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The Traveling 
Salesman Problem

The most famous problem in 
discrete optimization: Given n 
cities and the cost c(i,j) of 
traveling from city i to city j, find a 
minimum-cost tour that visits 
each city exactly once.

We assume costs are symmetric 
(c(i,j)=c(j,i) for all i,j) and obey the 
triangle inequality (c(i,j) ≤ c(i,k) + 
c(k,j) for all i,j,k).

120 city tour of West Germany due to 
M. Grötschel (1977)



A 15112 city 
instance solved by 
Applegate, Bixby, 
Chvátal, and Cook 
(2001)



A 24978 city instance 
from Sweden solved 
by Applegate, Bixby, 
Chvátal, Cook, and 
Helsgaun (2004)



A 42 city instance 
solved by Dantzig, 
Fulkerson, and 
Johnson (1954)



The Dantzig-Fulkerson-
Johnson Method

• G=(V,E) is a complete graph on |V| = n 
vertices

• c(e)=c(i,j) is the cost of traveling on edge 
e=(i,j)

• x(e) is a decision variable indicating if edge e 
is used in the tour, 0 ≤ x(e) ≤ 1

• Solve linear program; if x(e) forms integer 
tour, stop, else find a cutting plane



The linear program

Minimize
X

e2E

c(e)x(e)

subject toX

e2�(v)

x(e) = 2 8v 2 V

0  x(e)  1 8e 2 E



Fractional 2-matchings

Fractional (basic) solutions have components 
that are cycles of size at least 3 with x(e)=1 or 
odd cycles with x(e)=1/2 connected by paths 
with x(e)=1



2-matchings

Integer solutions have components with 
cycles of size at least 3; sometimes called 
subtours



“Loop conditions”

X

e2�(S)

x(e) ⇥ 2 ⇤S � V, |S| ⇥ 2

Dantzig, Fulkerson, and Johnson added 
constraints to eliminate subtours as they 
occurred; these now called “subtour 
elimination constraints”.

Edges in the cut for S

S



Subtour LP

X

e2�(S)

x(e) ⇥ 2 ⇤S � V, |S| ⇥ 2

Minimize
X

e2E

c(e)x(e)

subject to

X

e2�(v)

x(e) = 2 8v 2 V

0  x(e)  1 8e 2 E



Equivalent constraints

Equivalently can write subtour elimination 
constraints to express no cycles in any strict 
subset:

X

e2E(S)

x(e)  |S|� 1 8S ⇢ V, |S| � 2

S



Subtour LP

Minimize

X

e2E

c(e)x(e)

subject to

X

e2�(v)

x(e) = 2 8v 2 V

X

e2E(S)

x(e)  |S|� 1 8S ⇢ V, |S| � 2

0  x(e)  1 8e 2 E



How strong is the 
Subtour LP bound?

Johnson, McGeoch, and Rothberg (1996) and 
Johnson and McGeoch (2002) report 
experimentally that the Subtour LP is very 
close to the optimal.





How strong is the 
Subtour LP bound?

• What about in theory?

• Define 

‣ SUBT(c) as the optimal value of the Subtour LP for costs c

‣ OPT(c) as the length of the optimal tour for costs c

‣ Cn is the set of all symmetric cost functions on n vertices that 
obey triangle inequality.

• Then the integrality gap of the Subtour LP is

� ⌘ sup
n

�(n) where �(n) ⌘ sup
c�Cn

OPT (c)

SUBT (c)



A lower bound
It’s known that γ ≥ 4/3, where c(i,j) comes from the 
shortest i-j path distance in a graph G (graph TSP).

k

Graph G LP soln Opt tour



Christofides’ Algorithm
Christofides (1976) shows how to compute a tour 
in polynomial time of cost 3/2 optimal: compute a 
min-cost spanning tree, compute a matching on the 
odd-degree vertices, then “shortcut” a traversal of 
the resulting Eulerian graph.

