
Network Flow Algorithms

David P. Williamson

Cornell University

Copyright c©2019 by David P. Williamson. All rights reserved.

ii

Rendering of Sakia on frontispiece by Bruce Edward Salters
Used by permission. All rights reserved.

Ocean’s Eleven
(c) 2001 Warner Brothers Entertainment
All Rights Reserved Used by Permission

Scripture quotations are from the ESV R© (The Holy Bible, English Standard
Version R©), copyright c©2001 by Crossway, a publishing ministry of Good News
Publishers. Used by permission. All rights reserved.

This material will be published by Cambridge University Press as Network Flow
Algorithms by David P. Williamson; see
https://www.cambridge.org/9781316636831. This pre-publication version is free
to view and download for personal use only. Not for re-distribution, re-sale or use
in derivative works. c© David P. Williamson 2019.

Preface

I have gathered a posy of other men’s flowers, and nothing but the thread that

binds them is mine own.

– Montaigne

Any new book on network flow would seem to need to justify its existence, since
the definitive book on the topic has perhaps already been written. I am referring
to the magisterial Network Flows: Theory, Algorithms, and Applications, by Ahuja,
Magnanti, and Orlin [4], written by some of the premier researchers in the theory and
practice of efficient network flow algorithms, and published in 1993; I will refer to the
book as AMO, using the initials of its authors. The late 1980s and early 1990s were
a golden era for research in combinatorial, polynomial-time algorithms for network
flow problems, and not only does AMO discuss most of the work done during this
period, it also gives an extensive overview of the entire area of network flows and
is full of applications of network flow theory to practical problems. So why another
book on the topic? I offer three reasons.

The first is a matter of focus. It is hard to be both definitive and succinct, as I know
from having tried to write a definitive book on another topic [206]. AMO is certainly
the former; it is my aim here to be the latter. In this volume, I am concerned primarily
with combinatorial, polynomial-time algorithms for network flow problems and their
analyses. The material for this book comes from having taught several iterations of
a graduate-level course in network flow algorithms in Cornell University’s School of
Operations Research and Information Engineering. The students were primarily in
operations research and computer science, but there were also some in electrical and
civil engineering. Thus I know from experience that with a bit of selection, the bulk
of the material in this book can be taught in a semester-long course. Additionally,
because the book is a result of a course, the results covered are ones that I was able
to teach successfully in a single lecture. As a consequence, results that are either
too long or too complex to cover in a single lecture are not included here. I do
not say much concerning other parts of network flow theory, such as applications or
algorithms without polynomially-bounded running times. Here the existence of AMO
is a boon; the interested reader is welcome to refer to that volume for the parts of
network flow theory that are not covered in this book.

The second reason is to provide some coverage that AMO does not. Although sev-
eral of the algorithms covered here for the maximum flow problems and minimum-

iii

iv Preface

cost circulation problems are also covered by AMO, there are some important excep-
tions. As mentioned above, although the late 1980s and early 1990s were a golden era
for research in network flow algorithms, there has continued to be work in the area
in the last twenty five years, which AMO does not cover. One notable example is the
1998 paper of Goldberg and Rao [90], giving what until recently was the theoretically
fastest known algorithm for the maximum flow problem. Another is the 1991 algo-
rithm of Wallacher [201] for the minimum-cost circulation problem; the algorithm
has a relatively simple analysis. Furthermore, interesting polynomial-time combina-
torial algorithms for several types of flow problems were emerging just as AMO went
to press, and are not covered there; I am thinking primarily of algorithms for global
minimum cut, generalized maximum flow, and multicommodity flow problems. In
recent years, specializations of interior-point methods to network flow problems have
resulted in still faster algorithms; while these algorithms are not combinatorial and
thus do not fall in the scope of this book, I include a few of these results connected
to the classical topic of electrical flows.

The third reason is that in the end, I could not really help myself. My main
area of research interest is combinatorial, polynomial-time algorithms, but with one
exception [173], none of my work has been on network flow problems. So I can
say as an unbiased outside observer that the area is one with truly beautiful and
useful algorithmic ideas that build on each other in a very aesthetically pleasing way.
Following the Montaigne quotation above, my goal in writing this book has been one
of selection and arrangement to try to bring out as best I can the beauty that is
already inherent in the algorithms and analysis of others; I hope the reader enjoys
the resulting bouquet as much as I do.

David P. Williamson
Ithaca, New York
January 2019

Acknowledgments

Beggar that I am, I am even poor in thanks, but I thank you; and sure, dear

friends, my thanks are too dear a halfpenny.

– William Shakespeare, Hamlet, Act II, Scene II

This book had its genesis in an advanced algorithms class I taught at Stanford
University in Spring 2003 (CS 361B). The section on network flow algorithms from
that class was expanded into a full-semester course in Spring 2004 when I moved to
Cornell University (ORIE 633). Since then I’ve taught several iterations of the class
(Spring 2004, Fall 2007, Fall 2012, and Fall 2015), and tried to make the material
into a more cohesive whole. I became familiar with the material on electrical flows
when I taught a spectral graph theory and algorithms course in Fall 2016. I owe
many thanks to my students from these courses for asking questions and forcing me
to clarify my presentation of the material and the exercises that were part of their
problem sets.

My first exposure to this subject came when I was a student at MIT via courses
from Ron Rivest, David Shmoys, and Michel Goemans. Some of the material they
presented, such as the Goldberg-Tarjan minimum-mean cycle canceling algorithm,
was brand new at the time. I am grateful for their clear and exciting presentations
that started my interest in this area.

Over the years I have learned a good deal from the researchers who developed the
material presented in this book, including András Benczúr, Joseph Cheriyan, Lisa
Fleischer, Hal Gabow, Andrew Goldberg, Don Goldfarb, Nick Harvey, Alan Hoffman,
David Karger, Matt Levine, Tom McCormick, Aleksandr M ↪adry, Kurt Mehlhorn, Jim
Orlin, Satish Rao, David Shmoys, Martin Skutella, Dan Spielman, Cliff Stein, Éva
Tardos, Bob Tarjan, Laci Vegh, and Kevin Wayne. I am grateful to them all for their
development of this beautiful area of work, and their willingness to share it with me.
I apologize to those I will have inevitably left off the list via oversight.

I am indebted to those who wrote excellent books in this area before me that
served as references for me, especially those of Ahuja, Magnanti, and Orlin [4], Ford
and Fulkerson [66], and Tarjan [192], as well as more general references in algorithms
and combinatorial optimization, such as those by Cook, Cunningham, Pulleyblank,
and Schrijver [44], Cormen, Leiserson, Rivest, and Stein [45], Kleinberg and Tardos
[134], Korte and Vygen [135], and Schrijver [177].

Several people took the time to look at my manuscript and pointed out various

v

vi Acknowledgments

errors and made useful suggestions. I wish to thank Joseph Cheriyan, Jakob Degen,
Daniel Fleischman, Daniel Freund, Agustin Garcia, Sam Gutekunst, Harsh Parekh,
Glenn Sun, and Jessica Xu. Rajiv Gandhi helped me by finding several students
willing to read through a draft of the manuscript.

Jon Kleinberg, Prabhakar Raghavan, and Gary Villa made very timely comments
that inspired me to take up the project of writing this book.

This book was written at Cornell University and while I was on sabbatical at
the Simons Institute on the Theory of Computing at the University of California,
Berkeley. I am grateful to both institutions for their support.

Though I acknowledge the help of so very many people, all mistakes and misun-
derstandings that remain in this volume are mine alone.

Additional materials related to the book (such as contact information and errata)
can be found at the website www.networkflowalgs.com.

Finally, I wish to thank my children, Abigail, Daniel, and Ruth, and my wife Ann
especially: without her encouragement to finish this book, it would not have been
completed.

David P. Williamson
Ithaca, New York
January 2019

Contents

Preface iii

Acknowledgments v

1 Preliminaries: Shortest Path Algorithms 1
1.1 Nonnegative Costs: Dijkstra’s Algorithm 2
1.2 Negative Costs: the Bellman-Ford Algorithm 5
1.3 Negative-Cost Cycle Detection 9

Exercises 16
Chapter Notes 17

2 Maximum Flow Algorithms 19
2.1 Optimality Conditions 21
2.2 Application: Carpool Sharing 28
2.3 Application: The Baseball Elimination Problem 30
2.4 Application: Finding a Maximum Density Subgraph 35
2.5 Most Improving Augmenting Paths 40
2.6 A Capacity Scaling Algorithm 43
2.7 Shortest Augmenting Paths 45
2.8 The Push-Relabel Algorithm 48

Exercises 59
Chapter Notes 64

3 Global Minimum Cut Algorithms 67
3.1 The Hao-Orlin Algorithm 69
3.2 The MA Ordering Algorithm 74
3.3 The Random Contraction Algorithm 78
3.4 The Gomory-Hu Tree 84

Exercises 91
Chapter Notes 94

4 More Maximum Flow Algorithms 97
4.1 Blocking Flows 97
4.2 Blocking Flows in Unit Capacity Graphs 100
4.3 The Goldberg-Rao Algorithm 102

Exercises 107
Chapter Notes 108

vii

viii Contents

5 Minimum-Cost Circulation Algorithms 110
5.1 Optimality Conditions 112
5.2 Wallacher’s Algorithm 117
5.3 Minimum-Mean Cycle Canceling 122
5.4 A Capacity Scaling Algorithm 129
5.5 Successive Approximation 134
5.6 Network Simplex 140
5.7 Application: Maximum Flow Over Time 142

Exercises 147
Chapter Notes 153

6 Generalized Flow Algorithms 157
6.1 Optimality Conditions 159
6.2 A Wallacher-Style GAP-Canceling Algorithm 166
6.3 Negative-Cost GAP Detection 171
6.4 Lossy Graphs, Truemper’s Algorithm, and Gain Scaling 175
6.5 Error Scaling 182

Exercises 185
Chapter Notes 186

7 Multicommodity Flow Algorithms 188
7.1 Optimality Conditions 189
7.2 The Two-Commodity Case 191
7.3 Intermezzo: the Multiplicative Weights Algorithm 193
7.4 The Garg-Könemann Algorithm 198
7.5 The Awerbuch-Leighton Algorithm 202

Exercises 209
Chapter Notes 210

8 Electrical Flow Algorithms 213
8.1 Optimality Conditions 213
8.2 Maximum Flow in Undirected Graphs 224
8.3 Graph Sparsification 228
8.4 A Simple Laplacian Solver 233

Exercises 241
Chapter Notes 243

9 Open Questions 245

References 247

Author index 258

Index 262

1

Preliminaries: Shortest Path Algorithms

The White Rabbit put on his spectacles. “Where shall I begin, please your

Majesty?” he asked.

“Begin at the beginning,” the King said, very gravely, “and go on till you

come to the end: then stop.”

– Lewis Carroll, Alice in Wonderland

Although we will assume that the reader has previously studied combinatorial al-
gorithms, it is useful to start by presenting algorithms for computing a shortest path.
Anyone who has studied combinatorial algorithms before will certainly have encoun-
tered these algorithms, but the ideas in them are so central to the topic of network
flow algorithms that a short overview of the two most fundamental algorithms is in
order.

In the shortest path problem we are given a directed graph G = (V,A), and a
distinguished vertex s which we will call the source. For each arc (i, j) ∈ A we are
given a cost c(i, j) of traveling from i to j. A non-empty path from s to i is a sequence
of arcs (s, j1), (j1, j2), (j2, j3),. . . , (jk, i) that starts at s, ends at i, and such that
the head of each arc is the tail of the next. If no vertex is repeated in the path, it is
a simple path. A path that starts and ends at the same vertex is called a cycle. A
simple cycle is a cycle in which only the start and end vertex are repeated.

For each i ∈ V we want to compute a path from s to i of minimum total cost, if
such a path exists; we will call it a minimum-cost path from s to i. We will let d(i)
denote the cost of such a path. If there is no path from s to i in G, then we will set
d(i) to ∞. As we will see in a moment, it is possible that the minimum-cost path
is not well-defined – this can occur if there exists a cycle such that the total cost of
the arcs in the cycle is negative – and we will eventually discuss this issue. Since we
are assigning costs, rather than lengths, to arcs we could refer to the cheapest path
problem, rather than the shortest path problem, but the latter name is standard,
and so we will use it.

Throughout the book, we will use n to denote the number of vertices in the graph
(that is, n = |V |) and m to denote the number of arcs or edges (that is, m = |A|).

The shortest path problem is, in some sense, the simplest possible type of flow
problem involving costs. Usually flow problems specify a capacity for each arc, cap-
ping the rate at which flow can enter the arc. Here we have an uncapacitated problem;
there are no capacities and we can send as much flow on an arc as we want. Then if

1

2 Preliminaries: Shortest Path Algorithms

we want to send a(i) units of flow from s to i, we compute the cheapest path from
s to i, and the cost of shipping on this path is a(i)d(i).

In what follows, we first discuss an algorithm we can use when all the arc costs
are nonnegative. Then we give an algorithm that works when arc costs are negative
(subject to the issue of negative-cost cycles).

1.1 Nonnegative Costs: Dijkstra’s Algorithm

When arc costs c(i, j) are nonnegative for all arcs (i, j) ∈ A, we can use Dijkstra’s
algorithm, due to Dijkstra [51]. The algorithm maintains a distance labeling d on the
vertices of the graph; the label d(i) is the algorithm’s current guess of the cost of the
cheapest path from s to i. As discussed above, we will refer to this as the distance
from s to i; henceforward, we will fearlessly interchange the notions of cost and
distance. We will maintain the property that the algorithm’s guess d(i) is always an
upper bound on the true shortest-path distance from s to i. This notion of a distance
labeling is one that will recur throughout our discussion of network flow algorithms.

We will also mark vertices as we become certain that their current distance label
is correct. Initially, all vertices are unmarked.

Since the algorithm maintains a distance labeling that is an upper bound on the
true distance, the easiest place to start is with d(i) =∞ for all i ∈ V . Actually, this
is overly pessimistic, because we can set the label of s to zero. Since all arc costs are
nonnegative, there cannot be a path from s to s with cost less than zero, and the
path with no arcs from s to s trivially has cost zero. Thus we can set d(s) = 0, and
mark s, since we are certain this label is correct.

What now? Well, we can update the labels for all vertices i such that there is
an arc (s, i) ∈ A. Since we know the length of the shortest path from s to s is
zero, we know that there exists a path of length at most d(s) + c(s, i) = c(s, i)
from s to i (namely, the path consisting of the single arc (s, i)). So d(s) + c(s, i)
is a legitimate upper bound on the length of the shortest path from s to i, and we
can set d(i) = min(d(i), d(s) + c(s, i)) for i such that (s, i) ∈ A. This update will
maintain the property that d(i) is an upper bound on the shortest s-i path.

The key insight for Dijkstra’s algorithm is that of all unmarked vertices, we can
now correctly mark the one with the minimum distance label; if there is more than
one vertex of minimum distance label, then we can choose one arbitrarily. We will
prove that this is correct in a moment. Suppose vertex i has minimum distance label
d(i) and we mark vertex i. Then as above, for all arcs (i, j), we know that there is a
path of length at most d(i) + c(i, j) to vertex j (consisting of the shortest s-i path
followed by the arc (i, j)). Thus we can update d(j) = min(d(j), d(i) + c(i, j)) for
all j such that (i, j) ∈ A. We then mark the unmarked vertex of minimum distance
label, and iterate. Observe that each distance label can only decrease throughout the
course of the algorithm.

In addition, by the preceding discussion, we know that the path to vertex j consists
of a path from s to some vertex i, followed by the arc (i, j). Hence we can keep track
of the current path to j by maintaining a pointer p(j) to the vertex i preceding
it on the path; we will call p(j) the parent of j. When we update d(j), if we set

1.1 Nonnegative Costs: Dijkstra’s Algorithm 3

d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
Unmark all i ∈ V
d(s)← 0
while not all vertices are marked do

Find unmarked i ∈ V that minimizes d(i) and mark i
for j such that (i, j) ∈ A do

if d(j) > d(i) + c(i, j) then
d(j)← d(i) + c(i, j)
p(j)← i

Algorithm 1.1 Dijkstra’s algorithm for the shortest path problem.

d(j) = d(i) + c(i, j), we also set p(j) = i, so that we know that the current path
from s to j is the arc (i, j) added to current path from s to i. To find the path from
s to j, we start at j and trace the parent pointers from j back to s. For simplicity,
we set the parent of s to be null.

We summarize Dijkstra’s algorithm in Algorithm 1.1, and we prove its correctness
below.

Theorem 1.1: If all arc costs are nonnegative, then Dijkstra’s algorithm (Algorithm
1.1) correctly determines the shortest distance from the source s to each vertex i ∈ V .

Proof We argue by induction on the algorithm that when the algorithm marks a
vertex j, the value d(j) must be the length of the shortest path from s to j. We
have argued previously that d(s) = 0, and clearly s is the first vertex marked by
the algorithm. Now suppose some iteration of the algorithm is about to mark vertex
j 6= s, and the algorithm has correctly computed d(i) for all vertices i previously
marked by the algorithm. We recall that d(j) is an upper bound on the length of the
shortest s-j path, so d(j) is incorrect only if there is a shortest s-j path P that has
length strictly less than d(j). Assume that such a path P exists; we will show that
we reach a contradiction. We follow path P from s to j until we reach the last vertex
i 6= j on the path that was marked; there will be some such vertex because s has
already been marked and j is not marked. Let (i, k) be the arc out of i on path P ,
with k not marked; note that possibly k = j. By our induction hypothesis, since i
has been marked, d(i) is the length of the shortest path from s to i. After we marked
i, it must have been the case that d(k) ≤ d(i)+c(i, k): either this was already true or
we set d(k) = d(i) + c(i, k) after marking i. The length of the remainder of the path
P from k to j must be nonnegative, because all the arc costs are nonnegative. Thus
d(k) is a lower bound on the length of the path P , which is strictly less than d(j) by
assumption. However, we have now reached a contradiction because k is unmarked
and has a distance label strictly less than d(j): if k = j then we have d(j) < d(j),
or if k 6= j, another unmarked vertex has minimum distance label rather than j.

It is easy to see that we can implement the algorithm in O(m + n2) = O(n2)

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

4 Preliminaries: Shortest Path Algorithms

s i k j

X X ≥ 0

Figure 1.1 Illustration of the proof of Theorem 1.1; this is the shortest s-j
path P of length strictly less than d(j). The node i is the last marked node
on the path, and k is the next node on the path, and must be unmarked.
The proof argues that then d(k) is a lower bound on the length of the path,
and thus some node other than j should have been the next to be selected
and marked.

h←new heap();
d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
d(s)← 0
for all i ∈ V do

h.insert(i, d(i))
while not h.empty? do

i←h.extract-min()
for j such that (i, j) ∈ A do

if d(j) > d(i) + c(i, j) then
d(j)← d(i) + c(i, j)
p(j)← i
h.decrease-key(j, d(j))

Algorithm 1.2 Dijkstra’s algorithm for the shortest path problem using a heap data
structure.

time by looking for the unmarked vertex of minimum label in each step (recall that
m = |A| is the number of arcs in the graph and n = |V | is the number of vertices).
Observe that we consider each arc (i, j) in the graph exactly once, when the tail i of
the arc is first marked.

We can get a better asymptotic running time by using a data structure known as
a heap. A heap contains a set of items, and each item has an associated value called
its key. A heap data structure supports the following operations: new heap(), which
returns an empty heap; h.insert(i,k), which inserts item i into heap h with key value
k; h.decrease-key(i,k′), which decreases the key of i to k′ (it is assumed that k′ is
no greater than the current key of item i); h.extract-min(), which returns an item i
of minimum key value in heap h and removes i from the heap; and h.empty?, which
returns true if the heap h has no items in it, and returns false otherwise. We can
then rewrite Algorithm 1.1 in terms of these operations, which we do in Algorithm
1.2. The items in the heap are the vertices and their keys are the distance labels.
Notice that we replace the marking of nodes with non-membership in the heap; if
the node is in the heap, then it is unmarked.

1.2 Negative Costs: the Bellman-Ford Algorithm 5

Heaps are easy to implement using arrays; we do not give the details here, but
point the interested reader to standard books on algorithms (see the chapter notes for
references). The most straightforward implementation of a heap data structure takes
O(1) time for a new heap, O(log n) time for an insert (given that we are inserting
at most n items), O(log n) time for a decrease-key, O(log n) time for an extract-
min, and O(1) time for empty?. These running times for the data structure yield an
overall running time of O(m log n) time for Dijkstra’s algorithm, since we perform
n extract-mins, n inserts, and at most m decrease-keys. Faster theoretical running
times are known: Using a data structure called a Fibonacci heap, it is possible to
implement Dijkstra’s algorithm in O(m + n log n) time. See the chapter notes for
more details.

1.2 Negative Costs: the Bellman-Ford Algorithm

We now turn to the case in which the cost of an arc may be negative. While it is
difficult to think of instances of problems involving physical travel on networks in
which there are arcs of negative length, it is often useful when modeling problems
to allow for negative costs; we will encounter this situation many times in the flow
algorithms to come.

Once we allow for negative-cost arcs, however, we have to contend with the possi-
bility that there might not be an s-i path of shortest overall length: for any bound
B, there might be a path of length less than B. See Figure 1.2 for an example: the
s-t path (s, a), (a, t) has cost 2, the path (s, a), (a, b), (b, c), (c, a), (a, t) has cost
1, the path (s, a), (a, b), (b, c), (c, a), (a, b), (b, c), (c, a), (a, t) has cost 0, and so
on. Each time we traverse the cycle a-b-c the cost drops by 1. In order to prevent
this possibility, we request that our algorithm for the shortest path problem either
finds a shortest path or states that it cannot do so because there is a negative-cost
cycle reachable from s. A cycle has negative cost if the sum of the costs of the arcs
in the cycle is negative, while a vertex i is reachable from s if there is a path from s
to i, and a cycle is reachable from s if any vertex on the cycle is reachable from s.
We leave it as an exercise to the reader (Exercise 1.2) to show that there are simple
shortest paths from s to each i ∈ V reachable from s if and only if there are no
negative-cost cycles reachable from s (recall that in a simple path, no vertex in the
path is repeated). In order to simplify our discussion somewhat, we start by assuming
that there are no negative-cost cycles in the input graph, and we then show how to
detect them in the next section.

As in Dijkstra’s algorithm, this algorithm will maintain a set of distance labels
d(i) for all i ∈ V , where initially d(s) = 0 and d(i) = ∞ for all i ∈ V, i 6= s. The
algorithm will have the property that whenever d(i) is finite, it is always the length
of some path from s to i. Here the central insight is that given an arc (i, j), whenever
d(j) > d(i) + c(i, j), we can set d(j) = d(i) + c(i, j); by our invariant, there is some
path to i of length d(i), and so we can find a shorter path to j that first visits i
and then uses arc (i, j) to get to j. As was the case for Dijkstra’s algorithm, we
also maintain a set of parent pointers p(j) that point to the previous vertex on the
current path to j. Thus when we set d(j) = d(i) + c(i, j), we know that the path

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

6 Preliminaries: Shortest Path Algorithms

s a

bc

t
1

1

1

−3

1

Figure 1.2 A negative-cost cycle on the path from s from t.

d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
d(s)← 0
for k ← 1 to n− 1 do

for all (i, j) ∈ A do
if d(j) > d(i) + c(i, j) then

d(j)← d(i) + c(i, j)
p(j)← i

Algorithm 1.3 The Bellman-Ford algorithm for the shortest path problem.

to j came from vertex i, and we set p(j) = i. Again we observe that distance labels
only decrease during the course of the algorithm.

The main idea of the analysis is to show after checking all arcs k times, we have
correctly found all shortest paths that use at most k arcs. Thus, assuming there are
no negative-cost cycles, the algorithm can terminate after n − 1 iterations through
all the arcs, since any shortest s-i path is simple and will use at most n−1 arcs. This
algorithm is traditionally attributed jointly to Bellman and Ford [18, 62], although
it was also discovered by others at around the same time; see the chapter notes
for a discussion. We summarize the Bellman-Ford algorithm in Algorithm 1.3. The
algorithm will not work correctly if the graph contains negative-cost cycles, but we
will first analyze it, and then see how to modify it in order to detect negative-cost
cycles.

Lemma 1.2: Any finite distance label d(i) is the length of some s-i path in the
network.

Proof The lemma follows easily by induction on the algorithm. At the start of
the algorithm, the only finite distance label is d(s) = 0, which is the length of
the s-s path of zero arcs. Then whenever we update a distance label d(j), we set
d(j) = d(i) + c(i, j), so that d(j) is the length of the s-i path of length d(i) (which
exists by induction) plus the arc (i, j).

Lemma 1.3: After k iterations of the Bellman-Ford algorithm (Algorithm 1.3), each
distance label d(i) is at most the length of the shortest s-i path that uses at most k
arcs.

1.2 Negative Costs: the Bellman-Ford Algorithm 7

Proof The base case is simple: at the start of the algorithm (at the end of the 0th
iteration), there is a path from s to s of length 0; this is the shortest path from s
to s with at most 0 arcs. Now for the inductive case. Consider a shortest s-j path
P that uses at most k arcs (if one exists), in which the last arc is (i, j). Then the
subpath of P from s to i of at most k− 1 arcs must be a shortest s-i path that uses
at most k− 1 arcs, since if there is a shorter s-i path using at most k− 1 arcs, then
it could be prepended to the arc (i, j) to obtain a shorter s-j path than P using at
most k arcs. By the induction hypothesis, after k − 1 iterations d(i) is at most the
length of this shortest s-i path of at most k−1 arcs. After the kth iteration, we have
updated d(j) to be at most d(i) + c(i, j), so that d(j) is at most the length of path
P , as desired.

Theorem 1.4: If there is no negative-cost cycle reachable from s, then the Bellman-
Ford algorithm (Algorithm 1.3) correctly determines the length d(i) of the shortest
path from the source s to each i ∈ V if one exists.

Proof If there are no negative-cost cycles reachable from s, then by Exercise 1.2
for each i the shortest s-i path must be simple and have at most n − 1 arcs. Thus
by Lemmas 1.2 and 1.3, at the termination of the algorithm, d(i) is the length of a
shortest s-i path.

Note that we have not yet proven that the parent pointers p give the shortest
path in the network. Although they do give the shortest paths, it will be easier to
prove this statement once we have considered the issue of negative-cost cycles in the
following section; see Corollary 1.13.

Algorithm 1.3 clearly runs in O(mn) time; in fact, we examine each arc exactly
n − 1 times and thus the algorithm takes Θ(mn) time. We can ensure that it is
possible for the algorithm to take fewer than m(n− 1) operations by observing that
we often don’t need to check whether d(j) > d(i) + c(i, j); if d(i) was not decreased
in the previous iteration of the algorithm, then none of the arcs (i, j) out of i will lead
to a decrease of d(j) in the current iteration. As a step towards making this clearer,
it will help to introduce an additional abstraction to the Bellman-Ford algorithm; the
abstraction is that of a scan. A scan of a vertex i checks all the outgoing arcs (i, j) of
i to see whether d(j) > d(i)+c(i, j), and if so, performs the appropriate update; see
the Procedure Scan. We rewrite Algorithm 1.3 in terms of scans in Algorithm 1.4.
As an exercise, the reader can check that Dijkstra’s algorithm can also be rewritten
in terms of scans so that we scan a vertex precisely when we mark it.

Now we note that we only need to scan a vertex i in an iteration if its distance label
d(i) was decreased in the previous iteration; if d(i) was unchanged in the previous
iteration, then for all arcs (i, j) coming out of i, d(j) will remain at most d(i)+c(i, j).
To implement this idea, we use a queue data structure. A queue is an ordered list of
items and implements the following operations: new queue(), which returns an empty
queue; q.add(i), which adds an item i to the end of the queue q; q.remove(), which
removes the item from the front of the queue q and returns it (if there is such an
item); q.empty?, which checks if the queue q contains any items; and q.contains?(i),
which checks if the queue q already contains item i. We assume that q.contains? is

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

8 Preliminaries: Shortest Path Algorithms

d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
d(s)← 0
for k ← 1 to n− 1 do

for all i ∈ V do
Scan(i)

Algorithm 1.4 The Bellman-Ford algorithm using scans.

for j such that (i, j) ∈ A do
if d(j) > d(i) + c(i, j) then

d(j)← d(i) + c(i, j)
p(j)← i

Procedure Scan(i)

implemented in O(1) time rather than the O(n) time it would take to scan the queue
to check for membership; we can implement the operation this way with an array, for
example, when we know in advance, as we do in this case, what elements the queue
might contain.

We can then rewrite the scan procedure and the Bellman-Ford algorithm as shown
in Procedure QScan and Algorithm 1.5. We place a vertex j in the queue when its
distance label has changed during a scan; if vertex j is not in the queue, its label has
not changed, and we do not need to perform a scan on it.

We can prove that the algorithm works correctly by an inductive argument similar
to that in the proof of Theorem 1.4 in which we replace induction on iterations with
induction on passes over the queue.

Theorem 1.5: If there are no negative-cost cycles reachable from s, then Algorithm
1.5 correctly determines the length d(i) of the shortest path from the source s to each
i ∈ V if one exists.

Proof As suggested above, we apply induction on passes over the queue. Pass 0
ends after s is initially added to the queue, pass 1 ends after the initial scan of s,
and in general pass k ends after the scans of all vertices added to the queue in pass
k − 1. The induction hypothesis is that at the end of the kth pass, d(i) is at most
the length of a shortest s-i path of at most k arcs, and the proof proceeds as in the
proof of Theorem 1.4.

If there are no negative-cost cycles reachable from s, then the shortest s-i path
can have at most n − 1 arcs in it, and thus by the end of the (n − 1)st pass, the
value of d(i) will be the length of this path. Also, since the d(i) are the lengths of
the shortest paths from s to i, d(j) ≤ d(i) + c(i, j) for all (i, j) ∈ A with i reachable
from s, since otherwise there would be a shorter path from s to j. Thus no further
vertices will be added to the queue, and the algorithm will terminate. Since there
are at most n− 1 passes, and each pass considers each vertex at most once, at most

1.3 Negative-Cost Cycle Detection 9

for j such that (i, j) ∈ A do
if d(j) > d(i) + c(i, j) then

d(j)← d(i) + c(i, j)
p(j)← i
if not q.contains?(j) then

q.add(j)

Procedure QScan(i, q)

d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
d(s)← 0
q ←new queue()
q.add(s)
while not q.empty? do

QScan(q.remove(), q);

Algorithm 1.5 The Bellman-Ford algorithm using queues.

all m arcs are considered in each pass. Thus the running time of the algorithm is
O(mn).

1.3 Negative-Cost Cycle Detection

We now wish to modify the Bellman-Ford algorithm so that it terminates with the
shortest paths if there are no negative-cost cycles reachable from s, or stops if it
detects a negative-cost cycle reachable from s in the input graph. Finding negative-
cost cycles is in itself a useful subroutine that we will need later when we discuss
minimum-cost circulation algorithms.

To begin our discussion, we return to our initial version of Bellman-Ford in Algo-
rithm 1.3. We show a condition that we can check at the end of the algorithm that
lets us convince ourselves that there is no negative-cost cycle.

Lemma 1.6: There are no negative-cost cycles reachable from s if and only if d(j) ≤
d(i) + c(i, j) for all (i, j) ∈ A with i reachable from s at the end of Algorithm 1.3.

Proof If at the end of Algorithm 1.3, d(j) > d(i) + c(i, j) for some (i, j) ∈ A, this
implies that we could find a shorter path to j by taking the s-i path of length d(i)
(which exists by Lemma 1.2) then arc (i, j); thus the algorithm has not correctly
computed the shortest s-j path. Since Theorem 1.4 argues that the algorithm com-
putes the shortest path lengths if there is no negative-cost cycle reachable from s,
the hypothesis must be false, and there must exist a negative-cost cycle reachable
from s.

If, for all (i, j) ∈ A with i reachable from s, d(j) ≤ d(i) + c(i, j), then given any

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

10 Preliminaries: Shortest Path Algorithms

s j

i
C P

Figure 1.3 Illustration of the proof of Lemma 1.9. The path P with the
wavy line is before the update that adds arc (i, j) to the parent graph.

d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
d(s)← 0
for k ← 1 to n− 1 do

for all (i, j) ∈ A do
if d(j) > d(i) + c(i, j) then

d(j)← d(i) + c(i, j)
p(j)← i

for all (i, j) ∈ A do
if d(j) > d(i) + c(i, j) then

return “negative-cost cycle exists”

Algorithm 1.6 A negative-cost cycle detection algorithm.

cycle C reachable from s, we see that∑
(i,j)∈C

c(i, j) ≥
∑

(i,j)∈C

(d(j)− d(i)) = 0,

since all the terms cancel. Therefore, C cannot have negative cost.

Lemma 1.6 gives an immediate method for detecting if there is a negative-cost
cycle, though it does not say how to find the cycle: we simply check at the end of
algorithm if d(j) ≤ d(i) + c(i, j) for all (i, j) ∈ A; if the condition holds, there is no
negative-cost cycle, otherwise there is. We summarize this algorithm in Algorithm
1.6.

A disadvantage of this algorithm, in addition to not finding the cycle, is that it
takes n iterations and Θ(mn) time. We would like the algorithm to terminate earlier
if possible when a negative-cost cycle is detected. To give such an algorithm, we
return to the parent pointers used by the algorithm, and introduce the concept of
the parent graph, which we denote Gp. The parent graph consists of the set of arcs
(p(j), j) for all j ∈ V for which p(j) is defined. Note that while we follow the parent
pointers backwards from a node j to s to obtain an s-j path, the parent graph Gp

gives the path directed from s to j and contains a subset of arcs from G. We will
show below that a negative-cost cycle will appear in the parent graph Gp if and only

1.3 Negative-Cost Cycle Detection 11

d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
d(s)← 0
for k ← 1 to n do

for all (i, j) ∈ A do
if d(j) > d(i) + c(i, j) then

d(j)← d(i) + c(i, j)
p(j)← i
if Gp has a cycle C then

return C

Algorithm 1.7 Another negative-cost cycle detection algorithm.

if there is a negative-cost cycle reachable from s. This will suggest a simple algorithm
for finding a negative-cost cycle: at every step check the parent graph Gp for cycles.

Lemma 1.7: At any point in Algorithm 1.3, if arc (i, j) is in the parent graph Gp,
d(j) ≥ d(i) + c(i, j).

Proof At the point at which the arc (i, j) is added to Gp, we have d(j) = d(i) +
c(i, j). Recall that distance labels only decrease through the course of the algorithm.
Thus if the arc remains in the graph (that is, p(j) and thus d(j) are not updated),
d(i) can decrease, while d(j) remains the same; therefore, d(j) ≥ d(i) + c(i, j).

Lemma 1.8: For any h-` path P in the parent graph Gp, the cost of the path,∑
(i,j)∈P c(i, j), is at most d(`)− d(h).

Proof By Lemma 1.7,
∑

(i,j)∈P c(i, j) ≤
∑

(i,j)∈P (d(j)− d(i)) = d(`)− d(h).

Lemma 1.9: Suppose a cycle appears in Gp. The first cycle to appear in Gp has
negative cost and is reachable from s.

Proof The first cycle C to appear in the parent graph Gp must have appeared
because we added the arc (i, j) to Gp, but j was part of an s-i path in Gp before
the update (see Figure 1.3). If P is the path in Gp from j to i, and d(i) and d(j)
are the labels before the update, then by the above, and Lemma 1.8, we have that∑

(k,l)∈C c(k, l) = c(i, j) +
∑

(k,l)∈P c(k, l) ≤ c(i, j) + d(i) − d(j). But since we
performed the update, it must have been because d(j) > d(i)+ c(i, j), and therefore
c(i, j) + d(i)− d(j) < 0 and the total cost of the arcs in the cycle C is negative.

Thus if we find a cycle in the parent graph Gp, the lemma above shows that it
must be a negative-cost cycle. As a first attempt at an algorithm using this insight,
we modify the Bellman-Ford algorithm to take n iterations, but on each update we
check Gp for cycles; we give this algorithm in Algorithm 1.7. This algorithm is not
fast because it can take O(n) time to check Gp for a cycle, giving an overall running
time of O(mn2). However, once we prove that this algorithm is correct, we show how
we can modify it so that the time to check Gp for a cycle can be amortized over the
operations used to update the parent graph.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

12 Preliminaries: Shortest Path Algorithms

Lemma 1.10: If Algorithm 1.7 does not return a cycle, d(s) = 0.

Proof If d(s) is ever altered, then its parent pointer p(s) is changed to a vertex i
such that there exists some s-i path, and this results in a cycle in Gp. Thus if no
cycle is returned then d(s) = 0 at the end of the algorithm.

Lemma 1.11: Throughout the execution of Algorithm 1.7, the parent graph Gp is a
tree directed out of s.

Proof We show by induction on the algorithm that the arcs (p(j), j) for all j such
that p(j) 6= null form a tree directed out of s. There are initially no arcs in Gp. If
we add an arc (i, j) to Gp it is because d(i) is finite, and by induction i is reachable
from s in the parent graph Gp. If adding (i, j) to Gp causes a cycle, the algorithm
terminates; otherwise we update p(j) to i, and have a path from s to j.

Theorem 1.12: Algorithm 1.7 either correctly computes the shortest path from s to
all vertices i ∈ V , or it correctly detects and returns a negative-cost cycle reachable
from s.

Proof By Lemma 1.9, if the algorithm returns a cycle C, then C is a negative-cost
cycle. We now show that if there is a negative-cost cycle C reachable from s, the
algorithm will return a negative-cost cycle C. By Lemma 1.6, if there is a negative-
cost cycle reachable from s, then at the end of the algorithm, in the nth iteration,
there must be some (i, j) ∈ A such that d(j) > d(i) + c(i, j) for i reachable from s.
Then by Lemma 1.3, after updating d(j) in the nth iteration, d(j) is less than the
cost of any simple s-j path, since after n− 1 iterations it was no more than the cost
of any simple path, and it has since decreased. However, if there is no cycle in Gp,
then by Lemmas 1.8 and 1.11, there must be a simple s-j path P in Gp of cost at
most d(j)− d(s). By Lemma 1.10, d(s) = 0. Thus the cost of the simple path P is
at most d(j), but this is a contradiction, since d(j) has cost less than any simple s-j
path. Thus if d(j) > d(i) + c(i, j) for some (i, j) in the nth iteration, a cycle must
appear in Gp.

Corollary 1.13: If there is no negative-cost cycle reachable from s in the graph, then
Algorithms 1.3, 1.4, and 1.5 correctly find the shortest path from s to all vertices
i ∈ V in Gp.

Proof If there is no negative-cost cycle reachable from s in the graph, then d(i) is
the length of the shortest s-i path in the graph (by Theorems 1.4 and 1.5), there is
a simple s-i path that is shortest (by Exercise 1.2), and there is a simple s-i path in
Gp of length at most d(i) (by Lemmas 1.8 and 1.10). Thus the s-i path in Gp must
be the shortest s-i path.

Finally, we discuss how we can have the advantage of an algorithm that terminates
early if it detects a cycle in Gp together with an O(mn) running time. To do this, we
modify the version of the Bellman-Ford algorithm from Algorithm 1.5, which uses
queues and the scan operation. We observe that setting p(j) to i causes a cycle in
the parent graph Gp exactly when i is in the subtree rooted at j. So we can check
whether setting p(j) to i causes a cycle by starting at j and exploring the subtree

1.3 Negative-Cost Cycle Detection 13

j

i

Figure 1.4 Illustration of detecting cycles via subtrees.

for j such that (i, j) ∈ A do
if d(j) > d(i) + c(i, j) then

Traverse subtree of Gp rooted at j
if i in subtree of Gp rooted at j then

Let C be the cycle closed by (i, j) and j-i path in Gp

return C

else
for all i′ in subtree of Gp rooted at j do

p(i′)← null

d(j)← d(i) + c(i, j)
p(j)← i
if not q.contains?(j) then

q.add(j)

Procedure NCCScan(i, q)

rooted at j by following arcs in the parent graph. If we find i, then setting p(j) to i
will cause a cycle (see Figure 1.4). This operation takes O(n) time and so it seems
that we have not made much progress. However, if we were to traverse each arc at
most once, then the time taken to traverse each arc in the subtree rooted at j can
be charged to the time at which the arc was created. In order to make sure that we
do not traverse an arc multiple times, if there is no cycle – that is, we do not find
i in the subtree of j – then we delete every arc in the subtree of j: in particular,
for each i′ in the subtree rooted at j, we set p(i′) to null. We justify deleting the
arc as follows: because i′ was in the subtree of j in Gp, the shortest s-i′ path found
so far by the algorithm goes through j, and we have just decreased d(j). So after
some number of iterations of the algorithm, the distance label d(i′) is also going to
decrease, at which point we will add an arc out of i′ to the parent graph Gp once
again. Furthermore, to save ourselves a bit of effort, since we know that d(i′) will
eventually decrease, we do not scan i′ until after this decrease occurs; we can check
for the decrease by looking to see if p(i′) is null. We summarize this algorithm in
Algorithm 1.8.

We now prove that the algorithm is correct and runs in O(mn) time. Because we

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

14 Preliminaries: Shortest Path Algorithms

d(i)←∞ for all i ∈ V
p(i)← null for all i ∈ V
d(s)← 0
q ←new queue()
NCCScan(s,q)
while not q.empty? do

i←q.remove()
if p(i) 6= null then

NCCScan(i,q)

Algorithm 1.8 A final negative-cost cycle detection algorithm.

now remove edges from the parent graph and do not scan each updated vertex in
each pass over the queue, we will need to modify some of our basic helper lemmas and
our overall proof approach. As in the proof of Theorem 1.5, we will apply induction
on the passes of the algorithm over the queue.

Lemma 1.14: Throughout the execution of Algorithm 1.8, the parent graph Gp is a
tree directed out of s.

Proof We show by induction on the algorithm that the arcs (p(j), j) for all j such
that p(j) 6= null form a tree directed out of s. There are initially no arcs in Gp. If
we add an arc (i, j) to Gp it is because we scanned i, which we can only do if p(i) is
not null; thus by induction i is reachable from s in the parent graph Gp. If adding
(i, j) causes a cycle, the algorithm terminates; otherwise we update p(j) to i and
remove the entire subtree rooted at j, so that what remains is still a tree rooted at
s.

Lemma 1.15: If Algorithm 1.8 does not return a cycle, d(s) = 0.

Proof If d(s) is ever altered, then it is by considering arc (i, s) during a scan of i.
We can only scan i if p(i) is defined, so by Lemma 1.14, i is reachable from s in Gp.
Thus i is in the subtree rooted at s and the algorithm will return a negative-cost
cycle and terminate.

Lemma 1.16: At any point in Algorithm 1.8, for any arc (i, j) in the parent graph
Gp, d(j) = d(i) + c(i, j).

Proof At the point at which the arc (i, j) is added to Gp, we have d(j) = d(i) +
c(i, j). If d(i) is updated via a scan to a node h with arc (h, i), and a negative-cost
cycle is not returned, then since j is in the subtree of i in Gp, the arc (i, j) is deleted
from Gp.

Lemma 1.17: Throughout the execution of Algorithm 1.8, any ` in the parent graph
Gp has d(`) equal to the cost of the s-` path in Gp.

Proof Following the proof of Lemma 1.8 and using Lemmas 1.15 and 1.16, for an

1.3 Negative-Cost Cycle Detection 15

s-` path P in Gp,∑
(i,j)∈P

c(i, j) =
∑

(i,j)∈P

(d(j)− d(i)) = d(`)− d(s) = d(`).

In the proof of Theorem 1.5, we performed induction on the number of passes to
show that after k passes, d(i) is always at most the length of the shortest s-i path of
at most k arcs. Now, however, because we may skip the scan of a node i when p(i)
is null, we cannot use the same induction. However, we can prove the following.

Lemma 1.18: Any finite distance label d(i) updated in the kth pass is the length of
a simple s-i path with at least k arcs.

Proof Whenever the distance label d(i) is updated, i becomes part of the tree in
Gp, and thus by Lemma 1.17, d(i) is the length of the simple s-i path in the tree. At
the end of pass 0, the s-s path is in the tree and d(s) is the length of this path that
has zero arcs. If distance label d(j) is updated in the kth pass by considering arc
(i, j), then d(i) was updated in pass k − 1, and by induction, the s-i path of length
d(i) has at least k− 1 arcs in it. Therefore, the s-j path formed by the s-i path plus
arc (i, j) has at least k arcs in it.

Because we can now have vertices i with finite distance label d(i) that nevertheless
do not have a path from s to i in Gp throughout the algorithm, we need to ensure
that there is a path from s to i in the final parent graph Gp. The following lemma
shows that this indeed is the case.

Lemma 1.19: Suppose that there are no negative-cost cycles reachable from s. If
d(j) is updated to the length of the shortest s-j path, then d(j) is not updated in
future passes and j is part of the tree in Gp throughout the rest of the algorithm.

Proof Since there are no negative-cost cycles reachable from s, the s-s path of
length 0 is the shortest s-s path; initially, d(s) is set to 0 and s is part of the tree
in Gp throughout the algorithm. Now consider the shortest s-j path for j 6= s; let
(i, j) be the final arc of the path. By hypothesis, at some point d(j) is updated to
the length of the shortest s-j path. Note that when d(j) is updated to the length of
the shortest s-j path, every vertex ` on the path already has d(`) equal to the length
of the shortest s-` path. Note that d(`) will not be updated in future iterations:
by Lemma 1.18, d(`) is always the length of some simple s-` path, and there is no
shorter simple s-` path. When d(j) is updated to the length of the shortest s-j path,
(i, j) is added to the tree in Gp. The arc (i, j) is never removed because none of the
predecessors of j on the path is ever updated.

Finally, we can show that the algorithm is correct.

Theorem 1.20: Algorithm 1.8 runs in O(mn) time and either correctly computes
the shortest path from s to each i ∈ V , or it correctly detects and returns a negative-
cost cycle reachable from s.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

16 Preliminaries: Shortest Path Algorithms

Proof If the algorithm updates a distance label d(i) in the nth pass of the algorithm,
then by Lemma 1.18, it is the length of a simple s-i path of at least n arcs, which
is a contradiction, and indicates the presence of a negative-cost cycle. Therefore the
algorithm terminates by the end of the nth pass, either by returning a negative-cost
cycle or not. If the algorithm returns a cycle C, then by Lemma 1.9 it has negative
cost and is reachable from s. Since the algorithm must terminate after the nth pass,
and at worst each arc is processed in each pass, the running time is O(mn) except for
the operation of traversing subtrees used in detecting cycles. However, we charge the
cost of traversing each arc in the subtree to the operation that added the arc to the
parent graph in the first place. As the arc is removed after the subtree is traversed,
it is clear that we do not charge the event of adding the arc more than once. Thus
the algorithm runs in O(mn) time.

If the algorithm terminates without returning a cycle, then there must have been
no further updates needed to the distance labels, so that d(j) ≤ d(i) + c(i, j) for
all (i, j) ∈ A with i reachable from s; it then follows from Lemma 1.6 that the
algorithm correctly states that there are no negative-cost cycles reachable from s.
Let P be a shortest s-` path. Then all nodes on P are reachable from s so that∑

(i,j)∈P c(i, j) ≥
∑

(i,j)∈P (d(j) − d(i)) = d(`) − d(s). By Lemma 1.15, d(s) = 0,
so that d(`) ≤

∑
(i,j)∈P c(i, j). Since, by Lemma 1.18, d(`) is always the length of

a simple s-` path, it cannot be the case that d(`) is less than the cost of the path
P , so it must equal the cost of the path P . Then by Lemma 1.19, vertex ` must be
part of the tree in Gp, and by Lemma 1.17, d(`) is equal to the length of the path
in Gp.

While this final algorithm seems more complicated that the prior ones, compu-
tational studies have shown it to be particularly effective for both shortest-path
computation and negative-cost cycle detection; see the chapter notes for further dis-
cussion.

Many of these ideas for negative-cost cycle detection based on the Bellman-Ford
algorithm turn out to be very useful for other applications in network flow algorithms.
In Exercise 1.4, we ask the reader to extend these ideas to finding a minimum mean-
cost cycle, which is the basis for a minimum-cost circulation algorithm given in
Section 5.3. Exercise 1.5 generalizes finding the minimum mean-cost cycle to the
minimum cost-to-time ratio cycle problem, which gets used in another minimum-
cost circulation algorithm in Section 5.2. We’ll also see a generalization of the idea
of a negative-cost cycle to something called a negative-cost generalized augmenting
path in Section 6.3 when we discuss algorithms for the generalized flow problem in
Chapter 6.

Exercises

1.1 Suppose that for each arc (i, j) ∈ A, its cost c(i, j) = 1. Show that Dijkstra’s algorithm

can be implemented in O(m) time; we assume that all vertices are reachable from s

and thus m ≥ n− 1.

1.2 Show that there are simple shortest paths from s to each i ∈ V reachable from s if

and only if there are no negative-cost cycles reachable from s.

Exercises 17

1.3 A directed acyclic graph, or a DAG, is a directed graph with no cycles.

(a) Prove that any DAG must have a vertex that has no arcs directed into it.

(b) Given a DAG, let s be a vertex with no arcs directed into it. Give an O(m) time

algorithm for finding the shortest path from s to i for each vertex i ∈ V .

(c) Given a DAG, let s be a vertex with no arcs directed into it. Give an O(m) time

algorithm for finding the longest path from s to i for each vertex i ∈ V .

1.4 In this exercise, we want to compute the minimum mean-cost cycle C in a directed

graph. We are given a directed graph G = (V,A) with costs c(i, j) for all (i, j) ∈ A,

and we wish to compute

µ = min
cycles Γ∈G

c(Γ)

|Γ| ,

where c(Γ) =
∑

(i,j)∈Γ c(i, j). You may assume that all vertices of G are reachable

from some vertex s ∈ V . Let dk(j) be the value of the distance label for j in the kth

iteration of the Bellman-Ford algorithm given in Algorithm 1.3. Show that

µ = min
j∈V

max
0≤k≤n−1

[
dn(j)− dk(j)

n− k

]
.

and thus can be computed in O(mn) time. Also show that we can find the cycle Γ

for which µ = c(Γ)/|Γ| in the same running time. (Hint: observe that if we subtract

µ from the cost of each arc, then the graph will have no negative-cost cycles, while if

we subtract anything larger, there will be a negative-cost cycle).

1.5 In this exercise, we consider the minimum cost-to-time ratio cycle problem. This

problem generalizes the minimum mean-cost cycle problem given in Exercise 1.4. Let

G = (V,A) be a directed graph, with integer costs c(i, j) and integer times t(i, j) ≥ 0

for each (i, j) ∈ A. Assume that for every cycle Γ, t(Γ) =
∑

(i,j)∈Γ t(i, j) > 0. Let

T = max(i,j)∈A t(i, j) and C = max(i,j)∈A c(i, j).

(a) Give a O(mn log(nCT)) time algorithm for finding a cycle that minimizes

min
cycles Γ∈G

c(Γ)

t(Γ)
.

Note that in the case t(i, j) = 1 for all (i, j) ∈ A, this is just the problem of finding

a minimum mean-cost cycle.

(b) Now suppose that the times t(i, j) are not integers but rather rational numbers such

that max(i,j)∈A t(i, j) ≤ T and min(i,j)∈A t(i, j) ≥ 1/T . Explain why a O(mn log(nCT))

algorithm is still possible.

Chapter Notes

There are three kinds of lies: lies, damned lies, and statistics.

— attributed to Mark Twain

There are at least four kinds of lies: lies, damned lies, statistics, and big-oh

notation.

— Michael Langston [137, p. 10]

In theory, there is no difference between theory and practice. In practice, there

is.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

18 Preliminaries: Shortest Path Algorithms

— Often misattributed to Yogi Berra1

The literature on algorithms for shortest path problems is vast, and we restrict
our overview here to the topics covered in the chapter. See Schrijver [177, Chapters
6-8] for more in-depth coverage of the shortest path problem, along with an extensive
historical survey on the origins of the algorithms presented here. As the quotes above
suggest, we will try in these notes to pay some attention to the experimental studies
that have been performed on algorithms discussed, so that we can note when there
are differences between what is known in theory and practice.

Dijkstra’s algorithm in Section 1.1 is due to Dijkstra [51]. For explanations of the
implementation of heaps, see, for instance, Chapters 6 and 19 of Cormen, Leiserson,
Rivest and Stein [45] or Section 2.5 of Kleinberg and Tardos [134]. As we mentioned,
a theoretically faster running time for Dijkstra’s algorithm is obtained using a par-
ticular implementation of heaps known as Fibonacci heaps, introduced by Fredman
and Tarjan [71]. The running times of the operations for a Fibonacci heap are amor-
tized running times, so that, for instance, an O(1) operation may not truly take O(1)
time, but can charge some of its running time to operations previously executed. The
Fibonacci heap takes amortized O(1) time for each insert and decrease-key, so that
the overall running time of Dijkstra’s algorithm is then O(m + n log n) time. How-
ever, Fibonacci heaps are not considered practical compared to array-based heaps
or another data structure called a pairing heap [70], though array-based heaps and
pairing heaps do not have the same theoretical performance as Fibonacci heaps. See
Larkin, Sen, and Tarjan [138] for an experimental survey of heap data structures.

Ford [62] originally proposed an algorithm in which one looked for arcs (i, j) such
that d(j) > d(i) + c(i, j) and updated d(i) ≤ d(j) + c(i, j). If these updates are
applied in an arbitrary order, then it can take an exponential number of operations
to find the shortest paths; see Johnson [117, Section 3]. The algorithm in Section 1.3
that applies the updates to all arcs in order n − 1 times can be found in Bellman
[18] and Moore [149], and hence the algorithm is sometimes called the Bellman-Ford-
Moore algorithm (by Cherkassky and Goldberg [38], for example). However, Schrijver
[177, pp. 121–125] points out that in Bellman’s paper, Dantzig and Woodbury are
mentioned as also having obtained the algorithm independently. In order to avoid a
proliferation of people in the name for the algorithm, we follow Schrijver [177] and
Cormen et al. [45] in sticking with the historic but inaccurate name of Bellman-Ford.

Cherkassky and Goldberg [38] give an overview of negative-cost cycle detection
algorithms, along with an experimental study. They attribute Algorithm 1.6 to Bell-
man [18], Ford [62], and Moore [149]. Use of the parent graph Gp is unattributed,
but they reference a book of Tarjan for a discussion of the method [192]. They at-
tribute the variation of Algorithm 1.8 to Tarjan [191]. Kleinberg and Tardos [134,
pp. 304–307] also include a discussion of Algorithm 1.8. Cherkassky and Goldberg
found that this algorithm was typically the fastest in their experiments.

Exercise 1.4 is due to Karp [126]. Exercise 1.5 is due to Lawler [139].

1 “I really didn’t say everything I said.” – Yogi Berra.

2

Maximum Flow Algorithms

This book presents one approach to that part of linear programming theory

that has come to be encompassed by the phrase “transportation problems” or

“network flow problems.” We use the latter name, not only because it is more

nearly suggestive of the mathematical content of the subject, but also because it

is less committed to one domain of application. Since many of the applications

that are examined have little to do with transportation [...], it seems appropriate

not to stress one particular applied area over others.

– L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks

We now turn to the founding problem of network flow theory, the maximum flow
problem, and its dual problem, the minimum s-t cut problem. These two problems
have proven to be enormously useful in modeling various problems involving networks
of all kinds: road networks, railway networks, computer networks, social networks,
and others. Usually we are modeling the flow of material from one part of the network
to the other, and the flow can be cars, trains, recommendations, bits, trust, and many
other items and concepts. Quite interestingly, these two problems have also proven
useful in modeling problems that do not obviously involve networks or the flow of
material. We will give a few examples, one in determining when baseball teams
cannot win their division, another in deciding fair ways to allocate driving duties in
carpools, and another in finding the densest subgraph of a given undirected graph.

We formally define the maximum flow problem as follows. We are given as input
a directed graph G = (V,A), and capacities on the arcs u(i, j) that are nonnegative
integers. We also have two distinct vertices s, t ∈ V ; we call s the source and t
the sink. The source s is the origin of the material of the flow, and the sink t is its
destination. The goal is to find a flow f that maximizes the net flow coming out of
the source, subject to the capacities on the arcs and the conservation of flow at the
vertices. We define a flow as follows.

Definition 2.1: An s-t flow f : A→ <≥0 is an assignment of nonnegative reals to
the arcs such that the following two properties are obeyed:

• for all arcs (i, j) ∈ A,

0 ≤ f(i, j) ≤ u(i, j); (2.1)

• for all i ∈ V such that i 6= s, t, the total flow entering i is equal to the flow leaving

19

20 Maximum Flow Algorithms

s t

5

2

4

3

6

s t

5/5

2/2

2/4

3/3

5/6

Figure 2.1 An instance of the maximum flow problem (on the left) and a
flow (on the right). The flow has value 7. The number next to each arc in
figure on the left represents the capacity of the arc. The notation “x/y” next
to each arc in the figure on the right represents x units of flow used of the
capacity of y.

i; that is, ∑
k:(k,i)∈A

f(k, i) =
∑

k:(i,k)∈A

f(i, k). (2.2)

The constraints in (2.1) are usually called capacity constraints and those in (2.2)
are called flow conservation constraints. With every flow f we associate a value,
which we denote |f |. It is the net amount of flow leaving the source; that is, the total
amount of flow leaving the source minus the amount of flow entering the source.

Definition 2.2: The value of an s-t flow f is

|f | ≡
∑

k:(s,k)∈A

f(s, k)−
∑

k:(k,s)∈A

f(k, s).

The reader might ask why the value of the flow is the net amount of flow leaving
the source rather than the net amount of flow entering the sink, but due to flow
conservation, these two amounts are always the same, and we leave it as an exercise
to the reader to show this fact (Exercise 2.1).

Thus the goal of the maximum flow problem is to find an s-t flow f that maximizes
|f |. We say that a flow is maximum (or optimal) if it is a flow of maximum value.
Note that because the capacities are nonnegative integers, the flow f = 0 (that is
f(i, j) = 0 for all (i, j) ∈ A) is always an s-t flow, so that the value of the maximum
flow is always nonnegative. We give a sample instance of the maximum flow problem,
and a sample flow in Figure 2.1. The reader should check that the capacity constraints
and the flow conservation constraints are obeyed.

