations at random 
probability i is ranked before j  = 

   # {πm s.t. πm(i) < πm(j)} / M = w(i,j) 
“cost” if i is ranked before j = w(j,i) 
 

 ⇒ expected cost for {i,j} :  
   2w(i,j)w(j,i) ≤ 2 min {w(i,j), w(j,i)} 

 
 Every feasible ordering has cost for {i,j} at  
  least min {w(i,j), w(j,i)}. 

 



Doing better 

n  To do better, consider a more general 
problem in which weights obey triangle 
inequality and/or probability 
constraints 
– e.g. problems on tournaments 

n  Ailon, Charikar, and Newman (STOC 
2005) give first constant-factor 
approximation algorithms for these 
more general problems. 



A Quicksort-style algorithm 

n  Choose a vertex k as pivot 
n  Order vertex i   

  left of k if (i,k) in A  
  right of k if (k,i) in A 

n  Recurse on left and right 

pivot left right 



n  If graph is weighted, then form a majority 
tournament G=(V,A) that has (i,j) in A if w(i,j) 
≥ w(j,i); run algorithm. 

n  Ailon et al. show that this gives a 3-
approximation algorithm for weights obeying 
triangle inequality  

n  Van Zuylen & W ‘07 give a 2-approximation 
algorithm that chooses the pivot 
deterministically. 



Bounding the cost? 

Some arcs in the majority tournament become backward arcs 
 
 
 
 
Observation: backward arcs can be attributed to a particular pivot 
 
cost of forward arc = min{w(i,j),w(j,i)} =: wij 
cost of backward arc = max{w(i,j), w(j,i)} =: wij 
 
Idea: choose pivot carefully, so that the total cost of the backward 

arcs is not much more than the total budget for these arcs 

i j pivot k 

“budget” for 
{i,j} 



How to choose a good 
pivot 
Choose pivot minimizing 

    cost of backward arcs 

    budget of backward arcs 
 

Thm: If the weights satisfy the triangle 
inequality, there exists a pivot such that 
this ratio is at most 2 

 



How to choose a good 
pivot 
There exists a pivot such that 

 cost of backward arcs ≤ 2 (budget of backward arcs) 
 
Proof: By averaging argument: 
 
Σpivots (cost of backward arcs) =  

 Σdirected triangles t (backward cost of arcs in t) 
 
Σpivots (budget of backward arcs) =  

 Σdirected triangles t(forward cost of all arcs in t) 

k  

i j j 

pivot k  

i 

k  

pivot i j 

k  

i pivot j 

k  

i j 



How to choose a good 
pivot 

 

 
 

  Proof (continued):  
  Σpivots (cost of backward arcs) =  

  Σdirected triangles t (backward cost of arcs in t) 
  Σpivots (budget of backward arcs) =  

  Σdirected triangles t (forward cost of arcs in t) 

k  

i j 

w(t) = w(j,i) + w(i,k) + w(k,j) 
        
       = 2 w(t)   

w(t) 

w(t) 

⇒ There exists a pivot such that 
 cost of backward arcs ≤ 2 (budget of backward arcs ) 

≤ w(j,k) + w(k,i) + w(i,j) + w(j,k) + w(k,i) + w(i,j) 

Not hard to show that 



Combining the two 2-
approximations 

Can show that running both the random 
dictator algorithm and the pivoting 
algorithm, choosing best solution, 
gives a 1.6-approximation algorithm 
for full rank aggregation. 

 
Can be extended to partial rank 

aggregation 



More results 

n  Ailon, Charikar, Newman ’05 give a 
randomized LP-rounding 4/3-approximation 
algorithm for full rank aggregation. 

n  Ailon ’07 gives 3/2-approximation algorithm 
for partial rank aggregation. 

n  Van Zuylen & W ’07 give deterministic 
variants. 

n  Kenyon-Mathieu and Schudy ’07 give an 
approximation scheme for full rank 
aggregation. 

 



Similar problems 

The same sort of pivoting algorithms can 
be applied to problems in clustering 
and hierarchical clustering resulting in 
approximation algorithms with similar 
performance. 