≤ OPT(c)         + ≤ 1/2 OPT(c) ≤ 3/2 OPT(c)



An upper bound

• Wolsey (1980) and Shmoys and W (1990) 
show that OPT(c) can be replaced with 
SUBT(c), so that Christofides gives a tour of 
cost ≤ 3/2 SUBT(c).

• Therefore,

OPT (c)  3

2
SUBT (c) ) �  OPT (c)

SUBT (c)
 3

2



Perfect Matching 
Polytope

Edmonds (1965) shows that the min-cost 
perfect matching can be found as the solution 
to the linear program:

Minimize
X

e2E

c(e)z(e)

subject to

X

e2�(v)

z(e) = 1 8v 2 V

X

e2�(S)

z(e) � 1 ⇤S ⇥ V, |S| odd



Matchings and the 
Subtour LP

Then MATCH(c) ≤ 1/2 SUBT(c) since z = 1/2 
x is feasible for the matching LP.

Minimize
X

e2E

c(e)z(e)

subject to

X

e2�(v)

z(e) = 1 8v 2 V

X

e2�(S)

z(e) � 1 ⇤S ⇥ V, |S| odd
X

e2�(S)

x(e) ⇥ 2 ⇤S � V, |S| ⇥ 2

Minimize
X

e2E

c(e)x(e)

subject to

X

e2�(v)

x(e) = 2 8v 2 V

0  x(e)  1 8e 2 E

Shmoys and W (1990) also show that SUBT(c) is 
nonincreasing as vertices are removed so that matching 
on odd-degree vertices is at most 1/2 SUBT(c).



Spanning Tree Polytope
Similarly, Edmonds (1971) showed that the min-
cost spanning tree can be found as the solution 
of the following LP:

Minimize

X

e2E

c(e)z(e)

subject to

X

e2E

z(e) = |V |� 1

X

e2E(S)

z(e)  |S|� 1 S ⇢ V



Spanning Trees and the 
Subtour LP

Then MST(c) ≤ ((n-1)/n) SUBT(c) since z = 
((n-1)/n) x is feasible for the MST LP.

Minimize

X

e2E

c(e)x(e)

subject to

X

e2�(v)

x(e) = 2 8v 2 V

X

e2E(S)

x(e)  |S|� 1 8S ⇢ V, |S| � 2

0  x(e)  1 8e 2 E

Minimize

X

e2E

c(e)z(e)

subject to

X

e2E

z(e) = n� 1

X

e2E(S)

z(e)  |S|� 1 S ⇢ V

X

e2E

z(e) =
n� 1

n

X

e2E

x(e)

=
n� 1

n

· 1
2

X

v2V

X

e2�(v)

x(e)

=
n� 1

n

· 1
2
· 2n

= n� 1



Recent results
• Some recent progress on graph TSP (costs c(i,j) are the shortest i-j 

path distances in unweighted graph):

‣ Boyd, Sitters, van der Ster, Stougie (2010);  Aggarwal, Garg, Gupta 
(2011): Gap is at most 4/3 if graph is cubic.

‣ Oveis Gharan, Saberi, Singh (2010): Gap is at most 3/2 - ε for a 
constant ε > 0.

‣ Mömke, Svensson (2011): Gap is at most 1.461.

‣ Mömke, Svensson (2011): Gap is 4/3 if graph is subcubic (degree at 
most 3).

‣ Mucha (2011): Gap is at most 13/9 ≈ 1.44.

‣ Sebő and Vygen (2012): Gap is at most 1.4.



Current state

• Conjecture (Goemans 1995, others): 

4

3
 �  3

2

� =
4

3



More ignorance
We don’t even know the equivalent worst-
case ratio between 2-matching costs 2M(c) 
and SUBT(c).