It will simplify our proofs to introduce a somewhat unconventional redefinition
of a flow, in which we consider only upper bounds on flow values rather than both
upper and lower bounds. For each arc (i, j) ∈ A, we will introduce an additional
reverse arc (j, i) to A, and we impose the condition that if f(i, j) units of flow are
on arc (i, j), then −f(i, j) units of flow are on the reverse arc (j, i). This additional
condition is known as skew symmetry. Now the lower bound f(i, j) ≥ 0 on flows can
be replaced by the condition that u(j, i) = 0, so that f(j, i) ≤ u(j, i) implies that

2.1 Optimality Conditions 21

f(i, j) = −f(j, i) ≥ −u(j, i) = 0. Furthermore, under the new definition, the sum
of the flows on the outgoing arcs from a node i is equal to the net flow out of i under
the previous definition. That is, if A′ is the new set of arcs (including the reverse
arcs) then ∑

k:(i,k)∈A′
f(i, k) =

∑
k:(i,k)∈A

f(i, k)−
∑

k:(k,i)∈A

f(k, i).

Thus the flow conservation constraint becomes∑
k:(i,k)∈A′

f(i, k) = 0

for i 6= s, t; see Figure 2.2 for an illustration of the difference between the old
and new flow conservation constraints. Similarly, the value of the flow is |f | =∑

k:(s,k)∈A′ f(s, k). From now on we will simply refer to the new set of arcs as A. We
summarize the new definition of a flow below.

Definition 2.3: An s-t flow f : A → < is an assignment of reals to the arcs such
that the following three properties are obeyed:

• for all arcs (i, j) ∈ A,

f(i, j) ≤ u(i, j); (2.3)

• for all i ∈ V such that i 6= s, t, the net flow leaving i is zero; that is,∑
k:(i,k)∈A

f(i, k) = 0; (2.4)

• for all (i, j) ∈ A,

f(i, j) = −f(j, i). (2.5)

2.1 Optimality Conditions

We now start our discussion of the maximum flow problem by asking how one can
tell whether a given flow is maximum or not. For instance, consider the flow given
in Figure 2.3. Is the flow maximum? The reader should verify that for any s-t path
of arcs with positive capacity, we cannot increase the flow along the path without
violating capacity constraints.

In fact, the flow of Figure 2.3 is not maximum; we can obtain a larger flow of value
|f | = 5, as shown in Figure 2.4. We also see from the figure that any unit of flow
from s to t must go through one of the arcs from inside the region in the diagram
to outside the region; thus we claim that the value of the flow cannot be larger than
the total capacity of these arcs, which is u(a, d) + u(b, d) + u(e, t) = 1 + 2 + 2 = 5.
If the claim is correct, then the flow of value 5 is maximum; it cannot be larger.

We now wish to formalize the intuition we used above. We say that an s-t cut
is a subset of vertices S ⊆ V such that s ∈ S and t /∈ S; this corresponds to the
region in the figure. We denote the set of all arcs leaving a set S by δ+(S); that

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

22 Maximum Flow Algorithms

i

a

b

c

d

i

a

b

−c

−d

−a

−b

c

d

Figure 2.2 Flow conservation in the two different definitions of a flow. On
the left, we have a flow according to Definition 2.1. On the right, we have a
flow according to Definition 2.3; given skew symmetry, it is sufficient to sum
the outgoing arcs to check whether the net flow at a node is zero. In
particular, on the left, we have flow out minus flow in is c+ d− (a+ b),
whereas on the right the flow on the outgoing arcs sums to
(−a) + (−b) + c+ d.

s

a

b

c e

t

d

2/
2

1/1

1/3

0/1

2
/
2

−2
/0

2/
2

1/1

−1/0

−
2/

0

1/2

−
1/0

2/4

0/0

−2
/0

2/
2

−
1/0

−1/0

−
2/0

−
2/

0

Figure 2.3 Sample maximum flow instance of value |f | = 4. Is it maximum?

2.1 Optimality Conditions 23

s

a

b

c e

t

d

2/
2

1/1

2/3

1/1

1
/
2

−2
/0

2/
2

0/1

−1/0

−
1/

0

2/2

−
2/0

3/4

−1/0

−2
/0

2/
2

0/0

−2/0

−
3/0

−
2/

0

Figure 2.4 Another flow, of value |f | = 5. The enclosing thick lines shows
that the flow cannot be larger, since only 1+2+2=5 units of capacity are
available on arcs leaving the enclosed set of nodes.

is, δ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S}. Sometimes we say that the arcs of δ+(S)
are the arcs in the cut defined by S. The set of all arcs entering a set S is denoted
δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S}. The capacity of an s-t cut S is the sum of the
capacities of all the arcs leaving S (or in the cut defined by S), and we write it as
u(δ+(S)) ≡

∑
(i,j)∈δ+(S) u(i, j). We can now prove the claim that we made above;

namely, for any flow f and s-t cut S, the value of the flow is at most the capacity of
the cut.

Lemma 2.4: For any s-t flow f and any s-t cut S, |f | ≤ u(δ+(S)).

Proof Using the definition of the value of the flow f and the flow conservation
constraint (2.4) for i ∈ S, i 6= s (and recalling that t /∈ S), then combining, we can
show that the value of the flow is equal to the sum of flow on arcs in δ+(S). We see

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

24 Maximum Flow Algorithms

that

|f | =
∑

k:(s,k)∈A

f(s, k) + 0

=
∑

k:(s,k)∈A

f(s, k) +
∑

i∈S:i 6=s

 ∑
j:(i,j)∈A

f(i, j)

=
∑
i∈S

 ∑
j:(i,j)∈A

f(i, j)

 .

Now we can split this sum into two parts, depending on whether the head of the arc
(i, j) is in S or not. Note that if both i, j ∈ S, then the sum includes both f(i, j)
and f(j, i) = −f(i, j) and hence these terms all cancel out, so that

|f | =
∑
i∈S

 ∑
j:(i,j)∈A

f(i, j)

=
∑
i∈S

 ∑
j∈S:(i,j)∈A

f(i, j) +
∑

j /∈S:(i,j)∈A

f(i, j)

=

∑
i∈S,j /∈S,(i,j)∈A

f(i, j)

=
∑

(i,j)∈δ+(S)

f(i, j)

≤
∑

(i,j)∈δ+(S)

u(i, j)

= u(δ+(S)),

where the inequality follows from the capacity constraints (2.3).

Corollary 2.5: Let f be an s-t flow and S be an s-t cut. Then f(i, j) = u(i, j) for
all (i, j) ∈ δ+(S) if and only if |f | = u(δ+(S)).

Proof If f(i, j) = u(i, j) for all (i, j) ∈ δ+(S), then the final inequality of the proof
above is an equality. Also, if |f | = u(δ+(S)) then because the final inequality is an
equality, it must be an equality for every term in the sum, f(i, j) = u(i, j) for all
(i, j) ∈ δ+(S).

Notice that for the flow in Figure 2.4 f(a, d) = u(a, d), f(b, d) = u(b, d) and
f(e, t) = u(e, t) for the three arcs in δ+(S) given by the s-t cut S in the figure.

We say that a minimum s-t cut is an s-t cut S∗ of minimum capacity; that is,

u(δ+(S∗)) = min
S⊂V,s∈S,t/∈S

u(δ+(S)).

By Lemma 2.4, the value of a maximum flow is at most the capacity of a minimum
s-t cut. In our example in Figure 2.4, we saw that the two quantities can be equal.

2.1 Optimality Conditions 25

s

a

b

c e

t

d

2

2

1

2

1 1

2

2

1

1

2

2

Figure 2.5 Residual graph for the flow of Figure 2.3; arcs of zero residual
capacity are omitted. There is an augmenting path s-c-e-b-a-d-t.

Corollary 2.5 gives a condition under which the two quantities are equal. The central
result of network flow theory, due to Ford and Fulkerson [63], is that these two
quantities are always equal. This result, proved in the 1950s, has led to more than
fifty years of research on the topic of network flows.

Theorem 2.6 (Ford and Fulkerson [63]): The value of a maximum flow is equal
to the capacity of a minimum s-t cut.

This theorem is sometimes known as the maximum flow/minimum cut theorem.
We will shortly provide a proof of this theorem. Before we can do so, we need

to define the concept of a residual graph. Given flow f on graph G = (V,A), the
residual graph with respect to flow f is a graph Gf = (V,A). An arc (i, j) ∈ A
has a residual capacity uf (i, j) = u(i, j) − f(i, j); that is, the difference between
the capacity and the flow; note that the residual capacity is always nonnegative
because of the capacity consrtaint. Arcs (i, j) with 0 residual capacity are said to
be saturated; that is, the flow value f(i, j) equals the capacity u(i, j). It is more
traditional to omit these arcs from the residual graph altogether, but it will be
useful in our proofs to include them. We denote by Af the set of all arcs with
positive residual capacity; that is, Af = {(i, j) ∈ A : uf (i, j) > 0}. Observe that
with our definition of flow that uses reverse arcs, the residual capacity of the arc
uf (j, i) = u(j, i)− f(j, i) = 0 + f(i, j) = f(i, j). Thus the residual capacity of such
reverse arcs (j, i) corresponds to the amount by which we may decrease the positive
amount of flow on the arc (i, j). As an example, in Figure 2.5, we give the residual
graph associated with the flow of Figure 2.3; we omit arcs with zero residual capacity.

If there is an s-t path P in the residual graph Gf on arcs in Af (that is, the arcs
with positive residual capacity), then we call P an augmenting path; see Figure 2.5
for an example of an augmenting path. The existence of an augmenting path implies
that f is not maximum, because we can create a new flow f ′ of greater value by
increasing flow along the arcs in P . Formally, let δ be the capacity of the residual
arc of minimum residual capacity in P ; that is, δ = min(i,j)∈P uf (i, j). Note that

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

26 Maximum Flow Algorithms

because all arcs in the augmenting path have positive residual capacity, δ > 0. Then
we create a new flow f ′ by setting

f ′(i, j) =

f(i, j) + δ ∀(i, j) ∈ P
f(i, j)− δ ∀(j, i) ∈ P
f(i, j) ∀(i, j) : (i, j), (j, i) /∈ P

Sometimes we say that we push δ units of flow along P , resulting in flow f ′. We also
sometimes call δ the residual capacity of the path P .

We need to check that f ′ is still a flow according to Definition 2.3. We can assume
that P is a simple path. Clearly the capacity constraints are obeyed since by the
definition of δ, for all (i, j) ∈ P ,

f ′(i, j) = f(i, j) + δ ≤ f(i, j) + uf (i, j) = f(i, j) + (u(i, j)− f(i, j)) = u(i, j).

The skew symmetry constraints continue to be obeyed for all arcs not in P , while if
(i, j) ∈ P ,

f ′(i, j) = f(i, j) + δ = −(f(j, i)− δ) = −f ′(j, i).

The flow conservation constraints continue to be obeyed for all nodes i not on the
path. If i 6= s, t is on the path, then there are arcs (h, i) and (i, j) on the path, so
that f ′(i, j) = f(i, j) + δ and f ′(i, h) = f(i, h)− δ and thus∑

k:(i,k)∈A

f ′(i, k) =
∑

k:(i,k)∈A

f(i, k) + δ − δ = 0.

Similarly, if arc (s, j) is the first arc on the path, then f ′(s, j) = f(s, j) + δ so that

|f ′| =
∑

k:(s,k)∈A

f ′(s, k) =
∑

k:(s,k)∈A

f(s, k) + δ = |f |+ δ.

Thus f ′ is a flow of greater value than f .
We can finally prove a theorem stating when f is a maximum flow; it implies

Theorem 2.6.

Theorem 2.7: The following statements are equivalent for an s-t flow f :

1 f is a maximum flow;

2 there is no augmenting path in Af ;

3 |f | = u(δ+(S)) for some s-t cut S.

Proof We have already shown (1) implies (2) since we showed above that if there
is an augmenting path in Gf , then f is not maximum. To show that (2) implies
(3), let S be the set of vertices that are reachable from s in Gf via arcs of positive
residual capacity. Since there are no augmenting paths, then t /∈ S. Also, for any arc
(i, j) ∈ A such that i ∈ S and j /∈ S, it must be the case that uf (i, j) = 0 and thus
f(i, j) = u(i, j). Then by Corollary 2.5, |f | = u(δ+(S)). Finally, to show that (3)
implies (1), we recall that Lemma 2.4 states that |f | ≤ u(δ+(S)) for every s-t cut S
and every flow f , so that |f | = u(δ+(S)) implies that f must be a maximum flow
and S a minimum s-t cut.

2.1 Optimality Conditions 27

f(i, j)← 0 for all (i, j) ∈ A
while there is an augmenting path P in Af do

Push flow along P
Update f

return f

Algorithm 2.1 Generic augmenting path algorithm for the maximum flow problem.

Theorem 2.7 leads immediately to an algorithmic idea (summarized in Algorithm
2.1): start with the flow f = 0, look for an augmenting path, then update the flow
as described previously. The problem with this algorithm is that if the augmenting
paths are not chosen carefully, the algorithm is not polynomial-time; see Exercise 2.2
for an example. However, this algorithm does lead to one useful conclusion: if all the
capacities u(i, j) are integer, then there is a maximum flow such that all f(i, j) are
integer and Algorithm 2.1 finds such a flow f . If all f(i, j) are integer, we say that f
is integral. This statement follows since initially all f(i, j) are integer, and thus if all
u(i, j) are integer, all residual capacities uf (i, j) are integer, and thus δ is integer,
so that the new flow f ′ also has all f ′(i, j) integer. This statement is enormously
useful, as we will see, and it is often called the integrality property of the maximum
flow problem.

Property 2.8 (Integrality property): If all capacities u(i, j) are integer, then
there is an integral maximum flow f .

If the capacities are integer, then we can bound the number of iterations of the
algorithm (that is, the number of times we find an augmenting path) by O(mU),
where U is the maximum capacity; that is, U = max(i,j)∈A u(i, j) (recall that m is
the number of arcs and n the number of vertices). Since the maximum flow is the net
flow out of the source, at worst in the maximum flow we have all m arcs out of the
source with flow equal to the maximum capacity, so that the value of a maximum
flow is at most mU . If all capacities are integer, then in each iteration we increase
the value of the flow by at least 1; the value of the flow starts at zero and can be
at most mU , and hence the bound on the number of iterations follows. We can find
an augmenting path in the graph in O(m) time, so this leads to an overall running
time of O(m2U) (we assume G is connected so that m ≥ n− 1).

Although the number U is part of the input, this running time is not a polynomial
in the input size of the problem, because we assume that the input of numeric data
is given in binary. The number of bits used to encode a number U is then at most
dlog2 Ue + 1. Thus U is exponential in the input size of the encoding of U . The
algorithm is polynomial time if we assume that the numeric data is given in unary:
that is, a number U is encoded by U 1s (so that 5 is encoded as 11111). If we have
an algorithm whose number of operations can be bounded by a polynomial in the
size of the input if the numeric data is encoded in unary, then we say we have a
pseudopolynomial-time algorithm.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

28 Maximum Flow Algorithms

Definition 2.9: An algorithm is said to be pseudopolynomial-time if the number of
operations of the algorithm can be bounded above by a polynomial in the size of the
input if the numeric data in the input is encoded in unary.

Thus if all capacities are integers, the augmenting path algorithm is a pseudopolynomial-
time algorithm for the maximum flow problem. We would like to give a polynomial-
time algorithm, however: one in which the running time can be bounded above by a
polynomial in the size of the input if the numeric data is encoded in binary. We will
see such algorithms in subsequent sections.

Another important distinction in running times is that of a strongly polynomial-
time algorithm. We say we have such an algorithm if the running time of the algorithm
can be bounded above by a polynomial in the number of input items; that is, the
polynomial doesn’t depend on the size of the encoding of the numeric inputs at
all. For the maximum flow problem, this means that the running time is given as
a polynomial in m and n, with no dependence on the size of the encoding of the
capacities; that is, the running time bound does not depend on log2 U .

Definition 2.10: An algorithm is said to be strongly polynomial-time if the number
of operations of the algorithm can be bounded above by a polynomial in number of
items in the input, and the number of operations does not depend on the size of the
encoding of the numeric inputs.

We will see examples of strongly polynomial-time algorithms for the maximum
flow problem in Sections 2.7 and 2.8.

2.2 Application: Carpool Sharing

Before we turn to devising polynomial-time algorithms for the maximum flow prob-
lem, we first give a few sample applications of maximum flow that don’t obviously
involve flows or even networks.

The first application involves the fair allocation of driving responsibilities for a
set of people who carpool together. Each week the people in the carpool announce
which days they will be using the carpool. They would like to come up with a way
to allocate the driving responsibilities fairly, and they hit upon the following idea.
On a day in which k people use the carpool, each person will receive a 1/k share of
the responsibility to drive. Let ri be the total share of the ith person for the week.
Then each person should drive at most drie times that week. For instance, here is a
sample week with four people.

M T W Th F

1 X X X

2 X X

3 X X X X X

4 X X X X

2.2 Application: Carpool Sharing 29

s

2

1

3

4

W

T

M

Th

F

t

Persons

Days

d 11
12e

d 7
12e

d 23
12e

d 19
12e

Figure 2.6 Instance of the flow network for the carpool problem. All
unlabeled arcs have capacity 1.

Persons 1, 2, and 3 receive a 1/3 share for the trip on Monday, persons 1, 3, and 4
receive a 1/3 share for the trip on Tuesday, persons 1, 2, 3, and 4 receive a 1/4 share
for the trip on Wednesday, and persons 3 and 4 each receive a 1/2 share for both
Thursday and Friday. So the total shares are r1 = 1

3
+ 1

3
+ 1

4
= 11

12
, r2 = 1

3
+ 1

4
= 7

12
,

r3 = 1
3

+ 1
3

+ 1
4

+ 1
2

+ 1
2

= 23
12

, and r4 = 1
3

+ 1
4

+ 1
2

+ 1
2

= 19
12

. Note that
∑

i ri = 5,
since

∑
i ri gives the sum of the fractional responsibilities for each of the 5 days.

We now set up a maximum flow problem to decide who should drive each day. To
do this, we set up a graph in which there is one node per person, and one node per
day of the week; to these we add a source node s and a sink node t. We add an arc
of capacity drie from the source s to each person i, and an arc of capacity 1 from
each day of the week to the sink t. Then for each person, we add an arc of capacity
1 from the person to the days of the week in which the person takes the carpool.
For the example given above, the corresponding maximum flow instance appears in
Figure 2.6.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

30 Maximum Flow Algorithms

We claim that if the network has a flow f of value 5 such that f is integral, then
there is a feasible way to assign driving responsibilities. Note that the cut S = V −{t}
has capacity 5 (for the five arcs of capacity 1 from the day nodes to t), so if such
a flow exists, it is a maximum flow. Thus each arc from a day node to t must be
saturated (recall this means the flow equals the capacity), and the flow on the arc is
1. For each day node, we know that the flow entering the node is equal to the flow
leaving the node, and f is integral, so there must be a positive flow of 1 entering each
day node coming from some person node who is using the carpool that day. We can
assign the driving responsibility for the day to the corresponding person whose arc
to the day node has positive flow. Since the flow leaving each person node is equal to
the flow entering each person node, and the flow entering person node i is at most
drie (by the capacity constraint on the single arc entering person node i), person i
can be assigned to at most drie days, which is what we wanted.

It now remains to show that the network has a flow f of value 5 such that f is
integral. What we will do instead is give a fractional flow of value 5 instead, and then
appeal to the integrality property (Property 2.8) to conclude that since there exists
a maximum flow of value 5 and all capacities are integer, then there must exist an
integral maximum flow of value 5. Our fractional flow corresponds to the fractional
assignment of responsibility that we made initially. In particular, for a given day, if
k persons were using the carpool, we assigned each a share of 1/k, so in the network
for that day, we put a flow of value 1/k on each arc from a person node using the
carpool that day to the corresponding day node. Since the sum of the flow entering
the day node is 1, we set the flow to 1 for the arc from the day node to the sink t.
Note then that the flow leaving each person node i is exactly ri, so we set the flow
on the arc from s to person node i to be ri. We now have a feasible flow of value∑

i ri = 5.

This application illustrates the power of the integrality property: we only need
to show a fractional maximum flow in a graph with integer capacities in order to
conclude the existence of an integral maximum flow of the same value or greater.

2.3 Application: The Baseball Elimination Problem

We now turn to another application of the maximum flow problem that doesn’t obvi-
ously involve flow or networks. The application is known as the baseball elimination
problem. Consider the following example of teams from the American League East
division (omitting the Tampa Bay Rays, to simplify subsequent discussion):

2.3 Application: The Baseball Elimination Problem 31

Team Wins Games to play Remaining schedule
NYY BOS TOR BAL

New York Yankees (NYY) 93 8 – 1 6 1

Boston Red Sox (BOS) 89 4 1 – 0 3

Toronto Blue Jays (TOR) 88 7 6 0 – 1

Baltimore Orioles (BAL) 86 5 1 3 1 –

The “remaining schedule” columns indicate the number of games the given team
must play against the other teams in the division; we assume that none of the teams
has any remaining games to play outside the division. We will say that a team wins
the division if it wins more games than any other team in the division. A team is
eliminated if it cannot win the division given any outcome of the remaining games.
For instance, in the example above, Baltimore is eliminated since it can win at most
91 games – the 86 it has already won plus its 5 remaining games – but New York has
already won 93. One can also show that Boston is eliminated. Boston can win at most
93 games: the 89 games it has already won plus the 4 remaining games. However,
either New York wins at least 94 games by winning at least one of its remaining
games, or it will lose all of its remaining games, including all 6 games played against
Toronto. In the latter case, Toronto will win at least 88 + 6 ≥ 94 games. In either
case, a team other than Boston wins the division; hence, Boston is eliminated.

We will show that we can decide if a given team is eliminated by computing a
maximum flow. We first need to introduce some notation for the general problem.
Let T be the set of teams in a division. Let w(i) be the number of wins that team
i ∈ T currently has; let g(i) be the number of games that team i has left to play,
and let g(i, j) be the number of games that team i and team j have left to play
against each other. Let w(R) be the total number of wins of teams in R ⊆ T , so that
w(R) =

∑
i∈R w(i). Let g(R) be the number of games remaining to play for teams in

R against each other, so that g(R) = 1
2

∑
i∈R,j∈R g(i, j) (we divide by two since the

sum double-counts each game). Finally, for R ⊆ T , let a(R) = 1
|R|(w(R) + g(R)).

We can then prove the following.

Lemma 2.11: For any R ⊆ T , some team i ∈ R will win at least a(R) games by
the end of the season.

Proof The total number of wins for teams in R at the end of the season is at least
w(R) + g(R): some team in R wins each of the g(R) games played between two
teams in R. Thus the average number of wins at the end of the season for the teams
in R is at least a(R), and some team in R must have at least this many wins.

Corollary 2.12: If for some k ∈ T and R ⊆ T − {k}, a(R) > w(k) + g(k), then
team k is eliminated.

Proof Since some team in R must win more than w(k) + g(k) games, and team k

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

32 Maximum Flow Algorithms

can win at most w(k) + g(k) games by the end of the season, team k cannot win the
division, and must therefore be eliminated.

In the example above, with R = {NYY,TOR}, and k = BOS, w(R) = 93 + 88,
g(R) = 6, w(k) + g(k) = 89 + 4 = 93, while a(R) = 1

2
((93 + 88) + 6) = 93.5 > 93.

Thus Boston is eliminated.

We will now set up a maximum flow problem to decide if a given team k ∈ T is
not eliminated. We know that team k is not eliminated if there is some outcome to
the remaining games in which it has at least as many wins as every other team. Let
Z be all teams other than k, so that Z = T −{k}. Let x(i, j) represent the number
of remaining games in which team i defeats team j. Clearly in each of the g(i, j)
remaining games between teams i and j either team i defeats j or team j defeats i,
so that

x(i, j) + x(j, i) = g(i, j). (2.6)

We may as well assume that if team k is not eliminated, then it wins all of its remain-
ing games, and has w(k)+g(k) wins. Any other team i will have w(i)+

∑
j∈Z x(i, j)

wins (the number of wins it currently has plus the number of the remaining games it
wins against teams in Z; recall it loses all games to team k). Thus in order for team
k not to be eliminated, we need that

w(k) + g(k) ≥ w(i) +
∑
j∈Z

x(i, j) ∀i ∈ Z. (2.7)

Finally, we need that the x(i, j) are nonnegative integers. Thus, if we can find non-
negative integers x(i, j) such that (2.6) and (2.7) are obeyed, then team k is not
eliminated. We will set up a maximum flow problem such that either we find such
nonnegative integers x(i, j) or we find a set R ⊆ Z with a(R) > w(k) + g(k); in the
first case, there is an outcome of games such that team k is not eliminated, while in
the second case, team k is eliminated by Corollary 2.12.

We set up the maximum flow problem as follows. We will have a source node s, a
sink node t, one node for every pair of distinct teams in Z (the pair nodes), and one
node for every team in Z (the team nodes). From each team node i ∈ Z, we include
an arc to the sink of capacity w(k) + g(k)−w(i). Note that if w(i) > w(k) + g(k),
team k is already eliminated; thus we assume w(i) ≤ w(k) + g(k) so that this
capacity is nonnegative. From the source node s to each pair node for pair i, j, we
include an arc of capacity g(i, j), the number of games remaining between teams i
and j. From the pair node for the pair i, j, we include one arc to the team node for i
of infinite capacity, and another arc to the team node for j of infinite capacity. The
graph is shown in Figure 2.7. In Figure 2.8, we show the flow instance corresponding
to our example above, checking whether or not Toronto is eliminated; we also give a
maximum flow.

Note that g(Z) is the number of games played between all teams in Z, the teams
other than team k. We can now show that team k is not eliminated if and only if
there is a flow of value g(Z) in the flow instance.

2.3 Application: The Baseball Elimination Problem 33

s i, j

i

j

t

Pair nodes Team nodes

g(i, j)

∞

∞

∞

∞

∞

∞

w(k) + g(k)− w(i)

w(k) + g(k)− w(j)

Figure 2.7 Illustration of the maximum flow instance for the baseball
elimination problem.

Lemma 2.13: If there is a flow of value g(Z) in the maximum flow instance, then
team k is not eliminated.

Proof We note that the s-t cut S = {s} has capacity g(Z), so if there is a flow of
value g(Z), then by Corollary 2.5 and Theorem 2.7 it is a maximum flow and all arcs
from the source to the pair nodes must be saturated. By the integrality property,
we know that if there is a maximum flow of value g(Z), then there is an integral
maximum flow of value g(Z). We set x(i, j) to be the flow from the pair node for i, j
to the team node for i, and x(j, i) to be the flow from the pair node for i, j to the team
node for j. Because the flow is integral, x(i, j) must be a nonnegative integer. Because
the flow into the pair node for i, j is equal to the flow out, and the flow in must be
g(i, j) because the incoming arc is saturated, we have that x(i, j) +x(j, i) = g(i, j).
The total flow into the team node for a team i ∈ Z is then

∑
j∈Z x(i, j); by flow

conservation at the team node for i, the flow leaving the team node for i is also∑
j∈Z x(i, j). Since there is a single arc leaving the team node for i of capacity

w(k) + g(k)−w(i), it must be the case that
∑

j∈Z x(i, j) ≤ w(k) + g(k)−w(i), or
w(k) + g(k) ≥ w(i) +

∑
j∈Z x(i, j). Thus we have nonnegative integers x(i, j) that

satisfy conditions (2.6) and (2.7), and therefore team k is not eliminated.

Returning to our example, and the flow in Figure 2.8, for Z = {NYY,BAL,BOS},
there is a flow of value 1+1+3 = 5, and thus Toronto is not eliminated. This follows if
New York wins its one game against Boston and loses its one game against Baltimore,
and Baltimore wins all 3 games against Boston. Then New York has 93+1=94 wins,
Baltimore has 86+4=90 wins, and Boston has 89+0=89 wins. If Toronto wins all
of its remaining games, it has 95 wins. So there is some outcome of the remaining

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

34 Maximum Flow Algorithms

s

NYY

BOS

NYY

BAL

BOS

BAL

NYY

BOS

BAL

t

Pair nodes Team nodes

1/1

1/1

3/3

1/∞

0/∞

0/∞

1/∞

0/∞

3/∞

1/(95-93=2)

0/(95-89=6)

4/(95-86=9)

Figure 2.8 Illustration of the maximum flow instance and a maximum flow
for our example of the baseball elimination problem, checking if Toronto is
eliminated.

games in which Toronto has at least as many wins as the other teams in the division.
Note that there may be other flows that are also maximum that correspond to other
possible scenarios in which Toronto is not eliminated.

Now we must prove the other direction. We could do this directly by arguing that
any outcome of games in which team k is not eliminated leads to a flow of value
g(Z); instead we give a proof based on the value of minimum s-t cut and Corollary
2.12.

Lemma 2.14: If the value of the maximum flow is less than g(Z), then team k is
eliminated.

Proof Since the value of the maximum flow is equal to the capacity of a minimum
s-t cut, if the value of the maximum flow is less than g(Z), then there is a minimum
s-t cut S of capacity less than g(Z). We observe that if the pair node for i, j is in
S, then both team nodes i and j are in S; if one or both of the team nodes is not
in S, then the arc from the pair node i, j to the team node (or both team nodes)
is in the cut defined by S, and the capacity of the cut is then infinite, which is a
contradiction. Let R be the set of all teams whose team node is in S. Then the arcs
in δ+(S) will include those that go from the team nodes in R to the sink t, and those
from the source s to any pair node of teams not both in R, since if a pair node i, j is
in S, then we have observed that both i and j must be in R. The latter set of arcs

2.4 Application: Finding a Maximum Density Subgraph 35

s

i, j

i, `

j, `

i

j

`

t

Pair nodes Team nodes

Figure 2.9 Illustration of an s-t cut in the max flow instance for the
baseball elimination problem. For this cut, R = {j, `}.

has total capacity g(Z)− g(R). Thus the capacity of the cut S is at least

g(Z)− g(R) +
∑
i∈R

(w(k) + g(k)−w(i)) = g(Z)− g(R) + |R|(w(k) + g(k))−w(R);

see Figure 2.9 for an illustration. By hypothesis, the capacity of the cut is less than
g(Z) so that

g(Z)− g(R) + |R|(w(k) + g(k))− w(R) < g(Z),

or

w(k) + g(k) <
g(R) + w(R)

|R|
= a(R).

Thus by Corollary 2.12, team k is eliminated.

Exercise 2.3 asks the reader to show that it is possible to determine all the teams
that have been eliminated in the division by using O(log |T |) maximum flow com-
putations.

2.4 Application: Finding a Maximum Density Subgraph

In this section, we turn to a third application of the maximum flow problem that
doesn’t obviously involve flow. Here we are given an undirected graph G = (V,E),
and we wish to find a dense subgraph of G; that is, one that has many edges in

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

36 Maximum Flow Algorithms

it relative to the number of vertices. Given a subset of vertices S ⊆ V , we let
G(S) = (V,E(S)) denote the subgraph induced by the set of vertices S. The set of
edges E(S) ⊆ E is the set of all edges such that both endpoints of the edge are in S;
that is, E(S) = {(i, j) ∈ E : i, j ∈ S}. The density of G(S) is the ratio of the size of
its edge set to its vertex set; that is, the density is |E(S)|/|S|. We would like to find
the set S ⊆ V , S 6= ∅ of maximum density. Let D∗ be the value of the maximum
density so that

D∗ = max
S⊆V,S 6=∅

|E(S)|
|S|

.

We let S∗ be a set of vertices achieving this maximum so that D∗ = |E(S∗)|/|S∗|.
Why is this an interesting problem? Suppose G is a social network, and the vertices

represent people, while there is an edge (i, j) if i and j are friends. Then a subgraph
of high density might correspond to a community: a set of people who are mostly
mutual friends, possibly because they are all part of the same school or some other
similar organization. Automatically finding such communities in a social network has
been an area of intense research.

We will show below that we can find the densest subgraph by performing O(log n)
maximum flow computations. The basic idea is that we will start with a guess γ
of the value of D∗. We will then use a maximum flow computation to determine if
γ ≥ D∗ or not. Then by using a technique called bisection search (or binary search),
we can update the value of γ until the value of γ is sufficiently close to D∗ that we
can find the exact value of D∗ and the corresponding densest subgraph.

Given a guess γ, we construct an instance of the maximum flow problem in a new
graph G′ as follows. We create a vertex i for each i ∈ V , and add a source vertex
s and a sink vertex t, so that V ′ = V ∪ {s, t}. For each edge (i, j) ∈ E, we add
two arcs (i, j) and (j, i), each of capacity 1. For each i ∈ V , we add an arc (s, i) of
capacity m, and an arc (i, t) of capacity m+ 2γ − di, where di is the degree of node
i in the original graph (that is, the number of edges incident on i). Since di ≤ m,
the capacity is nonnegative. See Figure 2.10 for an illustration of the construction.

We then compute a maximum flow in the graph G′. To help bound the value
of the maximum flow, consider the s-t cut {s} ∪ S, for S ⊆ V . The capacity of
this cut includes all arcs from s to i ∈ V − S, from i ∈ S to t, and from i ∈ S to
j ∈ V −S; see Figure 2.11. Let δ(S) represent the set of edges in G such that exactly
one endpoint of each edge is in S. We observe that

∑
i∈S di = 2|E(S)|+ |δ(S)|, since∑

i∈S di double-counts all edges with both endpoints in S and counts each edge in
δ(S) exactly once. Then the capacity of the s-t cut {s} ∪ S is

m|V − S|+ |δ(S)|+
∑
i∈S

(m+ 2γ − di) = mn−m|S|+ |δ(S)|+m|S|+ 2γ|S| −
∑
i∈S

di

= mn+ |δ(S)|+ 2γ|S| − (2|E(S)|+ |δ(S)|)

= mn+ 2|S|
(
γ − |E(S)|

|S|

)
. (2.8)

We can then prove the following lemma.

2.4 Application: Finding a Maximum Density Subgraph 37

s

h

...

i

j

...

k

t

m

m

m

m

11

m+ 2γ − dh

m+ 2γ − di

m+ 2γ − dj

m+ 2γ − dk

Figure 2.10 Illustration of the max flow instance for the maximum densest
subgraph problem for guess γ.

Lemma 2.15: The value of the maximum flow is mn if and only if γ ≥ D∗.

Proof First of all, we observe that the s-t cut {s} has capacity mn, so the value of
the maximum flow can be at most mn. If γ < D∗, then for set S∗ the capacity of the
corresponding s-t cut {s} ∪ S∗ is mn+ 2|S∗|(γ − |E(S∗)|/|S∗|) = mn+ 2|S∗|(γ −
D∗) < mn by Equation (2.8), since S∗ 6= ∅. Thus the maximum flow in this case
must be strictly less than mn, since we have shown an s-t cut whose capacity is
strictly less than mn. Similarly, suppose the value of the maximum flow is less than
mn. Let {s} ∪ S be the minimum s-t cut; by Theorem 2.7, it has capacity equal
to the value of the maximum flow, and so is less than mn, and thus we must have
S 6= ∅. By Equation (2.8) the capacity of the cut is mn+2|S|(γ−|E(S)|/|S|) < mn,
so it must be the case that γ < |E(S)|/|S| ≤ D∗, and the lemma is proven.

In what follows, let D′ be the second largest density, so that D′ < D∗ and for any
S 6= ∅ either |E(S)|/|S| = D∗ or |E(S)|/|S| ≤ D′.

Corollary 2.16: If D′ ≤ γ < D∗, then for the minimum s-t cut {s} ∪ X corre-
sponding to the maximum flow in the instance, it must be that X is the maximum
density subgraph.

Proof By Equation (2.8), the capacity of any s-t cut {s} ∪ S which has density
D′ ≤ γ is mn+ 2|S|(γ− |E(S)|/|S|) = mn+ 2|S|(γ−D′) ≥ mn, and so is not the
minimum s-t cut. But since γ < D∗, by Lemma 2.15 the value of the maximum flow

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

38 Maximum Flow Algorithms

s

h

...

i

j

...

k

t

S
m

m

m

m

11

m+ 2γ − dh

m+ 2γ − di

m+ 2γ − dj

m+ 2γ − dk

Figure 2.11 Illustration of the s-t cut for {s} ∪ S for the max flow instance
for the maximum densest subgraph problem. The dashed circle gives the
nodes in S from the original graph.

is strictly less than mn, and so the minimum s-t cut {s} ∪ X must have capacity
mn + 2|S|(γ − |E(X)|/|X|) < mn, and thus γ < |E(X)|/|X|. Since γ is at least
the second largest density, it must be that X is a maximum density subgraph.

We now explain how to use the maximum flow computation as a subroutine to find
a guess γ between D′ and D∗ so that we can be certain we have found a subgraph
of maximum density D∗. To do this, we use bisection search (sometimes also called
binary search). Throughout the search, we maintain an interval (`, u] such that we
are certain that D∗ ∈ (`, u]. Assuming E 6= ∅ (since if E = ∅, then D∗ = 0
trivially), we can initialize the interval to (0,m], since it is clear that 0 < D∗ ≤ m.
We then compute a maximum flow in the instance as given above with a guess γ
set to the midpoint of the interval, so that γ = (u + `)/2. By Lemma 2.15, if the
value of the maximum flow is mn, then D∗ ≤ γ = (u + `)/2, so we then know
that D∗ ∈ (`, (u + `)/2], and we reset the value of u to (u + `)/2. Otherwise, if
the value of the maximum flow is less than mn, then D∗ > γ = (u + `)/2, so that
D∗ ∈ ((u+ `)/2, u], and we can reset the value of ` to be (u+ `)/2. In either case,
the size of the interval (`, u] has dropped by a factor of 2, and still correctly contains
D∗.

2.4 Application: Finding a Maximum Density Subgraph 39

if E = ∅ then return {i} // Return an arbitrary i ∈ V
`← 0
u← m
X ← ∅
while u− ` ≥ 1/n2 do

Compute maximum flow f , minimum s-t cut {s} ∪ S in maximum flow
instance with guess γ = (u+ `)/2

if |f | = mn then
u← (u+ `)/2

else
`← (u+ `)/2
X ← S

return X

Algorithm 2.2 Algorithm for computing a maximum density subgraph.

We will show below that if the interval (`, u] is sufficiently small, then we can apply
Corollary 2.16 and ensure that we have found a subgraph of maximum density.

Lemma 2.17: When u− ` < 1
n2 , then for γ = `, D′ ≤ γ < D∗.

Proof We let S be the set of all possible subgraph densities for a graph with m ≥ 1
edges and n vertices; that is,

S =

{
m′

n′
: 1 ≤ m′ ≤ m, 1 ≤ n′ ≤ n

}
.

We let ∆ be the smallest possible difference between two distinct values of S, so
that ∆ = mina,b∈S:a 6=b |a− b|. How small can ∆ be? We know that a = m1/n1 and
b = m2/n2 for 1 ≤ m1 ≤ m, 1 ≤ n1 ≤ n, 1 ≤ m2 ≤ m, and 1 ≤ n2 ≤ n. Thus

∆ =

∣∣∣∣m1

n1

− m2

n2

∣∣∣∣ =

∣∣∣∣m1n2 −m2n1

n1n2

∣∣∣∣ ≥ 1

n2
;

because ∆ > 0, |m1n2 −m2n1| ≥ 1, and n1n2 ≤ n2.
Thus when we know D∗ ∈ (`, u] and u− ` < 1/n2, then D′ ≤ `. Thus for γ = `,

D′ ≤ γ < D∗.

We can then summarize the algorithm in Algorithm 2.2, and we finish showing the
result in the following theorem.

Theorem 2.18: Algorithm 2.2 finds a maximum density subgraph in O(log n) max-
imum flow computations.

Proof If E = ∅, then any single vertex is a densest subgraph, and the algorithm
returns a single vertex. Otherwise, the algorithm maintains that D∗ ∈ (`, u] and
maintains that X corresponds to the minimum s-t cut {s} ∪X obtained with guess
γ = `. By Lemma 2.17 and Corollary 2.16, once u − ` < 1/n2, it must be the case

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

40 Maximum Flow Algorithms

f(i, j)← 0 for all (i, j) ∈ A
while there is an augmenting path in Af do

Let P be augmenting path that maximizes min(i,j)∈P uf (i, j)
Push flow along P
Update f

return f

Algorithm 2.3 Most improving augmenting path algorithm for the maximum flow
problem.

that X is a maximum density subgraph, and the algorithm terminates and returns
X.

To complete the proof, we must determine the number of iterations of the while
loop. Initially the size of the interval (`, u] is m, and the algorithm terminates once
u−` < 1/n2, and in each iteration, the size of the interval shrinks by a factor of two.
Thus it takes at most dlog2

m
1/n2 e = O(logmn2) = O(log n4) = O(log n) iterations

until the algorithm terminates, since there are at most
(
n
2

)
= O(n2) edges in any

undirected graph.

2.5 Most Improving Augmenting Paths

We now return to the question we posed at the end of Section 2.1 about how we
might obtain a polynomial-time version of the augmenting path algorithm. We start
with a very natural idea: we look for the augmenting path that increases the flow
value as much as possible. In other words, we want the augmenting path whose
minimum residual capacity arc is as large as possible; we will call this the most
improving augmenting path. We give this version of the augmenting path algorithm
in Algorithm 2.3.

The basic idea of the analysis of the algorithm is fairly simple. We will show
that the difference between the maximum flow f∗ and the current flow f can be
decomposed into at most m augmenting paths. Since we always augment along the
most improving such path, the path increases |f | by at least a 1/m factor of |f∗|−|f |,
the difference in values between the maximum and current flows. We can show that
after m such augmentations, the difference has decreased by a constant factor, and
this allows us to show that after a polynomially bounded number of augmentations,
the current flow must be maximum. This basic idea of showing a decomposition into
m objects, and showing that the algorithm performs an update as least as good as
any one of these objects, leading to a constant factor improvement after m updates,
is an algorithmic idea we will see several times in the course of the book.

We now flesh out the details of this idea. We first prove a flow decomposition
lemma, showing that any flow can be decomposed into flows on at most m s-t paths
and cycles. In what follows, for flows f , f ′, and f ′′, we write f = f ′ + f ′′ (or

2.5 Most Improving Augmenting Paths 41

f = f ′− f ′′) if f(i, j) = f ′(i, j) + f ′′(i, j) (respectively, f(i, j) = f ′(i, j)− f ′′(i, j))
for all arcs (i, j) ∈ A. The following lemma is easy but useful.

Lemma 2.19: If f ′ and f ′′ obey flow conservation and skew symmetry, then so do
f = f ′+f ′′ and f = f ′−f ′′. Also, |f | = |f ′+f ′′| = |f ′|+ |f ′′| and |f | = |f ′−f ′′| =
|f ′| − |f ′′|.

Proof Suppose f = f ′ + f ′′. For all i 6= s, t,∑
k:(i,k)∈A

f(i, k) =
∑

k:(i,k)∈A

f ′(i, k) +
∑

k:(i,k)∈A

f ′′(i, k) = 0,

since both f ′ and f ′′ obey flow conservation. Furthermore,

|f | =
∑

k:(s,k)∈A

f(s, k) =
∑

k:(s,k)∈A

f ′(s, k) +
∑

k:(s,k)∈A

f ′′(s, k) = |f ′|+ |f ′′|.

Also, f(i, j) = f ′(i, j) + f ′′(i, j) = −f ′(j, i) − f ′′(j, i) = −f(j, i), since f ′ and f ′′

obey skew symmetry. The case of f = f ′ − f ′′ is similar.

Now we give the flow decomposition lemma.

Lemma 2.20: Given an s-t flow f , there exists flows f1, . . . , f`, for some ` ≤ m,
such that f =

∑`
i=1 fi, |f | =

∑`
i=1 |fi|, and for each i, the arcs of fi with positive

flow form either a simple s-t path or a cycle.

Proof We prove the statement by induction on the number of arcs with positive
flow; in fact, we prove a stronger statement for `, the number of arcs with positive
flow. Obviously, ` ≤ m. Clearly if ` = 0 the statement is trivially true. Suppose the
statement holds for ` < p, and that f has ` = p arcs with positive flow. Pick any
arc (i, j) ∈ A such that f(i, j) > 0. If i 6= s, then by flow conservation there must
be some node h such that f(h, i) > 0, and if j 6= t, then there must be some node k
such that f(j, k) > 0. We can continue this argument until either we have a simple
s-t path P of arcs that all have positive flow on them, or a cycle C of arcs that all
have positive flow on them. Suppose we have a simple s-t path P ; the case for a cycle
C is similar. We set δ = min(i,j)∈P f(i, j); we also set fp(i, j) = δ, fp(j, i) = −δ for
(i, j) ∈ P , and fp(i, j) = 0 otherwise. We claim that it is easy to check that fp is a
flow. Let f ′ = f−fp. Then f ′ has at least one fewer arc with positive flow on it than
f (in particular, the arc (i, j) ∈ P such that f(i, j) = δ). By Lemma 2.19 f ′ obeys
flow conservation and skew symmetry because f and fp do; f ′ also obeys the capacity
constraints because for f(i, j) > 0, f ′(i, j) = f(i, j) − fp(i, j) ≤ f(i, j) ≤ u(i, j),
and thus by skew symmetry for f(i, j) < 0, f ′(i, j) = f(i, j)−fp(i, j) ≤ 0 ≤ u(i, j).
Thus f ′ is a flow with at most p − 1 arcs of positive flow, and can be written as
f ′ =

∑p−1
i=1 fi by induction. Hence f = f ′+ fp =

∑p
i=1 fi, and the lemma statement

follows.

Next, we need to show that we can apply this decomposition theorem not to flows
in the original graph G, but to flows in the residual graph Gf with residual capacities
uf , and that flows in the residual graph have a natural relationship to flows in G.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

42 Maximum Flow Algorithms

Lemma 2.21: Let f be an s-t flow in G, and let f∗ be a maximum s-t flow in G.
Then the maximum flow in the residual graph Gf has value |f∗| − |f |.

Proof Consider f ′ = f∗ − f ; we need to argue that f ′ is a flow in Gf . Flow
conservation and skew symmetry hold by Lemma 2.19; for capacity constraints, we
note that f ′(i, j) = f∗(i, j) − f(i, j) ≤ u(i, j) − f(i, j) = uf (i, j). The value of
f ′ in Gf is |f∗| − |f |. We now argue that there cannot be a flow of larger value.
Consider a minimum s-t cut S in G, so that |f∗| = u(δ+(S)). Then for each arc
(i, j) ∈ δ+(S), we know by Corollary 2.5 that f∗(i, j) = u(i, j), so that f ′(i, j) =
f∗(i, j)− f(i, j) = u(i, j)− f(i, j) = uf (i, j). Then also by Corollary 2.5, we have
that |f ′| = uf (δ+(S)) and hence f ′ is a maximum flow in Gf .

We now show that the residual capacity of a most improving path is relatively
large by combining the two lemmas above.

Lemma 2.22: Let f∗ be a maximum flow in G, and let f be any s-t flow. Then the
residual capacity of a most improving path is at least 1

m
(|f∗| − |f |).

Proof By Lemma 2.21, the value of a maximum flow in Gf is |f∗| − |f |, and by
Lemma 2.20, the maximum flow in Gf can be decomposed into at most m flows on
paths such that the value of the flow is at most the minimum residual capacity arc on
the path. Thus the value of one of the flows is at least 1

m
(|f∗|− |f |), and the residual

capacity of each arc on the path is also at least this much. Hence a most improving
augmenting path will also have residual capacity at least 1

m
(|f∗| − |f |).

We can now use the lemma to bound the number of iterations of the most im-
proving augmenting path algorithm. To give a bound on the number of iterations,
we let U be the largest capacity over all the arcs; that is, U = max(i,j)∈A u(i, j). As
mentioned previously, the style of the proof of the following theorem is something
we will encounter many times in the analysis of network flow algorithms.

Theorem 2.23: If capacities are integers, Algorithm 2.3 computes a maximum flow
in O(m ln(mU)) iterations.

Proof An easy upper bound on the value of a maximum flow is mU : potentially
every arc leads out of the source and is saturated at the maximum capacity U . If f
is the flow in some iteration of the algorithm, let f (k) be the resulting flow after k
iterations. Then by Lemma 2.22

|f (1)| ≥ |f |+ 1

m
(|f∗| − |f |),

or

|f∗| − |f (1)| ≤
(

1− 1

m

)
(|f∗| − |f |).

Similarly,

|f (2)| ≥ |f (1)|+ 1

m
(|f∗| − |f (1)|),

2.6 A Capacity Scaling Algorithm 43

or

|f∗| − |f (2)| ≤
(

1− 1

m

)
(|f∗| − |f (1)|) ≤

(
1− 1

m

)2

(|f∗| − |f |).

In general,

|f∗| − |f (k)| ≤
(

1− 1

m

)k
(|f∗| − |f |).

Thus after k = m ln(mU) iterations after starting with flow f = 0, we have that

|f∗| − |f (k)| ≤
(

1− 1

m

)m ln(mU)

(|f∗| − |f |) < e− ln(mU)|f∗|,

using 1− x < e−x for x 6= 0. Then

|f∗| − |f (k)| < e− ln(mU)|f∗| = 1

mU
|f∗| ≤ 1.

By the integrality property, since all capacities are integer, the value |f∗| is an integer.
Furthermore, by the properties of the augmenting path algorithm |f (k)| is an integer.
Thus if |f∗|−|f (k)| < 1, then we must have that |f (k)| = |f∗|, and f (k) is a maximum
flow.

To complete our analysis, we need to bound the overall running time of the algo-
rithm; to do that, we need to bound the time taken to compute a most improving
path. Here we give a very simple-minded algorithm. First, we sort all arcs in order
of nonincreasing residual capacity in O(m logm) time. We then introduce arcs one
at time (in order of nonincreasing residual capacity) until there exists an s-t path
in the graph. Then the path must be a most improving path; there cannot be any
other path with greater residual capacity. The overall running time of this algorithm
to find a path is O(m2). We give another algorithm in Exercise 2.8 that has running
time O(m+ n log n). Thus we have the following theorem.

Theorem 2.24: Algorithm 2.3 can be implemented to run in O(m log(mU)(m +
n log n)) time.

2.6 A Capacity Scaling Algorithm

To achieve a better running time, we will see that it is sufficient for the analysis if
we find an augmenting path that is almost most improving, and finding a good path
gives a better running time than always finding a most improving path. The savings
in running time will not be too large, but the idea of finding a good improvement
rather than the best possible improvement is one we will see in other contexts, and
the running time improvements there will be more significant.

We return to our algorithm for finding the most improving path given at the end
of the last section, and introduce a scaling parameter ∆. Rather than sorting arcs by
nonincreasing residual capacity, and then introducing arcs one at a time until there
is an s-t path, we start by setting ∆ to a large value, and introduce all arcs that

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

44 Maximum Flow Algorithms

f(i, j)← 0 for all (i, j) ∈ A
∆← 2blog2 Uc

while ∆ ≥ 1 do
while there is an s-t path P in Gf (∆) do

Push flow along P
Update f

∆← ∆/2

return f

Algorithm 2.4 A capacity scaling augmenting path algorithm for the maximum flow
problem.

have residual capacity at least ∆, and check if there is an s-t path. If there is one,
we push flow on it; otherwise, we divide ∆ by two, and check again. Intuitively, if
there is no s-t path on arcs of residual capacity at least ∆, but there is one on arcs of
capacity at least ∆/2, then the path has residual capacity within a factor of two of
that of a most improving path; we will see that this is good enough for our purposes.
Also, if there is no s-t path in the residual graph on arcs of residual capacity at least
∆, then the value of the maximum flow in the residual graph cannot be too large,
which means the current flow must be close to a maximum flow.

To formalize this idea, we let Gf (∆) = (V,Af (∆)) be the subgraph of Gf of all
arcs (i, j) whose residual capacity is at least ∆; that is, Af (∆) = {(i, j) ∈ A :
uf (i, j) ≥ ∆}. Then we give a capacity scaling version of the augmenting path
algorithm in Algorithm 2.4. In the algorithm, the innermost loop is performed for a
fixed value of ∆; we call these iterations of the algorithm for a fixed ∆ a ∆-scaling
phase of the algorithm.

We first bound the value of a maximum flow in the residual graph at the start of
a ∆-scaling phase.

Lemma 2.25: At the start of a ∆-scaling phase, the value of a maximum flow in
the residual graph Gf is at most 2m∆.

Proof At the start of the algorithm, ∆ ≥ U/2 and f = 0. An upper bound on the
value of the maximum flow is mU , and this is an upper bound on the value of the
maximum flow in the residual graph, and thus the lemma statement holds initially.

At the end of any ∆-scaling phase, there are no s-t paths in Gf (∆); thus there
must be an s-t cut S such that each arc in δ+(S) has residual capacity less than ∆.
This implies the residual capacity of the cut is at most m∆ at the end of the ∆-
scaling phase. Since we divide ∆ by two before we start the next phase, the residual
capacity of the cut is at most 2m∆ at the start of the next phase. Thus the value of
the maximum flow in the residual graph Gf is at most 2m∆.

We can now bound the number of iterations in any ∆-scaling phase.

Lemma 2.26: There are at most 2m iterations per ∆-scaling phase.

Proof First, we observe that each iteration in a ∆-scaling phase increases the value

2.7 Shortest Augmenting Paths 45

of the flow by at least ∆: since all arcs in the s-t path have residual capacity at least
∆, pushing flow along the path will increase the flow value by at least ∆. Let f be
the flow at the beginning of the ∆-scaling phase, and let f∗ be a maximum flow.
Then by Lemmas 2.21 and 2.25, |f∗| − |f | ≤ 2m∆. Thus if 2m iterations occur, the
value of the resulting flow must be at least |f |+ 2m∆ ≥ |f |+ (|f∗| − |f |) = |f∗|, so
the flow must be maximum and no further augmenting paths are found.

Theorem 2.27: If the capacities are integers, Algorithm 2.4 computes a maximum
flow in O(m logU) iterations.

Proof Since ∆ is initially 2blog2 Uc and is divided by two each ∆-scaling phase until
it is less than 1, there are O(logU) scaling phases; by Lemma 2.26 there are at most
2m iterations per ∆-scaling phase. Thus there are at most O(m logU) iterations
overall. When ∆ = 1, the ∆-scaling phase finds any s-t path in the residual graph
such that each arc has residual capacity at least 1. Since the capacities are all integer,
if there are no augmenting paths with residual capacity at least 1 in each arc, then
there are no augmenting paths in Gf . Thus when the algorithm terminates, there are
no augmenting paths in Gf , and by Theorem 2.7, the flow must be maximum.

Note that it takes only O(m) time to detect whether there is an s-t path in Gf (∆),
so we obtain the following overall bound on the running time.

Theorem 2.28: Algorithm 2.4 can be implemented to run in O(m2 logU) time.

2.7 Shortest Augmenting Paths

We will show that these theoretical difficulties, which could conceivably be a

practically serious matter, can be avoided. In particular, by making a refinement

of the labeling method which is so simple that it is likely to be incorporated

innocently into a computer implementation...

– Jack Edmonds and Richard M. Karp [57]

In this section, we look at yet another natural variant of the augmenting path
algorithm. As the quote above (from the paper that proposed it) attests, it is so simple
that one might simply write an algorithm to find such a path without thinking about
it. In this variant, we always augment along the shortest augmenting path; that is,
the path with the fewest number of arcs. The algorithm is summarized in Algorithm
2.5.

For the sake of the analysis, we introduce distance labels on the nodes; in the
algorithm of the next section, these labels will appear in the algorithm itself. We
let d(i) be the number of arcs in the shortest path from node i ∈ V to the sink
t in the current residual graph Gf using only arcs in Af . Note that this notion
of distance is flipped from the notion we used in Chapter 1; in that chapter, d(i)
represented the distance from the source s, whereas here it represents the distance
to the sink t. Thus our notion of correct distance labels is flipped as well: here we

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

46 Maximum Flow Algorithms

f(i, j)← 0 for all (i, j) ∈ A
while there is an augmenting path in Af do

Let P be a shortest augmenting path in Af
Push flow along P
Update f

return f

Algorithm 2.5 Shortest augmenting path algorithm for the maximum flow problem.

know that for any arc (i, j) with positive residual capacity it must be the case that
d(i) ≤ d(j) + 1. Otherwise, if d(i) > d(j) + 1, then there is a shorter path from i to
t by taking the arc (i, j) and the path from j to the sink. In particular, we have that
d(i) = min(i,j)∈Af

(d(j) + 1), and thus for an arc (i, j) that is on a shortest path,
d(i) = d(j) + 1.

A crucial observation that we will use repeatedly from this point forward in our
analysis is that if an arc (i, j) has residual capacity of zero in one iteration of the
augmenting path algorithm, and positive residual capacity in the next, it must have
been the case that we pushed flow on the arc (j, i).

Observation 2.29: If uf (i, j) = 0 in the current iteration, f ′ is the flow in the
next iteration, and uf ′(i, j) > 0, it must be that f ′(i, j) < f(i, j), and thus by skew
symmetry, f ′(j, i) > f(j, i).

Proof If uf (i, j) = 0 in the current iteration, and in the next iteration (with flow
f ′), uf ′(i, j) > 0, then the algorithm must have increased the flow on the arc (j, i)
from the current iteration to the next. Thus it is the case that f ′(j, i) > f(j, i), and,
by skew symmetry, that f(i, j) > f ′(i, j).

The first lemma we need to show is that for any node i, the distance label for i
does not decrease at any point in the algorithm.

Lemma 2.30: For any i ∈ V , let d(i) be its distance to the sink in the residual
graph in the current iteration, and let d′(i) be its distance to the sink in the residual
graph in the next iteration. Then d′(i) ≥ d(i).

Proof We give a proof by contradiction. Pick some iteration of the algorithm for
which the lemma statement is false, and let i be a vertex of minimum d′(i) such that
d′(i) < d(i); note i 6= t since d(t) = d′(t) = 0. Let P ′ be the path from i to t of
distance d′(i); P ′ is not an empty path because i 6= t. Note that by the choice of
i, for any j with d′(j) < d′(i), d′(j) ≥ d(j). Thus the first arc (i, j) in the path
P ′ must have had residual capacity zero in the previous iteration, since otherwise
d(i) > d′(i) = 1 + d′(j) ≥ 1 + d(j), which contradicts the inequality d(i) ≤ d(j) + 1
for all (i, j) ∈ Af . If (i, j) had residual capacity zero in the previous iteration, and
has positive residual capacity in this iteration, by Observation 2.29 flow was increased
on the arc (j, i). Therefore, (j, i) must have been on some shortest path to the sink,

2.7 Shortest Augmenting Paths 47

so that d(j) = d(i) + 1. But then d′(i) = 1 + d′(j) ≥ d(j) + 1 ≥ d(i) + 2, which
contradicts d′(i) < d(i).