Clustering 

n  Input:  
–  Set of elements V 
–  Pairwise information w+{i,j}, w-{i,j} 
–  Assumption: weights satisfy  

n   triangle inequality or 
n   probability constraints 

n  Goal:  
–  Find a clustering that minimizes  

   Σi,j togetherw-{i,j} + Σi,j separated wÉ{i,j} 
 



Clustering 

“Majority tournament” ⇔ 
–  ‘+’ edge {i,j} if w+{i,j} ≥ w-{i,j} 
–   ‘-’edge {i,j} if w-{i,j} ≥ w+{i,j} 

Pivoting on vertex k: 
–  If {i,k} is a ‘+’ edge, put i in same cluster as k 
–  If {i,k} is a ‘-’ edge, separate i from k 

Recurse on vertices separated from k 
 
“Directed triangle” ⇔ 
 

+ + 

- 



Hierarchical Clustering 

M-level hierarchical clustering  : 
–  M nested clusterings of same set of objects 

 
 
 

n  Input: pairwise information Dij ∈ {0, …, M}  
n  Goal: Minimize L1-distance from D:  Σi,j |λij  - Dij| 

 

i 

i j k l 

i j l k 

j l k 

λjk = 2 
λij = 1 



Hierarchical Clustering 

Hierarchical clustering: 
–  Construct hierarchical clustering top-down:  

n  Use clustering algorithm to get top level clustering 
n  Recursively invoke algorithm for each top level cluster 

⇒  (M+2)-approximation algorithm (M = # levels) 

Matches bound of a more complicated, randomized 
algorithm of Ailon and Charikar (FOCS ’05) 



Empirical results 

n  How well do the ranking algorithms do in 
practice? 

n  Two data sets: 
–  Repeat of Dwork et al. experiments 

n  37 queries to Ask, Google, MSN, Yahoo! 
n  Take top 100 results of each; pages are “same” if 

canonicalized URLs are same 
–  Web Communities Data Set 

n  From 9 full rankings of 25 million documents 
n  50 samples of 100 documents, induced 9 rankings of 

the 100 documents 



Pivoting variants 

n  Deterministic algorithm too slow 
n  Take K elements at random, use best 

of K for pivot (using ratio test) 



Dwork et al. 



Web Communities 



Concentration 



Other heuristics 

n  Borda scoring 
–  Sort vertices in ascending order of weighted 

indegree 
n  MC4 

–  The Dwork et al. Markov Chain heuristic 
n  Local Kemenization 

–  Interchange neighbors to improve overall score 
n  Local search 

–  Move single vertices to improve overall score 
n  CPLEX LP/IP 

–  Most LP solutions integral 



Dwork et al. 



Web Communities 



Open questions 

n  Approximation scheme for partial rank 
aggregation? 

n  Does the model accurately capture 
“good” combined rankings? 
– Back to metasearch?   

 



Open questions 

n  Hope for other linear ordering problems? 
–  Recent results seem to say no: 

n  Guruswami, Manokaran, Raghavendra (FOCS 2008): can’t 
do better than ½ for Max Acyclic Subgraph if Unique Games 
has no polytime algorithms. 

n  Bansal, Khot (FOCS 2009): can’t do better than 2 for single 
machine scheduling with precedence to minimize weighted 
completion time if variant of Unique Games has no polytime 
algorithms. 

n  Svensson (STOC 2010): can’t do better than 2 for scheduling 
identical parallel machines with precedence constraints to 
minimize schedule length if variant of Unique Games has no 
polytime algorithms. 

n  Perhaps prove that 4/3 is best possible given 
Unique Games? 



Obrigado. 

Any questions? 

 

dpw@cs.cornell.edu 

www.davidpwilliamson.net/work 



Open questions 

n  Linear ordering polytope has integrality gap of 4/3 
for weights from full rank aggregation: 
 Min  Σi,j x(i,j)w(j,i) + x(j,i)w(i,j) 
 s.t.   x(i,j) + x(j,i)  = 1      for all i,j   
   x(i,k) + x(k,j) + x(j,i) ≥ 1   for 

    all distinct i,j,k 
   x(i,j) ¸ 0 

when  w(i,j) + w(j,i) = 1,  
  w(i,j) + w(k,j) + w(j,i) ¸ 1. 

 
Is this the worst case for these instances? 



Remainder of talk 

Approximation algorithms for rank aggregation 
ü A very simple 2-approximation algorithm for full 

rank aggregation 
ü Pivoting algorithms  
ü A simple, deterministic 2-approximation 

algorithm for triangle inequality 
ü A 1.6-approximation algorithm for full rank 

aggregation 
q LP-based pivoting 



Further results 

n  To get results for other classes of weights 
(e.g. for tournaments) and stronger results 
for rank aggregation, we need linear 
programming based algorithms. 

n  Ailon, Charikar, Newman (STOC ’05) and 
Ailon (SODA ’07) give randomized rounding 
algorithms; made deterministic by Van 
Zuylen, Hegde, Jain, W (SODA ’06) and 
Van Zuylen, W ’07. 



Why LP based? 

Consider tournaments 
 w(i,j) =  1  if (i,j) in tournament 
         0  otherwise 

 
⇒   wij  ≡ 0 
⇒   ∑ij wij = 0 
⇒  Lower bound of 0! 
 