Then all we know is that 

Conjecture (Boyd, Carr 2011): 

µ ⌘ sup
n

µ(n) where µ(n) ⌘ sup
c�Cn

2M(c)

SUBT (c)

10

9

 µ  4

3

(Boyd, Carr 1999)

µ =
10

9



Our contributions

• We can prove the Boyd-Carr conjecture 
(with Schalekamp and van Zuylen)



Outline

• A brief intro to the TSP

• A standard TSP linear program

• Experimental analysis

• Theoretical analysis: an outstanding open question

• A related question: the Boyd-Carr conjecture and its proof

• μ ≤ 4/3 under a certain condition.

• μ ≤ 10/9.

• Some conjectures and more experiments



Some terminology

Path edge x(e)=1
Cycle edge x(e)=1/2

Cut edge



The strategy
• Start with an optimal fractional 2-matching; this gives a 

lower bound on the Subtour LP.

• Add a low-cost set of edges to create a graphical 2-
matching: each vertex has degree 2 or 4; each component 
has size at least 3; each edge has 0, 1, or 2 copies.

• “Shortcut” the graphical 2-matching to a 2-matching.



Consider fractional 2-matchings that have no 
cut edge; we show that we can get a graphical 
2-matching with a 4/3 increase in cost.

Graphical 2M ≤ 4/3 Fractional 2M2M ≤ ≤ 4/3 Subtour



Create new graph by replacing path edges 
with a single edge of cost equal to the path, 
cycle edges with negations of their cost.

c -c
c1 c2 c1+c2

c’ -c’

New graph is cubic and 2-edge connected.



In the fractional 2-matching, double any path edge in 
matching, remove any cycle edge.  Cost is paths + cycles 
+ matching edges.

Compute a min-cost perfect matching in new graph. 

c
c1 c2

c’

c1+c2

-c’

c1+c2

-c’

2c1+2c2c

0



Why this works
For any given node on the cycle, either its 
associated path edge is in the matching or one 
of the two cycle edges.



Why this works
For any given node on the path, either its 
associated path edge is in the matching or 
not.



Bounding the cost

• P = total cost of all path edges

• C = total cost all cycle edges

• So fractional 2-matching costs P + C/2

• Claim: Perfect matching in the new graph 
costs at most 1/3 the cost of all its edges, so 
at most 1/3(P - C)



Bounding the cost

• Since the graphical 2-matching costs at most 
P + C + matching, it costs at most

P + C +
1

3
(P � C) =

4

3
P +

2

3
C =

4

3

✓
P +

1

2
C

◆

Graphical 2M ≤ 4/3 Fractional 2M2M ≤

≤ 4/3 Subtour



Matching cost

• Naddef and Pulleyblank (1981):  Any cubic, 2-edge-
connected, weighted graph has a perfect matching of 
cost at most a third of the sum of the edge weights.

• Proof: Set z(e)=1/3 for all e∈E, then feasible for 
matching LP.

⅓

⅓

⅓

⅓

⅓

⅓⅓

⅓

⅓

Minimize
X

e2E

c(e)z(e)

subject to

X

e2�(v)

z(e) = 1 8v 2 V

X

e2�(S)

z(e) � 1 ⇤S ⇥ V, |S| odd

3|S| = 2|E(S)| + |δ(S)|, so for |S| odd, |δ(S)| odd.



Proving μ ≤ 10/9
• To prove stronger results, we give a polyhedral 

formulation for graphical 2-matchings.

• For all i∈V, create i’ and i’’

- i’ required: must have degree 2

- i’’ optional: may have degree 0 or 2

• For all (i,j)∈E, create edges (i’,j’), (i’,j’’), (i’’,j’)

i’

i’’

j’ k’

j’’ k’’



The formulation

X

e2�(i0)

y(e) = 2 8i0

X

e2�(i00)

y(e)  2 8i00

X

e2�(S)�F

y(e) + |F |�
X

e2F

y(e) ⇤ 1 ⌅S ⇥ V, F ⇥ �(S), F matching, |F | odd

0  y(e)  1 8e 2 E

Can show that the extreme points of this LP are graphical 2-matchings.