Corollary 2.31: For any i, the distance label d(i) is nondecreasing during the exe-
cution of Algorithm 2.5.

We next show that Corollary 2.31 implies a limit on the number of times during the
algorithm a given arc (i, j) can become saturated; recall that an arc (i, j) is saturated
if f(i, j) = u(i, j), and thus arc (i, j) becomes saturated if in the previous iteration
f(i, j) < u(i, j) and after pushing flow f(i, j) = u(i, j). Since the augmenting path
algorithm saturates at least one arc in each iteration, the limit on the number of times
a given arc can be saturated will translate into an overall bound on the number of
iterations of the algorithm.

Lemma 2.32: A given arc (i, j) ∈ A becomes saturated O(n) times during the
execution of Algorithm 2.5.

Proof Suppose arc (i, j) becomes saturated; it then has zero residual capacity. If it
was saturated, then it must have been on a shortest path to the sink, so that d(i) =
d(j)+1 using the current distance labels d. In order for it to become saturated again
in a later iteration, it must first have nonzero residual capacity. By Observation 2.29,
it can have nonzero residual capacity if the flow is increased on arc (j, i); this happens
only if (j, i) is on a shortest path to the sink. Let d′ be the distance labels in this later
iteration; it must be the case that d′(j) = d′(i) + 1. By Corollary 2.31, the distance
label for i is nondecreasing, so that d′(j) = d′(i) + 1 ≥ d(i) + 1 = (d(j) + 1) + 1,
or d′(j) ≥ d(j) + 2. Thus, between the iteration in which (i, j) is saturated and the
iteration in which it again has positive residual capacity and can become saturated
again, the distance label of j must have increased by at least 2. The maximum
distance of any vertex to the sink is at most n−1, since there are at most n−1 arcs
on a simple path from any vertex to the sink. Thus the arc (i, j) can be saturated
O(n) times.

An overall bound on the number of iterations of the algorithm is an almost imme-
diate consequence of the previous lemma.

Theorem 2.33: Algorithm 2.5 computes a maximum flow in O(mn) iterations.

Proof By Lemma 2.32, a given arc can become saturated O(n) times during the
algorithm. Each iteration of the augmenting flow algorithm saturates at least one
arc. Since there are m arcs, there can be at most O(mn) iterations.

We can compute a shortest path in a connected unweighted graph in O(m) time
(Exercise 1.1), so we get the following running time.

Theorem 2.34: Algorithm 2.5 can be implemented in O(m2n) time.

We observe that this running time shows that Algorithm 2.5 is a strongly polynomial-
time algorithm, according to Definition 2.10.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

48 Maximum Flow Algorithms

2.8 The Push-Relabel Algorithm

In the previous three sections, we have given algorithms for the maximum flow prob-
lem that are different implementations of the generic augmenting path algorithm
given in Algorithm 2.1. In this section, we turn to a quite different algorithm for
solving the maximum flow problem, one that has proven to be among the fastest in
practice.

One issue with the running time of augmenting path algorithms is illustrated in
Figure 2.12. In the figure, there are M nodes to the right of s and another M to the
left of t and a very long path in the center. Each time we augment the flow, we can
only send a single unit, and we must push the single unit of flow down the very long
path. It would be better if we could somehow push all M units of flow down the
very long path just once. The algorithm we are about to discuss, called push-relabel,
will be able to do this. While augmenting path algorithms always maintain a feasible
flow f and in the end find an s-t cut of value equal to the flow, the push-relabel
algorithm does the opposite: it maintains an infeasible flow and a feasible s-t cut,
and gradually modifies the infeasible flow so that it becomes feasible, and equals the
value of the s-t cut.

The algorithm maintains a particular type of infeasible flow called a preflow. It has
all the properties of a flow as given in Definition 2.3 except that of flow conservation;
instead of enforcing that the net flow out of i is zero for i 6= s, t, we ensure that the
net flow into i is nonnegative for i 6= s. We call the net flow into i the excess at i, and
for a given preflow f , we denote it by ef (i). We define preflow and excess formally
below.

Definition 2.35: An s-t preflow f : A → < is an assignment of reals to the arcs
such that the following three properties are obeyed:

• for all arcs (i, j) ∈ A, f(i, j) ≤ u(i, j);

• for all i ∈ V such that i 6= s, the net flow entering i is nonnegative; that is,∑
k:(k,i)∈A f(k, i) ≥ 0;

• for all (i, j) ∈ A, f(i, j) = −f(j, i).

The excess at i for a preflow f is defined as ef (i) =
∑

k:(k,i)∈A f(k, i).

The push-relabel algorithm has some similarities with the shortest augmenting
path algorithm of the previous section. Whereas the shortest augmenting path al-
gorithm used distance labels in the analysis, the push-relabel algorithm maintains
distance labels d(i) for each i ∈ V ; in the case of the push-relabel algorithm, if
d(i) ≤ n, the label d(i) is a lower bound on the distance from i to the sink on
the arcs of positive residual capacity In this algorithm, we say that we have a valid
distance labeling if the d(i) obey the following properties with respect to a preflow
f .

Definition 2.36: In the push-relabel algorithm, we have a valid distance labeling
d(i) for i ∈ V for preflow f if:

• d(s) = n;

2.8 The Push-Relabel Algorithm 49

s ... · · · ... t

1

1

1

1

1

1

1

1

1

1

1

1

M M M M

1

1

1

1

1

1

1

1

1

1

1

1

Figure 2.12 A bad instance for augmenting path algorithms.

• d(t) = 0;

• d(i) ≤ d(j) + 1 for all arcs (i, j) ∈ Af .

One immediate consequence of a valid distance labeling is that for a preflow f ,
there is an s-t cut in the residual graph; that is, there are no augmenting paths in
the residual graph.

Lemma 2.37: Given a preflow f and a valid distance labeling d, there is no aug-
menting path in Gf .

Proof Suppose there is a simple s-t path P such that each arc (i, j) ∈ P has
(i, j) ∈ Af . Then since P is simple, the number of arcs in P is at most n − 1, and
since d is a valid distance labeling, d(i) ≤ d(j) + 1 for each arc (i, j) ∈ P . We
know that d(t) = 0 since d is a valid distance labeling, but then this implies that
d(s) ≤ d(t) + |P | ≤ n − 1, which contradicts the properties of a valid distance
labeling.

Thus our goal in the push-relabel algorithm is to gradually convert the preflow to

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

50 Maximum Flow Algorithms

a flow while maintaining a valid distance labeling; once we have a flow f and a valid
distance labeling for f , we know by Lemma 2.37 that there is no augmenting path
in Gf and thus the flow is maximum.

The main idea for converting a preflow to a flow is to gradually push as much
positive excess as possible towards the sink; following the shortest augmenting path
algorithm, we will only do so along arcs that appear to be part of a shortest path
towards the sink. If a node i has positive excess ef (i) > 0 and there is some arc
(i, j) with positive residual capacity, we can obtain another preflow by increasing
the amount of flow on the arc (i, j): increasing f(i, j) reduces the excess at i but
increases it at j. To ensure that we are pushing on arcs that are on a short path to
the sink, we only push on arcs (i, j) such that d(i) = d(j) + 1; that is, j is closer to
the sink than i. To introduce some terminology that we will begin to use frequently,
we say that an arc (i, j) is admissible if (i, j) ∈ Af and d(i) = d(j) + 1; we will only
increase flows on admissible arcs. We try to push as much flow as possible along the
arc (i, j) while maintaining that f is a preflow, so we will push as much excess as we
can given the residual capacity uf (i, j) of the arc; thus we will push the minimum
of ef (i) and uf (i, j).

What if we have a node i with positive excess, but no admissible arcs (i, j) leading
out of i since d(i) < d(j) + 1 for all arcs (i, j) ∈ Af? In this case, our intuition is
that the current distance label for i must be too low: all neighbors of i via admissible
arcs have distance to the sink at least as large as i, and so it must be the case that
i is even further from the sink than its current distance label indicates. Thus, in the
case there are no admissible arcs out of a node i with positive excess, we will relabel
the distance label d(i); we will increase it to be the minimum of d(j)+1 over all arcs
(i, j) ∈ Af , and introduce at least one admissible arc out of i on which we can push
an excess from i, while maintaining that d is a valid distance labeling. Note that if i
has positive excess, then f(k, i) > 0 for some arc (k, i) entering i, which implies that
there is positive residual capacity on at least one arc leading out of i, the reverse arc
(i, k), so that there will be some arc leaving i in Af . We formally define the push
and relabel operations in Procedure Push and Procedure Relabel.

Another useful perspective on the notion of a distance label is to view it as giving
the height of the node. The condition d(i) ≤ d(j) + 1 for arcs (i, j) with positive
residual capacity ensures that a node isn’t much higher than a neighboring node to
which flow can be pushed. We only push excess when d(i) = d(j) + 1 since we want
flows to go“downhill”, from a higher node to a lower one. The relabel operation raises
the height of a node so that there is some neighboring node that is downhill from it.

In our discussion above, we have not said what happens if the excess cannot be
pushed to the sink. In instances for which this happens, we will push the excess back
to the source: if a distance label d(i) becomes n or greater, then d(i)− n is a lower
bound on its distance to the source, and the excess at the node will be pushed back
to the source. We will have more to say about this later.

We can now give the entire push-relabel algorithm, shown in Algorithm 2.6. We
say that a node i 6= s, t is active if it has positive excess (ef (i) > 0). If we have
an active node, then we don’t yet have a flow f , so we look for some admissible arc
(i, j). If there is some admissible arc (i, j), we push as much flow as possible along

2.8 The Push-Relabel Algorithm 51

δ ← min(ef (i), uf (i, j))
f(i, j)← f(i, j) + δ
f(j, i)← f(j, i)− δ

Procedure Push(i, j)

d(i)← min(i,j)∈Af
(d(j) + 1)

Procedure Relabel(i)

it: we push the minimum of the excess at i and the residual capacity of (i, j). If there
is no admissible arc (i, j), we relabel i.

We first argue that the push-relabel algorithm is correct and returns a maximum
flow. We start by proving that it maintains a preflow f and a valid distance labeling
d.

Lemma 2.38: Algorithm 2.6 maintains a preflow f .

Proof First we must show that f is initialized to a preflow; then we show that
every push operation maintains that f is a preflow. For any node k such that (s, k)
is an arc, initially ef (k) = u(s, k); for all other nodes i 6= s, t, ef (i) = 0. Capacity
constraints and skew symmetry are clearly obeyed. Now consider a push on arc (i, j);
let f ′ be the result if we start with preflow f . We push δ = min(ef (i), uf (i, j))
units of flow. Thus capacity constraints are obeyed since f ′(i, j) = f(i, j) + δ ≤
f(i, j) + uf (i, j) ≤ u(i, j) and f ′(j, i) = f(j, i) − δ ≤ u(j, i). Skew symmetry is
maintained since f ′(i, j) = f(i, j) + δ = −f(j, i) + δ = −(f(j, i) − δ) = −f ′(j, i).
Finally, nodes continue to have nonnegative excess since we did a push at a node
i 6= s, t and ef ′(i) = ef (i) − δ ≥ 0 and ef ′(j) = ef (j) + δ ≥ 0. Thus f ′ is also a
preflow.

Lemma 2.39: Algorithm 2.6 maintains a valid distance labeling d.

Proof We initially set d(s) = n, d(t) = 0, and d(i) = 0 for all i 6= s, t. The only
arcs (i, j) for which possibly d(i) > d(j) + 1 are the arcs (s, k), since d(s) = n and
d(k) = 0. However, these arcs are initially saturated, so that uf (s, k) = 0 and we do
not need d(s) ≤ d(k)+1 for these arcs since they are not in Af . We now need to show
that d continues to be a valid distance labeling during the course of the algorithm.
The distance labeling d remains valid after a relabel operation by construction. Now
consider a push operation on the arc (i, j). Increasing the flow f(i, j) may cause the
residual capacity of the arc (j, i) to become positive. However, since we only pushed
on (i, j) if d(i) = d(j) + 1, it is the case that d(j) = d(i) − 1 ≤ d(i) + 1, so the
labeling is valid for the arc (j, i). Finally, we never relabel s or t because s and t are
never active, so d(s) = n and d(t) = 0 throughout the algorithm.

To show that the algorithm terminates eventually with a flow f , we first must
prove the following lemma.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

52 Maximum Flow Algorithms

f(i, j)← 0 for all (i, j) ∈ A
f(s, j)← u(s, j), f(j, s)← −u(s, j) for all (s, j) ∈ A
d(s)← n
d(i)← 0 for all i ∈ V , i 6= s
while there is an active i (ef (i) > 0 for i 6= s, t) do

if there is j such that (i, j) is admissible ((i, j) ∈ Af and d(i) = d(j) + 1)
then
Push((i, j))

else
Relabel(i)

return f

Algorithm 2.6 The basic push-relabel algorithm.

Lemma 2.40: For any preflow f , for any node i with ef (i) > 0 there always exists
a simple path from i to s such that each arc in the path has positive residual capacity.

Proof Let i be a node with ef (i) > 0, and let S be the set of all nodes reachable
from i using only arcs of positive residual capacity. Suppose that s /∈ S. Note that
for any arc (j, k) with j ∈ S, k /∈ S, uf (j, k) = 0, so that f(j, k) = u(j, k). Thus by
skew symmetry, f(k, j) = −f(j, k) = −u(j, k) ≤ 0. Now consider

∑
j∈S ef (j). By

definition,

∑
j∈S

ef (j) =
∑
j∈S

∑
k:(k,j)∈A

f(k, j) =
∑
j∈S

 ∑
k∈S:(k,j)∈A

f(k, j) +
∑

k/∈S:(k,j)∈A

f(k, j)

 .

By skew symmetry, the terms in the sum
∑

j∈S
∑

k∈S:(k,j)∈A f(k, j) all cancel, and
by the previous argument, the terms in the sum

∑
j∈S

∑
k/∈S:(k,j)∈A f(k, j) are all

nonpositive. Thus we have that
∑

j∈S ef (j) ≤ 0. But since f is a preflow, ef (j) ≥ 0
for all j 6= s. This implies that

∑
j∈S ef (j) = 0 and ef (j) = 0 for all j ∈ S, which

contradicts ef (i) > 0 since i ∈ S. We have reached a contradiction, so it must be
the case that s ∈ S.

While Lemma 2.40 at first seems rather innocuous, it has the consequence of
making sure that the distance labels remain bounded, and this will lead directly to
bounds on the running time of the algorithm.

Lemma 2.41: For any i ∈ V , d(i) ≤ 2n− 1.

Proof Note that we only relabel nodes i with positive excess, and by Lemma 2.40,
there is always a simple path P ⊆ Af from i to s on arcs with positive residual
capacity. Since P is simple, |P | ≤ n−1, and since d is a valid distance labeling and all
(i, j) ∈ P have (i, j) ∈ Af , it must be that d(i) ≤ d(s)+ |P | = n+ |P | ≤ 2n−1.

Using Lemma 2.41, we can immediately bound the number of relabel operations
performed by the algorithm, and with a little more work, we can also bound the
number of push operations. Let’s start by bounding the number of relabel operations.

2.8 The Push-Relabel Algorithm 53

Lemma 2.42: The number of relabel operations performed in Algorithm 2.6 is O(n2).

Proof All distance labels for i 6= s are set at d(i) = 0, and each time a relabel
is performed, we increase the distance label by at least one. By Lemma 2.41, each
distance label can be at most 2n − 1, and there are at most n − 2 different nodes
that can be relabeled, so that the overall number of relabel operations that can be
performed is at most (n− 2)(2n− 1) = O(n2).

To bound the number of push operations performed by the algorithm, we separate
them into two types. Recall that in a push operation, we increase the flow on an
arc (i, j) by the minimum of ef (i) and uf (i, j). We call a push that increases the
flow on f(i, j) by uf (i, j) a saturating push, because afterwards the arc (i, j) is
saturated. We call a push that increases flow by ef (i) < uf (i, j) a nonsaturating
push. We can bound the number of saturating pushes performed by the algorithm
with a proof essentially identical to one we used for the shortest augmenting path
algorithm (Lemma 2.32).

Lemma 2.43: The number of saturating pushes performed in Algorithm 2.6 is O(mn).

Proof The proof of this lemma closely follows the proof of Lemma 2.32 for the
shortest augmenting path algorithm. Fix an arc (i, j). If we perform a saturating
push on arc (i, j), then the arc was admissible and d(i) = d(j) + 1; since the arc
becomes saturated, it has zero residual capacity. By Observation 2.29, it can have
nonzero residual capacity again only if the flow is increased on arc (j, i), which
happens if flow is pushed on arc (j, i). Let d′ be the distance labels in the iteration
in which flow is pushed on (j, i); flow can only be pushed if (j, i) is admissible, or
d′(j) = d′(i) + 1. Since distance labels are nondecreasing during the course of the
algorithm, d′(j) = d′(i) + 1 ≥ d(i) + 1 = d(j) + 2. Thus the distance label of j must
have been increased by at least two units before the arc (i, j) again has any positive
residual capacity, and thus before another saturating push can be performed on arc
(i, j). Since over the course of the algorithm d(j) ≤ 2n− 1 by Lemma 2.41, it must
be the case that we can perform at most n saturating pushes on the arc (i, j). Taken
over all m arcs, we can perform O(mn) saturating pushes.

If we adopt the perspective that the distance label represents the height of a node,
then the proof above notices that a saturating push on (i, j) pushes flow from i
downhill one unit to j, and to be able to push from i to j again, we must first push
from j to i. To push downhill, we must raise the height of j by two units. Since the
height of j is never more than 2n − 1 units, we can perform at most n saturating
pushes on (i, j).

Finally, we bound the number of nonsaturating pushes of the algorithm. In this
argument, as well as others in the book, we will use a potential function argument. We
set up a potential function Φ in terms of some of the parameters of the algorithm such
that Φ is nonnegative during the course of the algorithm, and is some nonnegative
number P at the start. Typically, each algorithmic step that we are interested in
counting (for instance, each nonsaturating push) causes Φ to decrease by at least one
unit. Other steps of the algorithm cause Φ to increase. Then to bound the number

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

54 Maximum Flow Algorithms

of the steps we wish to count, we only need to bound the total amount by which Φ
increases: the number of these steps can be at most P plus the total increase. We can
view Φ as something like a bank account; each algorithmic step we want to count
withdraws at least a unit from the account, and because the account never becomes
negative, to bound the total number of withdrawals, we only need to give a bound
on the total amount initially in the account and that deposited into the account.

Lemma 2.44: The number of nonsaturating pushes performed in Algorithm 2.6 is
O(n2m).

Proof As stated above, we use a potential function argument. Let Φ =
∑

i active d(i).
Then Φ = 0 at both the start and end of the algorithm, since at the start all ac-
tive nodes have distance label 0, and at the end there are no active nodes. Now we
consider what causes Φ to increase and to decrease over the course of the algorithm.
The decreases in Φ are due to nonsaturating pushes, since these take a currently
active node i and make it inactive, thus removing it from the sum; since a push on
arc (i, j) requires d(i) = d(j)+1, even if the nonsaturating push makes j active, the
change in Φ is d(j)− d(i) = d(j)− (d(j) + 1) = −1. The increases in Φ are due to
relabel operations and saturating pushes that create a newly active vertex; a relabel
can increase Φ by the change in the distance label, and adding a new active vertex j
to the sum can increase Φ by d(j) ≤ 2n− 1. Thus the total amount by which Φ can
increase over the algorithm is O(n2) due to relabels plus O(nm) ·(2n−1) = O(n2m)
due to saturating pushes. Thus the total amount by which Φ can increase over the
course of the algorithm is O(n2 + n2m) = O(n2m). Since at the start and end of
the algorithm Φ = 0, the total number of nonsaturating pushes is O(n2m).

Putting everything together gives the following time bound.

Theorem 2.45: The push-relabel algorithm (Algorithm 2.6) takes O(n2m) time
overall to compute a maximum flow.

Proof Each push operation takes O(1) time, so the algorithm takes O(n2m) time
overall for push operations. For each vertex i, we maintain an ordered list of its
outgoing arcs (i, j), and we keep a pointer to the last arc (i, j) on which we pushed
flow. When searching for an admissible arc out of i, we start with this last previous arc
on which we pushed flow; if it is no longer admissible, we move to the next arc in the
list. If we reach the end of the list, then there are no longer any admissible arcs out of
i, and we can perform a relabel of i, and reset the pointer to the beginning of the list.
Examining all of the arcs out of i takes O(|δ+({i})|) time. By Lemma 2.41, we relabel
i O(n) times, so that the overall time taken for relabel operations and for scanning
the arcs out of all nodes for an admissible arc is O(n

∑
i∈V |δ+({i})|) = O(nm).

When the algorithm terminates, the preflow f is a flow since ef (i) = 0 for all
i 6= s, t. By Lemma 2.37, there are no augmenting paths in Gf , and thus by Theorem
2.7 f must be a maximum flow.

We observe from the proof above that the running time is dominated by the push
operations. The push-relabel algorithm is quite flexible; we have a good deal of choice
in selecting arcs to push and nodes to relabel. By taking some advantage of this

2.8 The Push-Relabel Algorithm 55

while i is active do
for all j such that (i, j) ∈ A do

if (i, j) is admissible then
Push(i, j)

if ef (i) > 0 then
Relabel(i)

Procedure Discharge(i)

δ ← min(ef (i), uf (i, j))
f(i, j)← f(i, j) + δ
f(j, i)← f(j, i)− δ
if j active and not b[d(j)].contains?(j) then

b[d(j)].add(j)

Procedure Push(i, j)

flexibility, we can give a better bound on the overall run time. In particular, we need
to do something to obtain a better bound on the number of nonsaturating pushes,
since the O(n2m) bound of Lemma 2.44 is what yields the O(n2m) running time.
To help us do this, we introduce a new operation, called discharge, and we choose
a particular order of applying discharge to active nodes. The discharge operation
takes an active node i and continues to apply push operations (and relabels when
necessary) until it is no longer active; note that the discharge operation causes at
most one nonsaturating push, since only the last push out of active node i can be
nonsaturating. Additionally, we will apply the discharge operation to the active node
with the highest distance label. In order to support this ordering, we maintain an
integer d∗ which is equal to the maximum label of an active node (that is, d∗ =
maxactive i d(i)). We also maintain buckets b[0], . . . , b[2n − 1], where each bucket
b[k] contains a list of active nodes whose distance label is k. Each bucket b[k] supports
the operations b[k].add(i), which adds node i to the list for bucket k; b[k].remove(),
which removes and returns some node from the list for bucket k (if there is one);
b[k].remove(i), which removes node i from bucket k if it is present; b[k].contains?(i),
which checks if the bucket k contains node i; and b[k].empty?, which checks if the
list for bucket k is empty or not. We give a formal presentation of this version of the
algorithm in Procedure Discharge and Algorithm 2.7. This version is often called
the highest label version of push-relabel. We will show below that this version reduces
the number of nonsaturating pushes (and hence the running time of the algorithm)
to O(n2

√
m).

Lemma 2.46: The number of nonsaturating pushes in Algorithm 2.7 is O(n2
√
m).

Proof We letK be a parameter; ultimately we will setK =
√
m. LetN(i) be the set

of nodes with distance label at most that of i, so that N(i) = {j ∈ V : d(j) ≤ d(i)}.
Note that i ∈ N(i), so |N(i)| ≥ 1. As in our proof of the bound of O(n2m) on

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

56 Maximum Flow Algorithms

b[d(i)].remove(i)
d(i)← min(i,j)∈Af

(d(j) + 1)
b[d(i)].add(i)
if d(i) > d∗ then

d∗ ← d(i)

Procedure Relabel(i)

f(i, j)← 0 for all (i, j) ∈ A
f(s, j)← u(s, j), f(j, s)← −u(s, j) for all (s, j) ∈ A
d(s)← n
d(i)← 0 for all i ∈ V , i 6= s
d∗ ← 0
b[0].add(i) for all i ∈ V , i 6= s, t
while d∗ ≥ 0 do

if not b[d∗].empty? then
Discharge (b[d∗].remove())

else
d∗ ← d∗ − 1

return f

Algorithm 2.7 The highest label version of the push-relabel algorithm.

nonsaturating pushes (in Lemma 2.44), we give a potential function argument, this
time with the potential function Φ = 1

K

∑
i active |N(i)|. Note that at the start of

the algorithm Φ ≤ n2/K, and at termination Φ = 0 since there are no longer any
active nodes. Once again, we need to consider which operations make the potential
function increase and which make it decrease. As observed previously, Φ is initially
at most n2/K. A relabel of node i can increase Φ by at most n/K, since it could be
the case that |N(i)| increases to n; note that all other |N(j)|, j 6= i, do not increase.
A saturating push can increase Φ by at most n/K by creating a newly active node.
Thus by Lemmas 2.42 and 2.43, the total amount by which Φ can increase over the
course of the algorithm is O(n2/K + (n2 +mn)n/K) = O(mn2/K).

A nonsaturating push on arc (i, j) must decrease Φ, since i is no longer active and
is removed from the sum, and |N(i)| ≥ 1; even if j becomes active due to the push,
because (i, j) is admissible, d(i) = d(j)+1, which implies thatN(j) ⊂ N(i) and thus
|N(j)| < |N(i)| since i /∈ N(j). Thus Φ decreases by at least (|N(i)|−|N(j)|)/K ≥
1/K.

To analyze the number of nonsaturating pushes, we divide the algorithm into
phases: we end a phase when d∗ changes, and start a new phase. We first bound the
total number of phases. Note that initially d∗ = 0 and this is also true at the end
of the algorithm. If d∗ increases (causing the end of a phase), this must be due to a
relabel operation on a node i of label d∗, since we always discharge an active node
of highest label. The increase in d∗ is equal to the amount of change in the label of

2.8 The Push-Relabel Algorithm 57

node i. By Lemma 2.42, the total amount by which d∗ can increase due to increases
in the labels of all the nodes is O(n2). A decrease in d∗ also causes the end of a
phase, and since the number of decreases of d∗ can be at most the total amount of
increase of d∗, the number of phases is O(n2).

We will call a phase short if there are at most K nonsaturating pushes during the
phase, and a phase is long otherwise. Since there are O(n2) phases, there are O(n2K)
nonsaturating pushes during the short phases. The key claim is that during a long
phase, since there are at least K nonsaturating pushes, then Φ must decrease by at
least one for each nonsaturating push. Each nonsaturating push on (i, j) is made
from a node i of the highest label, so that d(i) = d∗, and the phase ends either when
all nodes of label d∗ are not active, or when a node of label d∗ is relabeled. Thus if
there are Q > K nonsaturating pushes in the phase, there must have been at least
Q nodes of distance label d∗ at the start of the phase. Thus for each nonsaturating
push on an admissible arc (i, j) during a long phase, |N(i)| − |N(j)| ≥ Q > K,
and each push reduces Φ by at least (|N(i)| − |N(j)|)/K ≥ 1. Since Φ increases by
O(mn2/K) during the course of the algorithm, the number of nonsaturating pushes
in long phases is O(mn2/K). Thus the overall number of nonsaturating pushes is
O(n2K + mn2/K). Choosing K =

√
m to balance the two terms gives us that the

number of nonsaturating pushes is O(n2
√
m).

Theorem 2.47: The highest label version of push-relabel (Algorithm 2.7) runs in
O(n2

√
m) time.

Goldberg and Tarjan [92] show that by using a data structure known as a dynamic
tree (discussed in Exercise 4.3), the push-relabel algorithm can be implemented in
O(mn log(n2/m)) time.

As we mentioned at the beginning of the section, the push-relabel algorithm and
its variants are among the fastest maximum flow algorithms in practice; the highest
label version of the algorithm given above typically has been the fastest variant of
push-relabel. We now describe a number of implementation details which have no
effect on the theoretical running time of the algorithm, but are useful in improving
the overall speed of implementations of the highest label algorithm.

The first is to redefine an active node i 6= t to be one such that d(i) < n, in
addition to having positive excess ef (i) > 0; we show below that only nodes i with
d(i) < n can push their excess to the sink, and that once there are no active nodes
of this type, we have found a minimum s-t cut. Often, as in the baseball elimination
problem, we are only interested in the value of the flow and not the actual values
f(i, j), and so it is sufficient to have such an algorithm. The basic idea of the proof
is to consider a set S such that all arcs (i, j) ∈ δ+(S) are saturated. If all nodes with
positive excess are in this set S, then we show that if we continue to run the push-
relabel algorithm, the arcs in δ+(S) continue to be saturated, and so by Corollary
2.5 S is a minimum s-t cut when the algorithm terminates. We will give a set S such
that all i with d(i) ≥ n are in S and such that all arcs (i, j) ∈ δ+(S) are saturated.

If we are interested in the flow values f(i, j), it is possible to take a preflow f and
an s-t cut S, with all nodes of positive excess in S and all arcs in δ+(S) saturated,

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

58 Maximum Flow Algorithms

and convert the preflow to a flow in O(mn) time; we give this as an exercise (Exercise
2.13).

Lemma 2.48: Let f be a preflow, and let S be any s-t cut such that if (i, j) ∈ δ+(S)
then uf (i, j) = 0, and if j /∈ S and j 6= t, then ef (j) = 0. Then S is a minimum
s-t cut.

Proof We would like to apply Corollary 2.5 to show that then S must be a minimum
s-t cut, but f is a preflow, not a flow. So instead we argue that if we continue to
run the basic push-relabel algorithm (Algorithm 2.6), the arcs in δ+(S) continue to
be saturated. To see this, note that the flow on an arc (i, j) ∈ δ+(S) changes only if
we perform a push either on (i, j) or on (j, i). We will not perform a push on (j, i)
since j /∈ S, and therefore ef (j) = 0. We also cannot perform a push on (i, j) since
uf (i, j) = 0. Thus inductively, it continues to be the case that uf (i, j) = 0 for arcs
(i, j) ∈ δ+(S) and ef (j) = 0 for j /∈ S, j 6= t, and so when the algorithm terminates
with a flow f , by Corollary 2.5, S must be a minimum s-t cut.

Lemma 2.49: If d(i) ≥ n, then i cannot reach the sink t via arcs of positive residual
capacity.

Proof Suppose otherwise, and let P be a simple path from i to t via arcs of positive
residual capacity. Then since d is a valid distance labeling, d(i) ≤ d(t) + |P | ≤
0 + n− 1 = n− 1, which is a contradiction.

Corollary 2.50: If we terminate the algorithm when ef (i) > 0 implies d(i) ≥ n for
i 6= t, then the set S of all vertices that cannot reach t via arcs in Af is a minimum
s-t cut.

Proof Note that for the set S, (i, j) ∈ δ+(S) implies that uf (i, j) = 0. Then the
corollary follows immediately from Lemmas 2.49 and 2.48.

Note that from the corollary above, if we redefine an active node i to be one such
that d(i) < n (and ef (i) > 0), then when there are no longer any active nodes, we
can find a minimum s-t cut by looking for the set S of all vertices that cannot reach
t via arcs in Af .

As mentioned above, we leave the proof of the following lemma as an exercise
(Exercise 2.13).

Lemma 2.51: Let f be a preflow and S an s-t cut such that if ef (i) > 0 for i 6= s,
then i ∈ S, and also uf (i, j) = 0 for all (i, j) ∈ δ+(S). Then it is possible to find a
flow f in O(mn) time such that |f | = u(δ+(S)).

Two additional heuristics are used in practical variants of the push-relabel algo-
rithm. The first is called the gap relabeling heuristic. It checks to see whether there
is a “gap” in the distance labels; that is, if there is some value k < n such that
there are active nodes i with distance label d(i) > k, but no nodes j of distance
d(j) = k. If so, it takes every node i with distance label k < d(i) < n and sets
d(i) = n. Since now a node i is active only if d(i) < n, effectively this makes all of
these nodes inactive. The central idea in proving the correctness of this heuristic is

Exercises 59

to show that the new distance labeling continues to be a valid distance labeling. We
ask the reader to prove this in Exercise 2.14. It is easy to implement the heuristic,
also: during a relabel operation, we check when we remove node i from its bucket
b[d(i)] if the bucket is now empty. If so, then since i is active, and will receive label
greater than its current label of d(i), we can set the label of every active node of
label greater than d(i) to n. Both Lemma 2.48 and gap relabeling will play a role in
the Hao-Orlin algorithm we discuss in Section 3.1.

The second heuristic is called global relabeling. We observed that the distance label
d(i) is meant to be used as an estimate of the distance of each node to the sink using
arcs of positive residual capacity. It turns out to be useful to calculate the actual
distance of i to t using arcs of positive residual capacity and update d(i) to be this
distance; these give a valid distance labeling, and the update takes O(m) time (as
we observed in Exercise 1.1). Since global relabeling is a relatively time-consuming
operation, we do not want to perform it too frequently. Experimentally, it seems
that performing a global relabeling once every n relabels is very useful. Since there
are O(n2) relabel operations total during the course of the algorithm, this adds an
additional O(mn) to the running time.

As we mentioned previously, not only is the push-relabel algorithm quite practical,
but it is very flexible, and variants of it can be used in many settings. We will see
versions of the push-relabel algorithm applied to several different flow problems in the
exercises and upcoming sections. For instance, we apply ideas from the push-relabel
algorithm to finding a global minimum cut in Section 3.1, to finding a minimum-cost
circulation in Section 5.5, and to finding a generalized maximum flow in Exercise
6.5. We also see variants of the push-relabel algorithm in the exercises known as
FIFO push-relabel (Exercise 2.10), excess scaling (Exericse 2.11), and wave scaling
(Exercise 2.12).

Exercises

2.1 Let f be an s-t flow according to Definition 2.1. Show that the value of the flow is

equal to the net flow entering the sink; that is, show that

|f | =
∑

k:(k,t)∈A

f(k, t)−
∑

k:(t,k)∈A

f(t, k).

2.2 Consider the maximum s-t flow problem shown below, where M is a large integer.

Show that an algorithm that chooses arbitrary augmenting paths from the residual

graph does not run in polynomial time.

s t

M

M

M

1

M

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

60 Maximum Flow Algorithms

2.3 In this problem, we return to the baseball elimination problem of Section 2.3; we use

the same notation as that section.

(a) Prove that if team k is eliminated, and w(k) + g(k) ≥ w(i) + g(i), then team i is

also eliminated.

(b) Prove that we can determine which teams in the division have been eliminated and

which have not with O(log |T |) executions of a maximum flow algorithm, where T

is the set of teams in the division.

2.4 We now consider the quidditch elimination problem, to determine whether a given

professional league quidditch team has been eliminated from the championship at

some point in the middle of the season. The only rules of professional quidditch that

we need to know are that there are 3 points awarded for each game. If a team has the

highest score and captures the Golden Snitch, then 3 points go to the winner, and

0 go to the loser; if the team has the highest score but doesn’t capture the Golden

Snitch, it gets 2 points and the other team gets 1 point. Another way to view this is

that the team with the highest score gets 2 points, and the team that captures the

Golden Snitch gets 1 point. The team with the most points at the end of the season

wins the championship. Assume that each team plays the same number of games, in

total, in the course of the season. Show how to determine whether a given quidditch

team has been eliminated via a single maximum flow computation.

2.5 A type of problem in computer vision is called image segmentation. In this problem,

we would like to identify objects that are present in the image; we do so by assigning

labels to the pixels in the image, such that the pixels for a given objects are all labeled

with the same label. The problem can be formulated as follows. We are given as input

an undirected graph G = (V,E) in which the vertices represent the pixels of the image

and the edges connect adjacent pixels. We are also given labels L, assignment costs

c(i, `) ≥ 0 for all i ∈ V and ` ∈ L, and separation costs p(i, j) ≥ 0 for all (i, j) ∈ E.

We would like to assign each vertex a single label of L. There is a cost c(i, `) for

assigning label ` to vertex i ∈ V . Also, all things being equal, we want nearby vertices

assigned the same labels, so there is a penalty p(i, j) for edge (i, j) ∈ E if i and j are

assigned different labels. The goal is to find a labeling that minimizes the overall cost

(assignment costs plus penalties). More formally, we want to find a labeling of the

vertices f : V → L that minimizes∑
i∈V

c(i, f(i)) +
∑

(i,j)∈E:f(i)6=f(j)

p(i, j).

Show that if there are only two labels (that is, |L| = 2), then we can find the labeling

of minimum cost via a minimum s-t cut computation.

2.6 Consider an undirected graph G = (V,E) with nonnegative integer weights w(i, j) ≥
0 for all (i, j) ∈ E. Suppose we now wish to find the weighted maximum density

subgraph. Let w(E(S)) =
∑

(i,j)∈E(S) w(i, j); we want to find S ⊆ V , S 6= ∅, that

maximizes w(E(S))/|S|. Show how the algorithm of Section 2.4 can be adapted to find

the weighted maximum density subgraph in O(logW) maximum flow computations,

where W =
∑

(i,j)∈E w(i, j).

2.7 (Hoffman’s circulation theorem) Let G = (V,A) be a directed graph, with bounds

0 ≤ `(i, j) ≤ u(i, j) for all (i, j) ∈ A. We say that f is a feasible circulation if for all

i ∈ V , ∑
j:(j,i)∈A

f(j, i)−
∑

j:(i,j)∈A

f(i, j) = 0,

Exercises 61

and for all (i, j) ∈ A, `(i, j) ≤ f(i, j) ≤ u(i, j). For S ⊂ V , recall that δ+(S) =

{(i, j) ∈ A : i ∈ S, j /∈ S} and δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S}. Also, for a subset

A′ ⊆ A of arcs, define u(A′) =
∑

(i,j)∈A′ u(i, j) and `(A′) =
∑

(i,j)∈A′ `(i, j). Prove

that there exists a feasible circulation f if and only if for all subsets S ⊂ V , S 6= ∅,
u(δ+(S)) ≥ `(δ−(S)). As part of the proof, show that a feasible circulation can be

found (if it exists) with a single maximum flow computation.

2.8 Show that it is possible to find the most improving augmenting path (that is, the

augmenting path whose arc of minimum residual capacity is maximized) in a residual

graph in O(m+ n logn) time.

2.9 Consider the following problem. We are given as input a directed graph G = (V,A),

source and sink vertices s and t, integer capacities u(i, j) ≥ 0 for all (i, j) ∈ A, and a

positive integer k. The goal of the problem is to find the maximum amount of flow

that can be sent from s to t if flow is sent on exactly k paths and each path must

send the same amount of flow.

We claim that a max flow/min cut theorem can be shown for this problem for a

suitable definition of cut. For a cut S, s ∈ S, consider a bin packing problem in which

there is a bin of capacity u(i, j) for each arc (i, j) ∈ δ+(S). Let λ be the maximum

item size such that k items of size λ can be packed in these bins. Then we define the

capacity of cut S, ĉ(S), to be kλ.

Prove that the maximum s-t flow of the type above is equal to the minimum capacity

s-t cut as defined above; i.e. minS⊆V :s∈S,t/∈S ĉ(S).

2.10 Another variant of the push-relabel algorithm is called FIFO push-relabel. This ver-

sion maintains a queue of active nodes; initially all active nodes are added to the

queue (if needed, see page 7 in Section 1.2 for definitions of operations supported by

a queue). The algorithm takes a node i from the front of the queue and performs a

discharge operation on it. If pushing flow from i to j causes j to become active, and

j is not already in the queue, the algorithm adds j to the end of the queue.

To bound the running time of the algorithm, we need to bound the number of non-

saturating pushes performed by the algorithm. To do this, we use a potential function

argument on passes over the queue. The first pass over the queue ends when the al-

gorithm has performed a discharge operation on all the nodes initially added to the

queue. In general, the kth pass to the queue ends when the algorithm has performed a

discharge operation on all the nodes added to the queue in the (k−1)st pass. Consider

the potential function Φ = maxactive i d(i).

(a) Use the potential function to prove that the algorithm makes O(n2) passes.

(b) Argue that the bound on the number of passes implies there are O(n3) nonsatu-

rating pushes.

(c) Finally, argue that the FIFO version of push-relabel takes O(n3) time.

2.11 Yet another variant of the push-relabel algorithm is known as excess scaling. In this

variant of the algorithm we maintain a parameter ∆ which is initially 2dlog2 Ue; we

proceed in a sequence of ∆-scaling phases. At the start of each ∆-scaling phase, we

maintain that the current preflow f is ∆-optimal. A preflow f is ∆-optimal if the

excess ef (i) ≤ ∆ for all i 6= s, t. In each ∆-scaling phase, we run a slightly modified

push-relabel algorithm in which we ensure that we do not create any new nodes i

with ef (i) > ∆.

(a) Explain how to modify the push operation so that the algorithm does not create

any new nodes i with ef (i) > ∆.

(b) Assuming that for each node i ∈ V , i 6= s, there is at most one arc from the source

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

62 Maximum Flow Algorithms

s to i, explain why after the usual initialization of the push-relabel algorithm, the

initial preflow is ∆-optimal for ∆ = 2dlog2 Ue.

Within a ∆-scaling phase, we say that a node i is ∆/2-active if ef (i) > ∆/2. In the

push-relabel algorithm for a ∆-scaling phase, we pick the ∆/2-active node i that has

minimum distance label d(i), and we push excess from i on admissible arcs (i, j) (recall

that an arc is admissible if it has positive residual capacity and d(i) = d(j) + 1); we

continue to push on i until either ef (i) ≤ ∆/2 or we need to relabel i. We then pick

the next ∆/2-active node of minimum distance label. The ∆-scaling phase ends when

there are no more ∆/2-active nodes. We then divide ∆ by two, and continue to the

next ∆-scaling phase; observe that since there were no ∆/2-active nodes at the end

of the previous phase, once we divide ∆ by two, the preflow is ∆-optimal for the new

value of ∆.

(c) Argue that for the ∆/2-active node of minimum distance label, either a push or

a relabel operation always applies, and thus if we can bound the number of push-

relabel operations, each ∆-scaling phase must terminate in finite time.

(d) Argue that if capacities are integer, then once ∆ < 1 the algorithm has computed

a maximum flow.

(e) Prove that the number of nonsaturating pushes is O(n2) per ∆-scaling phase (Hint:

use the potential function Φ =
∑
i∈V :i 6=s,t ef (i)d(i)/∆).

(f) Prove that the overall running time of the algorithm (including the time needed

to find the minimum distance label ∆/2-active node in each iteration) is O(mn +

n2 logU).

2.12 In Problem 2.11, we looked at a variation of the push-relabel algorithm called excess

scaling. In this variant of the algorithm we maintain a parameter ∆ which is initially

2dlog2 Ue; we proceed in a sequence of ∆-scaling phases. At the start of each ∆-scaling

phase, we maintain that the current preflow f is ∆-optimal. A preflow f is ∆-optimal

if the excess ef (i) ≤ ∆ for all i 6= s, t. In each ∆-scaling phase, we run a slightly

modified push-relabel algorithm in which we ensure that we do not create any new

nodes i with ef (i) > ∆; recall from Part (a) of Exercise 2.11 that this variant involves

modifying the push operation.

In this problem, we consider a variant called wave scaling. In order to implement wave

scaling, we need to implement our push operations in a particular way, which we will

call stack push, given in Procedure StackPush. For each node i, we will have some

ordering of the outgoing arcs, and we will maintain an arc called the current arc. We

will always try to push on the current arc, and if we can’t, then we proceed to the

next arc in the ordering. Once we have finished pushing on the last arc, we know that

we will need to relabel node i, and we reset the current arc to the first arc in the

ordering.

Wave scaling happens in a series of waves. For each wave, we sort the nodes other

than s and t in nonincreasing order by distance label (which we can do in O(n) time

using a type of sorting called a radix sort), and we then consider each node i in the

ordering. If i is active, and has not yet been relabeled in this wave, we perform a

stack push on i.

Define the total excess Ef as the sum over all excess of nodes that are not s or t;

that is, Ef =
∑
i∈V :i 6=s,t ef (i). Let ` be a parameter to be named later. The algorithm

will keep performing waves until the total excess is at most n∆/`. It will then behave

as the excess scaling algorithm and perform a stack push on any node i with excess

greater than ef (i) > ∆/2. It will do this until there are no more nodes with excess

Exercises 63

Add i to empty stack S
while stack S is nonempty do

Let i be the vertex at the top of S
Let (i, j) be the current arc out of i
if (i, j) not admissible then

if (i, j) last arc out of i then
Set current arc out i to be first arc out of i
Pop i from S
Relabel(i)

else
Set current arc out of i to be next arc out of i

else if ef (j) ≥ ∆/2 and j 6= t then
Push j onto stack S

else
Push((i, j))
if ef (i) = 0 then pop i from stack S

Procedure StackPush(i)

∆← 2blog2 Uc

f(i, j)← 0 for all (i, j) ∈ A
f(s, j)← u(s, j), f(j, s)← −u(s, j) for all (s, j) ∈ A
d(s)← n
d(i)← 0 for all i ∈ V , i 6= s
while ∆ ≥ 1 do

while Ef ≥ n∆/` do // Start new wave
Let L be ordering of nodes except s, t sorted in nonincreasing order by
d(i)

for i next node in L do
if ef (i) > 0 and i not yet relabeled in this wave then

StackPush(i)

while ∃i 6= t : ef (i) ≥ ∆/2 do
StackPush(i)

∆← ∆/2
return f

Algorithm 2.8 The wave scaling version of the push-relabel algorithm.

greater than ∆/2, at which point the current ∆-scaling phase will end, and we divide

∆ by two. The algorithm is summarized in Algorithm 2.8.

Call any push during a ∆-scaling phase that pushes at least ∆/2 units of flow a big

push and a push that pushes less than ∆/2 units of flow a small push.

(a) Argue that for each time node i is on the stack during a stack push, there are at

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

64 Maximum Flow Algorithms

most two nonsaturating pushes, and only one nonsaturating push can be a small

push.

(b) Argue that at the end of a wave, it must be the case that any vertex with positive

excess must have been relabeled.

(c) Explain why we must push from nodes with excess at least ∆/2 after we have

finished with the waves.

(d) Prove that there can be at most O(n2 + (n2/`) logU) nonsaturating big pushes

during the course of the entire algorithm (Hint: use the same potential function as

in Problem 2.11 Part (e)).

(e) Prove that there can be at most O(n2 + (n2/`) logU) nonsaturating small pushes

plus O(n) nonsaturating small pushes per wave during the course of the entire

algorithm.

(f) Prove that for any wave except the last one in a ∆-scaling phase, there must be at

least O(n/`) relabels during the wave.

(g) Prove that if there are no relabels during a wave, there are no nodes with positive

excess at the end of the wave, and thus the algorithm terminates.

(h) Use the preceding items to argue that there are at most O(min(n2, n` + logU))

waves during the algorithm.

(i) Prove that if ` =
√

logU , the running time of the wave scaling version of push-

relabel takes O(mn+ n2√logU).

2.13 Prove Lemma 2.51.

2.14 In this exercise, we prove the correctness of the gap relabeling heuristic. Suppose

there is a value k < n such that there are no nodes i with d(i) = k, but there are

active nodes j of distance k < d(j) < n. Prove that setting d(j) = n for all such nodes

gives a valid distance labeling.

2.15 In a variation of the normal maximum flow problem, we have a parametric network,

in which the capacities of arcs leaving the source and entering the sink vary with a

parameter λ. Let u(i, j, λ) be the capacity of arc (i, j) for parameter λ. In particular,

we have

• u(s, j, λ) is a nondecreasing function of λ for all j 6= t;

• u(i, t, λ) is a nonincreasing function of λ for all i 6= s;

• u(i, j, λ) = u(i, j) for all i 6= s and j 6= t.

In the parametric max flow problem, in addition to the usual input for the maximum

flow problem, we are also given the values λ1 < λ2 < · · · < λ`, and the capacities of

the arcs u(i, j, λk) for all (i, j) ∈ A, 1 ≤ k ≤ `. The goal is to find flow values f1, . . . , f`
and minimum s-t cuts S1, . . . , S` for the flow problems associated with the capacities

given by the input λ1, . . . , λk.

(a) Show that the push-relabel algorithm for the maximum flow problem can be used

to solve the parametric maximum flow problem in O(n2(`+m)) time. (Hint: Start

by solving the flow problem for λ1. What should you do after that?)

(b) Show that S1 ⊆ S2 ⊆ · · · ⊆ S`.
(c) Show that there are at most n− 1 distinct sets among the Sk.

Chapter Notes

Schrijver ([176],[177, Section 10.8e]) gives an overview of the history of the maximum
flow problem. The problem was posed to Ford and Fulkerson in 1954 by T. E. Harris

Exercises 65

as one of finding the maximum amount of railway traffic through a railway network.
Schrijver notes that a formerly classified report shows that the problem of interest
was that of finding a minimum s-t cut in the network sending rail traffic between
the Soviet Union and its satellite countries in Eastern Europe. Ironically, this po-
tential split between East and West would soon manifest itself in the maximum flow
literature.

Ford and Fulkerson [63] proved the maximum flow/minimum cut theorem (Theo-
rem 2.6), and developed the various ideas in Section 2.1, including that of a resid-
ual graph, augmenting paths, and the augmenting path algorithm (Algorithm 2.1).
Other proofs of the maximum flow/minimum cut theorem soon followed, including
one by Elias, Feinstein, and Shannon [58] and one by Dantzig and Fulkerson [49] that
showed that the result follows from linear programming duality theory. Fulkerson and
Dantzig [75] showed how to adapt the simplex method for linear programming to the
problem. A number of results in graph theory and combinatorics were shown soon
thereafter to follow from the maximum flow/minimum cut theorem, including the
König-Egerváry theorem, Menger’s theorem, Hall’s theorem, and Dilworth’s theo-

rem; these applications of the theorem are discussed in the classical text of Ford and
Fulkerson [66, Chapter 2].

The maximum flow/minimum cut theorem predated the notion of polynomial-
time algorithms by a decade, and so algorithms with provably polynomial running
times did not appear until some time later. Here we encounter the split between
the mathematical literature in the Soviet Union and West alluded to earlier; some
of the history of this split is discussed (from the Soviet perspective) in a paper of
Dinitz [54]. Many developments on each side of the Iron Curtain were unknown
to the other side until some years later, and so algorithmic ideas were developed
independently. Maximum flow algorithms based on blocking flows were developed by
Dinitz in the Soviet Union [52]; we will discuss blocking flow algorithms in Chapter
4. The idea of using a preflow, along with a push operation, was given by Karzanov
[128]. He used preflows to obtain a blocking flow in O(n2) time, which led to a O(n3)
time algorithm. In the West, Edmonds and Karp [57] gave the most improving path
algorithm of Section 2.5 and the shortest augmenting path algorithm of Section 2.7.
The scaling algorithm of Section 2.6 is due to Ahuja and Orlin [6].

The push-relabel algorithm in Section 2.8 is due to Goldberg and Tarjan [92]. The
algorithm is quite flexible, and there are quite a number of variants discussed in the
literature. Section 2.8 discusses the highest label push-relabel algorithm, and others
are given in the exercises. The bound on nonsaturating pushes for highest label push-
relabel as given in Lemma 2.46 was originally shown by Cheriyan and Maheshwari
[34]. We give a proof by Cheriyan and Mehlhorn [35].

The list of developments in polynomial-time algorithms for the maximum flow
problem is very long, and we will not give an survey here. A recent overview was given
by Goldberg and Tarjan [95]. Older references include the textbook-length treatment
of Ahuja, Magnanti, and Orlin [4] and surveys of Frank [68] and Goldberg, Tardos,
and Tarjan [91]. In Chapter 4, we will give an O(min(m1/2, n2/3)(m log n log(mU))
time algorithm due to Goldberg and Rao [90]. In 2013, Orlin [159] achieved a long-
standing goal of the field by giving an O(mn) time algorithm for the maximum flow

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

66 Maximum Flow Algorithms

problem, which remains the fastest strongly polynomial-time algorithm known. More
recent progress using interior-point methods for maximum flows has been made; we
discuss these results in the chapter notes of Chapter 8 on electrical flows.

Experimental work prior to the advent of the push-relabel algorithm showed
Dinitz’s algorithm outperforming other known algorithms such as the augmenting
path algorithm, the simplex method, and Karzanov’s algorithm (see, for instance,
Cheung [39], Glover, Klingman, Mote, and Whitman [81, 82], and Imai [115], though
Imai found that Dinitz’s and Karzanov’s algorithm were the best two of several algo-
rithms). Once Goldberg and Tarjan introduced the push-relabel algorithm, studies
showed that the push-relabel algorithm, especially the highest label variant, outper-
formed other algorithms known at the time (see Derigs and Meier [50], Anderson and
Setubal [9], Nguyen and Venkateswaran [153], and Cherkassky and Goldberg [37]).
These implementation studies showed the usefulness of the global relabeling heuristic
(which was proposed by Goldberg and Tarjan [92]) and the gap relabeling heuristic
(which was discovered independently by Cherkassky [36] and Derigs and Meier [50]).
These implementations also use the idea discussed at the end of Section 2.8 of having
only active nodes with distance label less than n, and using an algorithm such as
that of Lemma 2.13 to convert the resulting preflow to a flow. Since that period,
however, there have been additional studies suggesting that other algorithms are
competitive with, or even surpass, the push-relabel algorithm. Goldberg [85] defines
a version of push-relabel that pushes flow over two arcs in succession, and shows
that it outperforms highest label push-relabel. Hochbaum [107] introduces a maxi-
mum flow algorithm based on pseudoflows and experimental work by Chandran and
Hochbaum [31] shows that this algorithm also outperforms hightest label push-relabel
(a pseudoflow obeys capacity constraints, but may allow excesses or deficits; see Sec-
tion 5.4). Goldberg, Hed, Kaplan, Kohli, Tarjan, and Werneck [86] also introduce
an algorithm based on pseudoflows that they show typically outperforms other algo-
rithms, with Hochbaum’s pseudoflow algorithm or Goldberg’s two-level push-relabel
algorithm being usually the best performer on instances in which the Goldberg et
al. algorithm is not the fastest algorithm. They also compare their algorithm with a
flow algorithm of Boykov and Kolmogorov [28] that is widely used in the computer
vision community but has no strongly polynomial-time running bound.

For the applications in this chapter, the carpool sharing application of Section 2.2
was suggested to the author by Jon Kleinberg in a personal communication. The
baseball elimination problem of Section 2.3 is a classical application of maximum
flow given by Schwartz [178]. We follow the presentation of Wayne [203], who credits
Alan Hoffman with popularizing this application of maximum flow. The algorithm
we give for finding a maximum density subgraph in Section 2.4 is due to Goldberg
[83].

Exercise 2.3 is due to Wayne [203]. Exercise 2.7 is due to Hoffman (see [108]).
Exercise 2.9 is from Baier, Köhler, and Skutella [14]. Exercise 2.10 is due to Goldberg
and Tarjan [92]. The excess scaling algorithm of Exercise 2.11 is due to Ahuja and
Orlin [5]. The wave scaling algorithm of Exercise 2.12 is due to Ahuja, Orlin, and
Tarjan [7]. Exercise 2.15 is due to Gallo, Grigoriadis, and Tarjan [78].

3

Global Minimum Cut Algorithms

Think globally, act locally.

– Common Ithaca bumper sticker

While the details of the push-relabel algorithm are still fresh in our minds, we take
a detour out of the topic of maximum flow algorithms to discuss global minimum cut
algorithms; we’ll return to maximum flow algorithms with a discussion of blocking
flow style algorithms in the next chapter.

In the last chapter, we saw that computing a maximum s-t flow also computes
a minimum capacity s-t cut S∗, one that minimizes u(δ+(S)) over all S ⊆ V with
s ∈ S and t /∈ S. However, sometimes we are interested in computing the minimum
capacity cut S over all nontrivial sets S ⊆ V . We say that this is a global minimum
cut. Formally, for the global minimum cut problem, we are given as input a directed
graph G = (V,A) and capacities u(i, j) ≥ 0 for all arcs (i, j) ∈ A, and we wish
to find a subset of vertices S ⊂ V , S 6= ∅, that minimizes u(δ+(S)). We will also
consider the global minimum cut problem in undirected graphs G = (V,E): for
such problems we wish to find a subset of vertices S ⊂ V , S 6= ∅, that minimizes
u(δ(S)) =

∑
(i,j)∈δ(S) u(i, j), where δ(S) is the set of undirected edges with exactly

one endpoint in S (that is, δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S}).
It is not hard to see that we can solve the global minimum cut problem in directed

graphs via some number of minimum s-t cut problems. For instance, we could try
all n(n− 1) possible pairs of vertices s, t ∈ V , s 6= t, and compute the minimum s-t
cut problem for each one, and take the minimum over all the cuts. Certainly for a
global minimum cut S, there is some s ∈ S and t /∈ S, and so this algorithm will
find a global minimum cut.

However, we can be somewhat smarter. Define the minimum s-cut problem as
follows: we are given a directed graph G = (V,A), capacities u(i, j) ≥ 0 for all
(i, j) ∈ A, and a vertex s ∈ S. The goal is to find a nontrivial subset S ⊂ V with
s ∈ S of minimum capacity u(δ+(S)). To find a minimum s-cut, we can compute
a minimum s-t cut for all t 6= s with n − 1 minimum s-t cut computations, and
take the minimum cut found; since for a minimum s-cut S, there will be some
t /∈ S, this algorithm will find a minimum s-cut. Now how do we use this to find
a global minimum cut? We first pick an arbitrary s ∈ V , and compute a minimum
s-cut S as above. We now want to compute a minimum cut S′ over all S′ ⊂ V ,
S′ 6= ∅, such that s /∈ S′. The minimum capacity cut of S and S′ will give the global

67

68 Global Minimum Cut Algorithms

minimum cut. We find such a cut S′ by considering the reverse graph GR = (V,AR)
in which we reverse the direction of each arc but keep the capacity the same; that is,
AR = {(j, i) : (i, j) ∈ A} where uR(j, i) = u(i, j). Now we compute the minimum
s-cut S′ in GR. We observe that uR(δ+(S′)) = u(δ+(V − S′)), so that V − S′ is
a cut of minimum capacity in the original graph G over sets that do not contain
s. Thus we can find the global minimum cut in a directed graph by two minimum
s-cut calculations, or 2(n − 1) minimum s-t cut calculations, rather than n(n − 1)
minimum s-t cut calculations.