⇒ Need better lower bound! 



LP based algorithms 

Solve LP relaxation, and round solution: 
  x(i,j) = 1 if i before j, 0 otherwise 

 
Min  Σi,j x(i,j)w(j,i) + x(j,i)w(i,j) 
s.t.  x(i,j) + x(j,i)  = 1      for all i,j   

  x(i,k) + x(k,j) + x(j,i) ≥ 1  for all distinct i,j,k 
  x(i,j) ∈ {0,1} ≥ 0 

i j 

k 



LP based algorithms 

Two types of rounding: 
1.  - Form tournament G=(V,A) that has (i,j) in A if   

     x(i,j)≥1/2  
 - Pivot to get an acyclic solution (where a pivot is 
  chosen similar to before) 

 

2.  - Choose a vertex j as pivot 
   order i left of j with probability x(i,j) 
   order i right of j with probability x(j,i) 
 - Recurse on left and right 

 

use method of 
conditional 

expectation to 
derandomize 



LP based algorithms: 
approximation guarantees 
1.  “Deterministic rounding” 

  probability constraints:    3 
 

2.  “Conditional expectation” 
  probability constraints:    5/2 

  triangle inequality constraints 
 (partial rank aggregation):    3/2 

  full rank aggregation:     4/3 
 
Randomized versions due to Ailon et al. and Ailon; deterministic versions by 

Van Zuylen et al. and Van Zuylen and W.
 



Remainder of talk 

Approximation algorithms for rank aggregation 
ü A very simple 2-approximation algorithm for full 

rank aggregation 
ü Pivoting algorithms  
ü A simple, deterministic 2-approximation 

algorithm for triangle inequality 
ü A 1.6-approximation algorithm for partial rank 

aggregation 
ü LP-based pivoting 



Combining the two 2-
approximations 
Recall: majority tournament has (i,j) if 

w(i,j) ≥ w(j,i) 
  wij = min {w(i,j), w(j,i)} 
  wij = max {w(i,j), w(j,i)} 

 
New  cost of forward arc: 

  α zij + (1-α) wij  
New cost of backward arc: 

  α zij + (1-α) wij 
 

budget for 
{i,j} 

wil show: 
total new cost ≤  

(1+α) total budget 
for α=0.6 



Combining the two 2-
approximations 

Forward costs: 
 α zij + (1-α) wij · α (2wij) + (1- α) wij 

       ≤ (1+α) wij 

 C 



Combining the two 2-
approximations 

Backward costs: 
 new cost for backward arc = α zij + (1-α) wij 
 “budget” for backward arc = wij 

 
Lemma: there exists a pivot such that 

 new cost of backward arcs ≤  
    (1+α) (budget of backward arcs) 
 for α = 0.6 

 
⇒ the combined algorithm is a 1.6 approximation algorithm 

C 



Σpivots (new cost of backward arcs) =  
  Σdirected triangles t Σ(i,j) in t (αzij + (1-α)wij) 

Σpivots (budget of backward arcs) =  
  Σdirected triangles t Σ(i,j) in t wij 

 
 
Fact: for α=0.6  

  Σ(i,j) in t (αzij + (1-α)wij) ≤ (1+α)Σ(i,j) in t wij   for all directed 
triangles t 

⇒ there exists a pivot such that 
new cost of backward arcs ≤ 1.6 (budget of backward arcs)  

  
 

Combining the two 2-
approximations – proof of 
Lemma 

pivot k  

i j 

k  

i pivot j 

k  

pivot i j 

k  

i j 



Clustering 

n  Input:  
–  Set of elements V 
–  Pairwise information w+{i,j}, w-{i,j} 
–  Assumption: weights satisfy  

n   triangle inequality or 
n   probability constraints 

n  Goal:  
–  Find a clustering that minimizes  

   Σi,j togetherw-{i,j} + Σi,j separated wÉ{i,j} 
 



Clustering 

“Majority tournament” ⇔ 
–  ‘+’ edge {i,j} if w+{i,j} ≥ w-{i,j} 
–   ‘-’edge {i,j} if w-{i,j} ≥ w+{i,j} 

Pivoting on vertex k: 
–  If {i,k} is a ‘+’ edge, put i in same cluster as k 
–  If {i,k} is a ‘-’ edge, separate i from k 

Recurse on vertices separated from k 
 
“Directed triangle” ⇔ 
 

+ + 

- 



More results 

n  Kenyon-Mathieu and Schudy ’07 give 
an approximation scheme for full rank 
aggregation. 

n  Empirical study of these algorithms in 
progress (Van Zuylen). 