Proving μ ≤10/9
Given Subtour LP soln x, set 

X

e2�(i0)

y(e) = 2 8i0

X

e2�(i00)

y(e)  2 8i00

0  y(e)  1 8e 2 E

X

e2�(S)

x(e) ⇥ 2 ⇤S � V, |S| ⇥ 2

Minimize
X

e2E

c(e)x(e)

subject to

X

e2�(v)

x(e) = 2 8v 2 V

0  x(e)  1 8e 2 E

X

e2�(S)�F

y(e) + |F |�
X

e2F

y(e) ⇥ 1

⇥S � V, F � �(S), F matching, |F | odd

y(i0, j0) =
8

9
x(i, j)

y(i00, j0) =
1

9
x(i, j)

y(i0, j00) =
1

9
x(i, j)



Edmonds (1967)



A conjecture

• Conjecture: The worst case for the Subtour 
LP integrality gap occurs for solutions that 
are fractional 2-matchings.

• Note: we don’t even know tight bounds on γ 
in this case.



An observation

• We know

‣   

• We conjecture γ ≤ 4/3.

• Coincidence?

2M(c)

F2M(c)
 4

3

(Boyd, Carr 1999)



Best-of-Many 
Christofides’

A conjectured algorithm (Oveis Gharan, Saberi, Singh 
2010;  An, Kleinberg, Shmoys 2012):

• Solve Subtour LP for x.

• Since  ((n-1)/n)x in spanning tree polytope, 
express ((n-1)/n)x as a convex combination of 
spanning trees.

• Sample a spanning tree from convex 
combination, run Christofides’ algorithm on it.



Experimental Results

Std
Max 

Entropy 
(Best)

Max 
Entropy 

(Ave)

Splitting 
Off (Best)

Splitting 
Off (Ave)

TSPLIB 9.56% 3.19% 6.12% 5.23% 6.27%

VLSI 9.73% 5.47% 7.61% 6.60% 7.64%

Graph 12.43% 0.31% 1.23% 0.88% 1.77%

(With Kyle Genova)

Percentages expressed with respect to cost of an optimal tour



Why does this help?
Experimentally, almost all degrees of sampled spanning tree are 
two.  The tree costs more, and matching edges are more 
expensive, but there are a lot fewer edges in the matching.

Standard Christofides’ Best-of-Many Christofides’





Experimental Results

Tree Matching

Std Best of 
Many Std Max 

Entropy
Splitting 

Off

TSPLIB 87.47% 98.57% 31.25% 10.75% 10.65%

VLSI 89.85% 98.84% 29.98% 12.76% 12.78%

Graph 79.10% 98.23% 39.31% 4.66% 4.34%

Percentages expressed with respect to cost of an optimal tour



Analysis

• E[cost of tree] ≤ SUBT(c) by construction.

• Would need to show E[cost of matching] ≤ 
(1/2 - ε) SUBT(c) for some ε > 0.



s-t TSP path
Given a fixed start vertex s and end vertex t, find the 
minimum-cost path from s to t visiting every other 
vertex exactly once.

• Analog of Christofides’: 5/3 (Hoogeveen 1991)

• Lower bound on integrality gap: 3/2

• Best-of-Many Christofides’: 1.618 (An, Kleinberg, Shmoys 2012)

• Improved analysis: 1.6 (Sebő 2013)

• Improved decomposition of trees:

• 1.599 (Vygen 2015)

• 1.56 (Gottschalk and Vygen 2015)

• 3/2 + 1/34 (Sebő and Van Zuylen,  April 2016)



Practice is when everything works, but we don’t understand why.

At this station, theory and practice are united, so that nothing 
works and no one understands why.”

“Theory is when we understand everything, but nothing works.



Thank you for your attention.