In the next section, however, we will see that we can do better still. We will show
that we can compute a minimum s-cut in the time it takes to run a single execution
of the push-relabel algorithm. Thus we can infer a global minimum cut simply by the
very local operations of the push-relabel algorithms, in agreement with the bumper
sticker quoted at the start of the chapter.

For undirected graphs, it is possible to reduce the global minimum cut problem
to the case in directed graphs by replacing each undirected edge (i, j) of capacity
u(i, j) with two directed arcs (i, j) and (j, i), each of the same capacity. However,
here we will see that we can find a global minimum cut by using ideas that do not
involve flows at all. In Section 3.2, we will see how to find a global minimum cut via
an algorithm that computes an ordering of the vertices then contracts the last two
vertices in the ordering; we say that we contract two vertices if we merge two vertices
(and associated edges) into a single vertex. Then in Section 3.3, we will get our first
taste of how randomization can be useful in network flow algorithms by looking at an
algorithm that picks random pairs of vertices to contract. Finally, in Section 3.4, we
will see an algorithm that computes a global minimum cut with n− 1 minimum s-t
cut computations but also gives the value of the minimum s-t cut for every possible
pair of vertices s, t ∈ V .

For an example of why finding a global minimum cut might be interesting, we
consider the network reliability problem. Suppose that we are given an undirected
graph G = (V,E) with probabilities p(i, j) for all (i, j) ∈ E, where 0 < p(i, j) ≤ 1
for each edge (i, j). The probability p(i, j) is the probability that edge (i, j) will
fail during a given time period. We assume that edge failures are independent of
each other. We want to find the set S ⊂ V , S 6= ∅, that maximizes the probabil-
ity that all edges in δ(S) fail during the time period, where δ(S) is the set of all
edges such that exactly one endpoint of the edge is in S. If all edges in δ(S) fail,
then the graph will become disconnected. Thus we want to find a nontrivial S that
maximizes

∏
(i,j)∈δ(S) p(i, j). Suppose we let u(i, j) = − log p(i, j). Then maximizing∏

(i,j)∈δ(S) p(i, j) is equivalent to minimizing

− log
∏

(i,j)∈δ(S)

p(i, j) = −
∑

(i,j)∈δ(S)

log p(i, j) =
∑

(i,j)∈δ(S)

u(i, j) = u(δ(S)).

Thus finding the cut with the maximum probability of edge failures of all edges in
the cut is equivalent to finding a global minimum cut in an undirected graph.

3.1 The Hao-Orlin Algorithm 69

X = {s}
while X 6= V do

Pick some t ∈ V −X
Compute minimum X-t cut St
X ← X ∪ {t}

t′ ← argmint∈V−{s} u(δ+(St))

return St′

Algorithm 3.1 Using a minimum X-t cut algorithm to find a minimum s-cut.

3.1 The Hao-Orlin Algorithm

In the introduction to this chapter, we showed how to use an algorithm for the
minimum s-cut problem to solve the problem of finding the minimum global cut.
Now we show how to use an algorithm for yet another problem, which we call the
minimum X-t cut problem, to solve the minimum s-cut problem. We then give an
algorithm for the minimum X-t cut problem due to Hao and Orlin [104] that is based
on the push-relabel algorithm of Section 2.8.

In the minimum X-t cut problem, we are given an directed graph G = (V,A)
with capacities u(i, j) ≥ 0 on the arcs (i, j) ∈ A. We are also given a set X ⊂ V
and a vertex t ∈ V − X. The goal is to find a set S such that X ⊆ S and t /∈ S
that minimizes the capacity u(δ+(S)). Given an algorithm for the minimum X-t cut
problem, we can now solve the minimum s-cut problem as follows; the algorithm is
summarized in Algorithm 3.1. We first set X = {s}, pick some arbitrary t ∈ V −X,
and find a minimum X-t cut St. We then add t to X and repeat until all vertices
are in X. We then return the cut St that minimizes u(δ+(St)). Note that s ∈ St,
so the cut is an s-cut. We now argue that it must be a minimum s-cut. Let S∗ be a
minimum s-cut. Consider the first iteration of the algorithm in which we pick some
t /∈ S∗. Since in all prior iterations, we picked a t ∈ S∗, it must be the case in this
iteration that X ⊆ S∗ and t /∈ S∗, so that the X-t cut St found in this iteration
has capacity u(δ+(St)) ≤ u(δ+(S∗)). Since St is also an s-cut, it must also be that
u(δ+(St)) ≥ u(δ+(S∗)), and thus the cut St found in this iteration will have the
same capacity as a minimum s-cut S∗.

At first blush, it seems that we have only made things more complicated: to find
a minimum s-cut, we are now running n − 1 iterations of an algorithm to find a
minimum X-t cut! But we will now show that we can perform all of these iterations
in a single run of the push-relabel algorithm. To get this to work, we need to tinker
slightly with the definitions of a preflow and a valid distance labeling to treat the
nodes in X analogously to the way the source vertex s is treated in the push-relabel
algorithm. We do this by introducing the notion of an X-preflow and an X-valid
distance labeling. An X-preflow is a preflow in which we only enforce that nodes
i ∈ V −X have nonnegative excess; an X-valid distance labeling is one in which all
nodes i ∈ X have d(i) = n, and we weaken the condition d(t) = 0 to d(t) ≤ |X|−1;
note that for X = {s} this gives d(t) ≤ 0.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

70 Global Minimum Cut Algorithms

Definition 3.1: An X-preflow f for X ⊆ V is a preflow as in Definition 2.35 except
that we allow ef (i) < 0 for i ∈ X.

Definition 3.2: An X-valid distance labeling d(i) for i ∈ V for X-preflow f obeys
the following:

• d(j) = n for all j ∈ X;

• d(i) ≤ d(j) + 1 for all arcs (i, j) ∈ Af ;

• d(t) ≤ |X| − 1;

• d(t) ≤ d(i) for all i ∈ V .

We can show that as in the case of the push-relabel algorithm, if we maintain an
X-preflow and an X-valid distance labeling, then there is no path in Gf from X to
t of arcs in Af (that is, arcs with positive residual capacity).

Lemma 3.3: Given an X-preflow f and an X-valid distance labeling d, there is no
path in Gf from any node in X to t of arcs in Af .

Proof Suppose otherwise, and let P ⊆ Af be such a path; let j ∈ X be the first
node of P . We can assume j is the only node of P in X since otherwise we could
take the path starting from the last node of X in P . There are at most n − |X|
arcs in the path, so that by the properties of an X-valid distance labeling, d(j) ≤
d(t) + |P | ≤ (|X| − 1) + (n − |X|) = n − 1, but this contradicts the requirement
that d(j) = n for j ∈ X. Hence there is no path in Gf from X to t of arcs in Af ,
and this implies that there is always an X-t cut St such that all arcs in δ+(St) have
no residual capacity.

We would like to use a lemma similar to Lemma 2.48 that says that as long as all
nodes with positive excess are inside St, then St is a minimum X-t cut; we will leave
the proof of the following lemma as an exercise (Exercise 3.1).

Lemma 3.4: Let f be a X-preflow, and let S be any X-t cut such that if (i, j) ∈
δ+(S) then uf (i, j) = 0 and if j /∈ S and j 6= t, then ef (j) = 0. Then S is a
minimum X-t cut.

We will shortly define the concept of a cut level, which is defined in terms of the
value d < n of a distance label. One of the main ideas of the algorithm is that the
cut level naturally defines an X-t cut S of all vertices i with distance label d(i) ≥ d,
such that if we can guarantee that ef (j) = 0 for all j 6= t with d(j) < d, then we
can apply Lemma 3.4 and show that we have found the minimum X-t cut.

To define a cut level, we first define the concept of a distance level; these are
sets containing all nodes i with the same distance label, and hence are analogous
to the buckets b[k] we used in the implementation of the highest label variant of
push-relabel (Algorithm 2.7). We denote them B(k).

Definition 3.5: The distance level k, denoted B(k), is the set of all nodes i with
d(i) = k; that is B(k) = {i ∈ V : d(i) = k}. The distance level k is empty if
B(k) = ∅.

We now define the cut level as a particular kind of distance level.

3.1 The Hao-Orlin Algorithm 71

Definition 3.6: The distance level k is a cut level if for all i ∈ B(k) and all arcs
(i, j) ∈ Af , d(i) ≤ d(j).

Observation 3.7: If distance level k is empty, then it is trivially a cut level.

As discussed above, if all nodes i with positive excess have distance label d(i) ≥ d
for some cut level d, then we can show that an application of Lemma 3.4 proves
that the set S(k) = {i ∈ V : d(i) ≥ d} is a minimum X-t cut; we show this in the
following lemma and corollary.

Lemma 3.8: Suppose distance level k is a cut level, and let S(k) = {i ∈ V : d(i) ≥
k}. Then if (i, j) ∈ δ+(S(k)), uf (i, j) = 0 (and (i, j) /∈ Af).

Proof We need to show that for any (i, j) ∈ δ+(S(k)), uf (i, j) = 0. By the defini-
tion of S(k), d(i) ≥ k and d(j) < k. If d(i) = k, then by the definition of a cut level,
uf (i, j) = 0 since d(i) > d(j). If d(i) > k, then d(i)− d(j) ≥ 2, so we cannot have
d(i) ≤ d(j)+1, so that uf (i, j) = 0 by the definition of a valid distance labeling.

Corollary 3.9: If distance level k is a cut level for d(t) < k ≤ n, and for all nodes
i 6= t such that d(i) < k, ef (i) = 0, then S(k) is a minimum X-t cut.

Proof The set S(k) is an X-t cut because all nodes i ∈ X have d(i) = n, and thus
i ∈ S(k), since S(k) contains all nodes of distance label at least k ≤ n. Additionally,
t /∈ S(k) since k > d(t). Then the statement follows from the combination of Lemma
3.8 and Lemma 3.4.

We can now give the Hao-Orlin algorithm, which is summarized in Algorithm 3.2
(the given algorithm is slightly simplified from the one given in [104] for pedagogical
purposes). The algorithm has the same overall structure as Algorithm 3.1; it starts
with X = {s}, picks some t ∈ V −X, computes a minimum X-t cut St, adds t to
X, and repeats until X = V . Then the algorithm returns the cut St of minimum
capacity. To compute the minimum X-t cut, the algorithm runs a modification of the
push-relabel algorithm (Algorithm 2.7) in which we consider a node i to be active if
ef (i) > 0 and its distance label d(i) ≤ `, where ` is a cut level maintained by the
algorithm. The cut level ` is initially set to n − 1, which we later show is always a
cut level. The central idea is that we would like to get to the point in which we have
the cut level ` and no nodes i 6= t of positive excess with d(i) < `. In that case, we
know by Corollary 3.9 that S(`) is a minimum X-t cut. We then add the current
sink t to X. In order to ensure that d remains an X-valid distance labeling and f a
valid X-preflow, for the current sink t, when we add it to X, we set d(t) = n and
saturate all the arcs out of t. For the sink t in the next iteration, we choose a node t
with smallest current distance label in order to maintain the property of an X-valid
distance labeling.

We also need some modifications of the basic algorithm. First, if relabeling node
i would make the distance level d(i) empty, then we don’t perform the relabel, but
instead update the current cut level ` to d(i); if we wanted to relabel i, and i is the
only node on the distance level d(i), then d(i) must be a cut level, since we relabel i
precisely when d(i) ≤ d(j) for all (i, j) ∈ Af . This modification has some similarities

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

72 Global Minimum Cut Algorithms

X = {s}
Pick t ∈ V −X
f(i, j)← 0 for all (i, j) ∈ A
f(s, j)← u(s, j), f(j, s)← −u(s, j) for all (s, j) ∈ A
d(s)← n
d(i)← 0 for all i ∈ V , i 6= s
`← n− 1
while X 6= V do

Run push-relabel as normal except:
− Only select nodes i for pushes if d(i) < `
− For a call to relabel i with |B(d(i))| = 1, don’t change d(i) but set
` to d(i)
− If relabel of i makes d(i) ≥ `, set ` to n− 1

St ← S(`)
X ← X ∪ {t}
d(t)← n
f(t, j)← u(t, j), f(j, t)← −u(t, j) for all (t, j) ∈ A
t← argmini∈V−X d(i)
if d(t) ≥ ` then

`← n− 1

t′ ← argmint∈V−{s} u(δ+(St))

return St′

Algorithm 3.2 The Hao-Orlin algorithm for computing a minimum s-cut.

to the gap heuristic mentioned at the end of Section 2.8, and has a nice consequence
that we will observe below. Second, if we relabel a node to a distance level at least
`, we reset ` to n− 1. Finally, if we reach the point of choosing the next sink t and
d(t) = `, we reset ` to be n− 1.

Our first lemma shows that the algorithm maintains that the non-empty distance
levels k are consecutive for k < n − 1; that is, there is no distance level k < n − 1
such that B(k) is empty while B(k + 1) and B(k − 1) are not; the proof explains
why we do not want to relabel i when |B(d(i))| = 1.

Lemma 3.10: The non-empty distance levels k for k < n− 1 are consecutive.

Proof The statement is true initially since all nodes except s are in B(0) and d(s) =
n. If some distance level B(k) for k < n − 1, becomes empty, let i be the last
node removed from B(k). The node i was removed from B(k) either because i was
relabeled, or because i was the sink vertex. In the first case, by our modification of
the relabel operation, we do not remove i from B(k) if it is the last node in B(k).
In the second case, if i is the sink t, then at the end of the previous iteration, it was
chosen because it had the minimum distance label; that is, B(d(i) − 1) is empty.
During this iteration, d(i) is not changed since we do not relabel the sink vertex.
Thus i is still a vertex of minimum distance label, and since B(d(i) − 1) continues

3.1 The Hao-Orlin Algorithm 73

to be empty, removing i from B(d(i)) does not contradict the lemma statement.
Finally, if a relabel of node i adds i to set B(k), then it must be the case that there
is some j with d(j) = k − 1, so that B(k − 1) is also nonempty.

Note that the following lemma, which we need in order to have an X-valid distance
labeling, is now immediate.

Lemma 3.11: d(t) ≤ |X| − 1.

Proof We prove the statement by induction on the algorithm. The statement is true
initially since X = {s} and d(t) = 0. During the execution of push-relabel within
the main loop, we do not alter the distance label of t. At the end of each iteration of
the main loop, we add t to X, to get X ′ = X ∪ {t}, and choose the new sink t′ to
be the one of minimum distance level. Since the distance labels are consecutive, the
distance label of the new sink t′ can be at most one more than the distance label of
the previous sink t, so that d(t′) ≤ d(t) + 1 ≤ (|X| − 1) + 1 = |X ′| − 1, and the
inequality continues to hold.

Lemma 3.12: The algorithm maintains an X-preflow and an X-valid distance la-
beling.

Proof The proof that the algorithm maintains an X-preflow follows from the proof
of Lemma 2.38; at the end of each iteration of the main loop, we saturate all arcs
coming out of the current sink t, so that then ef (t) is possibly negative; however, we
then add t to X, maintaining the properties of an X-preflow.

The proof that the algorithm maintains anX-valid distance labeling follows mostly
from Lemmas 3.11 and 2.39, since the algorithm changes distance labels as in the
standard push-relabel algorithm. However, the one case in which it does not do so
is at the end of a loop, when we relabel the current sink t to have distance label
d(t) = n. However, we then saturate all arcs out of t, so that for any arc (t, j),
uf (t, j) = 0, and thus the condition d(t) ≤ d(j) + 1 does not apply.

We now begin to show that ` is always a cut level during the course of the algo-
rithm.

Lemma 3.13: If i /∈ X, then d(i) ≤ n− 2.

Proof We prove this by induction on X. Let i /∈ X be the node with maximum dis-
tance label. By Lemma 3.10, we know that the distance levels d(t), d(t) + 1, . . . , d(i)
are all nonempty. There are n− |X| − 1 nodes other than t and those in X, so that
d(i) ≤ d(t)+(n−|X|−1) ≤ (|X|−1)+(n−|X|−1) = n−2, because d(t) ≤ |X|−1
by Lemma 3.11.

Lemma 3.14: Throughout the algorithm, ` is a cut level with d(t) < ` ≤ n− 1.

Proof We note that n − 1, by Observation 3.7, is trivially a cut level because by
Lemma 3.13 it is empty, so whenever ` = n−1, it is a cut level. As argued previously,
when the relabel operation sets ` to d(i) when |B(d(i))| = 1, it is a cut level. The
distance level ` is maintained as a cut level since we only push on a node i with
distance level less than ` (resetting ` to n − 1 if an active i is relabeled to have a

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

74 Global Minimum Cut Algorithms

distance label at least `). By induction on the algorithm, ` ≤ n−1: it starts at n−1,
and we only push on nodes with level less than `, so we only attempt to relabel nodes
of label less than `, which means that the cut level can only be set to values at most
n − 1. Furthermore, we will never set ` to d(t): we would only change ` to d(t) if
|B(d(t))| = 1, so that only t ∈ B(d(t)), but we never relabel t.

Lemma 3.15: At the end of each iteration, St = S(`) is a minimum X-t cut.

Proof The push-relabel procedure in each iteration terminates when there are no
more active nodes; that is, when there are no nodes i 6= t with positive excess and
distance label d(i) < `. Since we also have that d(t) < ` ≤ n − 1, Corollary 3.9
applies.

We can now analyze the running time. However, for the most part the proofs of
the running time are identical to the ones for the push-relabel algorithm and hence
we omit them.

Lemma 3.16: The number of relabel operations is O(n2).

Proof Each relabel operation either increases the distance label of a node by at
least 1 (and potentially resets the cut level `), or decreases the value of the cut level
`. Each time the latter happens we charge it to the next relabel that resets the cut
level or to the end of the iteration. Thus since overall the relabels will increase at
most n nodes from distance label 0 to at most distance label n − 2, the number of
relabel operations is O(n2) overall.

Lemma 3.17: The number of saturating pushes is O(nm).

Proof The proof follows as in the proof of Lemma 2.43.

Lemma 3.18: The number of nonsaturating pushes is O(n2m).

Proof The proof follows as in the proof of Lemma 2.44.

Theorem 3.19: The running time of the Hao-Orlin algorithm given in Algorithm
3.2 is O(n2m).

Hao and Orlin have shown that a more sophisticated version of the algorithm can
be implemented in O(mn log(n2/m)) time.

3.2 The MA Ordering Algorithm

In this section, we turn to finding global minimum cuts in undirected graphs; we will
give algorithms for this problem in this section and the next section. Let G = (V,E)
be an undirected graph, and let u(i, j) be the capacity of the undirected edge (i, j).
For S ⊆ V , let δ(S) be the set of all edges with exactly one endpoint in S. The goal
is to find a nontrivial cut S ⊂ V that minimizes u(δ(S)) =

∑
(i,j)∈δ(S) u(i, j). Note

that u(δ(S)) = u(δ(V − S)) for undirected graphs, which is not true for directed
graphs. For A,B ⊆ V , A and B disjoint, let δ(A,B) = {(i, j) ∈ E : i ∈ A, j ∈ B};
to simplify notation, if B = {v}, we simply write δ(A, v) rather than δ(A, {v}), and

3.2 The MA Ordering Algorithm 75

Pick v1 arbitrarily from V
W1 ← {v1}
k ← 2
while k ≤ |V | do

Choose vk ∈ V −Wk−1 to maximize u(δ(Wk−1, vk))
Wk ←Wk−1 ∪ {vk}
k ← k + 1

Algorithm 3.3 The MA ordering algorithm.

similarly we write δ(v) instead of δ({v}). Then u(δ(A,B)) =
∑

(i,j)∈δ(A,B) u(i, j).
We extend the notion of a minimum s-t cut in undirected graphs to be a set S with
s ∈ S, t /∈ S that minimizes u(δ(S)).

We can find a global minimum cut in an undirected graph by computing n − 1
minimum s-t cuts in a directed graph. We create a directed graph G′ = (V,A) by
introducing directed arcs (i, j) and (j, i), each of capacity u(i, j). We can find the
global minimum cut inG by picking a vertex s arbitrarily, then solving n−1 minimum
s-t cut problems in G′ for all possible t 6= s, and choosing the cut of minimum
overall capacity. Consider the global minimum cut S∗ for G. Because u(δ(S∗)) =
u(δ(V −S∗)), we can assume without loss of generality that s ∈ S∗. Thus since there
must be some vertex t /∈ S∗, one of the minimum s-t cut problems will choose this
vertex t and will compute a cut of capacity S∗.

We can, however, compute a global minimum cut in undirected graphs without
using flows at all. We give two such algorithms, one in this section and a randomized
algorithm in the next. Our first algorithm is based on computing a particular ordering
of the vertices called a maximum adjacency ordering, or an MA ordering. In an
MA ordering, we start with an arbitrary vertex v1, and we choose the vertex v2 to
be the vertex v ∈ V − {v1} that maximizes u(δ(v1, v)). In general, let Wk−1 =
{v1, . . . , vk−1}; the vertex vk is chosen as the vertex v ∈ V −Wk−1 that maximizes
u(δ(Wk−1, v)). In words, in each iteration we choose the next vertex in the ordering
to be the one that maximizes the total capacity of its edges to the vertices already
chosen thus far; hence the name of maximum adjacency ordering. We summarize the
algorithm in Algorithm 3.3. We can compute an MA ordering in O(m + n log n)
time by using Fibonacci heaps mentioned at the end of Section 1.1; we give this as
an exercise (Exercise 3.2).

MA orderings have several interesting and useful properties. The main property
of interest for this section is the following lemma.

Lemma 3.20: For an MA ordering v1, . . . , v` of an undirected graph with ` vertices,
{v`} is a minimum v`-v`−1 cut.

For now, let us discuss why this lemma is useful for finding a global minimum cut,
and we will later come back to the proof of the lemma. Suppose the graph has n
vertices, so that the lemma states that {vn} is a minimum vn-vn−1 cut. The lemma
is useful because either some global minimum cut S∗ is a minimum vn-vn−1 cut (that

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

76 Global Minimum Cut Algorithms

c

a

b

d

e

x

y

v

z

w

ca, b

d

e

y + z

v

w

Figure 3.1 Example of contracting two nodes a and b. The edge between a
and b is removed, while edges (a, c) of capacity y and (b, c) of capacity z are
combined into a single edge of capacity y + z.

is, vn ∈ S∗, vn−1 /∈ S∗ or vice versa), or no global minimum cut is a vn-vn−1 cut. If
some global minimum cut S∗ is a minimum vn-vn−1 cut, then by the lemma we know
that {vn} is a minimum vn-vn−1 cut, and so u(δ(S∗)) = u(δ({vn})), and we have
found a global minimum cut. If no global minimum cut is also a vn-vn−1 cut, then in
any global minimum cut S∗, either both vn, vn−1 ∈ S∗ or both vn, vn−1 /∈ S∗. In this
case, we can effectively treat both nodes as a single node. We say that we contract
the nodes vn and vn−1: we remove both nodes from V , replace them with a new
node v′, and replace any edge (vn, vj) of capacity u(vn, vj) with a new edge (v′, vj)
of capacity u(vn, vj), and similarly for an edge (vn−1, vj). If both edges (vn, vj) and
(vn−1, vj) exist, then we replace them both with a single edge (v′, vj) of capacity
u(v′, vj) = u(vn, vj) + u(vn−1, vj). See Figure 3.1 for an example of contracting two
nodes into a single node. We can implement a contraction in O(n) time, which is the
time needed to update the capacity of edges between the contracted node and all
other nodes. Note that if no global minimum cut is a minimum vn-vn−1 cut, then the
capacity of any global minimum cut is not changed by contracting the two nodes.

Thus either {vn} is a global minimum cut or we can contract vn and vn−1 into a
single node, since this will not change the capacity of any global minimum cut. We
do not know which statement is true, but we can keep track of the capacity of the
cut {vn}, contract vn and vn−1 into a single node, and compute a new MA ordering
in the resulting graph. We repeat until there are only two nodes left. If we have not
found a global minimum cut in any of the previous iterations, then the capacity of
the edge between the two remaining nodes will be the capacity of a global minimum
cut. We give the overall algorithm in Algorithm 3.4; we keep track of the value of
the smallest cut {v`} found thus far, as well as the associated cut (that is, all the
nodes that were contracted in to the current node v`). We return the best cut found
overall. An example of the algorithm is given in Figure 3.2. The running time of
the algorithm is dominated by finding n− 1 MA orderings. The preceding argument
proves the following theorem.

Theorem 3.21: Algorithm 3.4 finds a global minimum cut in an undirected graph
in O(n(m+ n log n)) time.

3.2 The MA Ordering Algorithm 77

val←∞; S ← ∅; `← |V |
while ` > 1 do

Compute MA ordering v1, . . . , v` with Algorithm 3.3
if u(δ(v`)) < val then

val← u(δ(v`)); S ← nodes from uncontracted v`
Contract v` and v`−1 into single node; update capacities; `← `− 1

return S

Algorithm 3.4 The MA ordering-based algorithm for computing a global minimum
cut in an undirected graph.

a

v1

b

v2

c

v3

d

v4

2

1
1 1

3

a

v1

b

v2

cd

v3

2

2
1

a

v1

bcd

v2

4

Figure 3.2 Sample execution of Algorithm 3.4. The first ordering is a,b,c,d;
the cut {d} is of capacity 4, and c and d are contracted. The second ordering
is a, b, cd; the cut {cd} has capacity 3. The third ordering has the two
vertices a and bcd; the cut {bcd} has capacity 4. So a global minimum cut is
{c, d}, and it has capacity 3.

We now prove Lemma 3.20.

Lemma 3.20: For an MA ordering v1, . . . , v` of an undirected graph with ` vertices,
{v`} is a minimum v`-v`−1 cut.

Proof Let C be a minimum v`-v`−1 cut in the graph with ` vertices. Given the
MA ordering, let Wk = {v1, . . . , vk} be the first k vertices in the ordering, and let
Ek = E(Wk) ⊆ E be all edges both of whose endpoints are in Wk. We say that a
vertex u is separated from v if either u ∈ C and v /∈ C or vice versa. Notice that v`
is separated from v`−1 since C is a v`-v`−1 cut.

We will show by induction on vertices vk separated from vk−1 that u(δ(Wk−1, vk)) ≤
u(δ(C) ∩ Ek) for all such vertices vk. This will imply the lemma because for k =
`, we will have that u(δ(W`−1, v`)) ≤ u(δ(C) ∩ E`) since v` and v`−1 are sepa-
rated. But u(δ(v`)) = u(δ(W`−1, v`)) and E` is all the edges in the graph, so that
u(δ(C) ∩ E`) = u(δ(C)). Thus we will have shown that u(δ(v`)) ≤ u(δ(C)). Since
{v`} is a v`-v`−1 cut, this will prove that it is a minimum v`-v`−1 cut.

Suppose vk is the vertex of minimum index in the ordering such that vk is sep-
arated from vk−1; without loss of generality, suppose that vk /∈ C, so that then
v1, . . . , vk−1 ∈ C (otherwise some earlier vertex vj is separated from vj−1). Then
clearly u(δ(Wk−1, vk)) = u(δ(C)∩Ek), as desired. Now suppose that we have shown

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

78 Global Minimum Cut Algorithms

vj−2 vj−1 vj vj+1 · · · vk−1 vk

C

Figure 3.3 Illustration of the inductive proof in Lemma 3.20. The cut C
separates vj−1 and vj , and vk−1 and vk.

the inequality for all vertices vj separated from vj−1 for j < k, and vk is separated
from vk−1. Let j be the largest index less than k such that vj is separated from vj−1,
so that we know u(δ(Wj−1, vj)) ≤ u(δ(C) ∩Ej) by induction. Since the edges from
vk to Wk−1 either are incident on vertices in Wj−1 or on the remaining vertices in
Wk−1 −Wj−1, we have that

u(δ(Wk−1, vk)) = u(δ(Wj−1, vk)) + u(δ(Wk−1 −Wj−1, vk));

see Figure 3.3. Because the algorithm chose vj before vk in the MA ordering, we know
that u(δ(Wj−1, vj) ≥ u(δ(Wj−1, vk)). Furthermore, vk must be separated from all
vertices in Wk−1 − Wj−1: by the choice of index j, all vertices vj, vj+1, . . . , vk−1

are separated from vk. Thus all edges in δ(Wk−1 − Wj−1, vk) are in δ(C) ∩ Ek,
and furthermore, since none of these edges can be in Ej , none of these edges are in
δ(C) ∩ Ej . Thus we have that

u(δ(Wk−1, vk)) = u(δ(Wj−1, vk)) + u(δ(Wk−1 −Wj−1, vk))

≤ u(δ(Wj−1, vj)) + u(δ(C) ∩ (Ek − Ej))
≤ u(δ(C) ∩ Ej) + u(δ(C) ∩ (Ek − Ej)) = u(δ(C) ∩ Ek),

as desired.

MA orderings have other uses as well. In Exercise 3.3, we have the reader show
that they can be used to give a maximum s-t flow algorithm, and in Exercise 3.5,
we show that MA orderings can be used to find the minimum of a kind of function
called a symmetric submodular function; such functions generalize the capacity of
cuts of an undirected graph.

3.3 The Random Contraction Algorithm

In this section, we introduce an algorithm that uses randomization to find a global
minimum cut in an undirected graph. The algorithm is not guaranteed to find the
global minimum cut, but will do so with high probability; that is, the probability that
it fails to find such a cut can be bounded by 1/nc for a constant c ≥ 1 that can be
made as large as we would like, if we are willing to increase the overall running time.
In the algorithm of the previous section, in each iteration we either found the global

3.3 The Random Contraction Algorithm 79

while |V | > 2 do
Pick (i, j) with probability proportional to u(i, j)
Contract i and j; update capacities

Algorithm 3.5 The random contraction algorithm.

minimum cut or we identified a pair of vertices that could be contracted. Here we
make the simplest conceivable use of randomization and contraction: we select a pair
of vertices at random and contract them. More precisely, we pick an edge (i, j) in the
graph with probability proportional to its capacity u(i, j), and then contract i and j
into a single vertex. We do this until there are only two vertices left in the graph; the
set of vertices which have been contracted into one of these vertices identifies a cut
which is returned by the algorithm. The intuition for this algorithm is that because
any particular global minimum cut S has small capacity, we are unlikely to choose
an edge from δ(S). For the sake of completeness, we state this very simple algorithm
in Algorithm 3.5.

We can now start analyzing the algorithm. Let S∗ be a global minimum cut, and
let λ∗ = u(δ(S∗)); our calculations will be made with reference to this single global
minimum cut. We let W =

∑
(i,j)∈E u(i, j) denote the total capacity of all edges

in the graph. Thus in the first iteration of the algorithm, we pick edge (i, j) to
contract with probability u(i, j)/W . Let us say that cut S∗ survives a contraction
if the selected edge (i, j) /∈ δ(S∗). Then the probability that S∗ does not survive
the first contraction is λ∗/W , so that the probability that it does survive is 1− λ∗

W
.

The following lemma allows us to bound the probability in terms of more useful
quantities.

Lemma 3.22: W ≥ nλ∗/2.

Proof For each i ∈ V , u(δ(i)) ≥ λ∗. Since the capacity of each edge (i, j) is counted
once in u(δ(i)) and once in u(δ(j)), we get that W = 1

2

∑
i∈V u(δ(i)) ≥ nλ∗/2.

Corollary 3.23: The probability that cut S∗ survives the first contraction is at least
1− 2

n
.

Let Wk be a random variable denoting the total capacity of the graph after k
contractions. Then since for any contracted node i, u(δ(i)) ≥ λ∗ (since λ∗ is the
capacity of a minimum global cut), and since there are n− k nodes remaining in the
graph after k contractions, we also get the following corollary.

Corollary 3.24: Wk ≥ (n− k)λ∗/2.

Now we can prove the following lemma, which is central to the analysis of the
random contraction algorithm. Note that the algorithm performs n−2 contractions.

Lemma 3.25: The probability that a given global minimum cut S∗ is returned by the
algorithm is at least 1/

(
n
2

)
.

Proof From the discussion above, the probability that S∗ survives the kth contrac-

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

80 Global Minimum Cut Algorithms

tion given that it survived the (k − 1)st contraction is the probability that no edge
in the cut of capacity λ∗ is chosen from the edges of Wk−1 total capacity. Let Zk be
the event that S∗ survives the first k contractions; thus this probability is

Pr[Zk|Zk−1] = 1− λ∗

Wk−1

≥ 1− 2

n− k + 1
,

using Corollary 3.24. Then we want to know Pr[Zn−2], and we can bound it as
follows:

Pr[Zn−2] = Pr[Z1] · Pr[Z2|Z1] · Pr[Z3|Z2] · · ·Pr[Zn−2|Zn−3]

≥
n−2∏
k=1

(
1− 2

n− k + 1

)

=
n−2∏
k=1

n− k − 1

n− k + 1

=
n∏
`=3

`− 2

`
=

(n− 2)!

n!/2
=

1(
n
2

) .
As discussed in the previous section, we can implement a contraction in O(n) time,

which is the time needed to update the capacities of the edges. We can now show
the following.

Theorem 3.26: The random contraction algorithm (Algorithm 3.5) takes O(n2)
time.

Proof There are n− 2 contractions, each of which takes O(n) time. We now argue
that we can select an edge at random to contract in O(n + log(mU)) time, where
U = max(i,j)∈E u(i, j); it is possible to reduce this running time to O(n), but we omit
the proof. To obtain the running time of O(n + log(mU)), we maintain a quantity
D(i) =

∑
j:(i,j)∈E u(i, j) for all nodes i currently in the graph; it is easy to update

the D(i) each time we do a contraction. Note that after k contractions,
∑

i∈V D(i) =
2Wk, since the sum counts every edge twice. Assume that V = {1, 2, . . . , n}, and
consider the array [D(1), D(1) + D(2), D(1) + D(2) + D(3), . . . ,

∑n
i=1D(i)]. To

select a random edge after k contractions, we pick a random number r ∈ [0, 2Wk),
and we use bisection search on the array to identify the entry i such that r ∈
[
∑i

`=1D(`),
∑i+1

`=1D(`)). Then we consider all the edges incident on i, and select an
edge with probability proportional to its capacity u(i, j). The probability that we
select entry i is D(i)/2Wk, and the probability that we select (i, j) given that we
select i is u(i, j)/D(i), so that the overall probability that we choose edge (i, j) is

Pr[select (i, j)|select i] Pr[select i] + Pr[select (i, j)|select j] Pr[select j]

=
u(i, j)

D(i)

D(i)

2Wk

+
u(i, j)

D(j)

D(j)

2Wk

=
u(i, j)

Wk

.

We need O(logWk) time to perform the bisection search to select an entry i from

3.3 The Random Contraction Algorithm 81

the array, then O(n) time to select the edge (i, j). Since Wk ≤ mU , we get a running
time of O(n+ log(mU)) per edge selection.

Since the probability that the algorithm returns the cut S∗ is quite low, in order
to obtain an algorithm that returns the cut with high probability, we simply run the
algorithm many times. This gives the following theorem.

Theorem 3.27: Any fixed global minimum cut S∗ can be found in O(n4 lnn) time
with high probability.

Proof We run the random contraction algorithm c
(
n
2

)
lnn times for some constant

c ≥ 1. Since the event that the algorithm fails to return S∗ in a given run is inde-
pendent of whether it is returned in any other run, the probability that S∗ is not
returned in any of the c

(
n
2

)
lnn runs is at most(

1− 1(
n
2

))c(n
2) lnn

≤ e−c lnn =
1

nc
,

using 1− x ≤ e−x. Each run of the random contraction algorithm takes O(n2), and
we run it O(n2 log n) times, for an overall running time of O(n4 lnn).

We would like a faster algorithm than this one. We observe that the probability
of the cut S∗ surviving a contraction is very high initially, but becomes steadily
lower as more vertices are contracted. Perhaps we should execute part of the random
contraction algorithm to make the graph somewhat smaller, and then use some other
global minimum cut algorithm on the reduced graph; the cut S∗ would survive with
a reasonable probability. Below we analyze the probability that cut S∗ survives if we
stop the random contraction algorithm when there are t vertices left.

Lemma 3.28: The probability that a given global minimum cut S∗ survives after
n− t contractions is at least

(
t
2

)
/
(
n
2

)
.

Proof The desired probability is

Pr[Zn−t] = Pr[Z1] · Pr[Z2|Z1] · Pr[Z3|Z2] · · ·Pr[Zn−t|Zn−t−1]

≥
n−t∏
k=1

(
1− 2

n− k + 1

)

=
n−t∏
k=1

n− k − 1

n− k + 1

=
n∏

`=t+1

`− 2

`
=

(n− 2)!/(t− 2)!

n!/t!
=

(
t
2

)(
n
2

) .

In particular, we note that if we run the random contraction algorithm on an n-
node graph until t = dn/

√
2+1e nodes are left, then by Lemma 3.28, the probability

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

82 Global Minimum Cut Algorithms

Algorithm: RecursiveRandomContraction(G,n)

if n ≤ 6 then
Find global minimum cut in G by exhaustive search

else
for i← 1 to 2 do

Hi ← random contraction of G down to dn/
√

2 + 1e vertices

Si ← RecursiveRandomContraction(Hi, dn/
√

2 + 1e)
if u(δ(S1)) ≤ u(δ(S2)) then

return S1

else
return S2

Algorithm 3.6 The recursive random contraction algorithm.

that a given global minimum cut survives is(
t
2

)(
n
2

) =
t(t− 1)

n(n− 1)
≥ (1 + n/

√
2)(n/

√
2)

n(n− 1)
≥ n2/2

n2
=

1

2
. (3.1)

Thus if we run the random contraction algorithm to contract the graph to t =
dn/
√

2 + 1e twice, we expect that at least one of the two times the given global
minimum cut survives. The final idea of the section is that we should then run the
algorithm recursively on each of these two smaller graphs to find a global minimum
cut, and return the smaller of the two cuts found. We state the algorithm formally
in Algorithm 3.6.

We can now analyze the algorithm.

Lemma 3.29: The recursive random contraction algorithm (Algorithm 3.6) runs in
O(n2 log n) time.

Proof We let T (n) denote the running time of the algorithm on n vertices. As we
argued before, running the contraction algorithm on a graph with n vertices takes
O(n2) time. Thus we have the following recurrence relation for the running time:

T (n) = 2T (dn/
√

2 + 1e) +O(n2).

The recurrence is solved by T (n) = O(n2 log n).

Lemma 3.30: The probability that a given global minimum cut S∗ is returned by the
algorithm is Ω(1/ log n).

Proof We let P (n) be the probability that S∗ survives starting from an n node
graph. Then P (n) = 1 if n ≤ 6, while if n > 6, we note that 1 − P (n) is the
probability that S∗ does not survive, which is the probability that S∗ does not
survive either recursive call. The probability that S∗ survives a recursive call is

3.3 The Random Contraction Algorithm 83

Pr[Zn−t] · P (t) ≥ 1
2
P (t), for t = d1 + n/

√
2e by (3.1), so that for n ≥ 7,

P (n) ≥ 1−
(

1− 1

2
P (t)

)2

= P (t)− 1

4
P (t)2.

To analyze this probability, we set pk to be the probability of success for the kth
recursive call of the algorithm, where p0 = 1. Then by the above we have that

pk+1 ≥ pk −
1

4
p2
k = pk

(
1− pk

4

)
.

Substitute zk = −1 + 4/pk so that pk = 4/(zk + 1). Then we have that z0 = 3 and
we set

4

zk+1 + 1
=

4

zk + 1

(
1− 1

zk + 1

)
,

or

zk+1 + 1 = (zk + 1)

(
1 +

1

zk

)
= zk + 2 +

1

zk
,

so that

zk+1 = zk + 1 +
1

zk
.

From this recurrence, we see that zk grows by at least one and at most two for each
increase in k, so that k < zk < 3 + 2k. Thus pk = Θ

(
1
k

)
. Since P (n) ≥ pk for

k = Θ(log n) (we need Θ(log n) recursive calls for an n node graph), we have that
P (n) = Ω(1/ log n).

Theorem 3.31: Any fixed global minimum cut S∗ can be found in O(n2 log3 n) time
with high probability.

Proof We run the recursive random contraction algorithm c lnn · O(log n) times
for some constant c ≥ 1. Since the event that the algorithm fails to return S∗ in any
given run is independent of whether it is returned in any other run, the probability
that S∗ is not returned in any of these runs is at most(

1− Ω

(
1

log n

))c lnn·O(logn)

≤ e−c lnn =
1

nc
,

using 1− x ≤ e−x.

Not only is the random contraction algorithm a simple algorithm with an easy
analysis, it is also one that has made it remarkably easy to prove properties of global
minimum cuts and near-minimum cuts. In Exercise 3.6, we have the reader use
Lemma 3.25 to infer that the number of distinct global minimum cuts is at most

(
n
2

)
.

In Exercise 3.7, the reader is asked to give an algorithm for finding near minimum
cuts, and to bound the number of distinct near-minimum cuts.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

84 Global Minimum Cut Algorithms

3.4 The Gomory-Hu Tree

Suppose we call two n-node networks flow-equivalent, or briefly, equivalent, if

they have the same flow function v. Thus every network is equivalent to a tree.

Is there some way of constructing an equivalent tree that is better than first

determining v explicitly by solving a large number of flow problems, and the

constructing a v-maximal spanning tree?

Gomory and Hu have answered this question decidely in the affirmative. Their

procedure involves successive solution of precisely n−1 maximal flow problems.

Moreover, many of these problems involve smaller networks than the original

one. Thus one could hardly ask for anything better.

— L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks

Recall from the introduction of this chapter that we compute maximum s-t flows
and minimum s-t cuts in undirected graphs by replacing each undirected edge (i, j)
of capacity u(i, j) with two directed arcs (i, j) and (j, i), each of the same capacity
u(i, j). Recall also that in Section 3.2 we described how to find a global minimum cut
in an undirected graph via n−1 minimum s-t cut computations. The final algorithm
in this chapter will also compute a global minimum cut in an undirected graph by
using n − 1 minimum s-t cut computations, but in the process will compute a tree
known as a Gomory-Hu tree that contains information about all of the minimum s-t
cuts in the graph. The existence of the Gomory-Hu tree, along with an algorithm to
compute it in n − 1 maximum flow computations, was initially shown by Gomory
and Hu [101]. We will give another algorithm (which also uses n − 1 minimum s-t
cut computations) that is due to Gusfield [103] and is simpler to implement.

For a given undirected graph G = (V,E) with capacities u(i, j) for all (i, j) ∈ E,
a Gomory-Hu tree is a spanning tree T on the nodes of V in which each edge e ∈ T
is labeled with a value `(e). Note that T may contain edges that are not in E, so T is
not necessarily a spanning tree from the graph G. If we remove edge e = (i, j) ∈ T ,
the tree is split into two connected components; let S(e) be the nodes in one of these
two connected components. Then a Gomory-Hu tree has the following property. For
any pair of vertices s, t ∈ V , s 6= t, there is a unique path in the tree T between
s and t. Let e be the edge in this path that has minimum label value `(e). Then
`(e) = u(δ(S(e))) is the capacity of a minimum s-t cut in G. It follows that S(e)
is a minimum s-t cut since either s ∈ S(e) and t /∈ S(e) or vice versa (in this
section, since graphs are undirected, we assume an s-t cut S can have s ∈ S and
t 6 inS or vice versa). A Gomory-Hu tree is sometimes called a cut-equivalent tree.
Suppose we treat the labels `(e) as the capacities of the edges in tree T . Then the
minimum s-t cut in the tree is S(e) for the edge e that has minimum label on the s-t
path in T , and by the properties of the Gomory-Hu tree, this cut is also a minimum
s-t cut in the graph. Thus for any s 6= t, the minimum s-t cut in the tree is the
same as the minimum s-t cut in the graph. In Exercise 3.8, we consider a tree with
weaker properties called a flow-equivalent tree. We give an example of a graph and
its associated Gomory-Hu tree in Figure 3.4.

Thus for all s, t ∈ V , s 6= t, a Gomory-Hu tree encodes both a minimum s-t cut

3.4 The Gomory-Hu Tree 85

1 2

34

2

1
1 1

3

1

2

3

3

4

4

3

Figure 3.4 An example of a Gomory-Hu tree. The tree on the right
represents the minimum s-t cuts of the graph on the left.

and its capacity. Although there are
(
n
2

)
possible s-t pairs, we can determine this

information with only n− 1 minimum s-t cut computations.
Before we give the algorithm, we show that in order to have a Gomory-Hu tree,

it is sufficient to show that for each edge e = (i, j) in the tree T that S(e) is a
minimum i-j cut and `(e) is the capacity of this cut.

Lemma 3.32: Suppose we are given an undirected graph G = (V,E) with capacities
u(i, j) for all (i, j) ∈ E, and a tree T spanning V with labels `(e) on all e = (i, j) ∈ T
such that the label `(e) is equal to the capacity of the cut S(e), and S(e) is a minimum
i-j cut: that is, `(e) = u(δ(S(e))) and u(δ(S(e))) = minS:i∈S,j /∈S u(δ(S)). Then the
tree T is a Gomory-Hu tree.

Proof We assume that for any edge e the tree T , `(e) = u(δ(S(e))). We must show
that for any pair of vertices s, t ∈ V with s 6= t, that for the edge e of minimum label
on the s-t path in T , `(e) is the capacity of the minimum s-t cut. We notice that
since e is on the s-t path in T , it must be that S(e) is an s-t cut: either s ∈ S(e),
t /∈ S(e), or vice versa. Then if `(e) = u(δ(S(e))) is the capacity of a minimum s-t
cut, it must be that S(e) is a minimum s-t cut.

Pick an arbitrary s, t ∈ V , s 6= t. Let s ≡ v1, v2, . . . , vk ≡ t be the sequence of
vertices in the unique path P in the tree T between s and t, and let ei denote the edge
(vi, vi+1) in T . For any pair of distinct vertices p, q ∈ V , let c(p, q) be the capacity
of a minimum p-q cut in G. We will show that c(s, t) ≥ mini=1,...,k−1 c(vi, vi+1) and
that c(s, t) ≤ mini=1,...,k−1 c(vi, vi+1), so that

c(s, t) = min
i=1,...,k−1

c(vi, vi+1).

Since for each i, ei = (vi, vi+1) is an edge in T , by hypothesis c(vi, vi+1) = `(ei).
Then it will follow that

c(s, t) = min
i=1,...,k−1

c(vi, vi+1) = min
e∈P

`(e),

as desired.
It is easy to show that c(s, t) ≤ c(vi, vi+1) for each ei = (vi, vi+1) ∈ T . Because

ei is on the unique s-t path in T , each set S(ei) is an s-t cut, since s will be in

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

86 Global Minimum Cut Algorithms

one of the two connected components when ei is removed from T , and t will be in
the other. Thus the capacity of the minimum s-t cut will be at most the capacity
u(δ(S(ei))) = c(vi, vi+1) for i = 1, . . . , k − 1.

It is also easy to see that it cannot be the case that c(s, t) < c(vi, vi+1) for all
i = 1, . . . , k−1. Let S∗ be a minimum s-t cut with s ∈ S∗ and t /∈ S∗. Because s = v1

and t = vk, it must be the case that for some i, 1 ≤ i < k, vi ∈ S∗ and vi+1 /∈ S∗.
Then S∗ is also a vi-vi+1 cut, so it must be the case that c(vi, vi+1) ≤ c(s, t), and
c(s, t) ≥ mini=1,...,k−1 c(vi, vi+1).

The algorithm for constructing a Gomory-Hu tree depends on the fact that the
capacity of a cut in a undirected graph is a symmetric submodular function on the
sets of vertices. A function f(S) on sets of vertices S ⊆ V is submodular if

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) (3.2)

for any A,B ⊆ V . If f(S) = u(δ(S)), then f is a submodular function; we ask
the reader to prove this statement in Exercise 3.4. Furthermore, in an undirected
graph, the function f is also symmetric: that is, u(δ(S)) = u(δ(V − S)) so that
f(S) = f(V − S) for any S ⊆ V . A function f is symmetric submodular if it is
both symmetric and submodular. For symmetric submodular functions, it is also the
case that

f(A) + f(B) ≥ f(A−B) + f(B −A), (3.3)

which we ask the reader to prove in Exercise 3.4. While we concentrate in this section
on showing that a Gomory-Hu tree exists for functions f(S) = u(δ(S)), such a tree
exists for any symmetric submodular function; we will say more about such trees at
the end of the section.

To give the algorithm for constructing a Gomory-Hu tree, we first need to show
that minimum s-t cuts have some nice properties.

Lemma 3.33: Let c(s, t) be the capacity of a minimum s-t cut. Given three vertices,
r, s, t ∈ V , then c(s, t) ≥ min(c(r, s), c(r, t)).

Proof Let S be a minimum s-t cut, with s ∈ S. Then either r ∈ S or r /∈ S. In the
first case, S is also an r-t cut, and so c(r, t) ≤ c(s, t). In the second case, S is also
an s-r cut, and so c(r, s) ≤ c(s, t).

Corollary 3.34: Given three vertices, r, s, t ∈ V , the minimum of c(r, s), c(r, t),
and c(s, t) is not unique.

Proof Suppose without loss of generality that c(s, t) is the unique minimum; then
the lemma statement above is contradicted.

Lemma 3.35: Let R be a minimum r-s cut, with r ∈ R, and S a minimum s-t cut,
with s ∈ S. Assume t /∈ R.

1 If r ∈ S, then R ∩ S is a minimum r-s cut and R ∪ S is a minimum s-t cut.
2 If r /∈ S, then R − S is a minimum r-s cut, S − R is a minimum s-t cut, and
c(r, t) = c(r, s).

3.4 The Gomory-Hu Tree 87

r

t

s

S

R

Case 1

r

s

R

t

S

Case 2

Figure 3.5 Illustration of the two different cases of Lemma 3.35. R is a
minimum r-s cut, with t /∈ R, and S is a minimum s-t cut.

Proof See Figure 3.5.
The statements are shown by noting that since u(δ(S)) is symmetric submodular,

then by (3.2),

c(r, s) + c(s, t) = u(δ(R)) + u(δ(S)) ≥ u(δ(R ∩ S)) + u(δ(R ∪ S)), (3.4)

and, by (3.3),

c(r, s) + c(s, t) = u(δ(R)) + u(δ(S)) ≥ u(δ(R− S)) + u(δ(S −R)). (3.5)

We then note that in Case 1, R ∩ S is an r-s cut and R ∪ S is na s-t cut, so that
u(δ(R ∩ S)) ≥ c(r, s) and u(δ(R ∪ S)) ≥ c(s, t). These inequalities together with
Inequality (3.4) imply that u(δ(R∩S)) = c(r, s) and u(δ(R∪S))) = c(s, t) so that
R ∩ S is a minimum r-s cut, and R ∪ S is a minimum s-t cut.

In Case 2, R−S is an r-s cut and S−R is an s-t cut so that u(δ(R−S)) ≥ c(r, s)
and u(δ(S − R)) ≥ c(s, t). These inequalities together with Inequality (3.5) imply
that R − S is a minimum r-s cut and S −R is a minimum s-t cut. Furthermore in
Case 2, since R is also an r-t cut in this case, we have that c(r, t) ≤ c(r, s), and since
S is also an s-r cut in this case, we have that c(r, s) ≤ c(s, t). Then by Corollary
3.34, it must be the case that c(r, t) = c(r, s).

We can now begin to describe the algorithm. The algorithm maintains a partition
of the vertices, V = {V1, V2, . . . , Vk}; initially there is a single part with all the
vertices so that V = {V }. The algorithm also maintains a representative ri ∈ Vi
for each part Vi and a labeled set of edges T that form a spanning tree on the
representatives. In each iteration of the algorithm, we pick some part Vi ∈ V with
|Vi| ≥ 2. We pick some vertex t ∈ Vi with t 6= ri, and compute a minimum ri-t cut
X, with ri ∈ X. We then split Vi into two parts, Vi ∩ X and Vi − X. The vertex
ri is the representative of Vi ∩X, while t becomes the representative of Vi −X. We
add the edge e = (ri, t) with label `(e) = u(δ(X)). Finally, for any edge (ri, rj) ∈ T
with rj /∈ X, we replace the edge (ri, rj) in the tree with (rj, t), and keep the same
label for the edge. The algorithm terminates when |Vi| = 1 for all i, and thus we have
a labeled spanning tree T on the vertices V . We will show that the spanning tree

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

88 Global Minimum Cut Algorithms

V ← {V }
Assign arbitrary r ∈ V as representative for V
T ← ∅
while there is Vi ∈ V with |Vi| > 1 do

Let ri be representative of Vi
Pick t ∈ Vi, t 6= ri
Compute minimum ri-t cut X with ri ∈ X
forall (ri, rj) ∈ T do

if rj /∈ X then
Replace (ri, rj) in T with (rj, t)

Remove Vi from V , and add Vi ∩X and Vi −X
Assign ri as representative of Vi ∩X and t as representative of Vi −X
Add (ri, t) to T with label u(δ(X))

return T

Algorithm 3.7 An algorithm for computing a Gomory-Hu tree.

meets the condition of Lemma 3.32, and so is a Gomory-Hu tree. We summarize the
algorithm in Algorithm 3.7, and illustrate one iteration of the algorithm in Figure
3.6.

For an edge e = (ri, rj) ∈ T , we observe that removing edge e splits the vertices
of V into two parts; let S(e) be the vertices in one of the two parts with ri ∈ S(e).
We claim that the algorithm will maintain that S(e) is a minimum ri-rj cut, and we
label edge e with the capacity of the minimum ri-rj cut so that `(e) = u(δ(S(e))).
The correctness of the algorithm is implied by the following lemma, together with
Lemma 3.32.

Lemma 3.36: At the end of each iteration of Algorithm 3.7, for each edge e =
(ri, rj) ∈ T , S(e) is a minimum ri-rj cut, and `(e) is the capacity of a minimum
ri-rj cut.

Proof We prove the statement by induction on the algorithm. In the first iteration,
there are initially no edges in the tree T . We have one representative r1 ∈ V1 = V ,
and pick another vertex t ∈ V , and compute a minimum r1-t cut X. We partition V
into V1 = X ∩ V and V2 = V −X, and insert edge e = (r1, t) into the tree T with
label `(e) = u(δ(X)). Assume r1 ∈ S(e) = X; then S(e) = X, and S(e) is indeed
an r1-t minimum cut.

Now suppose the lemma statement is true at the end of the previous iteration. Note
that for all edges e unaffected by the algorithm, the cut S(e) remans unchanged, and
so the lemma statement continues to hold for these edges. The algorithm picks a part
Vi of the partition with |Vi| ≥ 2, and picks a t ∈ Vi, where t 6= ri, for ri ∈ Vi the
representative of Vi. The algorithm then computes a minimum ri-t cut X, splits Vi
into Vi ∩X and Vi −X, and adds edge (ri, t) to the tree.

We suppose that for any edge e ∈ T , ri /∈ S(e); this is without loss of generality
since the capacity of the cut function is symmetric. Pick any edge e = (ri, rj). We

3.4 The Gomory-Hu Tree 89

r2
V2

r5 tV5

r1
V1

r3
V3

r4 V4

X

At start of iteration. The r5-t cut X is shown in bold.

r2

V2

r5V5 t

V6

r1
V1

r3
V3

r4 V4

After iteration

Figure 3.6 Illustration of an iteration of Algorithm 3.7. The algorithm
picks part V5 and t ∈ V5 with t 6= r5. It computes a minimum r5-t cut X,
and splits V5 into X ∩ V5 and X − V5. The latter set becomes a new part V6

with representative t ≡ r6. In the example above, r1 ∈ X, while r2, r3 /∈ X,
and so we keep edge (r1, r5) ∈ T , but remove (r2, r5) and (r3, r5) and replace
them with (r2, t) and (r3, t) respectively. We also add the edge (r5, t).

want to apply Lemma 3.35 with s = ri, t = t, r = rj , R = S(e), and S = X.
Observe that ri /∈ S(e) by assumption, and hence S(e) ∩ Vi = ∅, so that t /∈ S(e);
thus the lemma applies. If rj ∈ X, then Case 1 of the lemma applies, so S(e) ∪X
is also a minimum ri-t cut. If rj /∈ X, then by Case 2 of the lemma applies, so
X−S(e) is also a minimum ri-t cut, and c(rj, t) = c(rj, ri). Thus if we replace edge
e = (ri, rj) with e′ = (rj, t), we still have that S(e′) = S(e) and S(e′) is a minimum
rj-t cut. Applying these results repeatedly for all edges e = (ri, rj) incident on ri,
we have that there is a minimum ri-t cut that is the union of X and all S(e) for

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

90 Global Minimum Cut Algorithms

e = (ri, rj) with rj ∈ X, minus all the S(e) for e = (ri, rj) with rj /∈ X. Note that
this cut is exactly the one induced by taking the union of Vi ∩X with all S(e) for
e = (ri, rj) with rj ∈ X. Thus if we split Vi into Vi ∩X and Vi −X and add edge
(ri, t) to the tree with label u(δ(X)), the statement of the lemma is true for the edge
(ri, t).

The proof of the following theorem is then almost immediate.

Theorem 3.37: Algorithm 3.7 computes a Gomory-Hu tree with n−1 minimum s-t
cut computations.

Proof The algorithm starts with one part in the partition, and computes a minimum
s-t cut in each iteration, creating one new part, until there are n parts in the partition;
thus there are n−1 iterations in total. By Lemma 3.32, it is sufficient for a Gomory-
Hu tree to prove that for each edge e = (ri, rj) in the tree, S(e) is a minimum ri-rj
cut, and `(e) is the capacity of this cut. By Lemma 3.36, we know that this is true
of the final tree.

We can now state Gusfield’s algorithm as a method of implementing Algorithm
3.7. Let us index the vertices so that V = {1, . . . , n}. The algorithm will maintain
a directed tree D in which each vertex i has a directed path to the vertex 1. Each
vertex i 6= 1 has an edge directed out of it, from i to p(i); we call p(i) be the parent
of i. We maintain the partition, the representatives, and the tree of Algorithm 3.7
as follows: every vertex that is a parent of some vertex (and therefore is not a leaf
of D) is a representative of some set in the partition. All leaves that point at a
particular parent are the vertices in that part of the partition. Each arc between
one representative (non-leaf) and another corresponds to an edge of the tree T from
Algorithm 3.7. We label such an edge from i to p(i) with a label `(i).

Gusfield’s algorithm works as follows. Initially we set p(i) = 1 for all i (notice
that for i = 1 this creates a self-loop), so that 1 is the representative of the entire
set of vertices. We iterate from vertex 2 through n; let t denote the current vertex,
and let s = p(t) be its parent. We compute a minimum s-t cut X: the vertex t will
always be a leaf, so effectively we choose the part Vi of the partition which contains
t, and compute a minimum cut X between the representative of the part, s = p(t),
and the chosen vertex t in the part. We label (t, s) with `(t) = u(δ(X)). We then
move all the vertices pointing at s that are not in X to point at t instead, so that t
becomes the representative of these vertices. We have to be somewhat careful if the
parent of s is not in X; in order to mimic the behavior of Algorithm 3.7, we need to
have t connected to this vertex, so we point t at this vertex, and point s at t, while
keeping the labels of the corresponding edges the same. We summarize Gusfield’s
algorithm in Algorithm 3.8. The correctness of the algorithm follows by Theorem
3.37. A sample execution of the algorithm is shown in Figure 3.7.

The original Gomory-Hu algorithm works as in Algorithm 3.7, but when computing
a minimum ri-t cut X for ri, t ∈ Vi, we contract each part Vj for j 6= i into a single
node vj . Then if vj ∈ X, we place all the vertices of Vj on the same side of the cut as
ri, whereas if vj /∈ X, we place all the vertices of Vj on the same side of the cut as t.
The result is the same as that of Algorithm 3.7, but there is a computational tradeoff

Exercises 91

forall i ∈ V do p(i)← 1
for t← 2 to n do

s← p(t)
Compute minimum s-t cut X
`(t)← u(δ(X))
for i← 1 to n do

if i /∈ X and i 6= t and p(i) = s then
p(i)← t

if p(s) /∈ X then
p(t)← p(s)
p(s)← t
`(t)← `(s)
`(s)← u(δ(X))

Algorithm 3.8 Gusfield’s algorithm for computing a Gomory-Hu tree.

in the work performed by contracting and uncontracting parts of the partition versus
the work saved by running the minimum ri-t cut algorithm on a smaller graph. See
the chapter notes for further discussion.

The Gomory-Hu tree is one of several different structures for representing cuts in
a graph. Some discussion of other cut structures are in the chapter notes.

Recall that we earlier defined symmetric submodular functions f on a set of vertices
V . We now argue that Algorithm 3.7 can be used to find an analogous tree for any
symmetric submodular f , but first we need to define what we mean by a Gomory-
Hu tree for a symmetric submodular function f . For a spanning tree T on V , let
S(e) ⊆ V be the cut defined by removing an edge e = (i, j) from T (note that
because f is symmetric, it does not matter which of the two connected components
defines the cut). Suppose we label the edges of the tree T with labels `(e). We say
that S∗ is a minimum s-t cut for f if S∗ ⊆ V is a set that minimizes the function
value over all sets S such that s ∈ S and t /∈ S; that is, f(S∗) = mins∈S,t/∈S f(S).
Then we say we have a Gomory-Hu tree T for f if the following is satisfied for any
pair of vertices s, t ∈ V , s 6= t: Let e be the edge on the unique s-t path in the tree T
that has minimum label value `(e). Then `(e) = f(S(e)) is the value of a minimum
s-t cut for f . We observe that Algorithm 3.7 only uses the existence of an algorithm
to find a minimum s-t cut for f , and the proof of correctness of the algorithm only
uses that the cut function is symmetric submodular. So given a subroutine to find
a minimum s-t cut for f , Algorithm 3.7 will also compute a Gomory-Hu tree T for
any symmetric submodular function f .

Exercises

3.1 In this exercise, we will prove Lemma 3.4. One way to do this is to reduce it to

Lemma 2.48. Show how to transform an instance of the minimum X-t cut problem

into an instance of the minimum s-t cut problem such that any finite s-t cut in the

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

92 Global Minimum Cut Algorithms

Pick v1 arbitrarily from V
W1 ← {v1}
k ← 2
while k ≤ |V | do

Choose vk ∈ V −Wk−1 to minimize f(Wk−1 ∪ {vk})− f(Wk−1)
Wk ←Wk−1 ∪ {vk}
k ← k + 1

Algorithm 3.9 MA ordering for symmetric submodular functions.

transformed instance is an X-t cut of the same capacity in the original instance, and

that there is a correspondence between preflows f in the transformed instance and X-

preflows f ′ in the original instance. Use these ideas to argue that Lemma 3.4 follows

from Lemma 2.48.

3.2 Show that the MA ordering of Algorithm 3.3 can be computed in O(m+n logn) time

using the Fibonacci heap data structure discussed in the chapter notes of Chapter 1.

3.3 In this problem, we will see how to use MA orderings from Section 3.2 to compute a

maximum s-t flow in a directed graph.

We compute an MA ordering in the following way. Let the source vertex s be the

first vertex in the ordering; we set v1 = s. In general, we choose the next vertex vk in

the ordering to maximize uf (δ(Wk−1, vk)), where Wk−1 = {v1, . . . , vk−1}, vk /∈ Vk−1,

δ(Wk−1, vk) = {(j, vk) ∈ A : j ∈Wk−1}.
Suppose the sink vertex t = v`. Then let α = mink=2,...,` uf (δ(Wk−1, vk)).

(a) Given the MA ordering, prove that one can augment the current flow f by α units

of flow in O(m) time.

(b) Show that the maximum flow in the residual graph is no more than nα.

(c) Given an O(m+ n logn) time algorithm for finding an MA ordering, use the items

above to give an O((m+ n logn)n log(mU)) time algorithm for finding a maximum

s-t flow.

3.4 A function f on subsets S ⊆ V is called submodular if for any S, T ⊆ V ,

f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T).

The function f is symmetric if for all S ⊆ V , f(S) = f(V −S). We say f is symmetric

submodular if it is both symmetric and submodular.

(a) Let G = (V,A) be a directed graph, with capacities u(i, j) ≥ 0 for all (i, j) ∈ A.

Prove that f(S) = u(δ+(S)) is a submodular function.

(b) Let G = (V,E) be an undirected graph, with capacities u(i, j) ≥ 0 for all (i, j) ∈ E.

Prove that f(S) = u(δ(S)) is a symmetric submodular function.

(c) Prove that a function f is submodular if and only if for any S ⊆ T ⊆ V , and any

` /∈ T ,

f(S ∪ {`})− f(S) ≥ f(T ∪ {`})− f(T).

(d) Prove that if f is symmetric submodular, then for any S, T ⊆ V ,

f(S) + f(T) ≥ f(S − T) + f(T − S).

Exercises 93

3.5 Recall the definition of a symmetric submodular function f : 2V → < from Exercise

3.4. Algorithm 3.9 is a generalization of the MA ordering given in Algorithm 3.3.

Again, we start with an arbitrary vertex v1, and to compute the next vertex vk in the

ordering, we look for the vertex vk that minimizes f({v1, . . . , vk})− f({v1, . . . , vk−1}).

(a) Suppose that |V | = `. Prove that if we compute the ordering of vertices as in

Algorithm 3.9, then {v`} minimizes f over all sets S that contain v` but not v`−1.

(Hint: prove by induction on i ≤ ` − 1 that for all X ⊆ Wi−1 and all v ∈ V −Wi

that f(Wi)+f({v}) ≤ f(Wi−X)+f(X ∪{v}). Explain why this implies the desired

conclusion.)

(b) Give an algorithm to find a set S ⊆ V that minimizes f , and prove that it finds

the set that minimizes f .

3.6 Use Lemma 3.25 to prove that there can be at most
(
n
2

)
distinct global minimum

cuts.

3.7 Given an undirected graph G, let λ be the value of the global minimum cut. An α-

approximate global min-cut is a set of vertices S ⊂ V , S 6= ∅, such that u(δ(S)) ≤ αλ.

This problem considers applying the random contraction algorithm (Algorithm 3.5)

to the problem of finding α-approximate global min-cuts.

Suppose that α is a half-integer greater than 1 (e.g. 3
2 , 2, 5

2 , . . .), and is a fixed

constant.

(a) Prove that the probability that a given α-approximate global min-cut survives

contraction of the graph from n vertices down to 2α vertices is at least 1/
(
n
2α

)
.

(b) Use the previous result as the basis for an algorithm that outputs an α-approximate

global min-cut with probability at least 1/
(
22α
(
n
2α

))
.

(c) Argue that there can be at most O((2n)2α) α-approximate global min-cuts.

(d) (A harder problem) Give an algorithm that finds all α-approximate global min-cuts.

Get the best running time that you can.

3.8 In this exercise, we consider a flow-equivalent tree T , a tree with weaker properties

than a cut-equivalent (or Gomory-Hu) tree. Suppose we are given an undirected graph

G = (V,E) with capacities u(i, j) for all (i, j) ∈ E. Consider a spanning tree T spanning

tree T on the nodes of V in which each edge e ∈ T is labeled with a value `(e). For

any pair of vertices s, t ∈ V , s 6= t, there is a unique path in the tree T between s

and t. Let e be the edge in this path that has minimum label value `(e). Then in a

flow-equivalent tree T , `(e) is the capacity of the minimum s-t cut in G. This property

is weaker than that of a cut-equivalent tree because it is not necessarily the case that

ell(e) is the capacity of the cut S(e). The tree is flow-equivalent because if we treat

the labels as capacities, then the maximum s-t flow we can send in the tree is equal

to the maximum s-t flow we can send in the graph.

Consider Algorithm 3.10. As with Algorithm 3.7, let us index the vertices so that

V = {1, . . . , n}. The algorithm will maintain a tree T in which each vertex i has a

directed path to the vertex 1. Each vertex i 6= 1 has an edge directed out of it, from

i to p(i); we call p(i) be the parent of i. Initially we set p(i) = 1 for all i (notice that

for i = 1 this creates a self-loop). We will gradually compute labels for the edges of

the tree, and we will label the edge (i, p(i)) with `(i). The main loop of the algorithm

iterates over all the vertices t ≥ 2, and computes a minimum s-t cut X between

s = p(t) and t, with s ∈ X, so that the algorithm computes n − 1 minimum s-t cuts

overall. The algorithm then labels the edge (t, p(t)) with `(t) = u(δ(X)).

Show that Algorithm 3.10 produces a flow-equivalent tree.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

94 Global Minimum Cut Algorithms

forall i ∈ V do p(i)← 1
for t← 2 to n do

s← p(t)
Compute minimum s-t cut X
`(t)← u(δ(X))
for i← t to n do

if i /∈ X and i 6= t and p(i) = s then
p(i)← t

Algorithm 3.10 An algorithm for computing a flow-equivalent tree.

Chapter Notes

Until early 1990s, there were no algorithms known for finding a global minimum
cut in a directed graph (or an undirected graph) other than computing 2(n − 1)
maximum s-t flow computations (or n−1 such computations in the case of undirected
graphs). Several algorithms were known for the unit capacity case in undirected
graphs, in which u(i, j) = 1 for all (i, j) ∈ E. Podderyugin [165] gives anO(mn) time
algorithm, while Karzanov and Timofeev [129] give an O(λ∗n2) algorithm, where λ∗

is the number of edges in the global minimum cut. For directed unit capacity graphs,
Gabow [76] gives a method based on packing spanning arborescences running in
Õ(λm) time, when the capacity of the minimum cut is λ (Recall that Õ(f(n)) =
O(f(n) logc n) for some constant c; that is, the Õ notation hides polylogarithmic
factors). Then in the early 1990s, a slew of methods were developed, including several
described in this chapter. The MA ordering algorithm was developed by Nagamochi
and Ibaraki [151] to find a global minimum cut in undirected graphs; a simpler
version of the algorithm as described in Section 3.2 was given in two independent
papers, one by Stoer and Wagner [187] and the other by Frank [69]. Fujishige [72]
also gave a simple proof. The analysis we give here is due to Stoer and Wagner. The
Hao-Orlin algorithm of Section 3.1 was given by Hao and Orlin [104] for directed
graphs. The version of the algorithm that we give is somewhat simplified from the
version given in [104]: the full Hao-Orlin algorithm keeps sophisticated track of nodes
that are awake and those that are dormant (corresponding here to the nodes below
the current cut level, and the remainder not in X, respectively). Even in our version
of the algorithm, we could maintain a stack of cut levels, and whenever we need
to reset the cut level, we simply pop the stack to the appropriate cut level (rather
than resetting the cut level to n − 1). The full version of the Hao-Orlin algorithm
can be implemented in O(mn log(n2/m)) time. Karger and Stein [125] developed
the recursive contraction algorithm of Section 3.3. Karger [123] gives a near-linear
time randomized algorithm for finding a global minimum cut in undirected graphs;
the algorithm runs in O(m log3 n) time. Kawarabayashi and Thorup [130] give a
deterministic near-linear time algorithm for the unit capacity undirected case, with
the algorithm running inO(m log12 n) time. Henzinger, Rao, and Wang [106] improve
this running time to O(m log2 n log log n).

Exercises 95

Gomory and Hu [101] gave their algorithm for finding a Gomory-Hu tree in 1961.
The algorithm due to Gusfield [103] which we give in Section 3.4 was developed later
in 1990. The original Gomory-Hu algorithm required contracting parts of the graph
and computing minimum s-t cuts in the contracted graph. Gusfield’s algorithm was
developed to avoid graph contractions. It remains an intriguing open question of
whether a Gomory-Hu tree can be computed in time faster than n − 1 maximum
s-t flows. Some initial work along these lines has been given by Bhalgat, Hariharan,
Kavitha, and Panigrahi [23], who give an Õ(mn) time algorithm for unit capacity
undirected graphs.

Several experimental papers have studied the question of which algorithm is the
most efficient in finding a global minimum cut in an undirected graph. Chekuri,
Goldberg, Karger, Levine, and Stein [32] (see also Levine [144]) compare the Hao-
Orlin algorithm, the MA ordering algorithm, the recursive contraction algorithm, and
Karger’s algorithm experimentally, and find that the Hao-Orlin algorithm is overall
the best algorithm, with the MA ordering algorithm second best. Their implementa-
tions included heuristics due to Padberg and Rinaldi [160] to speed up running time.
Nagamochi, Ono, and Ibaraki [152] implement the Padberg-Rinaldi heuristics and
also incorporate them into the MA ordering algorithm to obtain a hybrid algorithm;
they find that the hybrid algorithm outperforms both the MA ordering algorithm
and the Padberg-Rinaldi heuristics on their own. Jünger, Rinaldi, and Thienel [119]
studied implementations of Gusfield’s algorithm, the Padberg-Rinaldi heuristics, the
MA ordering algorithm, the Nagamochi-Ono-Ibaraki hybrid algorithm, the Hao-Orlin
algorithm, and the recursive contraction algorithm. They also found the hybrid al-
gorithm generally outperformed the others.

For Gomory-Hu trees, Goldberg and Tsioutsiouliklis [96] compare the computa-
tional performance of the original Gomory-Hu algorithm versus Gusfield’s algorithm.
They find that when some heuristics are added to the original Gomory-Hu algorithm,
it performs better overall than Gusfield’s algorithm. While performing contractions in
the graph results in some overhead, the smaller resulting instances for the maximum
s-t flow problem gives a performance boost to the Gomory-Hu algorithm.

Numerous other cut structures besides the Gomory-Hu tree have been developed;
we mention four here. Picard and Queyranne [163] give a data structure for repre-
senting all minimum s-t cuts in a graph. Dinitz, Karzanov, and Lomonosov [53]
proposed the cactus tree structure to represent all the global minimum cuts in an
undirected graph. Fleischer [60] and Gabow [77] show how to compute the cactus
tree from a single run of the Hao-Orlin algorithm; Karger and Panigrahi [124] give
a randomized Õ(m) algorithm. Benczúr and Goemans [19] give a structure for rep-
resenting all cuts in the graph of capacity within a factor of 6/5 of that of a global
minimum cut. Finally, Cheng and Hu [33] give an algorithm to compute a struc-
ture they call an ancestor tree which encodes all

(
n
2

)
values of an arbitrary s-t cut

function, for all pairs s, t ∈ V , by using only n − 1 computations of the same cut
function.

The maximum flow algorithm in Exercise 3.3 is due to Fujishige [73]. The algorithm
and analysis in Exercise 3.5 are due to Queyranne [167]. Exercises 3.6 and 3.7 are
due to Karger and Stein [125]. The algorithm in Exercise 3.8 is due to Gusfield [103].

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

96 Global Minimum Cut Algorithms

1 2

34

2

1
1 1

3

1

2 3 4

1 2

34

2/2

1/1
0/1 1/1

0/3

1

2

3

3 4

1 2

34

1/2

1/1
1/1 1/1

1/3

1

2

3

3

4

3

1 2

34

0/2

1/1
1/1 0/1

3/3

1

2

3

3

4

4

3

Figure 3.7 Sample execution of Algorithm 3.8. The undirected graph on
the top left is the original input. The algorithm finds a minimum 1-2 cut, a
minimum 1-3 cut, and a minimum 3-4 cut: the corresponding flows and
graphs are shown on the left-hand side, where the flows are shown with our
usual f/c notation, and the cuts are shown in dashed lines. The
corresponding tree from the algorithm is shown on the right-hand side, and
the final Gomory-Hu tree is in the lower right-hand corner.

4

More Maximum Flow Algorithms

Copyrighted quotes omitted from this version.

In this chapter, we pick up where we left off in Chapter 2 with a discussion of
additional polynomial-time algorithms for the maximum flow problem. Our main
reason for discussing these additional algorithms is so that we can introduce one of
the fastest polynomial-time algorithms known: the Goldberg-Rao algorithm, due to
Goldberg and Rao [90]. To build up to this algorithm, it is first useful to discuss a
type of flow called a blocking flow, and see how blocking flows can be used to give
polynomial-time algorithms for the maximum flow problem.

4.1 Blocking Flows

In Section 2.7, we discussed a variant of the augmenting path algorithm in which
we always select the shortest augmenting path along which to push flow. In this
section, we consider an expansion of that idea in which we push as much flow as
possible along all shortest paths simultaneously. To define what we mean by this,
we introduce the concept of a blocking flow.

Definition 4.1: A flow f is blocking if for each s-t path P in G of arcs of positive
capacity, there is some saturated arc; that is, there is some (i, j) ∈ P such that
f(i, j) = u(i, j) > 0.

As an example, the flow in Figure 2.3 is a blocking flow. Recall that the flow in
Figure 2.3 is not a maximum flow: the residual graph is given in Figure 2.5 and a
flow of larger value is given in Figure 2.4. Thus a blocking flow is not in general a
maximum flow, although by Corollary 2.5 every maximum flow is a blocking flow. In
Exercise 4.2, we give some types of graphs in which a blocking flow is a maximum
flow.

We said previously that we want to push as much flow as we can along all the
shortest augmenting paths; by this we mean that we want to compute a blocking
flow along the current shortest paths of positive capacity arcs to the sink. In the
shortest augmenting path algorithm of Section 2.7, we showed that the distances to
the sink did not decrease. In this section’s algorithm, we will see that each blocking
flow computation will make the source vertex at least one distance unit farther away
from the sink. We will show that this means we find blocking flows at most n times

97

98 More Maximum Flow Algorithms

f ← 0
while there is an augmenting path in Gf do

Compute the distance d(i) from i to t for all i ∈ V on arcs of positive
residual capacity

Â← {(i, j) ∈ Af : d(i) = d(j) + 1}

û(i, j)←
{
uf (i, j) if (i, j) ∈ Â
0 if (i, j) ∈ A− Â

Compute blocking flow f̂ in G with capacities û

f ← f + f̂

return f

Algorithm 4.1 A blocking flow algorithm for the maximum flow problem.

before there are no more augmenting paths in the residual graph, and the flow is
maximum.

We now describe the algorithm more precisely. Given a flow f , we compute the
shortest path distance d(i) from each i ∈ V to the sink node t along arcs of positive
residual capacity, which can be done in O(m) time by Exercise 1.1. If an arc (i, j)

is on a shortest path to t, then d(i) = d(j) + 1. Let Â be the set of all admissible
arcs: that is, all arcs (i, j) such that d(i) = d(j) + 1 and such that the residual

capacity uf (i, j) > 0. We compute a blocking flow f̂ in the graph G = (V,A) in

which the capacity û(i, j) = uf (i, j) for all admissible arcs (i, j) ∈ Â, and û(i, j) = 0

otherwise. We will show below that f + f̂ is a valid flow in the original instance, and
that if we compute the new distances, then d(s) must have increased by at least one.
We give the summary of the algorithm in Algorithm 4.1.

We first show that the algorithm maintains a flow f .

Lemma 4.2: Algorithm 4.1 maintains a flow f .

Proof The flow f = 0 is initially a flow. Each blocking flow f̂ computed is a flow,
so by Lemma 2.19, we know that the new flow f ′ = f + f̂ obeys flow conservation
and skew symmetry. Furthermore, for (i, j) ∈ Â, we know that f ′(i, j) = f(i, j) +

f̂(i, j) ≤ f(i, j)+uf (i, j) = u(i, j) and for (i, j) ∈ A−Â, f ′(i, j) = f(i, j)+f̂(i, j) ≤
f(i, j) ≤ u(i, j), so the new flow also obeys the capacity constraints. Thus at the
end of each iteration f is a flow.

The following lemma is the key to the analysis of the running time of the algorithm.

Lemma 4.3: The distance d(s) from s to t increases by at least one in each iteration
of Algorithm 4.1.

Proof Let f and d be the flow and distances (respectively) at the start of one
iteration of the algorithm, and let f ′ and d′ be the flow and distances (respectively)
at the start of the next iteration. Consider any shortest augmenting path P in Af ′ ,
the arcs of positive residual capacity from the next iteration. We want to show that

4.1 Blocking Flows 99

d′(s) = |P | > d(s). To do this, we will show that for all arcs (i, j) ∈ P , it must be
the case that d(i) ≤ d(j) + 1 and for at least one arc d(i) ≤ d(j). This will prove
that

d′(s) = |P | =
∑

(i,j)∈P

1 >
∑

(i,j)∈P

(d(i)− d(j)) = d(s),

where the strict inequality follows since d(i)−d(j) < 1 for at least one arc (i, j) ∈ P .

We first show that d(i) ≤ d(j) + 1 for all arcs (i, j) ∈ P . Since (i, j) ∈ P , it must
have positive residual capacity for the flow f ′. For the arc to have positive residual
capacity, either (i, j) had positive residual capacity in the previous iteration, or we
increased the flow on the reverse arc (j, i). If (i, j) had positive residual capacity in
the previous iteration, then it must have been the case that d(i) ≤ d(j) + 1 in order
for d(i) to be the length of the shortest path to t on arcs of positive residual capacity
in the previous iteration. If we increased flow on (j, i) in the previous iteration, then
since we only increased flow on admissible arcs, it must have been that d(j) = d(i)+1
in the previous iteration, so that d(i) = d(j)− 1 ≤ d(j) + 1.

Next, we want to show that d(i) ≤ d(j) for some arc (i, j) ∈ P . To see this,
we observe that by the properties of a blocking flow, it cannot be the case that
all arcs in P were admissible in the previous iteration; if they were, then by the
properties of a blocking flow, at least one arc (i, j) ∈ P must have become saturated
in the previous iteration so that uf ′(i, j) = 0, contradicting the statement that P
is an augmenting path in Af ′ . So it must be the case that for some arc (i, j) ∈ P ,
either d(i) < d(j) + 1 so that d(i) ≤ d(j) as desired, or uf (i, j) = 0. In this latter
case, as we argued above, if uf ′(i, j) > 0, then we increased flow on (j, i) so that
d(j) = d(i) + 1 and d(i) = d(j)− 1 ≤ d(j).

Corollary 4.4: There are at most n iterations of the main loop of Algorithm 4.1
before the algorithm terminates with a maximum flow.

Proof Initially d(s) ≥ 0, and increases by at least one in each iteration. Note that
the length of any simple augmenting path can be at most n−1, so that once d(s) ≥ n,
there is no augmenting path in Gf , and f must be a maximum flow.

Now we show that we can compute a blocking flow in O(mn) time if there are no
cycles of positive capacity arcs. In Exercise 4.3, we ask the reader to show that this
can be done in the same class of graphs in O(m log n) time using a data structure
called a dynamic tree.

Lemma 4.5: A blocking flow can be computed in O(mn) time in a graph with no
cycles of positive capacity arcs.

Proof We start at the source s and follow arcs of positive capacity for at most n−1
steps; that is, we pick an arc (s, j) of positive capacity, then pick a positive capacity
arc (j, k) going out of k, and so on. Within n steps, we will either have reached t,
in which case we will have an s-t path P , or we will reach a vertex i that has no
outgoing arcs of positive capacity. Notice that we will not repeat a vertex in our
search because there are no cycles of positive capacity arcs. If we find an s-t path P ,

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

100 More Maximum Flow Algorithms

we send as much flow as possible on the path, and reduce the capacity of all arcs on
the path by the amount of flow sent; notice that at least one arc will be saturated,
and so will have zero capacity. If we find a node i with no outgoing positive capacity
arcs, we remove the arc (k, i) that we traversed leading into i. In either case, we
remove at least one positive capacity arc from the graph, and thus we can have at
most m iterations before we are done. Since no s-t path of positive capacity arcs
remain, it is clear that we have computed a blocking flow.

The following statement of running time is then almost immediate.

Theorem 4.6: The blocking flow algorithm for computing maximum flows in Algo-
rithm 4.1 runs in O(mn2) time, or O(mn log n) time by using dynamic trees.

Proof In each iteration, we compute shortest paths in the residual graph, which
we can do in O(m) time by Exercise 1.1, and compute a blocking flow, which we
can do in either O(mn) time or O(m log n) time, assuming that the blocking flow is
computed in a graph with no positive capacity cycles. Thus we only need show that
in the set of admissible arcs Â selected each time, there cannot be any cycle C ⊆ Â.
There cannot be such a cycle since d(i) = d(j) + 1 for all arcs (i, j) ∈ Â, this cannot
be true for all arcs (i, j) ∈ C since this would imply that |C| =

∑
(i,j)∈C(d(i)−d(j)).

However, since all terms in the sum cancel,
∑

(i,j)∈C(d(i) − d(j)) = 0, which is a
contradiction, so there cannot be a cycle of admissible arcs.

4.2 Blocking Flows in Unit Capacity Graphs

We can state somewhat better running times for the blocking flow algorithm of
Algorithm 4.1 if it is the case that u(i, j) ∈ {0, 1} for all (i, j) ∈ A; this special
case is sometimes known as the unit capacity case. In the unit capacity case, we
are able to give tighter bounds on the number of iterations taken by the algorithm.
To begin our discussion of this case, we recall that in Section 3.1, we defined the
distance level k as the set of all nodes i such that d(i) = k, and we used the notation
B(k) = {i ∈ V : d(i) = k}. Also, recall that we defined the cut determined by
distance level k as S(k) = {i ∈ V : d(i) ≥ k}. We now define some notation that
we will use frequently in the rest of this chapter.

Definition 4.7: Let Λ = min(
√
m, 2n2/3).

Lemma 4.8: In the unit capacity case, Algorithm 4.1 takes O(Λ) iterations.

Proof We show first that the algorithm takes O(
√
m) iterations, and then that it

takes O(n2/3) iterations; the combination shows the lemma.
We note that by Lemma 4.3 that after

√
m iterations, d(s) ≥

√
m, and there

are at least
√
m distinct, nonempty distance levels 0, 1, 2, . . . ,

√
m (each of these

distance levels must be nonempty, since otherwise any path from s to t would have
an arc (i, j), where d(i) > d(j) + 1). Consider the cuts S(1), . . . , S(

√
m). Note that

any arc (i, j) ∈ δ+(S(k)) must have d(i) = k and d(j) = k − 1, since otherwise
d(i) > d(j) + 1; thus any arc in a cut S(k) for k = 0, 1 . . . ,

√
m belongs to exactly

4.2 Blocking Flows in Unit Capacity Graphs 101

s

B(
√
m)

· · ·

B(k) B(k − 1)

· · ·

B(2) B(1)

t

S(k)

Figure 4.1 Illustration of the proof in Lemma 4.8.

one such cut. Since there are at mostm arcs, there must be some k such that there are
at most

√
m arcs in δ+(S(k)). Since each arc u(i, j) ∈ {0, 1}, then uf (i, j) ∈ {0, 1}

so that uf (δ+(S(k))) ≤
√
m. Then by Lemma 2.21, we know that for the current

flow f and any maximum flow f∗, it must be that |f∗| − |f | ≤
√
m. Since the

capacities are integers, and the flow value increases by at least one in each iteration
of the algorithm, the algorithm can perform at most

√
m more iterations before it

terminates. Thus the algorithm will have performed O(
√
m) iterations overall.

Similarly, after 2n2/3 iterations, there are at least 2n2/3 distinct, nonempty dis-
tance levels 0, 1, 2, . . . , 2n2/3. Consider the cuts S(1), . . . , S(2n2/3). Since there are n
nodes, there must be some k such that both distance levels k and k−1 have at most
n1/3 nodes, since otherwise at least half of the 2n2/3 levels will have more than n1/3

nodes. Then there can be at most n2/3 arcs from distance level k to distance level
k− 1 (at most one arc (i, j) for each i with d(i) = k and each j with d(j) = k− 1).
Thus uf (δ+(S(k))) ≤ n2/3, and by the same argument as above, the algorithm can
perform at most n2/3 more iterations before it terminates. Thus the algorithm will
have performed O(n2/3) iterations overall.

Corollary 4.9: After Λ iterations of finding blocking flows, there is some s-t cut
S(k) with |δ+(S(k))| ≤ Λ.

We will use Corollary 4.9 when we discuss the Goldberg-Rao algorithm in the next
section. In this case, since all the arcs have unit capacity, the capacity of the s-t cut
in the residual graph has capacity at most Λ, which implies that there are at most Λ
iterations remaining. In the case of a unit capacity graph, we can compute a blocking
flow in O(m) time; we give this as Exercise 4.1. Thus we have the following.

Theorem 4.10: The blocking flow algorithm in Algorithm 4.1 computes a maximum
flow in unit capacity graphs in O(Λm) time.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

102 More Maximum Flow Algorithms

4.3 The Goldberg-Rao Algorithm

The Goldberg-Rao algorithm extends the analysis of the blocking flow algorithm
for unit capacity graphs to arbitrary capacities. We will show that this gives an
O(Λm log n log(mU)) time algorithm. This is one of the best theoretical running
times for a maximum flow algorithm. Suppose we can ensure in running the algorithm
that each arc from distance level k to distance level k − 1 has residual capacity at
most ∆ for some parameter ∆ for all distance levels k. Initially we set ∆ = U . Then
Corollary 4.9 shows that after Λ iterations of the blocking flow algorithm, there must
be some s-t cut S(k) in the residual graph such that there are at most Λ arcs in the
cut, and thus the total residual capacity of the cut is at most Λ∆. We then decrease
∆ by a factor of 2, and repeat. Thus after each Λ blocking flow computations, we
will reduce the size of the minimum s-t cut in the residual graph by a factor of 2.
If we start with the zero flow, the minimum s-t cut in the residual graph initially
has capacity at most mU , so after O(Λ log(mU)) iterations, we will have found the
maximum flow. Using the O(m log n) time algorithm to find a blocking flow, this
gives the running time previously mentioned. What we have just described is the
basic intuition of the algorithm, although implementing these ideas will introduce
some additional complications.

How can we make it be the case that an arc going from distance level k to distance
level k − 1 has residual capacity at most ∆? To do this, we note that so far when
we have been computing the shortest path distances d(i) from each vertex i to the
sink, we have assumed that the length of each positive residual capacity arc is 1.
We now introduce the idea of lengths `(i, j) for each arc, and calculate the distance
to the sink using these lengths. In particular, we set `(i, j) = 1 only if the residual
capacity uf (i, j) ≤ ∆, and set `(i, j) = 0 otherwise. Then since d(i) ≤ d(j)+`(i, j),
if the arc (i, j) goes from distance level k to distance level k − 1, we must have
d(i) = k, d(j) = k− 1, and `(i, j) = 1, so that it must be the case that the residual
capacity of (i, j) is at most ∆. An admissible arc remains one with positive residual
capacity that is on a shortest s-t path, but now an arc (i, j) is on the shortest path

if d(i) = d(j) + `(i, j), so that Â = {(i, j) ∈ Af : d(i) = d(j) + `(i, j)}.
We now make a small change in which arcs are admissible which will be mysterious

for the time being, but will be needed later in the proofs. We call an arc (i, j) a special
arc if i and j are in the same distance level (that is, d(i) = d(j)), ∆/2 ≤ uf (i, j) ≤ ∆,
and uf (j, i) > ∆. If an arc (i, j) is special, then we set `(i, j) = 0 (it otherwise would
have been 1 since uf (i, j) ≤ ∆). Observe that this does not change the distances
at all (since already d(i) = d(j)), but it does make arc (i, j) admissible, since now
d(i) = d(j) + `(i, j).

Changing the notion of the length of an arc to be either 0 or 1 (instead of just 1)
then allows us to assume that after Λ iterations of the blocking flow algorithm, the
capacity of the minimum s-t cut is at most Λ∆ for our choice of parameter ∆, but
it raises questions about previous parts of the proof of the blocking flow algorithm.
For one, it is not clear that the analog of Lemma 4.3 will hold; that is, it is not clear
if we can assert that the distance from s to t will increase with each blocking flow
computation. We will set that issue aside for the moment and come back to it later.

4.3 The Goldberg-Rao Algorithm 103

C

C

Figure 4.2 An illustration of contracting a strongly connected component
C to a single node.

A second issue is that we used subroutines that assume that there is no cycle of
positive capacity arcs in Â; our proof that no such cycles exist in Â relied crucially
on the fact that the length of each arc was one; there could not be any cycles in the
admissible arcs since they were all on shortest paths to the sink. However, now that
we allow length zero arcs, it is possible for there to be a cycle in Â of length zero
arcs between nodes all from the same distance level.

The second issue is easier to deal with; before we compute a blocking flow we will
take any strongly connected component of length zero admissible arcs and contract
them into a single node (see Figure 4.2). Now we will be able to do the blocking flow
computation in a graph in which there are no cycles in the positive capacity arcs.
How then will we route flow in the original, uncontracted graph? Suppose we limit
the amount of flow entering the contracted node to be at most ∆/4. In the strongly
connected component, we will pick a single root node r, and pick two subsets of the
arcs of the component, an intree in which there is a directed path from each node
of the connected component to r, and an outtree in which there is a directed path
from r to each node of the component (we can use an arc in both the intree and the
outtree). We route the flow from all the arcs coming in to the component to r, then
all the flow from r to the outgoing arcs; see Figure 4.3 for an illustration. Because
each arc (i, j) in the strongly connected component has length 0, either uf (i, j) > ∆
or (i, j) is a special arc and uf (i, j) ≥ ∆/2. In either case, we are able to route ∆/4
units of flow over arc (i, j) if it is in the intree and another ∆/4 units if it is in the
outtree.

In order to limit the amount of flow through such nodes to be at most ∆/4, we
change the goal of each iteration of the algorithm; either we find a blocking flow or
we find a flow of value ∆/4. We can achieve this goal by adding an extra arc (s′, s)
of capacity ∆/4 in each blocking flow computation and changing the source to be
s′. Clearly we will not find a flow of value more than ∆/4, and if we find a flow of
value less than ∆/4 it will be a blocking flow in the contracted graph without the
arc (s′, s).

We can now give the algorithm in Algorithm 4.2. We keep track of a quantity F ;
we will show below that this quantity always gives an upper bound on the value of

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

104 More Maximum Flow Algorithms

C

a

b

c

d

r

a

b

b

a+ b
r

c

d

c+ d

d

Figure 4.3 An illustration of decomposing the strongly connected
component of Figure 4.2 into an intree and an outtree, and routing flow from
the contracted graph on the two trees. We take all incoming flow and send it
to the root r on the arcs in the intree. Then we take all the flow sent to the
root and send it to the outgoing arcs via the arcs on the outtree. By flow
conservation, the two amounts must be equal (that is, a+ b = c+ d).

the maximum flow in the residual graph Gf . Initially we set the flow f to the zero
flow, and F to mU , since this gives an upper bound on the value of the maximum
flow. In each iteration, we set ∆ to be F/2Λ. Then do the following 5Λ times. We
compute distances and admissible arcs. We contract the graph as necessary and
compute either a blocking flow or a flow of value ∆/4 in the contracted graph, then

compute the resulting flow f̂ in the original uncontracted graph. We add f̂ to f and
continue. Once we have computed the flow f̂ 5Λ times, we divide F by 2, and repeat
as long as F ≥ 1. If F is indeed an upper bound on the flow in the residual graph,
and if the capacities are integers, then once F < 1, we have a maximum flow and
the algorithm terminates.

The technical heart of the proof is the following lemma; we defer its proof for a
moment.

Lemma 4.11: For each iteration in which we compute a blocking flow, the distance
d(s) from s to t increases by at least one.

We can now show that F indeed behaves as claimed using Lemma 4.11.

Lemma 4.12: F is an upper bound on the value of the maximum flow in Gf .

Proof We show by induction on the algorithm that F is always an upper bound
on the value of the maximum flow in Gf . Initially f is the zero flow, so the value
of the maximum flow is at most F = mU . In each iteration of the main while loop,
after 5Λ flow computations, either we will have increased the value of the flow f by
4Λ · (∆/4), or we will have found Λ blocking flows, so that there is an s-t cut S(k)
such that |δ+(S(k))| ≤ Λ by Corollary 4.9.

In the first case, we have increased the value of the flow f by Λ∆ = F/2. Thus
the value of the maximum flow in Gf has decreased by F/2. Since at the start of
the iteration it was at most F , it is now at most F − F/2 = F/2, and we correctly
divide F by 2.

4.3 The Goldberg-Rao Algorithm 105

f ← 0
F ← mU
while F ≥ 1 do

∆← F/2Λ
repeat 5Λ times do

`(i, j)←
{

0 if uf (i, j) > ∆
1 otherwise

Compute distances d(i) from i to t using lengths ` on arcs of positive
residual capacity

Â← {(i, j) ∈ A : d(i) = d(j) + `(i, j), uf (i, j) > 0}
Add special arcs (i, j) to Â

Shrink strongly connected components in Â

Find either flow f̃ of value ∆/4 or blocking flow f̃ in resulting graph

Compute f̂ , by routing flows of f̃ in uncontracted components

f ← f + f̂

F ← F/2

return f

Algorithm 4.2 The Goldberg-Rao algorithm.

In the second case, since there is an s-t cut S(k) with |δ+(S(k))| ≤ Λ, then since
we know that each arc (i, j) ∈ δ+(S(k)) has residual capacity uf (i, j) ≤ ∆, we have
that uf (δ+(S(k))) ≤ Λ∆ = F/2. Since we have an s-t cut in the residual graph of
value at most F/2, the value of the maximum flow in the residual graph is at most
F/2, and again we can correctly divide F by 2.

Finally, the main technical proof is to show that Lemma 4.11, the analog of Lemma
4.3, still holds.

Proof of Lemma 4.11. Let f , d, and ` be the flow, distances, and lengths, respectively,
at the start of the blocking flow computation; let f ′, d′, and `′ be the flow, distances,
and lengths, respectively, from the next iteration, after computing a blocking flow.
We let ` be the lengths after we have determined the special arcs for the previous
iteration, and let `′ be the lengths before we have determined the special arcs for the
next iteration; since special arcs do not change the distances at all, we can make this
distinction.

We follow the same structure as the proof of Lemma 4.3. Pick any shortest aug-
menting path P in Af ′ , the arcs of positive residual capacity from the next iteration.
We want to show that d′(s) =

∑
(i,j)∈P `

′(i, j) > d(s). To do this, we will show that
for all arcs (i, j) ∈ P , it must be the case that d(i) ≤ d(j) + `′(i, j), and for at least
one arc d(i) < d(j) + `′(i, j). Then

d′(s) =
∑

(i,j)∈P

`′(i, j) >
∑

(i,j)∈P

(d(i)− d(j)) = d(s)− d(t) = d(s).

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

106 More Maximum Flow Algorithms

We first want to show that for all arcs (i, j) ∈ P that d(i) ≤ d(j) + `′(i, j); as a
first step, we show that d(i) ≤ d(j) + `(i, j). Since (i, j) ∈ P , it must have positive
residual capacity for the flow f ′, so that uf ′(i, j) > 0. For the arc to have positive
residual capacity, either (i, j) had positive residual capacity in the previous iteration,
or we increased flow on the reverse arc (j, i). If (i, j) had positive residual capacity
in the previous iteration, then we know by the properties of shortest paths that
d(i) ≤ d(j)+`(i, j). If we increased flow on (j, i) in the previous iteration, then (j, i)
was admissible and d(j) = d(i)+`(j, i), so that d(i) = d(j)−`(j, i) ≤ d(j)+`(i, j).

Now we have established that d(i) ≤ d(j) + `(i, j) for all (i, j) ∈ P ; how can it
be the case that d(i) 6≤ d(j) + `′(i, j)? It can only happen if d(i) = d(j) + `(i, j),
`(i, j) = 1, and `′(i, j) = 0. Since d(i) = d(j) + 1, it must be the case that (j, i) is
not admissible. Thus the flow (i, j) can only increase, and the residual capacity can
only decrease; that is, uf (i, j) ≥ uf ′(i, j). However, since `′(i, j) = 0, we have that
uf ′(i, j) > ∆, which then implies that uf (i, j) > ∆ (recall that `′ is set before we
have determined the special arcs for the next iteration), which contradicts `(i, j) = 1.
Hence this case cannot occur, and it must be that d(i) ≤ d(j) + `′(i, j).

We now want to prove that there must be some arc (i, j) ∈ P such that d(i) <
d(j) + `′(i, j). By the properties of a blocking flow, it cannot be the case that all
arcs in P were admissible in the previous iteration, since the blocking flow must
have saturated an arc of P . So it must be the case that some arc (i, j) ∈ P was
not admissible in the previous iteration, and thus either uf (i, j) = 0 or d(i) <
d(j) + `(i, j).

Suppose (i, j) was not admissible because uf (i, j) = 0. Then since (i, j) ∈ P ,
we must have pushed flow on (j, i), which implies that (j, i) was admissible and
d(j) = d(i) + `(j, i) or d(i) = d(j) − `(j, i). Then the only way we could have
d(i) 6< d(j) + `′(i, j) would be if `′(i, j) = 0, which implies uf ′(i, j) > ∆. However,
we had uf (i, j) = 0 in the previous iteration; this can only happen if we push more
than ∆ units of flow on (j, i). The algorithm only pushes ∆/4 units of flow per
iteration, which results in at most ∆/2 units of flow on any arc (possibly ∆/2 on an
arc in a contracted component). Thus we never push more than ∆ units of flow on
an arc, and if uf (i, j) = 0, then it must be the case that d(i) < d(j) + `′(i, j).

Now we suppose that (i, j) was not admissible because d(i) < d(j) + `(i, j) and
uf (i, j) > 0. Then the only way we can have d(i) 6< d(j) + `′(i, j) is if `(i, j) = 1,
d(i) = d(j), and `′(i, j) = 0. Since `(i, j) = 1, then uf (i, j) ≤ ∆, and since
`′(i, j) = 0, uf ′(i, j) > ∆. Because we assume that (i, j) was not admissible, it
cannot be a special arc, and thus uf (i, j) < ∆/2. In order to have uf ′(i, j) > ∆ in
the next iteration, we must have pushed more than ∆/2 units of flow on (j, i), which
is a contradiction since the algorithm only pushes ∆/4 units of flow per iteration
(possibly we route ∆/2 units of flow on an arc in a contracted component). Thus in
this case it is also true that d(i) < d(j) + `′(i, j).

Theorem 4.13: The Goldberg-Rao algorithm of Algorithm 4.2 runs in O(Λm log n log(mU))
time.

Proof The outermost while loop runs O(log(mU)) times, and the inner repeat loop

Exercises 107

runs O(Λ) times, and in each innermost iteration a blocking flow computation is run,
taking O(m log n) time. The overall running time follows.

The Goldberg-Rao algorithm was the theoretically fastest polynomial-time algo-
rithm for the maximum flow problem for almost fifteen years. Faster algorithms based
on ideas for interior-point methods from linear programming are now known; see the
chapter notes for details.

Exercises

4.1 Recall that a unit capacity graph is one such that u(i, j) ∈ {0, 1} for all (i, j) ∈ A.

Give an O(m) time algorithm to find a blocking flow in a unit capacity graph if there

are no cycles of positive capacity.

4.2 In some graphs, a blocking flow is also a maximum flow. This is true in series-parallel

graphs. Series-parallel graphs can be constructed inductively. A graph with a single

arc from s to t is the simplest series-parallel graph.

s t

Figure 4.4 The simplest series-parallel graph.

Two series-parallel graphs G1 and G2 can be combined into a new series-parallel graph

through either a series composition or a parallel composition. In a series composition,

the t node of G1 is identified with the s node of G2, and the s node of G1 becomes

the s node of the new graph, while the t node of G2 becomes the t node of the new

graph. See Figure 4.5.

s1 G1 t1 s2 G2 t2

t1/s2G1s1 G2 t2

Figure 4.5 Series composition.

In a parallel composition, the s nodes of G1 and G2 are identified, and the t nodes

of G1 and G2 are identified. The identified s nodes are the s node of the new graph,

and the identified t nodes are the t node of the new graph. See Figure 4.6.

(a) Prove that a blocking flow in a series-parallel graph is also a maximum flow.

(b) Show that series-parallel graphs have no positive capacity cycles, and conclude that

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

108 More Maximum Flow Algorithms

s1 G1 t1 s2 G2 t2

s1/s2 t1/t2

G1

G2

Figure 4.6 Parallel composition.

there is an O(mn) time algorithm for finding a maximum flow in series-parallel

graphs.

4.3 Lemma 4.5 gives an O(mn) time algorithm for finding a blocking flow in a graph with

no positive capacity cycles. We can derive a faster algorithm assuming the existence

of a special data structure called dynamic trees. The data structure maintains a

vertex-disjoint set of rooted trees. Each rooted tree is a directed tree with a specific

vertex called the root; every other vertex in the tree has a single arc directed out

of the vertex, and can reach the root vertex via a directed path. Each vertex has a

real-valued cost. The data structure can perform each of the following operations in

O(logn) amortized time:

• maketree(i): Create a new tree containing the single vertex i of cost zero; i is the

root of the new tree.

• findroot(i): Return the root of the tree containing vertex i.

• findcost(i): Return (j, x), where x is the minimum cost of a vertex on the tree path

from i to findroot(i) and j is the last vertex on this path of cost x.

• addcost(i, x): Add x to the cost of every vertex on the path from i to findroot(i).

• link(i, j): Combine the two trees containing vertices i and j by adding the arc (i, j)

directed from i to j. i must be the root of a tree.

• cut(i): Divide the tree containing vertex i into two trees by deleting the arc out of

i. i must not be the root of a tree.

Show that by using the dynamic trees data structure one can obtain an O(m logn)

time algorithm for finding a blocking flow in a graph with no positive capacity cycles.

Chapter Notes

The blocking flow algorithm given in Section 4.1 is attributed to Dinitz [52] (some-
times written Dinic); see also the survey of Dinitz [54] for an overview of this al-
gorithm and its subsequent modifications. The time bounds given in Section 4.2

Exercises 109

for unit capacity graphs were discovered independently by Karzanov [127] and Even
and Tarjan [59]. The Goldberg-Rao algorithm of Section 4.3 is due, naturally enough,
to Goldberg and Rao [90]. Interestingly, the early paper by Edmonds and Karp [57]
had already introduced the idea of considering different arc lengths `(i, j) for shortest
augmenting path algorithms. Lecture notes of Mehlhorn [147] present the perspective
of the Goldberg-Rao algorithm in terms of blocking flows used in the section.

Hoffman [109, 110] attributes Exercise 4.2 to folklore: “It is well known that se-
quential greediness for any sequence of s-t paths solves the max flow problem for
series-parallel graphs.” He conceives of the blocking flow algorithm as a greedy max-
imum flow algorithm that does not require reducing flow on an arc. Exercise 4.3 is
due to Sleator and Tarjan [182].

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

5

Minimum-Cost Circulation Algorithms

In this chapter we take up the problem of constructing network flows that

minimize cost. The practical importance of this problem area is affirmed by

the fact that a sizeable fraction of the linear programming literature has been

devoted to it, and an even larger share of the many concrete industrial and

military applications of linear programming have been in this domain.

– L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks

We now turn to flow problems that involve a cost per unit flow, and in which the
goal is to minimize the overall cost of the flow meeting certain conditions. We saw
that in some cases we could model problems in which we wished to minimize costs
as a minimum s-t cut problem (as in the image segmentation problem of Exercise
2.5). However, in many problems it makes sense to have a cost per unit flow; this
allows us to model problems in minimizing the transport of goods, for instance, in
which there are per-unit costs for transportation.

The fundamental problem we will study is the minimum-cost circulation problem.
In this problem we are given as input a directed graph G = (V,A), integer costs
c(i, j) for all (i, j) ∈ A, integer capacities u(i, j) ≥ 0 for all (i, j) ∈ A, and integer
lower bounds `(i, j) such that 0 ≤ `(i, j) ≤ u(i, j) for all (i, j) ∈ A. The goal is to
find a circulation f of minimum cost. We define a circulation as follows.

Definition 5.1: A circulation f : A → <≥0 is an assignment of nonnegative reals
to the arcs such that the following two properties are obeyed:

• for all arcs (i, j) ∈ A,

`(i, j) ≤ f(i, j) ≤ u(i, j); (5.1)

• for all i ∈ V , the total flow entering i is equal to the flow leaving i; that is,∑
k:(k,i)∈A

f(k, i) =
∑

k:(i,k)∈A

f(i, k). (5.2)

The cost of the circulation is
∑

(i,j)∈A c(i, j)f(i, j) and is denoted c(f).

As with the maximum flow problem, the constraints (5.1) are called capacity con-
straints, and (5.2) are called flow conservation constraints. Note that unlike the
maximum flow problem, it is possible that no feasible circulation exists. However, it

110

Minimum-Cost Circulation Algorithms 111

is possible to determine whether a feasible circulation exists, and find such a circu-
lation if one exists, using a single maximum flow computation. This result is known
as Hoffman’s circulation theorem, and is given as Exercise 2.7.

Another popular type of flow problem involving costs is known as the minimum-
cost flow problem. In this problem, we are given as input a directed graph G = (V,A),
integer costs c(i, j) for all (i, j) ∈ A, integer capacities u(i, j) ≥ 0 for all (i, j) ∈ A,
and integer demands b(i) for all i ∈ V . A flow f : A → <≥0 in this problem is an
assignment of nonnegative reals to the arcs such that 0 ≤ f(i, j) ≤ u(i, j) and such
that the demands are met at all nodes; that is, the difference between the flow out
of i and the flow into i is exactly b(i) for all i ∈ V , or

b(i) =
∑

k:(i,k)∈A

f(i, k)−
∑

k:(k,i)∈A

f(k, i).

If b(i) > 0 we call i a supply node (since there must be positive net flow out of i)
and b(i) is the supply of node i. If b(i) < 0 we call i a demand node and −b(i) is
the demand of node i. The goal of the minimum-cost flow problem is to minimize
the cost of the flow, which is

∑
(i,j)∈A c(i, j)f(i, j). We observe that in order to have

a feasible solution f , it must be the case that
∑

i∈V b(i) = 0 since if we sum the
demand constraints over all i ∈ V we get

∑
i∈V

b(i) =
∑
i∈V

 ∑
k:(i,k)∈A

f(i, k)−
∑

k:(k,i)∈A

f(k, i)

 = 0;

the sum is zero since each term f(i, j) appears once positively and once negatively
in the sum. It makes intuitive sense that

∑
i∈V b(i) = 0 since then the total demand

over all demand nodes equals the total supply over all supply nodes.
We claim that any instance of the minimum-cost flow problem can be reduced

to a minimum-cost circulation problem, allowing us to focus our attention on the
latter problem (it is also the case that any instance of the minimum-cost circulation
problem can be reduced to a minimum-cost flow problem; see Exercise 5.2). Given an
instance of the minimum-cost flow problem with graph G, capacities u, and demands
b, we create an instance of the minimum-cost circulation problem as follows. We
create a new node s. For any supply node i (with b(i) > 0), we add an arc (s, i)
with `(s, i) = u(s, i) = b(i) and cost c(s, i) = 0, and for any demand node j (with
b(j) < 0), we add an arc (j, s) with `(j, s) = u(j, s) = −b(j) and cost c(j, s) = 0;
see Figure 5.1. Then it is easy to check that any circulation in this instance gives a
flow in the original instance of the same cost, and vice versa. So for the remainder
of the chapter, we will only consider the minimum-cost circulation problem.

As in the maximum flow problem, it will be useful to consider a somewhat un-
conventional redefinition of a circulation. We will add an arc (j, i) for each arc
(i, j) ∈ A, and impose a skew symmetry constraint, so that f(j, i) = −f(i, j).
We can then replace the lower bound `(i, j) in the definition of the circulation
with a capacity constraint u(j, i) = −`(i, j) on the reverse arc. We observe that
if f(j, i) ≤ u(j, i), then −f(i, j) ≤ −`(i, j) or f(i, j) ≥ `(i, j) as desired. Further-
more, we set c(j, i) = −c(i, j) so that c(i, j)f(i, j) + c(j, i)f(j, i) = 2c(i, j)f(i, j).

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

112 Minimum-Cost Circulation Algorithms

s

i

b(i) > 0

j

b(j) < 0

G

`(s, i) = u(s, i) = b(i)

c(s, i) = 0

`(j, s) = u(j, s) = −b(j)

c(j, s) = 0

Figure 5.1 Illustration of reduction from the minimum-cost flow problem
to the minimum-cost circulation problem.

Now we define the cost of a circulation to be 1
2

∑
(i,j)∈A c(i, j)f(i, j), so that the

cost of a circulation in the new definition is the same as the cost under the previous
definition. Finally, as in the case of the maximum flow problem, the flow conservation
constraints now become ∑

k:(i,k)∈A

f(i, k) = 0.

We summarize the new definition below.

Definition 5.2: A circulation f : A→ < is an assignment of reals to the arcs such
that the following three properties are obeyed:

• for all arcs (i, j) ∈ A,

f(i, j) ≤ u(i, j); (5.3)

• for all i ∈ V , the total flow leaving i is zero; that is,∑
k:(i,k)∈A

f(i, k) = 0; (5.4)

• for all (i, j) ∈ A,

f(i, j) = −f(j, i). (5.5)

The cost of the circulation is 1
2

∑
(i,j)∈A c(i, j)f(i, j) and is denoted c(f).

5.1 Optimality Conditions

As in the case of the maximum flow problem, we would like to develop a set of
conditions that let us know when we have found a circulation of minimum cost.

To begin with, we need the concept of a residual graph. The residual graph in
the case of the minimum-cost circulation problem is identical to that used in the
maximum flow problem. Given a circulation f on the graph G = (V,A) with capac-
ities u(i, j) for all (i, j) ∈ A, the residual graph with respect to the circulation f is

5.1 Optimality Conditions 113

Gf = (V,A). Each arc (i, j) ∈ A has residual capacity uf (i, j) = u(i, j) − f(i, j);
notice again that the residual capacity is always nonnegative, even though in the case
of the minimum-cost circulation problem the capacities u(i, j) might be negative. As
in the case of the maximum flow problem, we define Af to be the subset of arcs that
have positive residual capacity; that is, Af = {(i, j) ∈ A : uf (i, j) > 0}.

The object analogous to an augmenting path in a residual graph for the maximum
flow problem is a negative-cost cycle in the residual graph for the minimum-cost
circulation problem. A negative-cost cycle Γ is a simple cycle in the residual graph
Gf such that all arcs of Γ have positive residual capacity and the sum of the costs of
the arcs is negative; that is, Γ ⊆ Af and

∑
(i,j)∈Γ c(i, j) < 0. We denote the cost of

the arcs in Γ by c(Γ) =
∑

(i,j)∈Γ c(i, j). Suppose we have a circulation f , and there is
a negative-cost cycle Γ ⊆ Af . Let δ = min(i,j)∈Γ uf (i, j); since all the arcs in Γ have
positive residual capacity, δ > 0. Then we create a new circulation f ′ by setting

f ′(i, j) =

f(i, j) + δ ∀(i, j) ∈ Γ
f(i, j)− δ ∀(j, i) ∈ Γ
f(i, j) ∀(i, j) : (i, j), (j, i) /∈ Γ

Sometimes we say that we push δ units of flow around the cycle Γ. We also say that
we cancel the cycle Γ because in the new circulation f ′ some arc in Γ must have zero
residual capacity; that is, Γ 6⊆ Af ′ .

We need to check that f ′ is still a circulation. One way to do this is to consider a
circulation f̃ in the residual graph Gf that has

f̃(i, j) =

δ ∀(i, j) ∈ Γ
−δ ∀(j, i) ∈ Γ
0 ∀(i, j) : (i, j), (j, i) /∈ Γ

Since δ ≤ uf (i, j) for all (i, j) ∈ Γ, the circulation f̃ obeys all the capacity constraints
of the residual graph. It clearly obeys skew symmetry and flow conservation for any
node i not on the cycle. For a node i on the cycle, we have that

∑
k:(k,i)∈A f̃(k, i) =

f(k, i) + f(j, i) = δ − δ = 0 for arcs (k, i) and (i, j) on the cycle. Thus f̃ is indeed
a circulation. Since f ′ = f + f̃ , and both f and f̃ obey flow conservation and
skew symmetry, so does f ′ (by Lemma 2.19). Finally, f ′(i, j) = f(i, j) + f̃(i, j) ≤
f(i, j) + uf (i, j) = u(i, j), so the capacity constraints are obeyed and f ′ is indeed a
circulation.

Now we show that c(f ′) < c(f). We first observe that c(f̃) = δc(Γ), since

c(f̃) =
1

2

∑
(i,j)∈Γ

(δc(i, j)− δc(j, i)) =
1

2
δ
∑

(i,j)∈Γ

(c(i, j) + c(i, j)) = δc(Γ).

Then

c(f ′) = c(f + f̃) = c(f) + c(f̃) = c(f) + δc(Γ) < c(f),

since c(Γ) < 0 and δ > 0.
The natural analogy with the maximum flow problem would now lead us to believe

that we have a minimum-cost circulation f if and only if there are no negative-cost

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

114 Minimum-Cost Circulation Algorithms

cycles in Gf (just as a flow f is maximum if and only if there are no augmenting
paths in Gf). Indeed, this is the case. However, to prove this statement, it is helpful
to introduce one more concept. A node potential (or price) p : V → < is an
assignment of reals to the nodes. Then we define the reduced cost of an arc (i, j)
with respect to potentials p as cp(i, j) = c(i, j)+p(i)−p(j). Observe that cp(j, i) =
c(j, i) + p(j) − p(i) = −(c(i, j) + p(i) − p(j)) = −cp(i, j). Also notice that the
reduced cost of a cycle Γ, cp(Γ), is exactly equal to the cost c(Γ) of the cycle:

cp(Γ) =
∑

(i,j)∈Γ

(c(i, j) + p(i)− p(j)) = c(Γ) +
∑

(i,j)∈Γ

(p(i)− p(j)) = c(Γ),

since the potentials all cancel out. In Exercise 5.3 we have the reader prove the
stronger statement that for a circulation f , c(f) = cp(f), where cp(f) = 1

2

∑
(i,j)∈A cp(i, j)f(i, j).

Intuitively, we can think of p(i) as the length of a shortest s-i path for some source
vertex s. Then, we know from Lemma 1.6 that p(j) ≤ p(i)+c(i, j) for all (i, j) ∈ Af
if and only if there are no negative-cost cycles reachable from s in Gf ; rewriting, we
have that cp(i, j) = c(i, j)+p(i)−p(j) ≥ 0 for all (i, j) ∈ Af if and only if there are
no negative-cost cycles in Gf , which we have stated above is a condition for having
a minimum-cost circulation. Note that if we have potentials p such that cp(i, j) ≥ 0
for all (i, j) ∈ Af , the potentials serve as a witness that there are no negative-cost
cycles since c(Γ) = cp(Γ) ≥ 0 for any cycle Γ ⊆ Af . The intuition we have given
above leads to the following theorem that gives equivalent optimality conditions for
minimum-cost circulations.

Theorem 5.3: The following statements are equivalent for a circulation f :

1 f is a minimum-cost circulation;

2 there is no negative-cost cycle in Af ;

3 there are potentials p such that cp(i, j) ≥ 0 for all (i, j) ∈ Af .

Proof We argued above that (1) implies (2) since we showed that if there is a
negative-cost cycle in Gf , then there is a new circulation f ′ such that c(f ′) < c(f).

To show that (2) implies (3), we consider a new graph obtained by adding a source
vertex s to the residual graph Gf , with arcs (s, j) of cost c(s, j) = 0 for all nodes
j ∈ V ; see Figure 5.2. Now we let p(i) be the length of the shortest path from s to
i using arcs in Af , where the length of arc (i, j) is the arc cost c(i, j). As discussed
in Section 1.3 and Lemma 1.6, we can compute these shortest paths if there is no
negative-cost cycle in the residual graph Gf reachable from s. Also as discussed in
that section, we have that p(j) ≤ p(i) + c(i, j) for any (i, j) ∈ Af (that is, the cost
of the shortest s-j path is at most the shortest s-i path plus the cost of (i, j)). Thus
cp(i, j) = c(i, j) + p(i)− p(j) ≥ 0 for all (i, j) ∈ Af .

Now we wish to show that (3) implies (1). Let f̃ be any other circulation in G,
and consider f ′ = f̃ − f ; we claim that f ′ must be a circulation in the residual
graph Gf . By Lemma 2.19, f ′ obeys skew symmetry and flow conservation, and

f ′(i, j) = f̃(i, j) − f(i, j) ≤ u(i, j) − f(i, j) = uf (i, j), so f ′ obeys the capacity

5.1 Optimality Conditions 115

s

Gf

0 0 0

Figure 5.2 Proof of (2) implies (3) in Theorem 5.3.

constraints in the residual graph; thus if f ′(i, j) > 0, then (i, j) ∈ Af . Then

c(f̃)− c(f) = c(f̃ − f) = c(f ′)

= c(f ′) +
1

2

∑
i∈V

p(i)

 ∑
k:(i,k)∈A

f ′(i, k)−
∑

k:(k,i)∈A

f ′(k, i)

using the flow conservation constraints. It follows that

c(f̃)− c(f) = c(f ′) +
1

2

∑
i∈V

p(i)

 ∑
k:(i,k)∈A

f ′(i, k)−
∑

k:(k,i)∈A

f ′(k, i)

= c(f ′) +

1

2

∑
(i,j)∈A

(p(i)− p(j))f ′(i, j)

=
1

2

∑
(i,j)∈A

(c(i, j) + p(i)− p(j))f ′(i, j)

=
1

2

∑
(i,j)∈A

cp(i, j)f
′(i, j)

=
∑

(i,j)∈A:f ′(i,j)>0

cp(i, j)f
′(i, j) ≥ 0,

where the final equality follows since cp(i, j)f
′(i, j)+cp(j, i)f

′(j, i) = 2cp(i, j)f
′(i, j)

for f ′(i, j) > 0, and the final inequality follows since when f ′(i, j) > 0 then (i, j) ∈
Af , so that cp(i, j) ≥ 0. So c(f̃) ≥ c(f), and since f̃ was an arbitrary circulation, it
follows that f is a minimum-cost circulation.

We note the following corollary of the proof, which follows from the calculation of
the potentials in showing that condition (2) implies condition (3).

Corollary 5.4: If costs c are integer and f is optimal, there exist integer potentials
p such that cp(i, j) ≥ 0 for all (i, j) ∈ Af .

Just as the optimality conditions for the maximum flow problem suggests the
augmenting path algorithm of Ford and Fulkerson, the optimality conditions above
suggest a natural negative-cost cycle canceling algorithm due to Klein [132], which
we give in Algorithm 5.1. Given any feasible circulation f , we repeatedly look for a

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

116 Minimum-Cost Circulation Algorithms

Let f be any feasible circulation
while there is a negative-cost cycle Γ in Af do

Cancel Γ
Update f

return f

Algorithm 5.1 Klein’s [132] negative-cost cycle canceling algorithm for the minimum-
cost circulation problem.

negative-cost cycle Γ in the residual graph Gf , then cancel Γ and update f . Recall
that in Section 1.3 we gave O(mn) time algorithms for finding negative-cost cycles if
they exist. Once there are no more such cycles, we have a minimum-cost circulation.
The algorithm doesn’t specify how we find an initial feasible circulation. Hoffman’s
Circulation Theorem given in Exercise 2.7 gives a necessary and sufficient condition
for the existence of a feasible circulation, and if the condition is met and capacities
u are integral, we can find a feasible circulation f that is integral with a single
maximum flow computation.

One consequence of Algorithm 5.1 is that an integrality property holds for the
minimum-cost circulation property. If the capacities u are integral, then by the dis-
cussion above the initial circulation f is integral. Then the residual capacities uf are
integral, and thus the quantity δ = min(i,j)∈Γ uf (i, j) is integer, and the resulting
circulation f ′ is also integral.

Property 5.5: If capacities u(i, j) are integer, then the minimum-cost circulation
f is integral.

If both the capacities u and the costs c are integer, then we can show that Algo-
rithm 5.1 is a pseudopolynomial-time algorithm. Recall that we let U = max(i,j)∈A u(i, j).
Let C = max(i,j)∈A |c(i, j)|. The maximum value of a circulation is mCU ; each arc
can have flow at most U and thus cost at most CU . It follows similarly that the
minimum value of a circulation is −mCU . Each negative-cost cycle Γ found must
have cost c(Γ) ≤ −1, so that in each iteration the cost of the circulation must go
down by at least one. Thus there are O(mCU) iterations of the algorithm in total.
We know from Section 1.3 that we can find a negative-cost cycle in a graph (or
determine that none exists) in O(mn) time. Thus Algorithm 5.1 takes O(m2nCU)
time plus the time to find the initial feasible circulation (via a single maximum flow
computation), and thus is O(m2nCU) time overall.

Just as choosing an arbitrary augmenting path does not result in an polynomial-
time algorithm for the maximum flow problem (as we saw in Exercise 2.2), choosing
an arbitrary negative-cost cycle to cancel does not result in a polynomial-time al-
gorithm for the minimum-cost circulation problem (see Exercise 5.4). However, we
will see in subsequent sections that choosing the appropriate cycle to cancel in each
iteration results in a polynomial-time algorithm.

5.2 Wallacher’s Algorithm 117

5.2 Wallacher’s Algorithm

A reasonable first guess at the cycle to choose for a polynomial-time version of the
negative-cost cycle canceling algorithm is the cycle that gives the greatest overall
improvement in cost; this cycle is analogous to choosing the most improving aug-
menting path for the maximum flow problem, as we did in Section 2.5. Unfortunately,
it is NP-hard to find such a cycle; we leave the proof as an exercise (Exercise 5.5).
However, suppose for a moment that we could find such a cycle. Let f (k) be the
circulation resulting from k iterations of canceling the most improving cycle starting
with circulation f , and let f∗ be a minimum-cost circulation. Then, in Exercise 5.5,
we ask the reader to show that

c(f)− c(f (1)) ≥ 1

m
(c(f)− c(f∗)). (5.6)

Rearranging terms, this inequality is equivalent to

c(f (1))− c(f∗) ≤
(

1− 1

m

)
(c(f)− c(f∗)).

Thus after k iterations, we have that

c(f (k))− c(f∗) ≤
(

1− 1

m

)k
(c(f)− c(f∗)).

Using 1 − x < e−x for x 6= 0, and the fact that c(f) − c(f∗) ≤ 2mCU , after
k = m ln(2mCU) iterations, we have that

c(f (k))− c(f∗) < e− ln(2mCU)(c(f)− c(f∗)) ≤ 1

2mCU
· 2mCU = 1.

Since f (k) and f∗ are integral, if the costs and capacities are integer, then after
k = m ln(2mCU) iterations, we have that the difference between the cost of f (k)

and the cost of a minimum-cost circulation f∗ is less than one, which implies that
c(f (k)) = c(f∗), and we have found a minimum-cost circulation. We can summarize
this line of reasoning in the following theorem.

Theorem 5.6: If costs and capacities are integer, and if Inequality (5.6) holds for
each iteration of Algorithm 5.1, then the algorithm finds a minimum-cost circulation
in O(m ln(mCU)) iterations.

The reader may wonder why we have analyzed the most improving negative-cost
cycle algorithm given that we do not know how to implement it in polynomial time.
It turns out that several minimum-cost circulation algorithms look for cycles or
collections of cycles to cancel that give the same type of improvement as the most
improving negative-cost cycle, namely the improvement given by Inequality (5.6).
We will now see such an algorithm, one due to Wallacher [201] and hence known as
Wallacher’s algorithm (we give another such algorithm in Exercise 5.7). The ideas
for Wallacher’s algorithm also turn out to extend to other problems such as the
generalized flow problem; other algorithmic ideas in this chapter do not extend as
easily. We start by presenting an algorithm that requires finding a complicated cycle

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

118 Minimum-Cost Circulation Algorithms

to cancel, and then show how these ideas can be used in an algorithm that merely
requires finding any negative-cost cycle.

In Wallacher’s algorithm, we look for a cycle that trades off large residual capacity
arcs against negative-cost arcs. As argued in the previous section, canceling the cycle
Γ gives an improvement in cost of c(Γ) min(i,j)∈Γ uf (i, j), and thus we would like to
find the cycle Γ ⊆ Af that minimizes this quantity (we want to minimize since
c(Γ) < 0). We rewrite this improvement as

c(Γ)

max(i,j)∈Γ
1

uf (i,j)

;

recall that we have asserted that it is NP-hard to find the cycle Γ that minimizes this
quantity. Thus we look for a cycle Γ that minimizes a related quantity, such that we
are able to find the cycle minimizing the quantity in polynomial time. For a given
circulation f and a cycle Γ ⊆ Af , we define β(Γ) as follows:

β(Γ) =
c(Γ)∑

(i,j)∈Γ
1

uf (i,j)

.

That is, β(Γ) is the ratio of the cost of the cycle to the sum of the inverse residual
capacities of the cycle; observe that in the denominator we have replaced taking the
maximum of the inverses of the residual capacities with the sum. We let β(f) define
the minimum ratio cycle; that is,

β(f) = min
cycle Γ⊆Af

β(Γ).

Note that if f is not a minimum-cost circulation, then β(f) must be negative. By
using the algorithm to find the minimum cost-to-time ratio algorithm of Exercise
1.5, we can compute a cycle Γ of minimum ratio in O(mn ln(nCU)) time.

We will now show that β(f) is at least a 1/m fraction of the difference in cost of
an optimal circulation and the cost of f . To prove this statement, we first need the
analog of the flow decomposition lemma in Lemma 2.20; since the proof is also the
analog of the proof there, we leave it as an exercise to the reader (Exercise 5.1).

Lemma 5.7: Given a circulation f , there exists circulations f1, . . . , f`, for ` ≤ m,
such that f =

∑`
i=1 fi, c(f) =

∑`
i=1 c(fi), and for each i, the arcs of fi with positive

flow are a simple cycle.

We can now prove our earlier statement about β(f).

Lemma 5.8: Given a circulation f that is not minimum-cost and a minimum-cost
circulation f∗, β(f) ≤ 1

m
(c(f∗)− c(f)).

Proof We start by showing that f∗−f is a feasible circulation in the residual graph
Gf . Because f∗ and f are both circulations, f∗ − f obeys skew symmetry and flow
conservation (as shown in Lemma 2.19). It also obeys the capacity constraints with
respect to the residual capacities since f∗(i, j)−f(i, j) ≤ u(i, j)−f(i, j) = uf (i, j).

Now we apply Lemma 5.7 to decompose the circulation f∗ − f in Gf into circu-
lations f1, . . . , f` in Gf , where each circulation fi has positive flow only on a simple

5.2 Wallacher’s Algorithm 119

cycle; let Γi be the cycle corresponding to circulation fi. Since fi is a circulation, the
positive flow on each arc is identical: let δi be this positive amount of flow on each
arc of Γi. Then c(fi) = δic(Γi). Then we have that

c(f∗)− c(f) =
∑̀
k=1

c(fk) =
∑̀
k=1

δkc(Γk)

=
∑̀
k=1

δkβ(Γk)
∑

(i,j)∈Γk

1

uf (i, j)

≥ β(f)
∑̀
k=1

δk
∑

(i,j)∈Γk

1

uf (i, j)
,

since β(f) ≤ β(Γk) for any cycle Γk. Then, rewriting the initial sum over the edges
rather than over k, we get

c(f∗)− c(f) = β(f)
∑̀
k=1

δk
∑

(i,j)∈Γk

1

uf (i, j)

= β(f)
∑

(i,j)∈Af

∑
k:(i,j)∈Γk

δk

uf (i, j)

≥ mβ(f),

where the final inequality holds since the total flow on arc (i, j) ∈ Af ,
∑

k:(i,j)∈Γk
δk,

is at most the residual capacity uf (i, j), and since β(f) is nonpositive. We obtain
the lemma statement by rearranging terms.

Corollary 5.9: Suppose costs and capacities are integer. Then if β(f) > − 1
m

, then
f is a minimum-cost circulation.

Proof If β(f) > − 1
m

, then by the lemma c(f∗)−c(f) > −1. Since the capacities are
integral, by the integrality property f∗ is integral and in each iteration f is integral.
Since the costs are integral, c(f∗)−c(f) is an integer, and thus if c(f∗)−c(f) > −1,
then c(f∗)− c(f) = 0, and thus f has minimum cost.

Thus we can now give Wallacher’s algorithm in Algorithm 5.2: we start with any
feasible circulation f . While β(f) is at most −1/m, we cancel the minimum ratio
cycle Γ.

The analysis of the algorithm is relatively straightforward. We first show that each
cycle Γ we cancel decreases the cost of the circulation by −β(Γ). Then we use Lemma
5.8 to show that we must be a factor closer to the optimal circulation.

Lemma 5.10: Let f be a circulation that is not minimum-cost. Suppose we cancel
cycle Γ, and let f (1) be the result of canceling Γ. Then c(f (1))− c(f) ≤ β(Γ).

Proof Let δ = min(i,j)∈Γ uf (i, j) be the amount of flow we push around Γ to cancel

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

120 Minimum-Cost Circulation Algorithms

Let f be any feasible circulation
while β(f) ≤ − 1

m
do

Let Γ ⊆ Af be the cycle such that β(f) = β(Γ)
Cancel Γ
Update f

return f

Algorithm 5.2 Wallacher’s algorithm for the minimum-cost circulation problem.

it. Then

c(f (1))− c(f) = δc(Γ) = δβ(Γ)
∑

(i,j)∈Γ

1

uf (i, j)
= β(Γ)

∑
(i,j)∈Γ

δ

uf (i, j)
≤ β(Γ),

since δ = uf (i, j) for some (i, j) ∈ Γ, and β(Γ) < 0.

If f (1) is the circulation resulting from circulation f after one iteration of the
algorithm in which the cycle Γ which attains the minimum for β(f) is canceled,
and f∗ is a minimum-cost circulation, then the combination of Lemmas 5.8 and 5.10
yields that

c(f (1))− c(f) ≤ β(Γ) = β(f) ≤ 1

m
(c(f∗)− c(f)),

or

c(f)− c(f (1)) ≥ 1

m
(c(f)− c(f∗)).

Notice that this is exactly Inequality (5.6) from the beginning of this section, giving
an improvement in cost similar to what we could get by canceling the most improving
cycle. Thus we can apply Theorem 5.6 to bound the iterations of the algorithm and
the running time.

Theorem 5.11: Suppose costs and capacities are integer. Then Wallacher’s algo-
rithm (Algorithm 5.2) takes O(m ln(mCU)) iterations, and runs in O(m2n ln2(mCU))
time.

For the maximum flow problem, we started out with the most improving augment-
ing path algorithm in Section 2.5, which required finding a particular s-t path in each
iteration. We then used capacity scaling in Section 2.6 to allow us to find any s-t
path in a selected set of edges, which resulted in an augmenting path that increased
the flow value nearly as much as the most improving path. Here we will perform a
similar simplification. Rather than finding the cycle Γ such that β(Γ) = β(f), we

maintain an estimate β̂ on the value β(f). Given the current circulation f , consider

the costs c̄(i, j) = c(i, j)− β̂/uf (i, j). Observe that for a cycle Γ ⊆ Af ,

c̄(Γ) < 0 iff c(Γ) < β̂
∑

(i,j)∈Γ

1

uf (i, j)
iff β̂ > β(Γ). (5.7)

Thus Γ is a negative-cost cycle with respect to the costs c̄ if and only if β̂ is an upper

5.2 Wallacher’s Algorithm 121

Let f be any feasible circulation

β̂ ← −CU
while β̂ ≤ − 1

2m
do

if there exists cycle Γ with c̄(Γ) < 0 then
Cancel Γ
Update f

else

β̂ ← β̂/2

return f

Algorithm 5.3 Scaling version of Wallacher’s algorithm for the minimum-cost circula-
tion problem.

bound on the value of β(Γ). Thus given a current estimate β̂, we find and cancel
negative-cost cycles with respect to costs c̄; once there are no more such cycles, we
divide β̂ by two and repeat. Since the cost of each arc is at least −C and has residual
capacity at most U , β(f) ≥ −CU , and we can use −CU as our initial estimate for

β̂. We summarize the algorithm in Algorithm 5.3.
We now turn to the analysis of the algorithm. Let us call the iterations in which β̂

maintains the same value a β̂-scaling phase. We start by arguing that the algorithm
terminates with a minimum-cost circulation. To prove this, we use the following
lemma.

Lemma 5.12: At the start of any β̂-scaling phase, β̂ ≤ β(f)/2.

Proof Initially β̂ = −CU , and we know for any cycle Γ,

c̄(Γ) = c(Γ) + CU
∑

(i,j)∈Γ

1

uf (i, j)
≥ c(Γ) + C|Γ| ≥ 0.

Thus β̂ ≤ β(Γ) for any cycle Γ and so β̂ ≤ β(f) ≤ β(f)/2 (recall that β(f) < 0

if f is not a minimum-cost circulation). At the end of any β̂-scaling phase, we have

that c̄(Γ) ≥ 0 for any Γ ⊆ Af , so that β̂ ≤ β(f) by (5.7); we then divide β̂ by two,

so that β̂ ≤ β(f)/2.

Corollary 5.13: Suppose costs and capacities are integer. If β̂ > −1/2m at the

start of a β̂-scaling phase, then the circulation f is optimal.

Proof By the lemma, we then have that −1/2m < β̂ ≤ β(f)/2, so that β(f) >
−1/m. Applying Corollary 5.9, the circulation f is optimal.

We now wish to bound the number of iterations of the algorithm in a β̂-scaling
phase. We can prove the following analog of Lemma 2.26 to obtain a bound.

Lemma 5.14: There are at most 2m iterations per β̂-scaling phase.

Proof Let f be the circulation at the start of a β̂-scaling phase, and let f∗ be

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

122 Minimum-Cost Circulation Algorithms

a minimum-cost circulation. Then by Lemmas 5.8 and 5.12, we have that β̂ ≤
β(f)/2 ≤ 1

2m
(c(f∗) − c(f)). By Lemma 5.10, we know that if we cancel Γ, then

the cost of the current circulation changes by β(Γ) < β̂ < 1
2m

(c(f∗) − c(f)). After
2m iterations, the cost of the current circulation is then at most

c(f) +
2m

2m
(c(f∗)− c(f)) = c(f∗).

Thus after 2m iterations, the β̂-scaling phase must end since otherwise f will be an
optimal circulation.

Thus we have the following theorem.

Theorem 5.15: The scaling version of Wallacher’s algorithm (Algorithm 5.3) takes
O(m log(mCU)) iterations, and runs in O(m2n log(mCU)) time.

Proof Initially β̂ = −CU ; within dlog2(mCU)e + 2 β̂-scaling phases, the value

of β̂ > −1/2m and the algorithm terminates. In each phase, there are at most
2m iterations, and so there are O(m log(mCU)) iterations overall. Each iteration
requires a negative-cost cycle detection, which can be done in O(mn) time by the
algorithm of Section 1.3.

We will see similar ideas in Section 6.2 for the generalized flow problem.

5.3 Minimum-Mean Cycle Canceling

Our next algorithm for the minimum-cost circulation problem also uses the negative-
cost cycle canceling algorithm of Algorithm 5.1; in each iteration it finds a minimum-
mean cycle to cancel. A minimum-mean cycle Γ is one that minimizes the average
cost of the arcs in the cycle; that is, it minimizes c(Γ)/|Γ|. We showed in Exercise 1.4
that we can find a minimum-mean cycle in O(mn) time. For Wallacher’s algorithm
we gave an analysis that showed that each cycle canceled brings the cost of the
circulation closer to the cost of a minimum-cost circulation; for the minimum-mean
cycle canceling algorithm, we will use the optimality condition from Theorem 5.3
that states that a circulation f has minimum cost if and only if there are potentials
p such that cp(i, j) ≥ 0 for all (i, j) ∈ Af . To achieve this condition, we allow the
reduced cost of all the arcs in Af to be negative, but gradually make the reduced
cost closer and closer to zero. One of the advantages of this algorithm is that we are
rather easily able to modify the analysis to give a strongly polynomial running time
for the same algorithm. After defining the algorithm, we first give a polynomial-time
analysis of the algorithm, then turn to the strongly polynomial-time analysis.

For a cycle Γ, we define µ(Γ) to be the average cost of arcs in the cycle; that is,

µ(Γ) =
c(Γ)

|Γ|
.

For a given circulation f , we let µ(f) be the ratio µ(Γ) of a cycle Γ achieving the

5.3 Minimum-Mean Cycle Canceling 123

Let f be any feasible circulation
while µ(f) < 0 do

Let Γ be a minimum-mean cycle in Af so that µ(f) = c(Γ)/|Γ|
Cancel Γ
Update f

return f

Algorithm 5.4 Minimum-mean cycle canceling algorithm for the minimum-cost circu-
lation problem.

minimum ratio over all cycles in Af ; that is,

µ(f) = min
cycle Γ⊆Af

c(Γ)

|Γ|
.

Observe that µ(f) < 0 if and only if there is a negative-cost cycle in Af . We give
the resulting algorithm in Algorithm 5.4.

Recall we said above that we use the optimality condition that states that a circu-
lation f has minimum cost if and only if there are potentials p such that cp(i, j) ≥ 0
for all (i, j) ∈ Af . We will gradually make the reduced costs of arcs in Af closer and
closer to zero. To show how we will do this, we need the following definition.

Definition 5.16: A circulation f is ε-optimal if there exist potentials p such that
cp(i, j) ≥ −ε for all (i, j) ∈ Af .

Notice that any circulation is C-optimal, since for potentials p(i) = 0 for all i ∈ V ,
cp(i, j) = c(i, j) ≥ −C for all (i, j) ∈ A. Furthermore, a minimum-cost circulation
f is 0-optimal, since by Theorem 5.3, there exist potentials p such that cp(i, j) ≥ 0
for all (i, j) ∈ Af . In fact, if costs are integer, then we can say something slightly
more interesting about when a circulation is optimal.

Lemma 5.17: Suppose the costs c(i, j) are integer. If circulation f is ε-optimal for
ε < 1/n, then f is a minimum-cost circulation.

Proof Let f be a circulation that is ε-optimal for ε < 1/n. Thus there exist poten-
tials p such that cp(i, j) ≥ −ε > −1/n for all arcs (i, j) ∈ Af . Consider any simple
cycle Γ of arcs of positive residual capacity. Then

c(Γ) = cp(Γ) ≥ −|Γ|ε > −|Γ|/n ≥ −1,

since |Γ| ≤ n. Since the costs are integer, if c(Γ) > −1, then c(Γ) ≥ 0. Thus in this
case there are no negative-cost cycles in Af , and by Theorem 5.3 f is a minimum-cost
circulation.

Now the basic idea of the analysis is apparent. We start with an arbitrary circu-
lation f which is C-optimal. If we assume that costs are integers, then by Lemma
5.17, when the circulation becomes ε-optimal, for ε < 1/n, it will be a minimum-cost
circulation. What we would now like to do is to show that the value of ε for which
the current circulation f is ε-optimal is decreasing over the course of the algorithm.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

124 Minimum-Cost Circulation Algorithms

In order to discuss this, we would like to know the smallest value of ε such that f is
ε-optimal, which gives rise to the following definition.

Definition 5.18: For a given circulation f , let ε(f) denote the minimum value of ε
for which f is ε-optimal.

We will show that ε(f) is nonincreasing over the course of the algorithm, and that
after some number of iterations it will have decreased by a certain factor. To prove
that this decrease occurs, we need to show some relationship between ε(f) and the
ratio µ(f) of a minimum-mean cycle. The following lemma shows that there is a very
close relationship indeed between these two quantities.

Lemma 5.19: If f is not a minimum-cost circulation, then ε(f) = −µ(f).

Proof First we show that µ(f) ≥ −ε(f). By the definition of ε(f), there exist
potentials p such that cp(i, j) ≥ −ε(f) for all (i, j) ∈ Af . Then for a minimum-
mean cycle Γ in Af ,

µ(f) =
c(Γ)

|Γ|
=
cp(Γ)

|Γ|
≥ −ε(f)|Γ|

|Γ|
= −ε(f),

as claimed, where the final inequality follows since cp(i, j) ≥ −ε(f) for each (i, j) ∈
Γ.

Now we show that −ε(f) ≥ µ(f). Consider edge costs c̄(i, j) = c(i, j)− µ(f) for
all (i, j) ∈ A. Then for any cycle Γ ⊆ Af , we must have that

c̄(Γ) = c(Γ)− |Γ|µ(f) ≥ c(Γ)− |Γ|c(Γ)

|Γ|
= 0,

since µ(f) ≤ c(Γ)/|Γ| for all cycles Γ. Now we add a source node s to the residual
graph Gf and arcs (s, j) of cost 0 and positive residual capacity for all j ∈ V
(as in Figure 5.2). Let p(i) be the length of the shortest s-i path using arcs of
positive residual capacity and using costs c̄(i, j) as the length of arc (i, j). We showed
above that for the costs c̄ there are no negative-cost cycles in Gf , and thus by
Theorem 1.4, we can find the shortest s-i paths. Furthermore, it must be the case
that p(j) ≤ p(i) + c̄(i, j) = p(i) + c(i, j) − µ(f). Thus we have potentials p such
that c(i, j) + p(i)− p(j) ≥ µ(f), and f is −µ(f)-optimal. Hence ε(f) ≤ −µ(f), or
−ε(f) ≥ µ(f).

Since it is also true that µ(f) ≥ −ε(f), then µ(f) = −ε(f).

The following corollary will be useful in a later section.

Corollary 5.20: We can compute ε(f) and potentials p such that f is ε(f)-optimal
with respect to p in O(mn) time.

Proof The proof of the lemma shows how to compute the potentials using Theorem
1.4 and the value of µ(f); we can compute both in O(mn) time.

Suppose the algorithm has a circulation f at some iteration. We let f (k) be the
resulting circulation after k iterations of the main loop. We will show that after m
iterations, ε(f) has gone down by at least a factor of 1− 1

n
.

5.3 Minimum-Mean Cycle Canceling 125

Lemma 5.21: ε(f (m)) ≤
(
1− 1

n

)
ε(f).

From this lemma we are able to deduce the following.

Theorem 5.22: If costs c are integral, then the minimum-mean cycle canceling al-
gorithm in Algorithm 5.4 takes O(mn ln(nC)) iterations.

Proof As we noted previously, any feasible circulation f is C-optimal, so that ε(f) ≤
C. After k = mn ln(nC) iterations, by Lemma 5.21, we have that

ε(f (k)) ≤
(

1− 1

n

)n ln(nC)

ε(f) < e− ln(nC)ε(f) ≤ 1

nC
· C =

1

n
,

where we use 1−x < e−x for x 6= 0. Then by Lemma 5.17, the circulation f (k) must
be optimal.

We showed in Exercise 1.4 that we can find a minimum-mean cycle in O(mn)
time, so we have the following.

Theorem 5.23: If costs c are integral, then the minimum-mean cycle canceling al-
gorithm in Algorithm 5.4 takes O(m2n2 ln(nC)) time.

Before we prove Lemma 5.21, we start by showing that ε(f) is nonincreasing.

Lemma 5.24: ε(f (1)) ≤ ε(f).

Proof Let f be the circulation of the current iteration, Γ the minimum-mean cycle
canceled in this iteration, and f (1) the resulting circulation. We know that there
exist potentials p such that cp(i, j) ≥ −ε(f) for all arcs (i, j) ∈ Af . Since Γ is the
minimum-mean cycle of this iteration,

µ(f) =
cp(Γ)

|Γ|
≥ −ε(f)|Γ|

|Γ|
= −ε(f).

However, by Lemma 5.19, µ(f) = −ε(f), so it must be the case that cp(i, j) =
−ε(f) for all (i, j) ∈ Γ. We now claim that cp(i, j) ≥ −ε(f) for any arc (i, j) with
uf(1)(i, j) > 0; that is, if (i, j) has positive residual capacity in the next iteration.
The arc (i, j) has positive residual capacity in the next iteration if it has positive
residual capacity in this iteration (that is, uf (i, j) > 0) or if canceling Γ pushed flow
on (j, i), so that (j, i) ∈ Γ. In the first case, we have cp(i, j) ≥ −ε(f), and in the
second case, if (j, i) ∈ Γ, then cp(i, j) = −cp(j, i) = ε(f) ≥ 0 ≥ −ε(f). Thus there
exist potentials p such that cp(i, j) ≥ −ε(f) for any arc (i, j) ∈ Af(1) , which implies
that ε(f (1)) cannot be larger than ε(f).

We can now prove Lemma 5.21.

Proof of Lemma 5.21. Let ε = ε(f), and let p be the potentials p such that
cp(i, j) ≥ −ε for all (i, j) ∈ Af . We will consider a sequence of k ≤ m cycle
cancellations. Let Nk denote the set of arcs that have positive residual capacity and
negative reduced cost with respect to p after the kth cancellation.

We observe that in any iteration in which we cancel a cycle Γ such that all of its
arcs are in Nk (that is, Γ ⊆ Nk), the size of Nk can only get smaller: if there is a new

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

126 Minimum-Cost Circulation Algorithms

arc (i, j) in the residual graph after the kth cancellation because we pushed flow on
(j, i) in canceling the kth cycle, it must have reduced cost cp(i, j) = −cp(j, i) > 0
since (j, i) ∈ Nk. Furthermore, because canceling Γ saturates some arc in Γ, it must
be the case that Nk+1 ⊂ Nk. Finally if each (i, j) ∈ Nk has cp(i, j) ≥ −ε, then since
Nk+1 ⊂ Nk, any (i, j) ∈ Nk+1 also has cp(i, j) ≥ −ε.

We now consider two cases. First, suppose that each cycle Γ that we cancel has
all negative reduced cost arcs with respect to the potentials p, so that Γ ⊂ Nk for
0 ≤ k ≤ m. Then by the argument above, Nm ⊂ Nm−1 ⊂ · · · ⊂ N0 ⊆ A, so it
must be the case that Nm = ∅. Hence if f (m) is the resulting circulation after the m
cancellations, then for potentials p, we have that cp(i, j) ≥ 0 for all (i, j) ∈ Af(m) ,
and by Theorem 5.3, the circulation f (m) is optimal. In that case ε(f (m)) = 0, and
the lemma follows.

Second, suppose that for k−1 iterations each cycle Γ that we cancel has all negative
reduced cost arcs with respect to the potentials p, but in the kth iteration, for k < m,
it does not. Let Γ be the cycle canceled in the kth iteration. By the reasoning above,
since initially for all (i, j) ∈ N0, cp(i, j) ≥ −ε, then for all (i, j) ∈ Nk, cp(i, j) ≥ −ε.
By hypothesis there exists some arc (i, j) ∈ Γ such that cp(i, j) ≥ 0. Then

−ε(f (m)) ≥ −ε(f (k)) = µ(f (k)) =
cp(Γ)

|Γ|

≥ |Γ| − 1

|Γ|
(−ε)

≥
(

1− 1

n

)
(−ε),

where the first inequality follows since ε(f (k)) is nonincreasing, the second inequality
since at least one of the |Γ| arcs has nonnegative reduced cost, and the remainder all
have reduced cost at least −ε, while the last inequality follows since |Γ| ≤ n. Thus
ε(f (m)) ≤ (1− 1

n
)ε = (1− 1

n
)ε(f).

To conclude this section, we present an alternate analysis of the minimum-mean
cycle canceling algorithm, and show that the algorithm runs in strongly polynomial
time. The basic idea of this analysis is to show that as we run the algorithm, the flow
on certain arcs becomes fixed; that is, the amount of flow on the arc does not change
in future iterations of the algorithm. In particular, we show that every O(mn lnn)
iterations, a new arc becomes fixed. Since there are at most m arcs, this implies a
running time of O(m2n lnn) iterations, or O(m3n2 lnn) time overall. We now define
what we mean by an arc becoming fixed.

Definition 5.25: An arc (i, j) ∈ A is ε-fixed if the flow f(i, j) is the same for all
ε-optimal circulations f .

Before we show how we can determine when an arc is fixed, we will need the
following lemma giving a basic property of circulations; namely that the flow out of
any nontrivial cut must be 0 by skew symmetry and flow conservation.

5.3 Minimum-Mean Cycle Canceling 127

Lemma 5.26: Let f be any circulation. For any S ⊂ V , S 6= ∅,
∑

(k,l)∈δ+(S) f(k, l) =
0.

Proof By flow conservation (5.4), we know for any i ∈ V that
∑

k:(i,k)∈A f(i, k) = 0.
Then

0 =
∑
i∈S

∑
k:(i,k)∈A

f(i, k)

=
∑
i∈S

 ∑
k/∈S:(i,k)∈A

f(i, k) +
∑

k∈S:(i,k)∈A

f(i, k)

= 0 +

∑
i∈S

∑
k/∈S:(i,k)∈A

f(i, k) =
∑

(i,k)∈δ+(S)

f(i, k),

since by skew symmetry, the flow f(i, k) on each arc (i, k) for i, k ∈ S is canceled
by the flow f(k, i) = −f(i, k).

Now we can prove the main lemma showing that an arc must be ε-fixed if its
reduced cost is very negative. We will show momentarily that such arcs must exist
as the algorithm progresses. The main idea of the proof of the lemma is that if the
reduced cost is very negative, then the arc must be saturated. If there is some other
ε-optimal circulation f ′ using the arc such that it is not saturated, then there is a
cycle in the residual graph of f ′ that includes the arc, and has a minimum-mean cost
strictly less than −ε. By Lemma 5.19, this contradicts the ε-optimality of f ′.

Lemma 5.27: Let ε > 0, let f be a circulation, and let p be potentials such that f
is ε-optimal with respect to the potentials p. If cp(i, j) ≤ −2nε, then (i, j) is ε-fixed.

Proof We give a proof by contradiction. Suppose that arc (i, j) is not ε-fixed. Then
there must exist another circulation f ′ that is ε-optimal such that f ′(i, j) 6= f(i, j).
In fact, it must be the case that f ′(i, j) < f(i, j): Since f is ε-optimal with respect
to p, it must be that cp(k, l) ≥ −ε for all (k, l) ∈ Af . Thus since cp(i, j) < −2nε,
(i, j) /∈ Af , which implies that uf (i, j) = 0 and f(i, j) = u(i, j). Hence f ′(i, j) <
f(i, j) = u(i, j).

Let A< = {(k, l) ∈ A : f ′(k, l) < f(k, l)}. Note that (i, j) ∈ A<. We now
wish to show that there is a cycle in Γ ⊆ A< such that (i, j) ∈ Γ. Let S be the
set of all vertices reachable from j using arcs in A<; we want to show that i ∈ S,
since this together with (i, j) ∈ A< will imply the existence of a cycle Γ ⊆ A<.
Suppose not. Then by Lemma 5.26, we know that both

∑
(k,l)∈δ+(S) f(k, l) = 0

and
∑

(k,l)∈δ+(S) f
′(k, l) = 0 so that

∑
(k,l)∈δ+(S)(f(k, l) − f ′(k, l)) = 0. Since we

know that f ′(i, j) < f(i, j), then by skew symmetry f ′(j, i) > f(j, i), and since
(j, i) ∈ δ+(S), there must exist some arc (k, l) ∈ δ+(S) such that f ′(k, l) < f(k, l)
in order for the sum to be zero. But if k ∈ S and l /∈ S and f ′(k, l) < f(k, l), then
(k, l) ∈ A< and l should also be in S. Thus we have reached a contradiction, so
i ∈ S, and the desired cycle Γ must exist.

Note that for any arc (k, l) ∈ Γ, f ′(k, l) < f(k, l) ≤ u(k, l), so that Γ ⊆ Af ′ . Also,
for arc (l, k), f(l, k) < f ′(l, k) ≤ u(l, k). Thus (l, k) ∈ Af , and since f is ε-optimal,

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

128 Minimum-Cost Circulation Algorithms

cp(l, k) ≥ −ε, and thus cp(k, l) ≤ ε. Now consider the cycle Γ ⊆ Af ′ : we have that

c(Γ)

|Γ|
=
cp(Γ)

|Γ|
=

1

|Γ|

cp(i, j) +
∑

(k,l)∈Γ,(k,l)6=(i,j)

cp(k, l)

≤ 1

|Γ|
(−2nε+ (|Γ| − 1)ε)

<
1

|Γ|
(−|Γ|ε)

= −ε.

Thus cycle Γ has mean cost less than −ε, and µ(f ′) < −ε. But by Lemma 5.19,
ε(f ′) = −µ(f ′) > ε, and f ′ is not ε-optimal, which is a contradiction of our assump-
tion that f ′ is an ε-optimal circulation.

Now we wish to show that once ε(f) has been reduced by a large enough factor,
there must be some new arc with sufficiently negative reduced cost, so that it must
be fixed.

Lemma 5.28: Let f and f ′ be circulations such that ε(f ′) ≤ ε(f)/2n, and such that
f is not a minimum-cost circulation. Then there are strictly more ε(f ′)-fixed arcs
than ε(f)-fixed arcs.

Proof Since ε(f ′) < ε(f), any ε(f)-fixed arc is also ε(f ′)-fixed. Thus we simply
need to prove that there is some ε(f ′)-fixed arc that is not ε(f)-fixed. Let p be the
potentials such that f is ε(f)-optimal with respect to p. Since f is not a minimum-
cost circulation, there is a negative-cost cycle in Af ; let Γ be the minimum-mean
cycle in Af . Then, as in the proof of Lemma 5.24, we have that

−ε(f) = µ(f) =
cp(Γ)

|Γ|
≥ −ε(f)|Γ|

|Γ|
= −ε(f),

so it must be the case that cp(i, j) = −ε(f) for all (i, j) ∈ Γ. Note that none of the
arcs in Γ are ε(f)-fixed, since canceling Γ changes the flow on the arcs in f and the
resulting flow is still ε(f)-optimal by Lemma 5.24.

Now let f ′ be ε(f ′)-optimal with respect to potentials p′, and consider the same
cycle Γ as above. Then

cp′(Γ)

|Γ|
= −ε(f) ≤ −2nε(f ′).

Since the average reduced cost of an arc is at most −2nε(f ′), there must be some
arc (i, j) ∈ Γ such that cp′(i, j) ≤ −2nε(f ′). Thus by Lemma 5.27, the arc (i, j) is
ε(f ′)-fixed, and we argued above that it was not ε(f)-fixed.

Finally, we can prove what we claimed originally, and show that Algorithm 5.4
runs in strongly polynomial time.

Theorem 5.29: Algorithm 5.4 takes O(m2n lnn) iterations and thus runs in O(m3n2 lnn)
time.

5.4 A Capacity Scaling Algorithm 129

Proof We claim a new arc is fixed after each additional k = mn ln(2n) iterations;
this will give the claimed bound on the number of iterations. Pick an iteration, and
let f be the current circulation. Then if f (k) is the circulation after k iterations, by
Lemma 5.21,

ε(f (k)) ≤
(

1− 1

n

)n ln(2n)

ε(f) < e− ln(2n)ε(f) = ε(f)/2n,

using 1 − x ≤ e−x. By Lemma 5.28, an additional arc is fixed. Since there are m
arcs altogether, after O(m2n ln(n)) iterations, all arcs are fixed, and we have found
a minimum-cost circulation.

In Exercise 5.9, the reader will show that it is possible to derive a slightly faster
implementation of minimum-mean cycle canceling.

5.4 A Capacity Scaling Algorithm

For our next algorithm for the minimum-cost circulation problem, we do not use a
cycle-canceling algorithm as in Algorithm 5.1; we instead give an algorithm that uses
an infeasible circulation called a pseudoflow. We again use the result from Theorem
5.3 that a circulation f is of minimum cost if and only if there are potentials p such
that cp(i, j) ≥ 0 for all (i, j) ∈ Af . The basic idea of the algorithm in this section
is to maintain that cp(i, j) ≥ 0 for a subset of arcs Af , and gradually convert the
pseudoflow f to a circulation as we gradually expand the set of arcs to Af . Once f
is a circulation and cp(i, j) ≥ 0 for all arcs in Af , we know that f is of minimum
cost.

We begin with the definition of a pseudoflow. It is similar to a circulation, except
that we do not impose the flow conservation constraints, and unlike the idea of a
preflow used in the push-relabel algorithm of Section 2.8, we do not require that the
net flow entering a node be nonnegative.

Definition 5.30: A pseudoflow f : A → < is an assignment of reals to the arcs
such that:

• f(i, j) ≤ u(i, j) for all (i, j) ∈ A;

• f(i, j) = −f(j, i) for all (i, j) ∈ A.

The excess of a pseudoflow f at node i ∈ V is the net flow entering i, or
∑

k:(k,i)∈A f(k, i),
and we denote it ef (i).

Note that unlike the case of a preflow as used in Section 2.8, a pseudoflow can
have nodes of positive excess and nodes of negative excess (sometimes called deficits).
Also note that

∑
i∈V ef (i) =

∑
i∈V

∑
k:(k,i)∈A f(k, i) =

∑
(i,j)∈A f(i, j) = 0 by skew

symmetry, since the term f(i, j) cancels the term f(j, i).
In order for the algorithm to work, we need to make sure it is possible to push

any amount of flow from any given node i to any other given node j. We modify
the graph so that it is possible to do this but at infinite cost. We add two extra
nodes x and y to the graph, and for each node i ∈ V , we add arcs (i, x) and (y, i)

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

130 Minimum-Cost Circulation Algorithms

i

j

x

y

G

c = 0, u =∞

c =∞, u =∞

c = 0, u =∞

Figure 5.3 Modification of minimum-cost circulation instance for capacity
scaling algorithm.

to the graph of cost c(i, x) = c(y, i) = 0 and capacity u(i, x) = u(y, i) = ∞ and
u(x, i) = u(i, y) = 0. We also add an arc (x, y) of cost c(x, y) = ∞ and capacity
u(x, y) =∞, while u(y, x) = 0 so that f(x, y) ≥ 0; see Figure 5.3. If capacities are
integer, then by the Integrality Property (Property 5.5), there is a minimum-cost
circulation f such that f(x, y) is integer; clearly if f(x, y) ≥ 1 then c(f) = ∞. So
if there is any feasible circulation of non-infinite cost in the original graph G, then
there is a minimum-cost circulation that does not use the arc (x, y) or any of the
other newly introduced arcs.

We can now give the main idea of the algorithm. As discussed above, we maintain
a pseudoflow f and potentials p. As in the capacity scaling algorithm in Section 2.6
for the maximum flow problem, we maintain a scaling parameter ∆, which is initially
a power of two that is at least as large as the largest capacity U . We try to move
flow in chunks of ∆ units from any node that has excess at least ∆ to nodes that
have excess at most −∆ through arcs that have residual capacity at least ∆. To
make this precise, we let Af (∆) be the arcs with residual capacity at least ∆; that
is, Af (∆) = {(i, j) ∈ A : uf (i, j) ≥ ∆}. We let Sf (∆) = {i ∈ V : ef (i) ≥ ∆} and
Tf (∆) = {i ∈ V : ef (i) ≤ −∆}. We will maintain the property that cp(i, j) ≥ 0
for all (i, j) ∈ Af (∆). The algorithm repeatedly tries to move ∆ units of flow from
a node in Sf (∆) to a node in Tf (∆) using arcs in Af (∆). Once either Sf (∆) = ∅
or Tf (∆) = ∅, we will show that the total amount of excess in the network is small
relative to ∆, and thus prove that the algorithm has made progress. We then divide
∆ by two, and start again. In order to maintain the property that cp(i, j) ≥ 0 for all
(i, j) ∈ Af (∆), once we divide ∆ by two, we saturate all arcs (i, j) with cp(i, j) < 0
that are now in Af (∆). We give a preliminary version of the algorithm in Algorithm
5.5; we will shortly give more details and modify the algorithm somewhat. Note that
by our modification to the graph discussed previously, we can always find some path
P of arcs in Af (∆) from any node s to any other node t.

While we need to provide some additional details about how we select the path P in
each iteration, we can begin to reason about the algorithm as we have given it so far.
In particular, we can prove that if we maintain the invariant that cp(i, j) ≥ 0 for all
(i, j) ∈ Af (∆), then the pseudoflow f returned by the algorithm is a minimum-cost
circulation.

Lemma 5.31: Suppose that capacities u are integral, and that at the end of each
iteration, before dividing ∆ by two, cp(i, j) ≥ 0 for all (i, j) ∈ Af (∆). Then when

5.4 A Capacity Scaling Algorithm 131

f ← 0
p← 0

∆← 2dlog2 Ue

while ∆ ≥ 1 do
foreach (i, j) ∈ Af (∆) do

if cp(i, j) < 0 then
f(i, j)← u(i, j)
f(j, i)← −u(i, j)

while Sf (∆) 6= ∅ and Tf (∆) 6= ∅ do
Pick any s ∈ Sf (∆), t ∈ Sf (∆)
Let P be the shortest s-t path using arcs in Af (∆) and costs cp(i, j)
Send ∆ units of flow from s to t along P

∆← ∆/2

return f

Algorithm 5.5 A capacity-scaling algorithm for the minimum-cost circulation problem
(first version).

the algorithm terminates, the pseudoflow f returned by the algorithm is a minimum-
cost circulation.

Proof First observe that ∆ is initially a power of two, and so that in each iteration
of the loop ∆ is an integer. We modify the flow values by either saturating arcs, or
by sending ∆ units of flow along a path. Thus the flow values f are always integer,
as are the residual capacities uf (i, j) since the capacities u are integral.

We now argue that f is a circulation. At the end of the iteration in which ∆ = 1,
just before the algorithm divides ∆ by two, we have that either Sf (∆) = ∅ or
Tf (∆) = ∅. Suppose the former is true (the other case is similar). Then {i ∈ V :
ef (i) ≥ 1} = ∅. Since the flow values are integer, it must be the case that for all
i ∈ V , ef (i) ≤ 0. However, since the sum of the excesses is 0, it must be the case
that for each i ∈ V , ef (i) = 0, and thus flow conservation holds at each i ∈ V . Thus
since f is a pseudoflow and obeys capacity constraints and skew symmetry, it must
be a circulation.

Finally, we argue that f is a minimum-cost circulation. At the end of the iteration
in which ∆ = 1, just before the algorithm divides ∆ by two, we have cp(i, j) ≥ 0 for
all (i, j) ∈ Af (∆). But since the residual capacities uf (i, j) are integer, if cp(i, j) ≥ 0
for all (i, j) such that uf (i, j) ≥ 1, then cp(i, j) ≥ 0 for all (i, j) such that uf (i, j) >
0, or all (i, j) ∈ Af . Thus by Theorem 5.3, f is a minimum-cost circulation.

We have so far been a little vague about how we maintain the invariant that
cp(i, j) ≥ 0 for all (i, j) ∈ Af (∆) during the course of an iteration. Since at the
beginning of an iteration we saturate all arcs (i, j) ∈ Af (∆) with cp(i, j) < 0,
clearly the invariant holds at the beginning of the iteration. In each iteration, we
push ∆ units of flow on a shortest s-t path P whose arcs are a subset of Af (∆); if
the invariant holds, then all arcs in Af (∆) have nonnegative reduced costs and thus

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

132 Minimum-Cost Circulation Algorithms

the shortest paths are well defined. Observe that if we push ∆ units of flow on an arc
(i, j) ∈ Af (∆) with cp(i, j) > 0, then after pushing the flow, uf (j, i) ≥ ∆ and thus
(j, i) ∈ Af (∆) but then cp(j, i) < 0. So ideally we would like to push flow on arcs
(i, j) such that cp(i, j) = 0, so that after the push, when (j, i) is added to Af (∆),
we have cp(j, i) = 0 and the invariant is maintained. We show below that by using
the shortest s-t path P as indicated in the algorithm, we can adjust the potentials p
so that cp(i, j) = 0 for all (i, j) ∈ P , and thus maintain the invariant.

Lemma 5.32: Let s ∈ Sf (∆) be the vertex selected in an iteration of the algorithm,
and let p̃(i) be the cost of the shortest s-i path using arcs in Af (∆) and costs cp(i, j).
Then if the algorithm updates the potentials p(i) to be p(i)+p̃(i) for all i ∈ V in each
iteration, then at the end of each iteration cp(i, j) ≥ 0 for all arcs (i, j) ∈ Af (∆).

Proof We assume that initially cp(i, j) ≥ 0 for all arcs (i, j) ∈ Af (∆). Since p̃(i) is
the cost of the shortest s-i path using arcs in Af (∆) and costs cp(i, j), it follows that
p̃(j) ≤ p̃(i)+cp(i, j) for any (i, j) ∈ Af (∆). Furthermore, if P is a shortest s-t path,
then for any arc (i, j) ∈ P , p̃(j) = p̃(i) + cp(i, j). Thus if we set p′(i) = p(i) + p̃(i)
for all i ∈ V , then for any arc (i, j) ∈ Af (∆),

cp(i, j) + p̃(i)− p̃(j) ≥ 0,

which implies that

c(i, j) + (p(i) + p̃(i))− (p(j) + p̃(j)) ≥ 0,

which implies that cp′(i, j) ≥ 0. Similarly, since for any arc (i, j) ∈ P , cp(i, j) +
p̃(i) + p̃(j) = 0, we derive that cp′(i, j) = 0.

When we push ∆ units of flow from s to t along the path P , for any arc (i, j) ∈ P ,
(j, i) will have residual capacity at least ∆ after the push. But then cp′(j, i) = 0.
Thus after the push, for all arcs (i, j) ∈ Af (∆), it is the case that cp′(i, j) ≥ 0 and
the invariant continues to hold.

We give the updated version of the algorithm in Algorithm 5.6.
We now show that we can bound the number of iterations taken by the algorithm.

Since initially ∆ ≤ 2U , and we divide ∆ by two each time through the main while
loop until ∆ < 1, there are at most O(log2 U) iterations of the main while loop. We
now need to bound the number of iterations of the inner while loop for each value
of ∆. To do this, we bound the amount of excess present when we start executing
the inner while loop. Let e+ be the sum of the positive excesses, and e− the absolute
value of the sum of the negative excesses, so that e+ =

∑
i∈V :ef (i)>0 ef (i) and e− =

−
∑

i∈V :ef (i)<0 ef (i). Since we know that
∑

i∈V ef (i) = 0, it is the case that e+ = e−.
We can now bound e+ as follows.

Lemma 5.33: At the start of the inner while loop, e+ ≤ 2∆(n+m).

Proof At the start of the algorithm, ∆ ≥ U . Prior to the start of the inner while
loop, the algorithm saturates any arc (i, j) with cp(i, j) < 0, which might create
total positive excess of at most mU . Thus the first time the algorithm reaches the
start of the inner while loop, e+ ≤ mU ≤ 2∆(n+m).

5.4 A Capacity Scaling Algorithm 133

f ← 0
p← 0

∆← 2dlog2 Ue

while ∆ ≥ 1 do
foreach (i, j) ∈ Af (∆) do

if cp(i, j) < 0 then
f(i, j)← u(i, j)
f(j, i)← −u(i, j)

while Sf (∆) 6= ∅ and Tf (∆) 6= ∅ do
Pick any s ∈ Sf (∆), t ∈ Sf (∆)
Let p̃(i) be the length of the shortest s-i path using arcs in Af (∆) and
costs cp(i, j)

Let P be the shortest s-t path
foreach i ∈ V do p(i)← p(i) + p̃(i)
Send ∆ units of flow from s to t along P

∆← ∆/2

return f

Algorithm 5.6 A capacity-scaling algorithm for the minimum-cost circulation problem
(final version).

Now, at the completion of the inner while loop, prior to dividing ∆ by two,
cp(i, j) ≥ 0 for all (i, j) ∈ Af (∆) (by Lemma 5.32) and either Sf (∆) = ∅ or
Tf (∆) = ∅. In the former case, e+ ≤ n∆ and in the latter case e− ≤ n∆. However,
since e+ = e−, in either case e+ ≤ n∆. After dividing ∆ by two, e+ ≤ 2n∆. Then
prior to the next start of the inner while loop, we saturate all arcs (i, j) ∈ Af (∆) with
cp(i, j) < 0. Notice that we will only need to saturate an arc (i, j) if ∆ ≤ uf (i, j) <
2∆: At the completion of the inner while loop, prior to dividing ∆ by two, we had
that cp(i, j) ≥ 0 for all (i, j) ∈ Af (∆), so after dividing ∆ by two, cp(i, j) ≥ 0 for
all (i, j) ∈ Af (2∆). Since we only saturate arcs (i, j) with uf (i, j) < 2∆, the total
increase in positive excess due to saturating these arcs is at most 2m∆. Hence at the
start of the inner while loop, we have that e+ ≤ 2∆(n+m).

We can finally bound the overall running time of the algorithm. The running time
is dominated by the shortest path computations in each iteration of the inner while
loop. Since the costs on the arcs in each shortest path computation are nonnegative,
we can use theO(m+n log n) time implementation of Dijkstra’s algorithm mentioned
at the end of Section 1.1.

Theorem 5.34: The algorithm requires O(m logU) shortest path computations, and
takes O((m logU)(m+ n log n)) time.

Proof We observed previously that there are O(logU) iterations of the main while
loop. For each iteration of the main while loop, we can have at most 2(n + m)
iterations of the inner while loop: at the start of the inner while loop, e+ ≤ 2∆(n+m),

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

134 Minimum-Cost Circulation Algorithms

Let f be any feasible circulation
p← 0
ε← C
while ε ≥ 1/n do

ε← ε/2
f, p←FindεOptCirc(f , ε, p)

return f

Algorithm 5.7 Polynomial-time successive approximation framework for minimum-cost
circulation algorithm.

and each iteration of the inner while loop reduces the amount of positive excess by
∆. Thus there are O(m) iterations of the inner while loop per iteration of the main
while loop, giving O(m logU) iterations overall.

In Exercise 5.8, we give another cycle-canceling algorithm that uses some of the
capacity scaling ideas of the algorithm of this section.

5.5 Successive Approximation

In the algorithm in this section, we once again use the ideas of pseudoflows, as we
did with the capacity scaling algorithm in Section 5.4. In that algorithm, we used
pseudoflows to move flow excesses around in large chunks, which gradually became
smaller over the course of the algorithm. Here we will reuse some of the analysis from
the minimum-mean cycle canceling algorithm; we initially start with a C-optimal
circulation, and we gradually transform it into an ε-optimal circulation for ε < 1/n.
Then if costs are integer, Lemma 5.17 tells us that the resulting circulation is of
minimum cost. In fact, we explicitly make this idea the framework of the algorithm,
and we will worry later about how to fill in the details. We start with any feasible
circulation f , the potentials p = 0, and ε = C, so that the circulation is ε-optimal
with respect to the potentials p. In each iteration, we will divide ε by two, and find
a new circulation f and potentials p such that f is ε-optimal. Once ε < 1/n, we
are done. We give this framework in Algorithm 5.7, and the theorem below follows
immediately.

Theorem 5.35: Algorithm 5.7 takes O(log(nC)) iterations to compute a minimum-
cost circulation.

We invoke a subroutine FindεOptCirc that will take as input a circulation f ,
potentials p, and an ε such that f is 2ε-optimal with respect to p, and return a
new circulation f ′ and potentials p′ such that f ′ is ε-optimal with respect to p′. In
order to implement the subroutine FindεOptCirc we will reuse many ideas from the
push-relabel algorithm for the maximum flow problem that we studied in Section
2.8.

We can also use ideas of Section 5.3 to give a strongly polynomial-time variant
of the algorithm, assuming that we have a strongly polynomial-time subroutine.

5.5 Successive Approximation 135

Let f be any feasible circulation
while ε > 0 do

Compute ε(f), potentials p such that f is ε(f)-optimal
if ε(f) > 0 then

ε← ε(f)/2
f, p←FindεOptCirc(f , ε, p)

else
return f

return f

Algorithm 5.8 Strongly polynomial-time successive approximation framework for
minimum-cost circulation algorithm.

We give the strongly polynomial-time variant in Algorithm 5.8. In this variant, we
use Corollary 5.20 to compute the potentials p such that f is ε(f)-optimal in each
iteration; if ε(f) = 0 (that is, if f is 0-optimal), then we know that f is a minimum-
cost circulation and the algorithm terminates. Otherwise we set ε to ε(f)/2, and
invoke the subroutine to find a new circulation that is ε(f)/2-optimal.

Lemma 5.36: Algorithm 5.8 takes O(m log n) iterations to compute a minimum-
cost circulation.

Proof Pick a given iteration with circulation f . After log2(2n) iterations, the algo-
rithm will have computed a new circulation f ′ such that ε(f ′) ≤ ε(f)/2n. Thus by
Lemma 5.28, an additional arc is fixed. Thus after m log2(2n) iterations, all arcs will
be fixed, and the algorithm must terminate.

Corollary 5.37: Algorithm 5.8 takes O(min(log(nC),m log n)) iterations to com-
pute a minimum-cost circulation.

We now need to give the required subroutine that takes as input ε, a circulation
f , and potentials p such that f is 2ε-optimal with respect to p, and gives as output
a circulation f ′ and potentials p′ such that f ′ is ε-optimal with respect to p′. To do
this, we create from the 2ε-optimal circulation an ε-optimal pseudoflow: as stated in
Section 5.4, a pseudoflow is a flow that obeys the capacity constraints and the skew
symmetry constraints, but not the flow conservation constraints. We then convert
the ε-optimal pseudoflow to an ε-optimal circulation by gradually enforcing the flow
conservation constraints. We can do this conversion in many ways; here we show how
to do it by a push-relabel style subroutine. Recall that the excess of a pseudoflow f
at node i ∈ V is the net flow entering i, or

∑
k:(k,i)∈A f(k, i), and we denote it ef (i).

Recall also that it is possible for i to have a deficit, corresponding to ef (i) < 0.

We can easily convert the 2ε-optimal circulation f to an ε-optimal pseudoflow
by saturating every arc (i, j) ∈ Af with −2ε ≤ cp(i, j) < −ε. Then we have a
pseudoflow f , and cp(i, j) ≥ −ε for all (i, j) ∈ Af . However, we will do something
stronger by initially saturating every arc of negative reduced cost.

Now we would like to convert the ε-optimal pseudoflow to an ε-optimal circulation

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

136 Minimum-Cost Circulation Algorithms

δ ← min(ef (i), uf (i, j))
f(i, j)← f(i, j) + δ
f(j, i)← f(j, i)− δ

Procedure Push(i, j)

p(i)← max(i,j)∈Af
(p(j)− c(i, j)− ε)

Procedure Relabel(i)

by moving the flow from nodes with excess to nodes with deficit in such a way that ε-
optimality is maintained. As mentioned above, we will use ideas from the push-relabel
algorithm to do this. In order to maintain the capacity constraints and ε-optimality,
we will only push on arcs (i, j) with positive residual capacity (uf (i, j) > 0) and
negative reduced cost (cp(i, j) < 0), so that if the push on (i, j) causes (j, i) to have
positive residual capacity, then we know that the reduced cost of (j, i) is positive
(since cp(j, i) = −cp(i, j) > 0). Any arc (i, j) with uf (i, j) > 0 and cp(i, j) < 0 we
will call admissible. We say that node i is active if ef (i) > 0. Thus if we have an active
node i and there is an admissible arc (i, j), we can push δ = min(ef (i), uf (i, j))
units of flow from i to j. We need to relabel if we have a node i with ef (i) > 0
and for all arcs (i, j) with positive residual capacity uf (i, j) > 0 it is the case
that cp(i, j) ≥ 0. In this case, we relabel by changing the potential p(i). We want
to relabel so that ε-optimality is maintained, and so that at least one arc (i, j) of
positive residual capacity has negative reduced cost. To do this we set p(i) to be the
maximum of p(j)− c(i, j)− ε over all arcs (i, j) ∈ Af . Then for any arc (i, j) ∈ Af ,
cp(i, j) = c(i, j) + p(i) − p(j) ≥ −ε and for the arc (i, j) achieving the maximum,
cp(i, j) = −ε. Since prior to the relabel all arcs (i, j) ∈ Af had cp(i, j) ≥ 0, we
must have decreased p(i) by at least ε. Also notice that since any arc (k, i) ∈ Af
entering i had cp(k, i) ≥ −ε, after we relabeling i, it must be that cp(k, i) ≥ 0; that
is, there are no longer any admissible arcs entering i. We summarize the subroutine
in Algorithm 5.9.

To begin our analysis of Algorithm 5.9, we show a lemma that is an analog of
Lemma 2.40 for the push-relabel algorithm: there is a path from any node in the
pseudoflow f that has excess to another that has deficit, and this path has particular
properties that will let us later show that it is short with respect to the potentials.
For our proofs, we will frequently be invoking the fact that the subroutine has at its
start an initial 2ε-optimal circulation; we will call this circulation f ′.

Lemma 5.38: Let f be a pseudoflow, and let f ′ be a circulation. For any node i
such that ef (i) > 0, there exists a path P ⊆ Af to a node j such that ef (j) < 0.
Furthermore, for each arc (k, l) ∈ P , (l, k) ∈ Af ′ .

Proof We claim that we can find the desired path P in the set of arcs A< = {(k, l) ∈
A : f(k, l) < f ′(k, l)}; observe that for any arc (k, l) ∈ A<, f(k, l) < f ′(k, l) ≤
u(k, l) implies that (k, l) ∈ Af . Thus if P ⊆ A<, then P ⊆ Af . Furthermore, if

5.5 Successive Approximation 137

for (i, j) ∈ Af such that cp(i, j) < 0 do
f(i, j)← u(i, j)

while there is an active i (ef (i) > 0 for i ∈ V) do
if there is j such that (i, j) is admissible (uf (i, j) > 0 and cp(i, j) < 0)
then
Push((i, j))

else
Relabel(i)

return f , p

Algorithm 5.9 An implementation of FindεOptCirc(f , ε, p) via a push-relabel-style
algorithm

(k, l) ∈ P , then f(k, l) < f ′(k, l) implies that f ′(l, k) < f(l, k) ≤ u(l, k) (by skew
symmetry), and so (l, k) ∈ Af ′ .

Pick a node i such that ef (i) > 0, and let S be the set of all vertices reachable
from i via arcs in A<. Then

−
∑
k∈S

ef (k) = −
∑
k∈S

∑
l:(l,k)∈A

f(l, k) =
∑
k∈S

∑
l:(k,l)∈A

f(k, l)

=
∑
k∈S

 ∑
l∈S:(k,l)∈A

f(k, l) +
∑

l/∈S:(k,l)∈A

f(k, l)

= 0 +

∑
k∈S

∑
l/∈S:(k,l)∈A

f(k, l)

=
∑

(k,l)∈δ+(S)

f(k, l),

where the second-to-last equality follows by skew symmetry; for k, l ∈ S, f(k, l) is
canceled by f(l, k). For any (k, l) ∈ δ+(S) it must be the case that f(k, l) ≥ f ′(k, l),
since otherwise (k, l) ∈ A<, l would be reachable from i via arcs in A<, and then
l ∈ S, a contradiction. Hence we have that

−
∑
k∈S

ef (k) =
∑

(k,l)∈δ+(S)

f(k, l) ≥
∑

(k,l)∈δ+(S)

f ′(k, l).

Since f ′ is a circulation, we know by Lemma 5.26 that
∑

(k,l)∈δ+(S) f
′(k, l) = 0, so

we have that −
∑

k∈S ef (k) ≥ 0, or
∑

k∈S ef (k) ≤ 0. We know that i ∈ S, and
ef (i) > 0; hence it must be the case that there is some j ∈ S such that ef (j) < 0.
Furthermore, j is reachable from i via arcs of A<, so there is an i-j path P using
arcs in A<, and we are done.

The following lemma uses the previous one to help us bound the amount by which
any potential can change during the course of the algorithm. This will bound the
number of relabel operations performed by the algorithm, and, as we saw in the

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

138 Minimum-Cost Circulation Algorithms

analysis of the push-relabel algorithm, once we have bounded the number of relabel
operations, we can then bound the number of push operations.

Lemma 5.39: For any i ∈ V , p(i) decreases by at most 3nε during the execution of
the subroutine in Algorithm 5.9.

Proof Let f ′ and p′ be the 2ε-optimal circulation and the potentials, respectively,
that are the input to the subroutine, such that f ′ is 2ε-optimal with respect to p′.
Let f and p be the pseudoflow and the potentials at some point during the execution
of the algorithm; recall that we maintain that f is ε-optimal with respect to p. If p(i)
is relabeled, then i was active and ef (i) > 0. By Lemma 5.38, there is some j ∈ V
such that ef (j) < 0 and some i-j path P such that P ⊆ Af . Let P ′ be the j-i path
that is the reverse of P ; by the lemma P ′ ⊆ Af ′ . Since each arc (k, l) ∈ P is in Af ,
it has reduced cost at least −ε with respect to potentials p. Thus

−ε|P | ≤
∑

(k,l)∈P

cp(k, l) =
∑

(k,l)∈P

(c(k, l) + p(k)− p(l)) = p(i)− p(j) +
∑

(k,l)∈P

c(k, l).

Since each arc (l, k) ∈ P ′ is in Af ′ , it has reduced cost at least −2ε with respect to
potentials p′. Thus

−2ε|P | ≤
∑

(l,k)∈P ′
cp′(l, k) =

∑
(l,k)∈P ′

(c(l, k)+p′(l)−p′(k)) = p′(j)−p′(i)+
∑

(l,k)∈P ′
c(l, k).

Because P and P ′ are the reverse of each other and c(k, l) = −c(l, k), then∑
(k,l)∈P

c(k, l) +
∑

(l,k)∈P ′
c(l, k) = 0.

Thus if we add the two inequalities together, we obtain

−3ε|P | ≤ p(i)− p′(i) + p′(j)− p(j).

Note that during the course of the algorithm, we never create a new node with a
deficit, so if ef (j) < 0, then node j has always had a deficit, and thus has never been
an active node. In particular, p′(j) = p(j). Then we have that p′(i)−p(i) ≤ 3ε|P | ≤
3nε. Since this is true at any point in the execution of the algorithm for which i is
an active node and can be relabeled, it is the case that p(i) can decrease by at most
3nε from its initial value of p′(i).

The following lemma is now an easy consequence of the previous one.

Lemma 5.40: The number of relabel operations is O(n2).

Proof In each relabel operation for i ∈ V , we decrease p(i) by at least ε. Since we
can decrease p(i) by at most 3nε overall, we perform at most 3n relabel operations
on i. Since there are n nodes in total, we perform at most 3n2 relabel operations.

As before, we distinguish between saturating pushes (which push δ = uf (i, j)
units of flow on (i, j)) and nonsaturating pushes (which push δ = ef (i) < uf (i, j)
units of flow on (i, j)). We can bound the number of saturating and nonsaturating

5.5 Successive Approximation 139

pushes in the algorithm with proofs similar to those for the push-relabel algorithm.
First, we bound the number of saturating pushes.

Lemma 5.41: The number of saturating push operations is O(mn).

Proof Pick any arc (i, j). Initially cp(i, j) ≥ 0, and so we need to relabel i before we
can perform a saturating push on (i, j). Since uf (i, j) = 0 after a saturating push, to
be able to push flow on (i, j) again, we first need to push flow on (j, i), and in order
for (j, i) to be admissible, it must be that cp(j, i) < 0. Then cp(i, j) = −cp(j, i) > 0.
Hence in order to push flow on (i, j) after flow is pushed on (j, i), we need to relabel
i again. Hence we must relabel i before any saturating push on (i, j), which means
we can perform at most 3n saturating pushes on (i, j). Thus there are at most 3mn
saturating push operations.

Before we can bound the number of nonsaturating push operations, we need the
following lemma.

Lemma 5.42: The set of admissible arcs is acyclic.

Proof Initially, there are no admissible arcs since cp(i, j) ≥ 0 for all arcs (i, j). A
push operation can remove an admissible arc (by saturating it), but cannot add any
arcs to the set of admissible arcs: if we push flow on (i, j), we may make uf (j, i) > 0,
but since we only push flow on (i, j) if cp(i, j) < 0, then cp(j, i) = −cp(i, j) > 0,
and (j, i) is not admissible. A relabel operation on node i ∈ V decreases p(i) by
at least ε, and causes at least one arc (i, j) to become admissible. Recall that we
previously argued that after relabeling i, no arcs entering i are admissible; thus the
set of admissible arcs continues to be acyclic.

Lemma 5.43: The number of nonsaturating push operations is O(mn2).

Proof We use a potential function argument. Let Φ(i) be the number of vertices
reachable from i via admissible arcs; note that Φ(i) ≥ 1 since i can always reach
itself. Let Φ =

∑
i active Φ(i). Initially Φ ≤ n since there are no admissible arcs,

and Φ is always nonnegative. At the end of the subroutine Φ = 0 since there are no
active nodes at termination. Now we consider what makes Φ increase and decrease
over the execution of the subroutine. Each nonsaturating push decreases Φ since
a nonsaturating push takes a currently active node i and makes it inactive, thus
removing i from the sum. Since a nonsaturating push on an arc (i, j) requires (i, j)
to be admissible, note that Φ(i) > Φ(j), because i can reach all nodes that j can
reach via admissible arcs, but i can also reach itself and j cannot reach i since by
Lemma 5.42 the set of admissible arcs is acyclic. Thus even if the nonsaturating push
on i makes j active, the change in Φ is Φ(j)−Φ(i) ≤ −1. The increases in Φ are due
to relabel operations and saturating pushes. A saturating push on (i, j) can increase
Φ by making j active, and increases Φ by Φ(j) ≤ n. A relabel of i can make Φ(i)
increase from 1 to at most n; however, it cannot increase Φ(j) for any j 6= i since a
relabel of i causes all arcs entering i to become inadmissible. Thus the total increase
in Φ over the course of the subroutine is O(n(n2 +mn)) = O(mn2). Thus the total
number of nonsaturating pushes in O(mn2).

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

140 Minimum-Cost Circulation Algorithms

Putting everything together, we have the following.

Theorem 5.44: The subroutine in Algorithm 5.9 can be implemented in O(mn2)
time.

Since the framework in Algorithm 5.7 takes O(min(log(nC),m log n)) calls to the
subroutine, we have the following theorem.

Theorem 5.45: Algorithm 5.7 finds a minimum-cost circulation in O(mn2 min(log(nC),m log n))
time.

As with the push-relabel algorithm for maximum flow, various heuristics can be
introduced to help the algorithm run faster in practice. We give two (set relabeling
and price refinement) in Exercises 5.10 and 5.11.

In Exercise 5.12, we show it is possible to implement the analog of the FIFO
push-relabel algorithm from Exercise 2.10 in order to implement the subroutine, and
that it can be made to run in O(n3) time. In Exercise 5.13, we show that it is
possible to implement the subroutine FindεOptCirc via a blocking flow computation
in O(mn log n) time. This implementation of the subroutine implies that we can find
a circulation in O(mn log nmin(log(nC),m log n)) time.

5.6 Network Simplex

In this section, we introduce one last algorithm for computing a minimum-cost cir-
culation. This algorithm is a specialization of the simplex method for linear pro-
gramming; the minimum-cost circulation problem can be expressed as a linear pro-
gram. This specialization of the simplex method is usually called the network sim-
plex algorithm. The simplex method has a particularly simple form in the case of the
minimum-cost circulation problem, such that we do not need to give the more general
algorithm. The network simplex algorithm has very good performance in practice;
see the chapter notes for a discussion.

The network simplex algorithm maintains a feasible circulation f , an (undirected)
spanning tree T , and potentials p such that the following invariants are maintained:

1 If both (i, j) and (j, i) have positive residual capacity, then the undirected edge
{i, j} is in the tree T .

2 For each tree edge {i, j}, the reduced costs of (i, j) and (j, i) are zero (that is,
cp(i, j) = cp(j, i) = 0).

For Invariant 1, the converse need not be true; that is, if {i, j} is in the tree, then
it need not be the case that both (i, j) and (j, i) have positive residual capacity. We
will say that an arc (i, j) is a tree arc if {i, j} is an edge in the tree T . Otherwise
(i, j) is a nontree arc.

We now show how to start with a feasible circulation f , and from f find a tree
T , potentials p, and a corresponding circulation f ′ with c(f ′) ≤ c(f) such that the
invariants are obeyed. We look at the undirected edges in E = {{i, j} : (i, j), (j, i) ∈
Af}. If there is an undirected cycle C ⊆ E, then observe that we can push flow
around either direction of the cycle C; call the two directed cycles Γ′ and Γ′′. Since

5.6 Network Simplex 141

j i
Γ(i, j)

Figure 5.4 A basic cycle Γ(i, j). The thick edges belong to the tree T .

for each arc (i, j) ∈ Γ′, (j, i) ∈ Γ′′, and c(i, j) = −c(j, i), it is the case that c(Γ′) =
−c(Γ′′). Thus one of the two cycles has nonpositive cost; suppose, without loss of
generality, that c(Γ′) ≤ 0. Then we cancel Γ′; let f ′ be the resulting circulation.
Notice that because an arc of Γ′ was saturated, there is some {i, j} ∈ C such that
either (i, j) /∈ Af ′ or (j, i) /∈ Af ′ . Thus we have at least one fewer edge in E. We
continue until we have no cycles in E. If E does not contain a spanning tree, then
we add any {i, j} to E needed to get a spanning tree. Then we have a circulation f ′

such that c(f ′) ≤ c(f), and Invariant 1 is obeyed.

Given a tree T , it is particularly easy to compute potentials p such that Invariant
2 is obeyed. We root the tree at an arbitrary node r, and we set p(r) = 0. Then
suppose that we have computed the potential p(i) for a node i, and j is a child node
of i. We set p(j) = c(i, j) + p(i), since then cp(i, j) = c(i, j) + p(i) − p(j) = 0; it
follows that cp(j, i) = −cp(i, j) = 0. We can continue down the tree computing the
potentials of the nodes; thus we can compute the potentials in O(n) time.

The network simplex algorithm is also a negative-cost cycle canceling algorithm,
as with Klein’s algorithm in Algorithm 5.1. However, it considers a very limited set
of cycles defined by the tree T . In particular, each nontree arc (i, j) ∈ Af defines
a basic cycle, which we denote Γ(i, j); the cycle consists of the arc (i, j) and the
directed j-i path in T (see Figure 5.4). Because the reduced cost of all the arcs in
the directed j-i path in T is zero, the cost of the cycle Γ(i, j) is negative if and only
if cp(i, j) < 0 since c(Γ(i, j)) = cp(Γ(i, j)) = cp(i, j). Now we need to consider what
happens to the tree if we cancel a basic cycle Γ(i, j). We know that some arc (k, `)
in the cycle is saturated (possibly (i, j) itself), and it may now be the case that both
(i, j) and (j, i) have positive residual capacity. Thus to maintain Invariant 1, we add
{i, j} to the tree T , and remove {k, `} so that T remains a tree (if (k, `) = (i, j), we
do not modify the tree T). We use language from the simplex method, and say that
{i, j} enters the tree T , {k, `} leaves the tree T , and we pivot on the arc (i, j). We
can now give an overview of the network simplex algorithm in Algorithm 5.10.

It is not hard to see the following.

Theorem 5.46: At termination, f is a minimum-cost circulation.

Proof At termination, all tree arcs (i, j) have cp(i, j) = 0, and all nontree arcs
(i, j) ∈ Af have cp(i, j) ≥ 0. Thus by Theorem 5.3, f must be a minimum-cost
circulation.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

142 Minimum-Cost Circulation Algorithms

Let f be any feasible circulation
Find f , T , p obeying Invariants 1 and 2
while there is a nontree arc (i, j) ∈ Af such that cp(i, j) < 0 do

Cancel Γ(i, j)
Update f , T , p

return f

Algorithm 5.10 The network simplex algorithm

It is possible to select the basic cycle to cancel in each iteration such that the
network simplex algorithm takes a polynomial number of iterations; see the chapter
notes for a discussion. However, given our previous cycle canceling algorithms, it
is easy to give a polynomial-time version of the network simplex algorithm if we
allow ourselves to pivot on nontree arcs (i, j) such that cp(i, j) ≥ 0. Suppose a cycle
canceling algorithm (such as Wallacher’s algorithm in Section 5.2 or the minimum-
mean cycle canceling algorithm in Section 5.3) would next cancel cycle Γ. We show
that with at most n pivots we can also cancel Γ. Pick some node k that is in Γ, and
follow the arcs in the cycle until there is some arc (i, j) ∈ Γ that is a nontree arc.
We pivot on (i, j); if we saturate (i, j) or we saturate some tree arc in Γ, we have
canceled Γ. Otherwise, we have saturated a tree arc (k, `) /∈ Γ, and {k, `} leaves the
tree T and {i, j} enters T . We then continue following arcs in Γ from node j until
again we reach a nontree arc. Since each pivot either cancels Γ or adds some {i, j}
from Γ to the tree T , after at most n − 1 pivots, the tree T must contain edges
corresponding only to arcs in Γ. Then the basic cycle canceled by the next pivot
contains only arcs in Γ, and some arc of Γ must be saturated, canceling Γ.

Theorem 5.47: For any negative-cost cycle canceling algorithm as in Algorithm 5.1
that takes O(K) iterations to find a minimum-cost circulation, the network simplex
algorithm takes O(nK) pivots to find a minimum-cost circulation if it is allowed to
pivot on nontree arcs (i, j) with cp(i, j) ≥ 0.

5.7 Application: Maximum Flow Over Time

To conclude this chapter, we show how one can use the minimum-cost circulation to
solve another flow problem, one that involves a dimension of time. There are many
problems that have an extra dimension of time, but we will consider just the simplest
one, the maximum s-t flow problem over time. We are given the same input as the
maximum s-t flow problem, but in addition we are also given a nonnegative integer T ,
called the time bound, and for each arc we are given integer transit times τ(i, j) ≥ 0
for all (i, j) ∈ A. The idea is that τ(i, j) is the amount of time it takes for a unit of
flow to traverse the arc (i, j); a unit of flow entering node i at time θ will arrive at j
at time θ+ τ(i, j). The capacity u(i, j) limits the rate of flow entering the arc (i, j);
over a unit of time, at most u(i, j) units of flow may enter arc (i, j). The goal of the

5.7 Application: Maximum Flow Over Time 143

s

v

t

0

2

1

s

v

t

time 0 1 2 3

Figure 5.5 The graph on the right is the time-expanded network
corresponding to the graph on the left for T = 3, where the labels of the arcs
represent the transit times.

problem is to find the maximum amount of flow that can be sent from s starting at
time 0 to arrive at sink t by time T .

There is an easy approach to this problem, although it does not yield a polynomial-
time algorithm: we create a new network called the time-expanded network in which
there is a copy of each node for each time step θ. So, for example, for each node i we
create T + 1 copies, i(0), i(1), . . ., i(T). Then for each arc (i, j) with transit time
τ(i, j), we create T+1−τ(i, j) copies of the arc, one from i(θ) to j(θ+τ(i, j)) for θ =
0, . . . , T−τ(i, j). We also create arcs i(θ) to i(θ+1) for each θ = 0, . . . , T−1; these
arcs are called holdover arcs, and represent the possibility that flow can stay at node i
between time periods. We give a small example of a time-expanded network in Figure
5.5. Then we can compute the maximum s-t flow problem over time by computing a
maximum s(0)-t(T) flow problem in the time-expanded network. This algorithm is
not a polynomial-time algorithm since the size of the network is exponential in the
size of the input number T when T is represented in binary.

There is, however, a polynomial-time algorithm for the problem that uses the
solution to a minimum-cost circulation problem. We begin as follows. We define
the transit time of a path P as τ(P) ≡

∑
(i,j)∈P τ(i, j). Suppose there is an s-

t path P in the input graph with transit time at most T ; that is, τ(P) ≤ T . If
δ = min(i,j)∈P u(i, j), then we can send δ units of flow along path P at each time
step θ for θ = 0, 1, . . . , T−τ(P). We call this repeated flow along path P a temporally
repeated flow. We now give a connection between our usual notion of an s-t flow and
the value of a flow over time that we can achieve via temporally repeated flows.

Lemma 5.48: Given a standard s-t flow f and a decomposition of flow f into flows
f1, . . . , f` on s-t paths P1, . . . , P` (as in Lemma 2.20) such that τ(Pk) ≤ T for
k = 1, . . . , `, then the value of the flow created by temporally repeating flow along
these paths is

(T + 1)|f | −
∑

(i,j)∈A

τ(i, j)f(i, j).

Proof An intuitive view of the lemma statement is that we send the value |f | of
the flow f for all T + 1 time units, but subtract all the flow that is still in transit in
the graph at time T + 1, which amounts to

∑
(i,j)∈A τ(i, j)f(i, j). Alternatively, we

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

144 Minimum-Cost Circulation Algorithms

don’t send flow that would remain in the graph at time T + 1, and this also amounts
to
∑

(i,j)∈A τ(i, j)f(i, j). We now formalize this intuition.

More formally, for each k = 1, . . . , `, we send |fk| units of flow along path Pk at
each time step t = 0, . . . , T − τ(Pk). We first should ask if this gives a valid flow
over time; that is, is it the case that at any time t, the flow entering arc (i, j) is at
most the capacity? We observe that at any time t, the total flow entering (i, j) is at
most

∑
k:(i,j)∈Pk

fk(i, j) = f(i, j) ≤ u(i, j), where the equality holds because fk is a
flow decomposition of f , and the capacity constraint is obeyed because f is an s-t
flow.

The total amount of flow sent by temporally repeating paths in this way is

∑̀
k=1

|fk|((T + 1)− τ(Pk)) =
∑̀
k=1

|fk|(T + 1)−
∑̀
k=1

|fk|τ(Pk)

= |f |(T + 1)−
∑̀
k=1

|fk|
∑

(i,j)∈Pk

τ(i, j)

= |f |(T + 1)−
∑

(i,j)∈A

τ(i, j)
∑

k:(i,j)∈Pk

fk(i, j)

= |f |(T + 1)−
∑

(i,j)∈A

τ(i, j)f(i, j).

We would like now to compute an s-t flow with a decomposition as given in Lemma
5.48 that maximizes the total amount of flow (T + 1)|f | −

∑
(i,j)∈A τ(i, j)f(i, j).

Notice that such a flow will give us the best possible temporally repeated flow,
although it is not clear that such a flow gives the maximum s-t flow over time. To
compute the temporally repeated flow that maximizes the total amount of flow, we
compute a minimum-cost circulation in a new graph G′ = (V,A′). Let G = (V,A)
be the input graph to the maximum s-t flow over time problem, with capacities
u(i, j) ≥ 0 and transit times τ(i, j) ≥ 0. For each arc (i, j) ∈ A with transit
time τ(i, j), we add arc (j, i) to A′, and set c(i, j) = τ(i, j), c(j, i) = −τ(i, j),
and u(j, i) = 0. We also add additional arcs (t, s) and (s, t) with u(t, s) = ∞,
u(s, t) = 0, c(t, s) = −(T + 1), and c(s, t) = (T + 1); see Figure 5.6. We observe
that any negative-cost cycle in this instance must use the arc (t, s) since all other
arcs with positive capacity have nonnegative cost. Thus each such cycle consists of
an s-t path P plus the arc (t, s). Because c(t, s) = −(T + 1), in order for the cycle
to have negative cost, it must be that the cost of the path P is at most T , so that
τ(P) ≤ T . We also observe that the minimum-cost circulation f has cost

c(f) =
1

2

∑
(i,j)∈A′

c(i, j)f(i, j) =
∑

(i,j)∈A

τ(i, j)f(i, j)− (T + 1)f(t, s),

where the factor of 1/2 is absorbed by skew-symmetry and the flow on reverse arcs
that are in A′ but not A.

5.7 Application: Maximum Flow Over Time 145

Gs t

c = −(T + 1)u =∞

Figure 5.6 Minimum-cost circulation instance for computing maximum
temporally repeated flow.

Suppose we find a decomposition of the circulation f as in Lemma 5.7 into cir-
culations f1, . . . , f` such that f =

∑`
i=1 fi, c(f) =

∑`
i=1 c(fi), and for each i, the

arcs of fi with positive flow have positive capacity and form a simple cycle. We
observe that each circulation fk has negative cost, since otherwise f − fk would
have cost c(f − fk) = c(f) − c(fk) ≤ c(f), and is also a circulation: f − fk obeys
flow conservation and skew symmetry since both f and fk do. For any arc (i, j)
on which fk has positive flow, f(i, j) − fk(i, j) ≤ u(i, j) − fk(i, j) ≤ u(i, j), and
on the reverse arc (j, i) it must be the case that u(j, i) = 0 and fh(j, i) ≤ 0
for all 1 ≤ h ≤ ` since each fh has positive flow only on arcs of positive ca-
pacity. Thus f(j, i) − fk(j, i) =

∑
h 6=k fh(j, i) ≤ 0 = u(j, i). Since each circu-

lation fk has negative cost and has positive flow on a simple cycle, it must be
the case that it has positive flow on the arc (t, s) and an s-t path Pk such that
τ(Pk) ≤ T . Thus if we consider f just on the arcs in A (excluding the reverse arcs
and (t, s) and (s, t)), we will have a flow f with the decomposition as required in
Lemma 5.48 which maximizes (T + 1)|f | −

∑
(i,j)∈A τ(i, j)f(i, j) since it minimizes

c(f) =
∑

(i,j)∈A τ(i, j)f(i, j)− (T + 1)f(t, s), and f(t, s) = |f |.
It remains to show that the best possible temporally repeated flow gives the max-

imum s-t flow over time, which we do in the following theorem. The proof strategy
is to use the time-expanded network described earlier in the section, and show that
there is an s(0)-t(T) cut in the network of capacity at most the value of the tempo-
rally repeated flow. Thus although the time-expanded network is not directly useful
for carrying out a polynomial-time algorithm, we can use it conceptually to prove
that the temporally repeated flow is indeed maximum.

Theorem 5.49 (Ford and Fulkerson [66]): The value of the maximum s-t flow
over time equals the value of the maximum temporally repeated flow.

Proof As suggested above, we will find an s(0)-t(T) cut in the time-expanded net-
work of capacity at most the value of the temporally repeated flow found by the
minimum-cost circulation f as described above. We begin with some observations
about the reduced cost of the circulation that we will need later on. Let p be the
potentials as given in Theorem 5.3 such that for the circulation f , cp(i, j) ≥ 0
for all (i, j) ∈ A′f . We observe that the inequality implies that if cp(i, j) < 0,

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

146 Minimum-Cost Circulation Algorithms

s

i

j

S

time 0 1 2 3 4

Figure 5.7 Example of cut S used in proof of Theorem 5.49.

then f(i, j) = u(i, j) for any arc (i, j) ∈ A and f(i, j) = 0 if (j, i) ∈ A. Fur-
thermore, we observe that as argued above, the cost of the circulation is c(f) =∑

(i,j)∈A τ(i, j)f(i, j)− (T + 1)f(t, s). By Exercise 5.3, c(f) = cp(f). Then since

c(f) = cp(f) =
1

2

∑
(i,j)∈A′

cp(i, j)f(i, j) =
∑

(i,j)∈A′:cp(i,j)<0

cp(i, j)f(i, j),

we have that∑
(i,j)∈A′:cp(i,j)<0

cp(i, j)f(i, j) =
∑

(i,j)∈A

τ(i, j)f(i, j)− (T + 1)f(t, s). (5.8)

We assume that f(t, s) > 0 so that the circulation does indeed have negative cost.
We now define a cut S in the time-expanded network, where

S = {i(θ) : p(i)− p(s) ≤ θ}.

Recall from Corollary 5.4 that since the transit times τ(i, j) are integer, and thus
the costs c(i, j) are integer, we can assume that the potentials p are integer. Thus
if θ = p(i) − p(s), we get the nodes i(θ), i(θ + 1), . . . , i(T) ∈ S. We observe then
that s(0) ∈ S, since p(s) − p(s) = 0, which implies that all copies of s are in S;
that is, s(0), . . . , s(T) ∈ S. Since uf (t, s) = u(t, s) − f(t, s) = ∞, and uf (s, t) =
u(s, t) − f(s, t) = 0 − f(s, t) = f(t, s) > 0, both (s, t) and (t, s) are in Af , so
that by the choice of the potentials p, it must be the case that cp(t, s) ≥ 0 and that
cp(s, t) ≥ 0. Since cp(s, t) = −cp(t, s) ≤ 0, it must be the case that cp(t, s) = 0.
Thus c(t, s) +p(t)−p(s) = 0, or −(T +1) +p(t)−p(s) = 0, or p(t)−p(s) = T + 1.
Thus by the definition of S, t(T) /∈ S. Therefore, S is an s(0)-t(T) cut in the residual
graph.

We would now like to determine the capacity of the cut S. We observe that the
definition of S implies that there is no holdover arc i(θ)-i(θ + 1) in δ+(S). We get
a copy of the arc (i, j) in the cut for each integer θ such that p(i) − p(s) ≤ θ and
p(j)−p(s) > θ+τ(i, j), so that we get max(0, p(j)−p(s)−τ(i, j)−(p(i)−p(s))) =
max(0, p(j)−p(i)−τ(i, j)) copies of arc (i, j) in the cut (again since we can assume

Exercises 147

that the potentials p are integer). Thus we have that

u(δ+(S)) =
∑

(i,j)∈A′
u(i, j) ·max(0, p(j)− p(i)− τ(i, j))

=
∑

(i,j)∈A′
u(i, j) ·max(0,−cp(i, j))

= −
∑

(i,j)∈A′:cp(i,j)<0

u(i, j)cp(i, j)

= −
∑

(i,j)∈A′:cp(i,j)<0

cp(i, j)f(i, j)

= (T + 1)f(t, s)−
∑

(i,j)∈A

τ(i, j)f(i, j),

where the penultimate equality follows since we argued that f(i, j) = u(i, j) for all
(i, j) ∈ A′ with cp(i, j) < 0, and the last equality follows from Equation (5.8). Thus
we have an s(0)-t(T) cut S whose capacity is equal to the value of an s(0)-t(T)
flow, the temporally repeated flow, and thus this temporally repeated flow must be
a maximum s-t flow over time.

There are several other problems over time that can be considered. In the quickest
transshipment problem, we have a directed graph with transit times on the arcs and
a value b(i) at each node i ∈ V , and we must determine the shortest time T such
that there exists a flow over time that sends flow of value b(i) from each node i for
which b(i) > 0 and for each node i such that b(i) < 0, a flow of value −b(i) arrives
within time T . This problem can be solved in polynomial time, but the algorithm
is complex; see the chapter notes for more discussion. The quickest minimum-cost
flow problem is already an NP-hard problem.

Exercises

5.1 Prove Lemma 5.7.

5.2 Prove that given an instance of the minimum-cost circulation problem, we can trans-

form it into an instance of the minimum-cost flow problem, such that from the optimal

solution to the minimum-cost flow problem we can easily recover the optimal solution

to the minimum-cost circulation problem.

5.3 Prove that for any circulation f and any potentials p, c(f) = cp(f).

5.4 Consider the instance of the minimum-cost circulation problem below, using the defi-

nition of a circulation from Definition 5.1, in which capacities u are given on the arcs,

capacities ` = 0 for all arcs, M is a large number, and all arcs have cost 0 except for

the arc from t to s, which has cost −1. Show that an algorithm that chooses arbitrary

negative-cost cycles from the residual graph to cancel does not run in polynomial

time.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

148 Minimum-Cost Circulation Algorithms

s t

M

M

M

1

M

c = −1∞

5.5 In this exercise, we consider the idea of trying to find a negative-cost cycle in the

residual graph such that canceling this cycle gives the largest improvement in overall

cost, as discussed at the end of Section 5.1.

(a) Show that it is NP-hard to find such a cycle in general.

(b) Show that if you can find and cancel such a cycle that Inequality (5.6) must hold.

5.6 In this problem, we consider the minimum-cost perfect matching problem in bipartite

graphs. In this problem, we are given as input a bipartite graph G = (X,Y,E) with

|X| = |Y |, with costs c(i, j) for each (i, j) ∈ E, where i ∈ X and j ∈ Y . The goal is to

find a minimum-cost subset of edges F ⊆ E such that each node in X and each node

in Y is adjacent to exactly one edge of F (a perfect matching). Of course, there may

not be any F ⊆ E that meets this condition, in which case the correct output is to

say “no perfect matching”.

We can model this problem as a minimum-cost circulation problem as follows. Given

the bipartite graph G, we add two nodes s and t, arcs (s, i) and (i, s) for each i ∈ X
of costs c(s, i) = c(i, s) = 0 and capacities u(s, i) = 1 and u(i, s) = 0, and arcs (j, t)

and (t, j) for each j ∈ Y of costs c(j, t) = c(t, j) = 0 and capacities u(j, t) = 1 and

u(t, j) = 0. We also add arcs (t, s) and (s, t) of costs c(s, t) = c(t, s) = 0 and capacities

u(t, s) = n and u(s, t) = −n. Finally, for each edge (i, j) in G with i ∈ X and j ∈ Y we

add arcs (i, j) and (j, i) of costs c(i, j) (and c(j, i) = −c(i, j)) and capacities u(i, j) = 1

and u(j, i) = 0. See Figure 5.8.

(a) Argue that there is a feasible solution to the minimum-cost circulation instance

if and only if there is a perfect matching in the bipartite graph G, and that the

minimum-cost circulation gives a minimum-cost perfect matching.

(b) Argue that we can find a minimum-cost perfect matching in a bipartite graph in

O(mn2) time.

We now give an algorithm to find a minimum-cost perfect matching in a bipartite

graph in O(n(m+ n logn)) time by solving the minimum-cost circulation problem by

solving a sequence of n shortest path problems. We change the capacity of u(t, s) to

0, and in each iteration of the algorithm, we increase u(t, s) by one, decrease u(s, t) by

one, and augment the previous circulation to a new circulation by solving a shortest

path problem. When u(t, s) = u(s, t) = 0, clearly f = 0 is a minimum-cost circulation.

We claim that in each iteration by finding a shortest s-t path P in the set of edges

Af of positive residual capacity, and sending a unit of flow on P and the arc (t, s),

we will have found a minimum-cost circulation for the problem in which u(t, s) has

been increased by one and u(s, t) decreased by one. We summarize the algorithm in

Algorithm 5.11.

(c) Argue inductively that when we compute the shortest s-t path in iteration k, there

Exercises 149

s t

X Y

n

Figure 5.8 Reduction of minimum-cost perfect matching in bipartite
graphs to the minimum-cost circulation problem.

f ← 0
u(t, s)← 0
u(s, t)← 0
for k ← 1 to n do

Find a shortest s-t path P ⊆ Af using costs c(i, j)

f ′(i, j)←

1 if (i, j) ∈ P or (i, j) = (t, s)
−1 if (j, i) ∈ P or (i, j) = (s, t)
0 otherwise

u(t, s)← k
u(s, t)← −k
f ← f + f ′

return f

Algorithm 5.11 An algorithm for finding a minimum-cost perfect matching in a bi-
partite graph.

must be no negative-cost cycle in the arcs Af , and that at the end of each iteration

k, f is a minimum-cost circulation for the problem in which u(t, s) is k.

(d) Because edge costs can be negative, in each iteration we must use the Bellman-

Ford algorithm of Section 1.2. Conclude that the algorithm finds a minimum-cost

circulation in the graph with u(t, s) = n and u(s, t) = −n in O(mn2) time.

We’d now like to replace the use of the Bellman-Ford algorithm by Dijkstra’s algo-

rithm. To that end, we compute potentials pk(u) in each iteration k as the shortest

path from s to u using costs ck(i, j) ≡ c(i, j) + pk−1(i) − pk−1(j). We argue that

ck(i, j) ≥ 0 in each iteration for all (i, j) ∈ Af , so that we can use Dijkstra’s algorithm

to perform the shortest path calculations. We give the new algorithm in Algorithm

5.12.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

150 Minimum-Cost Circulation Algorithms

f ← 0
u(t, s)← 0
u(s, t)← 0
Let p0(i) be length of shortest s-i path in Af using costs c(i, j) for all i ∈ V
for k ← 1 to n do

Let ck(i, j) = c(i, j) + pk−1(i)− pk−1(j)
Find a shortest s-t path P ⊆ Af using costs ck(i, j)
Let pk(i) be length of shortest s-i path in Af using costs ck(i, j) for all
i ∈ V

f ′(i, j)←

1 if (i, j) ∈ P or (i, j) = (t, s)
−1 if (j, i) ∈ P or (i, j) = (s, t)
0 otherwise

u(t, s)← k
u(s, t)← −k
f ← f + f ′

return f

Algorithm 5.12 An algorithm for finding a minimum-cost perfect matching in a bi-
partite graph (take two).

(e) Argue that the new algorithm finds the same s-t path P as the previous algorithm in

each iteration, and thus terminates with a minimum-cost circulation f for u(t, s) =

n, u(s, t) = −n.

(f) Argue that ck(i, j) ≥ 0 for all (i, j) ∈ Af when we calculate shortest paths in

iteration k.

(g) Argue that the algorithm runs in time O(n(m+ n logn)) time.

The minimum-cost perfect matching problem in bipartite graphs is also sometimes

called the assignment problem.

5.7 As shown in Exercise 5.5, finding a cycle to cancel that gives the most improvement

in the objective function is an NP-hard problem. However, we can find in polynomial-

time a collection C of node-disjoint cycles such that canceling all cycles in C improves

the objective function as much as the most improving single cycle. In this problem,

we will give an algorithm that will find such a collection C.
To give such an algorithm, it may help to consider the minimum-cost perfect matching

problem in bipartite graphs defined in Exercise 5.6.

(a) Let f be any circulation, and let Γ be the cycle in Gf that results in the greatest

improvement in objective by canceling C; that is, if circulation f̂ is the circulation

that results by canceling Γ, then Γ is chosen to maximize δ = c(f) − c(f̂). Prove

that in O(mn(m + n logn)) time we can find a collection C of node-disjoint cycles

such that if f ′ results from canceling all cycles in C, then c(f)− c(f ′) ≥ δ.
(b) Conclude that we can obtain a O(m2n(m + n logn) log(mUC)) time algorithm for

the minimum-cost circulation problem.

5.8 In Wallacher’s algorithm from Section 5.2, we cancel cycles that trade off cost versus

residual capacity. In this exercise, we consider another way of doing this that uses

some ideas from the capacity scaling algorithm of Section 5.4. One way to improve

Exercises 151

Γ← ∅
Let S be the set of nodes reachable from j via arcs in Af (∆)− {(j, i)}
if i /∈ S then

p(k)←
{
p(k) + cp(i, j) if k ∈ S
p(k) otherwise

else
Compute shortest j-k path distance p̃(k) for all k ∈ S using arcs in
Af (∆) and costs max(0, cp(i, j))
p̃max = maxk∈S p̃(k)

p(k)←
{
p(k) + p̃(k)− p̃max k ∈ S
p(k) otherwise

if cp(i, j) < 0 then
Let Γ = {(i, j)} + shortest path from j to i

return Γ, p′

Procedure Find∆Cycle(p, i, j)

f ← 0
p← 0

∆← 2dlogUe

while ∆ ≥ 1 do
while there is a ∆-admissible arc (i, j) do

(Γ, p)←Find∆Cycle (p, i, j)
if Γ 6= ∅ then

Cancel Γ
Update f

∆← ∆/2

return f

Algorithm 5.13 Another cycle-canceling algorithm, Cancel∆Cycles.

the situation is to make sure that every iteration of cycle canceling considers only

arcs with “large enough” residual capacity. Given a circulation f , potentials p and a

parameter ∆, let Af (∆) = {(i, j) ∈ Af : uf (i, j) ≥ ∆}. Call an arc (i, j) ∈ Af admissible

if cp(i, j) < 0 and ∆-admissible if (i, j) is admissible and (i, j) ∈ Af (∆). Let’s say that

cycle Γ is a ∆-cycle if Γ ⊆ Af (∆), cp(i, j) ≤ 0 for all (i, j) ∈ Γ, and cp(i, j) < 0

for some (i, j) ∈ Γ. Note that this implies cp(Γ) = c(Γ) < 0. We give a procedure

Find∆Cycle(p, i, j) that takes as input node potentials p and some ∆-admissible arc

(i, j), and uses them to find a ∆-cycle Γ.

We can then use this subroutine in Algorithm 5.13, Cancel∆Cycles.

(a) Prove that the subroutine Find∆Cycle does not create any new ∆-admissible arcs.

(b) Prove that if the subroutine Find∆Cycle returns a cycle, it is a ∆-cycle.

(c) Prove that either Find∆Cycle returns a cycle containing (i, j) or makes (i, j) inad-

missible.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

152 Minimum-Cost Circulation Algorithms

Let f be any feasible circulation
Compute potentials p such that cp(i, j) ≥ −ε(f) for all (i, j) ∈ Af
while f is not a minimum-cost circulation do

while there exists an admissible cycle Γ do
Cancel Γ
Update f

Update potentials p so that cp(i, j) ≥ −ε(f) for all (i, j) ∈ Af
return f

Algorithm 5.14 The cancel-and-tighten algorithm for the minimum-cost circulation
problem.

(d) Prove that at the start of the inner while loop of Cancel∆Cycles, uf (i, j) < 2∆ for

each admissible arc (i, j), and that this remains true through the execution of the

while loop.

(e) Prove that in each iteration of the inner while loop of Cancel∆Cycles, the number

of ∆-admissible arcs strictly decreases.

(f) Prove that if the algorithm terminates, it correctly returns a minimum-cost circu-

lation.

(g) Recall from the end of Section 1.1 that we can use Dijkstra’s algorithm to comput-

ing shortest paths in graphs with nonnegative edge lengths in O(m+ n logn) time.

Prove that the algorithm runs in time O((m logU)(m+ n logn)).

5.9 In this problem we consider another algorithm for the minimum-cost circulation prob-

lem, based on the minimum-mean cycle canceling algorithm given in Section 5.3. Call

an arc (i, j) admissible with respect to potentials p if cp(i, j) < 0 and uf (i, j) > 0. A

cycle is admissible if it consists entirely of admissible arcs. The algorithm will repeat-

edly cancel admissible cycles until no such cycles exist for the current potentials p. It

can be shown that it takes O(m) time plus O(n) time per admissible cycle canceled to

cancel all admissible cycles. We then update the potentials p so that cp(i, j) ≥ −ε(f)

for all (i, j) ∈ Af ; we previously showed how to do this in Corollary 5.20. Now consider

Algorithm 5.14; it is known as cancel-and-tighten.

In the analysis below, assume that the arc costs c are integral.

(a) Prove that when updating the potentials, ε(f) has decreased by a factor of (1−1/n)

since the last update.

(b) Prove that in each iteration of the main loop, at most m cycles are cancelled.

(c) Prove that at most O(n log(nC)) iterations of the main loop are needed to obtain

an optimal circulation f .

(d) Prove that the overall running time of the algorithm is O(mn2 log(nC)).

5.10 In Algorithm 5.9, it is sometimes possible to relabel many nodes at once. Let S

be a set that contains at least one node with positive excess, and no nodes with

negative excess. Suppose that there are no admissible arcs entering S; that is, for all

(i, j) ∈ δ−(S), either (i, j) /∈ Af or cp(i, j) ≥ 0. Prove that we can decrease p(i) for each

i ∈ S by ε such that f continues to be ε-optimal (cp(i, j) ≥ −ε for all (i, j) ∈ Af) and

the set of admissible arcs continues to be acyclic. This heuristic is called set relabeling.

5.11 In Algorithm 5.7, it is possible that after we have divided ε by two that there exist

potentials p′ such that the current circulation f is ε-optimal. In this case we do not

Exercises 153

need to call FindεOptCirc. Give an O(mn) time algorithm to find such potentials p′

if they exist. If we call this algorithm each time we divide ε by two, does this change

the overall running time of the algorithm? This heuristic is called price refinement.

5.12 Consider the successive approximation algorithm for the minimum-cost circulation

problem given in Section 5.5. We used a push-relabel subroutine for converting a

2ε-optimal circulation to an ε-optimal circulation in FindεOptCirc; this subroutine’s

running time was dominated by the O(n2m) non-saturating pushes taken by the

algorithm.

Just as we improved the running time of push-relabel for the maximum flow problem

from O(n2m) to O(n3) in Exercise 2.10 by carefully ordering the push and relabel

operations (resulting in FIFO push-relabel), we can do the same thing in this case.

(a) Show that in O(m) time one can find an ordering of the nodes such that any push

operation on an admissible arc will push from a node earlier in the ordering to one

later in the ordering.

The algorithm will consider nodes in the order given by the ordering. When consid-

ering node i, we continue to push excess from node i until either there is no longer

any excess at node i (after a non-saturating push) or there are no admissible arcs out

of node i.

(b) Prove that if we must relabel i, we can move i to be the first node in the ordering

and have the resulting ordering satisfy the properties of the ordering in part (a).

After relabeling i, the algorithm moves i to the beginning of the ordering. It moves

back to the beginning of the ordering (with node i) and considers nodes in the new

order.

(c) Argue that if we reach the end of the ordering without a relabel operation, then

we have a feasible circulation and the subroutine terminates.

(d) Argue that the number of non-saturating pushes is at most O(n3) and that the

overall running time of the subroutine is now O(n3).

5.13 In Section 5.5, we gave a push-relabel based implementation of the subroutine FindεOptCirc

for converting a 2ε-optimal circulation to an ε-optimal circulation via a push-relabel

algorithm, which resulted in an O(n2mmin(log(nC),m logn)) time algorithm for the

minimum-cost circulation problem. In this problem, we will give a subroutine for the

same problem based on blocking flows; consider the subroutine given in Algorithm

5.15, in which we let GA be the graph of currently admissible arcs (that is, cp(i, j) < 0

and (i, j) ∈ Af). Given a blocking flow algorithm that runs in O(m logn) time when

there are no cycles of positive residual capacity, prove that the subroutine is cor-

rect and runs in O(mn logn) time. This gives a O(mn lognmin(log(nC),m logn)) time

algorithm for the minimum-cost circulation problem.

Chapter Notes

The method does not seem to lend itself to machine calculation but may be

efficient for hand computation on matrices of small order.

– Julia Robinson [174]

Schrijver ([176],[177, Section 21.13e]) gives a historical overview of the transporta-
tion problem, an important special case of the minimum-cost flow problem in which

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

154 Minimum-Cost Circulation Algorithms

for (i, j) ∈ A do
if cp(i, j) < 0 then

f(i, j)← u(i, j)
while f is not a circulation do

S ← {i ∈ V : ∃j ∈ V such that ef (j) > 0, i reachable from j in GA}
for i ∈ S do p(i)← p(i)− ε
Form network N from GA by adding source s, sink t, arc (s, i) of capacity
ef (i) for all i ∈ V with ef (i) > 0, arc (i, t) of capacity ef (i) for all i ∈ V
with ef (i) < 0

Find blocking flow b on N
f ← f + b

return f , p

Algorithm 5.15 Algorithm for Exercise 5.13.

the graph is bipartite and has no capacity constraints. As with the maximum flow
problem, one of the first applications of the problem was to the railway networks of
the former Soviet Union, although in this case Soviet researchers were attempting to
minimize the cost of railway shipments of goods. Schrijver points out that an 1930
article of Tolstoi observes that the existence of a negative-cost cycle proves that the
solution is not optimal.

Ahuja, Magnanti, and Orlin [3, 4] and Goldberg, Tardos, and Tarjan [91] provide
surveys of the minimum-cost flow problem.

For the optimality conditions of Theorem 5.3, there were several precursors to the
theorem showing that the circulation is optimal if and only if there are no negative-
cost cycles in the residual graph; see Schrijver [176] for details. Robinson [174] states
the condition for the transportation problem. Busacker and Saaty [30, Theorem 7-8]
provide an early statement of the theorem in the form we use it. The optimality
of a circulation if and only if there are potentials p such that cp(i, j) ≥ 0 for all
arcs (i, j) with positive residual capacity follows from linear programming duality,
and appears in Fulkerson [74] and Ford and Fulkerson [66]. The negative-cost cycle
canceling algorithm in Algorithm 5.1 is due to Klein [132].

Weintraub [205] shows the observation at the beginning of Section 5.2 that an al-
gorithm finding the most improving cycle would converge quickly, and further argues
that an algorithm finding a cycle, or a collection of cycles, making improvement of
the same order as the most improving cycle would likewise converge quickly. The al-
gorithm of Section 5.2 is from a technical report of Wallacher [201]. Although this al-
gorithm was developed later chronologically than the other algorithms of the chapter,
because its analysis duplicates that of a most improving cycle, we put it first in the
chapter. Despite never appearing as a journal publication, the ideas from Wallacher’s
technical report have been influential. The minimum-mean cycle-canceling algorithm
of Section 5.3 is due to Goldberg and Tarjan [93]. The first strongly-polynomial time
algorithm for the minimum-cost circulation problem is due to Tardos [188]; her anal-
ysis was adapted to the minimum-mean cycle canceling algorithm by Goldberg and

Exercises 155

Tarjan [93, 94]. Tardos’s algorithm was a major breakthrough. The capacity scaling
algorithm of Section 5.4 is from Ahuja, Magnanti, and Orlin [4, Section 10.2]; Ahuja,
Magnanti, and Orlin cite the algorithm as a variant of an algorithm of Edmonds
and Karp [57] developed by Orlin [157]. Other scaling techniques include scaling
of costs; the idea of cost scaling for minimum-cost flow algorithms was developed
independently by Röck [175] and by Bland and Jensen [25]. The algorithm using suc-
cessive approximation that we give in Section 5.5 is due to Goldberg and Tarjan [94].
The network simplex algorithm of Section 5.6 was developed by Dantzig [47] for the
transportation problem, and was generalized by him to the capacitated version of the
problem [48, Chapters 17-18]. Tarjan [193] and Goldfarb and Hao [97] independently
made the observation of Theorem 5.47 that network simplex runs in polynomial-time
if pivots are allowed that increase the cost. Orlin [158] gives a polynomial-time vari-
ant of network simplex in which such pivots are not allowed. The maximum flow over
time problem and algorithm in Section 5.7 are due to Ford and Fulkerson [64] (see
also [66, Chapter III, Section 9]). Problems involving flow over time were originally
called dynamic flows. Skutella [181] gives a nice survey of problems and algorithms
for flows over time. Hoppe and Tardos [111] give a polynomial-time algorithm for
the quickest transshipment problem mentioned at the end of Section 5.7.

Orlin [157] gives the fastest known strongly polynomial-time algorithm for the
minimum-cost flow problem; it runs in O(m log n(m+ n log n)) time.

The Robinson quote above is from 1950 and concerns the negative-cost cycle can-
celing algorithm in the case of the transportation problem. Over the decades, many
implementation studies of the algorithms of this chapter have been performed, and
while negative-cost cycle canceling has indeed been implemented, it has been not
been found to be competitive with other algorithms. Goldberg and Kharitonov [87],
Goldberg [84], and Bünnagel, Korte, and Vygen [29] all study implementations of the
Goldberg-Tarjan successive approximation algorithm of Section 5.5, and introduce
various heuristics that help it to run faster in practice, including the set relabeling
of Exercise 5.10 and the price refinement of Exercise 5.11; Goldberg [84] and Kovács
[136] find that particular implementations of price refinement are helpful. Other help-
ful heuristics include push lookahead, to ensure that flow pushed from node i to node
j will not simply be pushed back to i again. Goldberg [84] compares his code to
the RELAX code of Bertsekas and Tseng [21] and some network simplex codes, and
finds that it is usually (but not always) outperforms these codes. Bünnagel et al.
compare their code against a successive shortest path algorithm, and find that their
code with heuristics added is substantially better. Löbel [145] compares a network
simplex implementation of his own versus Goldberg’s code, another network simplex
code, and an updated version of RELAX [22] on instances drawn primarily from
large vehicle scheduling problems, and finds his network simplex code outperforms
the others.

Joshi, Goldstein, and Vaidya [118] and Resende and Veiga [172] compare LP-based
interior-point algorithms for minimum-cost flow problems to a network simplex al-
gorithm and the Bertsekas-Tseng RELAX algorithm, and find the interior-point al-
gorithms better on sufficiently large problems. Portugal, Resende, Veiga, and Júdice
[166] find an implementation of the Goldberg-Tarjan successive approximation algo-

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

156 Minimum-Cost Circulation Algorithms

rithm in general a better performer than an interior-point algorithm and a network
simplex implementation on most instance classes.

Kovács [136] performs a recent and wide-ranging study of algorithms for the
minimum-cost flow problem. He finds the minimum-mean cycle canceling algorithm
of Section 5.3 (and its cancel-and-tighten variant in Exercise 5.9) and the capacity
scaling algorithm of Section 5.4 to be uncompetitive. Other candidate algorithms he
considers includes a number of different network simplex codes and the interior-point
code of Portugal et al. Kovács finds that his own implementation of the network sim-
plex algorithm outperforms the other algorithms in most instances, while an imple-
mentation of the Goldberg-Tarjan successive approximation algorithm outperforms
other algorithms on large sparse instances.

More recent work on interior-point algorithms have yielded theoretically faster al-
gorithms for the minimum-cost flow problem. Lee and Sidford [140] give an Õ(m

√
n logO(1)(CU))-

time algorithm for finding a minimum-cost flow. Cohen, M ↪adry, Sankowski, and
Vladu [43] have used electrical flows and ideas from interior-point algorithms to ob-
tain an Õ(m10/7 logC)-time algorithm for the minimum-cost flow problem in which
U = 1. These algorithms use fast Laplacian solvers; some of this work will be dis-
cussed in Chapter 8 and its chapter notes.

The algorithm for minimum-cost perfect matching in bipartite graphs given in
Exercise 5.6 uses an algorithm for the minimum-cost flow problem called successive
shortest paths. Ahuja, Magnanti, and Orlin [3] attribute the application of successive
shortest paths via Dijkstra’s algorithm by using reduced costs in each iteration to
observations by Edmonds and Karp [57] and Tomizawa [194]. Exercise 5.7 is due to
Barahona and Tardos [15], following the observation of Weintraub mentioned earlier.
Exercise 5.8 is due to Sokkalingam, Ahuja, and Orlin [183]. Exercise 5.9 is due to
Goldberg and Tarjan [93]. Exercises 5.12 and 5.13 are due to Goldberg and Tarjan
[94].

6

Generalized Flow Algorithms

...and this time it vanished quite slowly, beginning with the end of the tail,

and ending with the grin, which remained some time after the rest of it had

gone.

“Well! I’ve often seen a cat without a grin,” thought Alice; “but a grin without

a cat! It’s the most curious thing I ever saw in my life!”

– Lewis Carroll, Alice in Wonderland

God made the integers, all else is the work of man.

– Leopold Kronecker

In this chapter, we turn to generalized flow problems; in particular, we look at the
generalized maximum flow problem. In generalized flow problems, for each arc (i, j)
we additionally have a gain γ(i, j) > 0 that denotes a scaling of the flow on (i, j), so
that if f(i, j) units of flow enters (i, j) from node i, then f(i, j)γ(i, j) units of flow
leave (i, j) into node j. This gain factor can be used to model losses on the arcs due to
leakage, transaction costs, friction, noise, taxes, and so on. We can also use the gains
to model transformations of the flow along the arcs. For instance, see Figure 6.1: each
node represents a currency, and the gain factor γ(i, j) represents the exchange rate
for changing currency i into currency j. In generalized flow problems, we can then
consider problems of trying to maximize our holdings in a certain currency given all
the possible ways of exchanging currencies.

In the generalized maximum flow problem, we are given as input a directed graph
G = (V,A) with capacities u(i, j) ≥ 0 and gains γ(i, j) > 0 on all the arcs (i, j) ∈ A.
We assume that the capacities are integers and the gains are expressed as the ratio of
integers; let B be the largest integer used in expressing both the capacities and the
gains. We also have a sink vertex t ∈ V . Our goal will be to maximize the net flow
entering the sink t. It might seem curious to have a flow without a source, like having
a grin without a cat. But we will see shortly that generalized flow problems upend
some of the intuitions that we have accumulated about the nature of flow problems,
and having a flow with no source is only one of the oddities we will encounter.

We will immediately give a formulation of the problem involving a skew symmetry
condition. We assume that if there is an arc (i, j) ∈ A, there is also an arc (j, i) ∈ A,
and that γ(i, j) = 1/γ(j, i). Then pushing 1 unit of flow from i to j on (i, j) results in
γ(i, j) units at j, while pushing the γ(i, j) units back on (j, i) results in the original

157

158 Generalized Flow Algorithms

$

e

U £

9
10

136

3
4

8
1000 185

3
2

Figure 6.1 Example of generalized flow as modeling currency exchange.
Arcs are labeleing with their gain, and we assume for each arc (i, j) with
gain γ(i, j) there is an arc (j, i) with gain 1/γ(i, j).

i j

f(i, j)
gain γ(i, j)

γ(i, j)f(i, j)

−γ(i, j)f(i, j)
gain 1/γ(i, j)

−f(i, j)

Figure 6.2 Example showing skew symmetry for generalized flow.

single unit of flow. Our skew symmetry condition cannot simply be f(i, j) = −f(j, i);
we want it to be the case that the flow entering i from (j, i) is the negative of the flow
leaving i on (i, j). Thus since f(i, j) units leave i on (i, j) and γ(j, i)f(j, i) enter i
from (j, i), we want f(i, j) = −γ(j, i)f(j, i). See Figure 6.2. We can now define the
notion of a generalized pseudoflow, in which the flow obeys both capacity and skew
symmetry constraints.

Definition 6.1: A generalized pseudoflow f : A → < is an assignment of reals to
arcs such that:

• for all arcs (i, j) ∈ A,

f(i, j) ≤ u(i, j); (6.1)

• for all arcs (i, j) ∈ A,

f(i, j) = −γ(j, i)f(j, i). (6.2)

We would now like to define the notion of an excess at a node, so that we can
define a flow as one with flow conservation everywhere except at the sink. But again,
the definition is slightly tricky. Our usual notion is that the excess is the net flow
entering a node, which previously skew symmetry allowed us to express as the sum of
the flows on the arcs entering the node. But here again, the flow entering a node i on

6.1 Optimality Conditions 159

arc (k, i) is not f(k, i) but γ(k, i)f(k, i). By the skew symmetry condition (6.2), this
is equal to −f(i, k). Thus we can write the net flow entering a node as the negative
of the sum of flows on arcs leaving the node.

Definition 6.2: The excess of a generalized pseudoflow f at node i ∈ V is the net
flow entering i, or −

∑
k:(i,k)∈A f(i, k), and we denote it ef (i).

We can now define what we mean by a flow and a proper flow.

Definition 6.3: A generalized flow (or flow) f is a pseudoflow such that ef (i) ≥ 0
for all i ∈ V . A generalized proper flow (or proper flow) f is a flow such that
ef (i) = 0 for all i ∈ V , i 6= t.

The goal of the generalized maximum flow problem is to find a (proper) flow that
maximizes the excess at the sink. We call the excess at the sink the value of the flow.

Definition 6.4: The value of a (proper) flow f is ef (t) and is denoted |f |.
For the moment, we will concentrate on proper flows.

6.1 Optimality Conditions

We now begin a discussion of how we can tell whether a given proper flow f is
maximum. As in previous chapters, the notion of a residual graph Gf = (V,A) is
useful. For a pseudoflow f , the residual capacity is uf (i, j) = u(i, j)− f(i, j) for all
(i, j) ∈ A. We will also let Af denote the arcs with positive residual capacity, so that
Af = {(i, j) ∈ A : uf (i, j) > 0}.

In order to discuss the analog of an augmenting path, we need to introduce the
concept of the gain of a path and the gain of a cycle. The gain of a path P is simply
the product of the gains of the arcs on the path, and we denote it γ(P), so that
γ(P) =

∏
(i,j)∈P γ(i, j). Similarly, the gain of a cycle C is the product of the gains

of the arcs on the cycle, and we denote it γ(C), so that γ(C) =
∏

(i,j)∈C γ(i, j). We
distinguish various types of cycles depending on their gain.

Definition 6.5: A cycle C is flow-generating if γ(C) > 1, flow-absorbing if γ(C) <
1, and unit-gain if γ(C) = 1.

We note that if we push a unit of flow around a flow-generating cycle C starting at
some i ∈ C, then the net flow entering i is positive: one unit leaves i and more than
one unit enters i. Similarly, pushing a unit of flow around a flow-absorbing cycle C
starting at some i ∈ C yields less than a unit of flow entering i, and thus a negative
net flow entering i.

We can now give the analog of an augmenting path for generalized flow, called a
generalized augmenting path, or GAP for short. See Figure 6.3 for examples.

Definition 6.6: A generalized augmenting path (GAP) is a flow-generating cycle
C in Af together with a path P in Af (possibly empty) from some i ∈ C to the sink
t.

The natural analog of the augmenting path algorithm for the maximum flow prob-

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

160 Generalized Flow Algorithms

C

P

t C t

Figure 6.3 Two examples of generalized augmenting paths; the right
example has an empty path from the cycle C to the sink t.

lem turns out to be true: a proper flow f is maximum if and only if there are no
generalized augmenting paths in the arcs of positive residual capacity Af .

We now show that sending flow along a GAP in Af increases the value of the flow.
To this end, we let χ(Γ) denote the characteristic flow on a GAP Γ ⊆ Af : If the

GAP has a path to t starting at node i on the cycle C, and arc (i, j) is the arc on C
leaving i, the characteristic flow is what results from sending a unit of flow on the
arc (i, j) of the GAP. Then γ(C) units of flow enter i; to maintain flow conservation,
we send γ(C) − 1 units of flow along the i-t path P , so that γ(C) units of flow
enter i and 1 + (γ(C) − 1) units leave i. Then γ(P)(γ(C) − 1) units of flow enter
the sink t. For any arc (i, j) ∈ Γ, let χ(Γ, i, j) be the amount of flow on (i, j) in
the characteristic flow, and let |χ(Γ)| be the flow entering t from the characteristic
flow, so that |χ(Γ)| = γ(P)(γ(C) − 1). We say that we cancel a GAP Γ ⊆ Af if
we find a scaling of the characteristic flow χ(Γ) such that the residual capacities are
all respected and some arc (i, j) is saturated; that is, we find some δ > 0 such that
0 ≤ δ · χ(Γ, i, j) ≤ uf (i, j) for all (i, j) ∈ Γ and δ · χ(Γ, i, j) = uf (i, j) for some
(i, j) ∈ Γ. Thus δ = min(i,j)∈Γ uf (i, j)/χ(Γ, i, j). We then update f by setting

f ′(i, j) =

f(i, j) + δ · χ(Γ, i, j) ∀(i, j) ∈ Γ
f(i, j)− γ(i, j) · δ · χ(Γ, j, i) ∀(j, i) ∈ Γ
f(i, j) ∀(i, j) : (i, j), (j, i) /∈ Γ

(6.3)

We leave it as an exercise to the reader (Exercise 6.1) to prove that f ′ is a (proper)
flow if f is a (proper) flow. We observe that canceling the GAP Γ increases the net
flow into the sink by δ|χ(Γ)|, so that |f ′| = |f |+δ|χ(Γ)| = |f |+δ(γ(C)−1)γ(P) >
|f |.

Finally, to prove our optimality theorem it will be useful to introduce the concept
of a labeling of the nodes of the graph. Node labels play a role very similar to node
potentials for the minimum-cost circulation problem, and they are similarly useful
in devising algorithms for the generalized maximum flow problem.

Definition 6.7: A labeling µ : V → <≥0 is an assignment of nonnegative reals to
the nodes of the graph such that µ(t) = 1.

It is helpful to think of µ as a change in units of measurement at the nodes of the
graph; as an example, consider again the currency conversion application shown in
Figure 6.1. Rather than thinking about converting dollars to euros, we could think
about converting cents to euros. We let µ(i) be the ratio of new units to old units; in
the case of switching from dollars to cents, µ(i) = 100. The change in units affects

6.1 Optimality Conditions 161

the capacities, gains (conversion rates), flows, and excesses: If before we could convert
at most u dollars to euros at a rate of γ, now we can convert at most 100u cents to
euros at at a rate of γ. Also, if the conversion rate was γ euros per dollar before, the
rate becomes γ/100 euros per cent. A flow of f converting dollars to euros becomes
a flow 100f converting cents to euros, and an excess of e dollars becomes an excess
of 100e cents. Thus given a labeling µ, we have relabeled capacities, gains, flows, and
excesses that we denote uµ, γµ, fµ, and eµf respectively. These are related to the
initial values via the labels as follows:

uµ(i, j) = u(i, j)µ(i),

γµ(i, j) = γ(i, j)
µ(j)

µ(i)
,

fµ(i, j) = f(i, j)µ(i),

eµf (i) = ef (i)µ(i).

Since capacities are also relabeled, the relabeled residual capacity is uµf (i, j) =
uµ(i, j)− fµ(i, j). Then we let Aµf be the arcs of positive residual capacity, so that
Aµf = {(i, j) ∈ A : uµ(i, j) − fµ(i, j) > 0}. Observe that (i, j) ∈ Aµf if and only if
(i, j) ∈ Af and µ(i) > 0. We further note that after relabeling, we still have that
the relabeled gain γµ(i, j) is the reciprocal of the relabeled gain γµ(j, i) of the arc
in the opposite direction, since

γµ(i, j) = γ(i, j)
µ(j)

µ(i)
=

1

γ(j, i)

µ(j)

µ(i)
=

1

γµ(j, i)
.

Also, we note that since we require that µ(t) = 1 for any labeling, the relabeled
excess at the sink, eµf (t), is the same as the original excess, ef (t). Thus relabeling
does not change the value of the flow: |fµ| = |f |.

There is a particular labeling that is useful in some of the algorithms described in
this chapter called the canonical labeling. In the canonical labeling, µ(i) is the gain
of the highest gain path from i to the sink in the residual graph; that is,

µ(i) = max
i-t paths P⊆Af

γ(P);

we assume µ(i) = 0 if there is no path from i to t in Af . Using µ(i) is potentially
problematic for relabeling gains since it is possible we might divide a number by 0.
We will assume that γ(i, j)µ(j)/µ(i) = γ(i, j) if both µ(i) = µ(j) = 0. Note that
it cannot be the case that µ(i) = 0 while µ(j) > 0 for an arc (i, j) ∈ Af , since if j
can reach t in Af and (i, j) ∈ Af , then i can reach t in Gf as well.

We can find the canonical labeling by using shortest path computations in the
following way: We set c(i, j) = − log γ(i, j). Then we observe that for any path P ,∑

(i,j)∈P

c(i, j) = −
∑

(i,j)∈P

log γ(i, j) = − log
∏

(i,j)∈P

γ(i, j) = − log γ(P).

Thus finding an i-t path P of minimum cost gives the path of maximum gain. We

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

162 Generalized Flow Algorithms

know from Section 1.2 that in order for the shortest paths to the sink t to be well-
defined, there cannot be any negative-cost cycles that can reach t. A cycle C has
negative cost if and only if ∑

(i,j)∈C

c(i, j) < 0,

which holds if and only if ∑
(i,j)∈C

log γ(i, j) > 0,

which holds if and only if

log γ(C) > 0,

which is true if and only if γ(C) > 1; that is, if and only if C is flow-generating.
Thus we can compute canonical labels via a shortest-path computation when there
are no flow-generating cycles that can reach the sink t in Af ; namely, we can compute
canonical labels when there are no generalized augmenting paths in Af .

Note that in the same sense that node potentials verify that there are no negative-
cost cycles for the minimum-cost circulation problem, a canonical labeling verifies
that there are no generalized augmenting paths: If a canonical labeling exists, then
for any arc (i, j) ∈ Af such that j can reach the sink, it must be the case that
µ(i) ≥ γ(i, j)µ(j), since the gain of the highest gain path from i to t in Af is at
least gain γ(i, j) times the gain of the highest gain path from j to t in Af . Thus
γµ(i, j) = γ(i, j)µ(j)/µ(i) ≤ 1. If γµ(i, j) ≤ 1 for all arcs (i, j) ∈ Af such that j
can reach the sink, then it is clear that there cannot be any flow-generating cycles
with a vertex j that can reach t since

γ(C) =
∏

(i,j)∈C

γ(i, j)
µ(j)

µ(i)
= γµ(C) ≤ 1

for all C ⊆ Af where some vertex j ∈ C can reach t; the first equality holds because
all the labels µ(i) cancel going around cycle C. Thus there cannot be any generalized
augmenting paths in Af .

We can finally state and prove our optimality theorem.

Theorem 6.8: The following three statements are equivalent for a proper flow f :

1 f is a maximum proper flow;
2 there is no generalized augmenting path in Af ;
3 there are labels µ such that γµ(i, j) ≤ 1 for all (i, j) ∈ Aµf .

Proof We have already shown that if there is a GAP Γ in Af , then f is not a
maximum proper flow. Thus we have shown that (1) implies (2).

To show that (2) implies (3), let S ⊆ V be the nodes that can reach t via arcs in
Af . Then, since there are no GAPs in the residual graph, this implies that there are
no negative-cost cycles in the nodes of S using the costs c(i, j) = − log γ(i, j). Thus
we can compute a canonical labeling µ as described above. We observe that µ(i) > 0
if i ∈ S, and µ(i) = 0 if i /∈ S, so that (i, j) ∈ Aµf if and only if (i, j) ∈ Af and

6.1 Optimality Conditions 163

i ∈ S. For any (i, j) ∈ Aµf with i, j ∈ S, we note that the properties of the canonical
labeling imply that µ(i) ≥ γ(i, j)µ(j); if this is not the case, then there is a higher
gain i-t path by using arc (i, j) together with the path of gain µ(j) from j to the
sink. Therefore, for all (i, j) ∈ Aµf with i, j ∈ S,

γµ(i, j) = γ(i, j)
µ(j)

µ(i)
≤ 1.

If i /∈ S, then (i, j) /∈ Aµf . If i ∈ S, j /∈ S, then γµ(i, j) = 0 ≤ 1 since µ(j) = 0.
Finally, we show that (3) implies (1). Suppose we have a proper flow f and the

given labeling µ. Consider any other proper flow f̃ . Pick any arbitrary (i, j) ∈ A.
If fµ(i, j) < f̃µ(i, j) ≤ uµ(i, j), then fµ(i, j) < uµ(i, j) implies that (i, j) ∈ Aµf
and γµ(i, j) ≤ 1. If fµ(i, j) > f̃µ(i, j), then by skew symmetry −γ(j, i)fµ(j, i) >
−γ(j, i)f̃µ(j, i) or fµ(j, i) < f̃µ(j, i). Following the same logic as previously, then
γµ(j, i) ≤ 1, so that γµ(i, j) ≥ 1. Thus for any (i, j) ∈ A we have that (γµ(i, j) −
1)(fµ(i, j)− f̃µ(i, j)) ≥ 0. Summing over all arcs, we get that∑

(i,j)∈A

(γµ(i, j)− 1)(fµ(i, j)− f̃µ(i, j)) ≥ 0.

Rewriting, we have∑
(i,j)∈A

γµ(i, j)(fµ(i, j)− f̃µ(i, j))−
∑

(i,j)∈A

(fµ(i, j)− f̃µ(i, j)) ≥ 0,

or, by skew symmetry,∑
(j,i)∈A

(f̃µ(j, i)− fµ(j, i))−
∑

(i,j)∈A

(fµ(i, j)− f̃µ(i, j)) ≥ 0. (6.4)

Recall that eµf (i) = −
∑

k:(i,k)∈A f
µ(i, k) and similarly for f̃ . Since the inequality

above sums over all arcs, it implies that∑
i∈V

eµf (i)−
∑
i∈V

eµ
f̃
(i) ≥ 0. (6.5)

Since both f and f̃ are proper flows, we have that eµf (i) = eµ
f̃
(i) = 0 for all i 6= t.

Thus

eµf (t) ≥ eµ
f̃
(t),

or, since µ(t) = 1,

ef (t) ≥ ef̃ (t),

so that |f | ≥ |f̃ |. Thus f is a maximum proper flow since f̃ was an arbitrary proper
flow.

As usual, our optimality theorem implies a natural algorithm in which we re-
peatedly find and cancel GAPs in the residual graph; we give the algorithm in Al-
gorithm 6.1. However, unlike the maximum flow problem and the minimum-cost
circulation problem, we cannot draw the usual conclusion of an integrality property

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

164 Generalized Flow Algorithms

f ← 0
while there is a GAP Γ in Af do

Cancel Γ
Update f

return f

Algorithm 6.1 GAP-canceling algorithm for the generalized maximum flow problem.

or a pseudopolynomial-time algorithms. Because gains are not integer valued, it is
not the case that flow values are integral, and residual capacities are therefore not
integral even if capacities are integral. We used the integrality property for flows and
circulations in many ways. One way in which we used the integrality property was
in determining when we had a maximum flow (or a minimum-cost circulation): if
the difference between the maximum flow value and our current flow value is less
than one, then we must have a maximum flow. Similarly, if the difference in cost
between the cost of our circulation and the minimum-cost circulation is less than
one, then we must have a minimum-cost circulation. In the case of generalized flows,
we do not have this convenience. One may or may not agree with the Kronecker
quote at the beginning of the chapter, but the lack of the integrality property for
generalized flows makes some issues considerably less than divine. Partially for this
reason, we will often focus only on computing near-optimal solutions. We define a
near-optimal solution as follows. Unfortunately, the name is similar to that used in
a different way for ε-optimal circulations and pseudoflows in the previous chapter;
however, because it is standard in the literature, we will use the name despite the
possibility for confusion.

Definition 6.9: A proper flow f is an ε-optimal proper flow if |f | ≥ (1− ε)|f∗|, for
f∗ a maximum proper flow.

We can indeed find a maximum proper flow when we have found an ε-optimal flow
for ε sufficiently small; but ε must be quite small. We state the following theorem
without proof. Recall that we assume that the capacities are integers and the gains
are expressed as the ratio of integers, and we let B denote the largest integer used
in expressing both the capacities and the gains.

Theorem 6.10: If we find an ε-optimal proper flow with ε < 1/(m! ·B2m), then we
can find a maximum proper flow in O(m2n) time.

Nevertheless, we are able to compute ε-optimal proper flows and maximum proper
flows in polynomial time, as we will see in the next few sections.

We conclude this section by discussing a variant of the flow problem above. We
have so far discussed computing proper flows and our optimality theorem is for proper
flows, but it is sometimes useful to think about computing maximum generalized
flows in which excesses can exist at nodes. Furthermore, it is also sometimes useful
to consider the case in which there are supplies that are part of the input to the
problem; we did not earlier discuss this possibility in order to focus on the issue of

6.1 Optimality Conditions 165

flow creation via flow-generating cycles and GAPs. Thus we have as an additional
input a supply b(i) ≥ 0 for all i ∈ V . Then the excess ef (i) of flow f at node i is

ef (i) = b(i)−
∑

k:(i,k)∈A

f(i, k).

If we introduce labels µ, then the relabeled supply bµ(i) = b(i)µ(i), so that again
eµf (i) = bµ(i)−

∑
k:(i,k)∈A f

µ(i, k) = ef (i)µ(i). In this case, we may have augmenting
paths that push flow from nodes with positive excess to the sink. Then our optimality
theorem becomes the following.

Theorem 6.11: The following three statements are equivalent for a generalized flow
f :

1 f is a maximum flow;

2 there is no generalized augmenting path or augmenting path in Af ;

3 there are labels µ such that γµ(i, j) ≤ 1 for all (i, j) ∈ Aµf and eµf (i) = 0 for all
i 6= t.

Proof The proof is similar to the proof of Theorem 6.8. Clearly if there is a GAP
or an augmenting path from a node with positive excess to the sink in the residual
graph, the flow is not maximum, so we have that (1) implies (2).

The proof that (2) implies (3) is similar to the proof of the same implication for
Theorem 6.8. The only remaining item to note is that (2) implies that the only
nodes with positive excess ef (i) > 0 are those that cannot reach the sink t via arcs
in Af . Thus in the canonical labeling, such nodes i receive a label µ(i) = 0, so that
eµf (i) = 0 for all i ∈ V .

Finally, to prove that (3) implies (1), we note that we did not use the fact that f
or f̃ were proper flows to derive Inequality (6.4); it is sufficient that they are flows.
By adding and subtracting 2

∑
i∈V b

µ(i) to the left-hand side of Inequality (6.4), we
obtain

2
∑
i∈V

bµ(i)− 2
∑
i∈V

bµ(i) +
∑

(j,i)∈A

(f̃µ(j, i)− fµ(j, i))−
∑

(i,j)∈A

(fµ(i, j)− f̃µ(i, j)) ≥ 0.

From this we can rederive Inequality (6.5) (recall that in this setting, eµf (i) = bµ(i)−∑
k:(i,k)∈A f

µ(i, k)), so that we have that∑
i∈V

eµf (i)−
∑
i∈V

eµ
f̃
(i) ≥ 0.

By hypothesis, eµf (i) = 0 for all i 6= t, so that Inequality (6.5) implies that

eµf (t) ≥
∑
i∈V

eµ
f̃
(i) ≥ eµ

f̃
(t),

since f̃ is a flow. Thus ef (t) ≥ ef̃ (t) since µ(t) = 1, and |f | ≥ |f̃ |. Since f̃ was an
arbitrary flow, f must be maximum.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

166 Generalized Flow Algorithms

C1 C2

γ(C1) > 1 γ(C2) < 1

P

Figure 6.4 A bicycle consists of a flow-generating cycle C1 connected to a
flow-absorbing cycle C2 by a path P .

6.2 A Wallacher-Style GAP-Canceling Algorithm

For this section, we assume that we are trying to find a maximum generalized proper
flow, so that b(i) = 0 for all i ∈ V . Our first polynomial-time algorithm for general-
ized flow is an adaptation of Wallacher’s algorithm of Section 5.2 for the minimum-
cost circulation problem.

In order to analyze Wallacher’s algorithm, we needed a flow decomposition lemma
for circulations, which the reader proved in Exercise 5.1. The analogous decompo-
sition for generalized flows is somewhat more complicated. It can be shown that a
proper flow can be decomposed into generalized augmenting paths, unit-gain cycles,
or a structure called a bicycle, which is a flow-generating cycle connected by a path
to a flow-absorbing cycle; see Figure 6.4. We have the reader prove the following
lemma in Exercise 6.2.

Lemma 6.12: Any proper flow f can be decomposed into proper flows f1, f2, . . . , f`,
` ≤ m, such that f =

∑`
i=1 fi, |f | =

∑`
i=1 |fi|, and for each i, the arcs of fi of

positive flow are a generalized augmenting path, a unit-gain cycle, or a bicycle.

Recall the characteristic flow χ(Γ) for a GAP Γ. Suppose we have a proper flow
f . If we cancel a GAP Γ in Af , then we increase the flow on arcs in Γ by δ · χ(Γ)
where δ = min(i,j)∈Γ uf (i, j)/χ(Γ, i, j). The increase in flow value is δ|χ(Γ)|. Thus
if we want to find the GAP that results in the greatest improvement in the value of
the flow, we would find the GAP that maximizes

|χ(Γ)| · min
(i,j)∈Γ

uf (i, j)

χ(Γ, i, j)
=

|χ(Γ)|
max(i,j)∈Γ

χ(Γ,i,j)

uf (i,j)

.

As we did in Wallacher’s algorithm, we replace the max in the denominator with a
sum, so that for a given Γ, we have the ratio

β(Γ) =
|χ(Γ)|∑

(i,j)∈Γ
χ(Γ,i,j)

uf (i,j)

.

For a given proper flow f , we search for the GAP Γ in Af that maximizes the ratio;
that is, we want the GAP that achieves

β(f) = max
Γ⊆Af

|χ(Γ)|∑
(i,j)∈Γ

χ(Γ,i,j)

uf (i,j)

.

6.2 A Wallacher-Style GAP-Canceling Algorithm 167

f ← 0
repeat m ln 1

ε
times

Let Γ be a GAP in Af such that β(Γ) = β(f)
Cancel Γ
Update f

return f

Algorithm 6.2 An ε-approximate Wallacher-style GAP-canceling algorithm for the
generalized maximum flow problem.

We summarize the resulting algorithm in Algorithm 6.2.
As with Wallacher’s algorithm for the minimum-cost circulation problem, we show

that canceling the GAP Γ that achieves β(f) increases the value of proper flow f
by at least a 1/m factor of the difference between the maximum flow value and the
current flow value.

Lemma 6.13: Let f be a proper flow and f∗ a maximum proper flow. Then β(f) ≥
1
m

(|f∗| − |f |).

Proof By a standard argument (at this point), we can show that f∗− f is a proper
flow in Gf of value |f∗| − |f |. By using Lemma 6.12, we can decompose f∗ − f
into f1, . . . , fh corresponding to at most m GAPs, bicycles, and unit-gain cycles. Let
Γ1, . . . ,Γ` be the GAPs, and let δk be such that fk = δk · χ(Γk) for k = 1, . . . , `.
Then

|f∗| − |f | =
∑̀
k=1

|fk| =
∑̀
k=1

δk|χ(Γk)|

=
∑̀
k=1

β(Γk)

 ∑
(i,j)∈Γk

δk · χ(Γk, i, j)

uf (i, j)

≤ β(f)

∑̀
k=1

 ∑
(i,j)∈Γk

δk · χ(Γk, i, j)

uf (i, j)

= β(f)

∑
(i,j)∈Af

1

uf (i, j)

∑
k:(i,j)∈Γk

δk · χ(Γk, i, j),

≤ β(f) ·m,

because for each arc (i, j) ∈ Af ,
∑

k:(i,j)∈Γk
δk · χ(Γk, i, j) ≤ uf (i, j), as δk · χ(Γk)

gives a decomposition of a flow in Gf .

Lemma 6.14: Let f be a proper flow and let Γ be a GAP in Af . Canceling Γ

increases the value of the flow by at least β(Γ). In particular, if β(Γ) ≥ β̂ for some

β̂, then the value of the flow is increased by at least β̂.

Proof Recall that we increase the flow f on the arcs of Γ by δ · χ(Γ), where δ =

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

168 Generalized Flow Algorithms

min(i,j)∈Γ uf (i, j)/χ(Γ, i, j). Thus the value of the flow increases by

δ|χ(Γ)| = β(Γ)

 ∑
(i,j)∈Γ

δ · χ(Γ, i, j)

uf (i, j)

 ≥ β(Γ) ≥ β̂,

since δ = uf (i, j)/χ(Γ, i, j) for some arc (i, j) ∈ Γ.

We can now combine the previous two lemmas into a theorem with a proof very
similar to that of Theorem 5.6 for the most improving algorithm for the minimum-
cost circulation problem. The only significant difference is the termination condition.

Theorem 6.15: Algorithm 6.2 terminates with an ε-optimal proper flow in m ln 1
ε

iterations.

Proof The iteration count is by construction of the algorithm. Let f (k) be the proper
flow resulting from the algorithm after k iterations if we start with proper flow f . If
in each iteration we cancel a GAP Γ such that β(f) = β(Γ), we get from Lemmas
6.13 and 6.14 that the resulting proper flow f (1) has value at least

|f (1)| ≥ |f |+ β(f) ≥ |f |+ 1

m
(|f∗| − |f |).

Thus

|f∗| − |f (1)| ≤
(

1− 1

m

)
(|f∗| − |f |) ,

and after k iterations,

|f∗| − |f (k)| ≤
(

1− 1

m

)k
(|f∗| − |f |) .

Thus if we set k = m ln 1
ε

and use 1− x < e−x for x 6= 0, we have that

|f∗| − |f (k)| < e− ln(1/ε)|f∗| = ε|f∗|,

so that |f (k)| > (1− ε)|f∗| and hence f (k) is an ε-optimal proper flow.

Rather than explain how to find the GAP Γ such that β(f) = β(Γ), we turn
instead to a scaling version of the algorithm, just as we had a scaling version of the
most improving path algorithm for the maximum flow problem (in Section 2.5) and a
scaling version of Wallacher’s algorithm for the minimum-cost circulation problem (in

Section 5.2). As before, we maintain a scaling parameter β̂, and we find GAPs such

that β(Γ) ≥ β̂. To do this, we introduce costs on the arcs: we let c(i, j) = β̂/uf (i, j),
and we introduce a new sink t′, and a new arc (t, t′) of cost c(t, t′) = −1 and gain
γ(t, t′) = 1. Let G′f denote this new residual graph with costs and the extra arc (t, t′).
We consider the cost of a GAP c(Γ) which we define to be

∑
(i,j)∈Γ c(i, j)χ(Γ, i, j);

that is, the cost of each arc gets multiplied by the characteristic flow for the GAP
on the arc. We say that Γ has negative-cost if and only if c(Γ) < 0. Then we have
the following.

6.2 A Wallacher-Style GAP-Canceling Algorithm 169

f ← 0

β̂ ← B2

while β̂ > ε
2m
|f | do

Create G′f by adding t′, (t, t′) with γ(t, t′) = 1 to Gf

Set c(t, t′) = −1, c(i, j) = β̂/uf (i, j) in G′f for all (i, j) ∈ Af
if there is GAP Γ in G′f with c(Γ) < 0 then

Cancel Γ
Update f

else

β̂ ← β̂/2

return f

Algorithm 6.3 A scaling version of the Wallacher-style GAP-canceling algorithm for
the generalized maximum flow problem.

Lemma 6.16: For a GAP Γ, c(Γ) < 0 in the new graph G′f if and only if β(Γ) > β̂
in the original residual graph Gf .

Proof Clearly the cost is negative if and only if

c(Γ) = β̂
∑

(i,j)∈Γ:(i,j)6=(t,t′)

χ(Γ, i, j)

uf (i, j)
− |χ(Γ)| < 0,

which holds if and only if

β̂ <
|χ(Γ)|∑

(i,j)∈Γ:(i,j)6=(t,t′)
χ(Γ,i,j)

uf (i,j)

= β(Γ)

in the original residual graph Gf .

Then the algorithmic idea is clear: we find negative-cost GAPs in G′f (if they exist)

and cancel them in Gf . If none exist, we divide β̂ by two, and repeat. To start with,

we initialize β̂ to B2: Canceling any GAP can increase the value of flow by at most
the maximum capacity of an arc times the maximum gain. We can upper bound both
the arc capacity and the maximum gain by B, so that B2 upper bounds the amount
by which the value can increase by canceling any GAP. We summarize these ideas
in Algorithm 6.3.

Of course, in order for this algorithm to work, we need to have a subroutine that
will detect and return a negative-cost GAP if one exists. In Section 6.3, we will show
the following theorem. The algorithm is very similar to the Bellman-Ford algorithm
of Section 1.3 for detecting negative-cost cycles, although the analysis is somewhat
more involved. For the algorithm to work, the graph must not have a negative-cost
unit gain cycle or a negative-cost bicycle. In our algorithm, the only arc in G′f with
negative cost is the edge (t, t′), and there are no arcs out of t′, so there cannot be
any negative-cost unit gain cycles or bicycles in G′f .

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

170 Generalized Flow Algorithms

Theorem 6.17: We can detect and return a negative-cost GAP in O(mn) time if
the graph has no negative-cost unit gain cycles and no negative-cost bicycles.

The analysis of Algorithm 6.3 is similar to that of the scaling algorithms mentioned
previously. We define a β̂-scaling phase to be the iterations of the algorithm for a
fixed value of β̂. We show that we cannot have too many iterations per β̂-scaling
phase.

Lemma 6.18: There are at most 2m iterations per β̂-scaling phase.

Proof We argued previously that canceling any GAP can increase the value of the
flow by at most B2, and we know from Lemma 6.14 that canceling any GAP Γ
increases the value of the flow by at least β(Γ). Because we initialize β̂ to B2, we

know that initially β(Γ) ≤ β̂ for any GAP Γ ⊆ Af . Furthermore, by Lemma 6.16,

when there are no more negative-cost GAPs in G′f , ending the current β̂-scaling

phase, it is the case that β(Γ) ≤ β̂ for any GAP Γ ⊆ Af ; this is true also for the

GAP Γ ⊆ Af such that β(f) = β(Γ). Thus by Lemma 6.13, at the end of a β̂-scaling

phase, β̂ ≥ β(f) ≥ 1
m

(|f∗| − |f |). At the end of the β̂ scaling phase, we divide β̂

by two, so that at the start of the next β̂-scaling phase, β̂ ≥ 1
2m

(|f∗| − |f |). If we

start with flow f at the beginning of this β̂-scaling phase, by Lemma 6.16 each GAP
canceled increases the value of the flow by at least β(Γ) > β̂ ≥ 1

2m
(|f∗| − |f |). Thus

after k cancelations, the value of the flow is at least |f | + k
2m

(|f∗| − |f |). So after
2m iterations, the value of the flow is at least |f∗|, so that there are no additional

iterations possible in the β̂-scaling phase.

We also need to argue that we have an ε-optimal proper flow when we terminate.

Lemma 6.19: Algorithm 6.3 terminates with an ε-optimal proper flow.

Proof As we argued in the proof of Lemma 6.18, at the start of a β̂-scaling phase,
β̂ ≥ 1

2m
(|f∗|− |f |). Thus if β̂ ≤ ε

2m
|f |, we have that |f∗|− |f | ≤ ε|f | ≤ ε|f∗|, which

implies that |f | ≥ (1− ε)|f∗|.
We will show in Section 6.3 how we can find a negative-cost GAP in O(mn) time,

given that there are no negative-cost unit-gain cycles or bicycles in G′f . Given this
running time, we can bound the running time of Algorithm 6.3. We assume that
|f∗| > 0. We can remove this assumption by using the negative-cost GAP algorithm
to initially test whether there are any GAPs in the residual graph Gf for f = 0. If
not, then f = 0 is optimal. Otherwise it must be the case that |f∗| > 0. We need
this assumption in order to invoke the following lemma, whose proof we omit; see
the chapter notes for a pointer to a proof.

Lemma 6.20: If |f∗| > 0, then |f∗| ≥ 1/(m!B2m).

We can now bound the number of iterations of the algorithm.

Theorem 6.21: Assuming |f∗| > 0, Algorithm 6.3 computes an ε-optimal proper
flow in O(m2n log mB

ε
) time.

Proof We split the β̂-scaling phases into two types: those before the first GAP

6.3 Negative-Cost GAP Detection 171

is canceled, and those afterwards. For those of the first type, we need only one
negative-cost GAP detection per β̂-scaling phase. From the proof of Lemma 6.18
and from Lemma 6.20, we know that at the start of each such β̂-scaling phase,
β̂ ≥ 1

2m
(|f∗|−|f |) = 1

2m
|f∗| ≥ 1

2m·m!B2m since |f | = 0 until the first GAP is canceled.

Thus we can have at most O(log(2m ·m!B2m)) = O(m log(mB)) β̂-scaling phases
of the first type, and thus at most O(m log(mB)) negative-cost GAP subroutine
calls for scaling phases of the first type. Once the first GAP is canceled, we have by
Lemma 6.14 that the value of the flow becomes |f | ≥ β̂. From this point on, |f | only

increases and β̂ only decreases, so that it must take at most O(log 2m
ε

) β̂-scaling

phases of the second type before β̂ ≤ ε
2m
|f |. We have at most 2m negative-cost

GAP detections per β̂-scaling phase of the second type, for O(m log 2m
ε

) negative-

cost GAP subroutine calls for the β̂-scaling phases of the second type. Thus we need
O(m log(mB)) + O(m log m

ε
) = O(m log mB

ε
) negative-cost GAP subroutine calls

overall, for a total running time of O(m2n log mB
ε

).

Corollary 6.22: We can compute a maximum proper flow in O(m3n log(mB))
time.

Proof If we set ε < 1/m!B2m, then we can apply Theorem 6.10 and compute a
maximum proper flow from an ε-optimal flow.

6.3 Negative-Cost GAP Detection

In this section, we give the subroutine used to find a negative-cost GAP in the
algorithm of Section 6.2. We are given as input a graph G = (V,A) with costs c(i, j)
for all (i, j) ∈ A. The subroutine will find a negative-cost GAP if one exists assuming
the graph does not have any negative-cost unit-gain cycles or bicycles. We argued
previously that Algorithm 6.3 calls this subroutine with graphs that do not have
negative-cost unit-gain cycles or negative-cost bicycles.

As mentioned previously, the algorithm we give will be similar to the adaptation
of the Bellman-Ford algorithm for finding negative-cost cycles given in Section 1.3.
We will compute a value dk(i), which will be the minimum cost needed to send a
single unit of flow starting at i and ending at t on a path (possibly non-simple) of
exactly k arcs. Then inductively we have that

dk(i) = min
(i,j)∈A

(c(i, j) + γ(i, j)dk−1(j)) ,

since we incur a cost of c(i, j) to send one unit of flow from i to j on arc (i, j);
γ(i, j) units of flow arrive at j, and it costs γ(i, j)dk−1(j) to send γ(i, j) units of
flow from j to t on a path of exactly k−1 arcs. The details are given in Algorithm 6.4.
Unlike the Bellman-Ford algorithm, we run the algorithm for 2n iterations. We let
d(i) be the minimum value of dk(i) over all of the values of k from 0 to 2n. If for all
i ∈ V , we have d2n(i) ≥ d(i), then we can show that there is no negative-cost GAP;
this is similar to the last iteration of the negative-cost cycle detection algorithm in
Algorithm 1.6. Otherwise, for each i ∈ V , we look for the smallest value of k such

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

172 Generalized Flow Algorithms

d0(t)← 0; d0(i)←∞ for all i 6= t
for k ← 1 to 2n do

for i ∈ V do
dk(i)← min(i,j)∈A(c(i, j) + γ(i, j)dk−1(j))

for i ∈ V do
d(i)← mink=0,...,2n−1 dk(i)

if d2n(i) ≥ d(i) for all i ∈ V then
return (“No negative-cost GAP”)

for all i ∈ V do
Let k be the smallest value in [0, . . . , 2n− 1] such that dk(i) = d(i)
Trace back k arc walk defining d(i) to last repeated j before sink (if any).
Let C be cycle, if it exists, P the j-t path.

if C exists and γ(C) > 1 then
Let GAP Γ = C + P
return (Γ)

return (“No negative-cost GAP”)

Algorithm 6.4 Algorithm for negative-cost GAP detection.

that dk(i) = d(i) and trace the (possibly non-simple) path that defines dk(i) back
to the sink t. If the path is non-simple, we look for the repeated vertex j that is
closest to the sink, and use this to define a cycle C (that contains the repetition of
the vertex j) and a simple path P from j to the sink t (see Figure 6.5). If the cycle
C is such that γ(C) > 1, then we have found a GAP. We claim that the GAP must
have negative cost, and we return it. If we do not find a GAP after checking each
i ∈ V , then we claim that there is no negative-cost GAP. Below we prove our claims
to establish the correctness of the algorithm.

In what follows, we let the characteristic flow of C starting at node j be denoted
χ(C, j) and let it be the circulation that results on C that has a single unit of flow on
the arc (j, `) ∈ C directed out of j. Let χ(C, j, h, `) be this characteristic flow on the
arc (h, `). Then we denote the cost of C by c(C, j) =

∑
(h,`)∈C c(h, `) · χ(C, j, h, `).

Similarly, for sending a unit of flow on a path P starting at node j, let χ(P, j)
be the characteristic flow on the path P , and denote the cost of the path P by
c(P, j) =

∑
(h,`)∈P c(h, `) · χ(P, j, h, `).

Lemma 6.23: Let k be the smallest value in 0, 1, . . . , 2n− 1 such that dk(i) = d(i).
Consider the length k path from i to t that defines dk(i), and suppose that the path
is non-simple. Let j be the vertex that is closest to the sink that is repeated in the
path, and C the cycle in the path from the second-to-last appearance of j to the last
appearance of j, and P the path from the last appearance of j in the path to t, as in
Figure 6.5. Then d|P |+|C|(j) < d|P |(j).

Proof Let Q be the (possibly non-simple) path from i to the second-to-last appear-
ance of j in the path that defines dk(i). We have that d(i) = dk(i) = c(Q, i) +
γ(Q)d|P |+|C|(j). Also, since there is a path of k − |C| arcs from i to t, of the path

6.3 Negative-Cost GAP Detection 173

Q

C

P
i j t

Figure 6.5 Example of non-simple path created from i to t by dynamic
program of Algorithm 6.4.

Q followed by the path P , by the properties of the dynamic program, it must be the
case that dk−|C|(i) ≤ c(Q, i) + γ(Q)d|P |(j). Then if d|P |+|C|(j) ≥ d|P |(j) it follows
by combining the previous two inequalities that

d(i) = dk(i) = c(Q, i) + γ(Q)d|P |+|C|(j) ≥ c(Q, i) + γ(Q)d|P |(j) ≥ dk−|C|(i),

which contradicts either our definition of d(i) (if d(i) > dk−|C|(i)) or our choice of
k.

Lemma 6.24: If the algorithm returns a GAP Γ, then c(Γ) < 0.

Proof Suppose we are given path P and cycle C with node j as defined in the
statement of the previous lemma; because the algorithm returns a GAP, we know
that γ(C) > 1 and C is flow-generating, so that Γ is indeed a GAP. By Lemma 6.23,
d|P |+|C|(j) < d|P |(j). It is clear that

d|P |+|C|(j) = c(C, j) + γ(C)d|P |(j),

and d|P |(j) = c(P, j). Thus

0 > d|P |+|C|(j)− d|P |(j)
= c(C, j) + γ(C)c(P, j)− c(P, j)
= c(C, j) + (γ(C)− 1)c(P, j)

= c(Γ),

so that the lemma statement is proven.

Lemma 6.25: If the algorithm does not return a negative-cost GAP, then there is
no negative-cost GAP.

Proof We prove the lemma by contradiction. Suppose there is a negative-cost GAP
Γ consisting of a i-t path P (possibly empty) and a flow-generating cycle C containing
i. Let k be the smallest value in [0, 1, . . . , 2n− 1] such that d(i) = dk(i). Let Q be
the (possibly non-simple) length k path from i to t such that dk(i) = c(Q, i).

We first claim that Q cannot be a simple i-t path. Suppose otherwise. Then

c(Q, i) = dk(i) = d(i) ≤ d|P |(i) = c(P, i).

Then we claim that the GAP formed by the flow-generating cycle C and the i-t

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

174 Generalized Flow Algorithms

Q′

C′

P ′
i j t

Figure 6.6 Example of non-simple path Q created from i to t by dynamic
program in the proof of Lemma 6.25.

simple path Q is also a negative-cost GAP Γ′. To see this we note that

c(Γ′) = c(C, i) + (γ(C)− 1)c(Q, i) ≤ c(C, i) + (γ(C)− 1)c(P, i) = c(Γ) < 0. (6.6)

From this inequality, we conclude that

c(C, i) + γ(C)c(Q, i) < c(Q, i) = d(i).

But this implies that the walk that starts at i, follows C and then Q, is a i-t path
of cost less than d(i), so that d|C|+|Q|(i) < d(i). However, since |C|+ |Q| ≤ 2n− 1,
this contradicts the choice of k that defined d(i) = dk(i).

Since Q is non-simple, we now partition Q into three parts. Let j be the last
repeated vertex on the path Q from i to t, and let C ′ be the cycle defined by Q
between the second-to-last appearance of j in Q and the last appearance of j. Let P ′

be the path on Q from the last appearance of j to t. Let Q′ be the path from i to the
second-to-last appearance of j in Q (See Figure 6.6). By Lemma 6.23, d|C′|+|P ′|(j) <
d|P ′|(j), so that it must be the case that c(C ′, j) + γ(C ′)c(P ′, j) < c(P ′, j), or

c(C ′, j) + (γ(C ′)− 1)c(P ′, j) < 0. (6.7)

We now argue that it cannot be the case that C ′ is flow-generating, unit-gain,
or flow-absorbing, and thus the non-simple path Q cannot exist, completing the
contradiction.

If C ′ is flow-generating, then the algorithm will return the GAP formed by C ′ and
P ′, and by Inequality (6.7) it will be a negative-cost GAP.

If C ′ is unit-gain, then by Inequality (6.7) we have that c(C ′, j) < 0. Then C ′ is
a negative-cost unit-gain cycle, and by hypothesis there are no such cycles.

If C ′ is flow-absorbing, then we will show that the walk formed by the flow-
generating cycle C, the path Q′, and the flow-absorbing cycle C ′ forms a negative-
cost bicycle, and by hypothesis there are no negative-cost bicycles. We start by
determining the cost of a flow on the bicycle starting with a unit flow from i on C.
The cost c(C, i) the cost of the flow on the cycle C, resulting in γ(C)−1 units of flow
to send along the path Q′ at cost (γ(C) − 1)c(Q′, i), resulting in (γ(C) − 1)γ(Q′)
units of flow that are absorbed in the flow-absorbing cycle C ′ at cost

(γ(C)− 1)γ(Q′)c(C ′, j)
[
1 + γ(C ′) + γ(C ′)2 + γ(C ′)3 + · · ·

]
= (γ(C)− 1)γ(Q′) [c(C ′, j)/(1− γ(C ′))] .

6.4 Lossy Graphs, Truemper’s Algorithm, and Gain Scaling 175

Thus the cost of the bicycle is

c(C, i) + (γ(C)− 1)c(Q′, i) + (γ(C)− 1)γ(Q′)c(C ′, j)/(1− γ(C ′)). (6.8)

We will now show that this cost is negative. We know by Inequality (6.7) that

c(C ′, j) + γ(C ′)c(P ′, j) < c(P ′, j),

so that

c(P ′, j) > c(C ′, j)/(1− γ(C ′)).

From Inequality (6.6), we know that

c(C, i) + (γ(C)− 1)c(Q, i) < 0.

Then, after observing that

c(Q, i) = c(Q′, i) + γ(Q′)c(C ′, j) + γ(Q′)γ(C ′)c(P ′, j),

we get that

0 > c(C, i) + (γ(C)− 1)[c(Q′, i) + γ(Q′)c(C ′, j) + γ(Q′)γ(C ′)c(P ′, j)]

> c(C, i) + (γ(C)− 1)[c(Q′, i) + γ(Q′)c(C ′, j) + γ(Q′)γ(C ′)c(C ′, j)/(1− γ(C ′))]

= c(C, i) + (γ(C)− 1)

[
c(Q′, i) + γ(Q′)c(C ′, j)

(
1 +

γ(C ′)

1− γ(C ′)

)]
= c(C, i) + (γ(C)− 1)[c(Q′, i) + γ(Q′)c(C ′, j)/(1− γ(C ′))],

where the final expression is the cost of the bicycle from (6.8), showing that the cost
of the bicycle is negative.

Thus we have reached a contradiction, and it must be the case that if no negative-
cost GAP is returned, then none exists.

6.4 Lossy Graphs, Truemper’s Algorithm, and Gain Scaling

In this section, we turn to the case in which supplies b(i) may be non-zero and we
compute a maximum generalized flow, rather than a proper flow. In Section 6.2, we
gave an algorithm that used the part of the optimality theorem, Theorem 6.8, that
says that a proper flow is maximum if and only if there are no GAPs. In this section,
we use the other optimality theorem (Theorem 6.11) and give an algorithm that uses
the other condition: namely, a proper flow is maximum if and only if there are labels
µ such that γµ(i, j) ≤ 1 for all arcs (i, j) ∈ Aµf and eµf (i) = 0 for all i 6= t.

We first argue that in the case of finding a flow (instead of a proper flow), we can
reduce to the case of a lossy graph: a lossy graph is one in which all arcs (i, j) of
positive capacity have gain γ(i, j) ≤ 1. To reduce to the case of a lossy graph, we
cancel all flow-generating cycles, which allows us to compute labels such that the
resulting relabeled residual graph is lossy. In Exercise 6.4, we have the reader show
that we can use our previous negative-cost cycle-canceling algorithms to cancel all
flow-generating cycles in O(m2n3 log(nB)) time. In particular, for a flow-generating
cycle C, we pick some arc (i, j) ∈ C. If we push δ units of flow on (i, j) to cancel

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

176 Generalized Flow Algorithms

Algorithm: ReduceToLossy(Ḡ, ū, γ̄, b̄)

f̄ ← 0
while there is a flow-generating cycle C in Āf̄ do

Pick i ∈ C, let δ be amount of flow needed to cancel C

Cancel C and update f̄

b̄← ef̄
Compute canonical labels µ̄ in Ḡf̄

return (Ḡ, ūµ̄
f̄
, γ̄µ̄, b̄µ̄, f̄ µ̄)

Algorithm 6.5 Algorithm to reduce to case of lossy graphs.

C, then an excess of δ(γ(C) − 1) units of flow results at node i, and we increase
b(i) by δ(γ(C) − 1). Recall from Section 6.1 that we can compute canonical labels
by setting costs c(i, j) = − log γ(i, j) when there are no flow-generating cycles that
can reach the sink, and the resulting labels µ are such that γµ(i, j) ≤ 1 for each arc
(i, j) of positive residual capacity. Thus the relabeled residual graph is lossy, and has
nonnegative supplies bµ(i) for all nodes i. See Algorithm 6.5 for a summary.

We now show that if we can find a maximum flow in the lossy graph returned by
Algorithm 6.5, then we can find a maximum flow in the original graph.

Lemma 6.26: Let f̄ be the flow computed by Algorithm 6.5, and µ̄ be the canonical
labels. Then for a maximum flow f computed in the output lossy graph, the flow
f + f̄ µ̄ is maximum for the original input graph relabeled by µ̄.

Proof Let Ḡ be the original input graph, with capacities ū, gains γ̄, and supplies
b̄. The algorithm computes flow f̄ and labels µ̄, and outputs graph G = Ḡ with
capacities u = ūµ̄

f̄
, gains γ = γ̄µ̄, and supplies b = eµ̄

f̄
. If we compute a maximum

flow f in the output graph, we have labels µ such that γµ(i, j) ≤ 1 for all arcs
(i, j) ∈ Af , and eµf (i) = 0 for all i 6= t. We now wish to argue that gµ̄ = f + f̄ µ̄ is a
maximum flow for the original input instance relabeled with µ̄.

The flow g obeys capacity constraints in the original (relabeled) instance since for
any (i, j) ∈ A,

f(i, j) ≤ u(i, j) = ūµ̄
f̄
(i, j) = ūµ̄(i, j)− f̄ µ̄(i, j) (6.9)

so that f(i, j)+ f̄ µ̄(i, j) ≤ ūµ̄(i, j). Furthermore, g obeys skew-symmetry since both
f and f̄ µ̄ obey skew-symmetry, so that

gµ̄(i, j) = f(i, j) + f̄ µ̄(i, j) = −γ(j, i)f(j, i)− γ̄µ̄(j, i)f̄ µ̄(j, i)

= −γ̄µ̄(j, i)f(j, i)− γ̄µ̄(j, i)f̄ µ̄(j, i)

= −γ̄µ̄(j, i)gµ̄(j, i).

6.4 Lossy Graphs, Truemper’s Algorithm, and Gain Scaling 177

Given input supplies b̄ for the original instance, we have that

eµ̄g (i) = b̄µ̄(i)−
∑

k:(i,k)∈A

gµ̄(i, k)

= b̄µ̄(i)−
∑

k:(i,k)∈A

f(i, k)−
∑

k:(i,k)∈A

f̄ µ̄(i, k)

= b̄µ̄(i) + (ef (i)− b(i)) + (eµ̄
f̄
(i)− b̄µ̄(i))

= ef (i),

using that b(i) = eµ̄
f̄
(i). Thus eµ̄g (i) = ef (i) ≥ 0 for all i 6= t, and we have shown

that gµ̄ is a feasible flow in the original input instance relabeled with µ̄.
We now want to show that the flow g is maximum. Since we know that f is a

maximum flow in the instance output by the algorithm, we know there are labels
µ such that γµ(i, j) ≤ 1 for all arcs (i, j) ∈ Af , and eµf (i) = 0 for all i 6= t. So if
there is positive residual capacity on the arc (i, j) for the flow gµ̄, then by Inequality
(6.9), gµ̄(i, j) < ūµ̄(i, j) implies that f(i, j) < ūµ̄

f̄
(i, j) or f(i, j) < u(i, j), so that

γµ(i, j) ≤ 1 for this arc. Additionally, we know from above that eµ̄g (i) = ef (i) for
all i 6= t, so that eµ̄g (i)µ(i) = ef (i)µ(i) = eµf (i) = 0 for all i 6= t. Thus for the labels
µ̄ · µ, we have that in the original input instance γ̄µ̄µ(i, j) ≤ 1 for arcs (i, j) with
positive residual capacity for flow g, and eµ̄µg (i) = 0 for all i 6= t, which proves that
g is maximum for the original input instance.

Corollary 6.27: Let f̄ be the flow computed by Algorithm 6.5, and µ̄ be the canonical
labels. Then if f is an ε-approximate flow computed in the output lossy graph, the
flow f + f̄ µ̄ is an ε-approximate flow for the original input graph relabeled by µ̄.

Proof If f∗ is the maximum flow in the output graph of Algorithm 6.5, we have
that |f | ≥ (1− ε)|f∗|, or that ef (t) ≥ (1− ε)ef∗(t). From the lemma, we know that
g = f∗ + f̄ µ̄ is a maximum generalized flow for the original input graph, and from
the proof we know that eµ̄g (t) = ef∗(t). Following the same logic, we have that flow

h = f + f̄ µ̄ is feasible, and eµ̄h(t) = ef (t), so that

eµ̄h(t) = ef (t) ≥ (1− ε)ef∗(t) = (1− ε)eµ̄g (t),

and the corollary statement follows.

Given a lossy graph, we will then push excesses from the supplies to the sink along
augmenting paths P . Once there are no excesses at nodes that can reach the sink,
the relabeled excesses are all 0, and by Theorem 6.11, the flow must be maximum.

Our first algorithm for pushing excesses to the sink works as follows. Given the
lossy graph, we know there cannot be any flow-generating cycles in the graph, so
that we can compute canonical labels µ. We then push as much excess to the sink
as possible along paths consisting of arcs whose relabeled gains γµ(i, j) = 1; we do
this by computing a maximum s-t flow (in the sense of Chapter 2) on these arcs
with a new source vertex added. If a relabeled gain γµ(i, j) = 1, then we have that
µ(i) = γ(i, j)µ(j). Since for a canonical labeling, µ(i) is the gain of the highest gain
path from i to t, if µ(i) = γ(i, j)µ(j), then the arc (i, j) must be on the highest gain

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

178 Generalized Flow Algorithms

(G, u, γ, b, f̄)← ReduceToLossy(Ḡ, ū, γ̄, b̄)
f ← 0
while there is i with ef (i) > 0 and i can reach t in Gf do

Compute canonical labels µ
A′ ← {(i, j) ∈ Af : γµ(i, j) = 1}
u′(i, j)← uµf (i, j)

Add vertex s′

A′ ← A′ ∪ {(s′, i) : eµf (i) > 0, i 6= t}, u′(s′, i) = eµf (i), i 6= t

Compute s′-t max flow f ′ in (V ∪ {s}, A′) with capacities u′

fµ ← fµ + f ′

return f + f̄

Algorithm 6.6 Truemper’s algorithm.

path from i to t. After pushing excess to the sink on these arcs, we then recompute
canonical labels, and continue until there are no more paths from nodes with positive
excess to the sink. This algorithm is due to Truemper [198], and hence is known as
Truemper’s algorithm. We summarize Truemper’s algorithm in Algorithm 6.6.

We first show that the flow f remains feasible in each iteration.

Lemma 6.28: The flow f remains feasible in the lossy graph throughout the algo-
rithm.

Proof Initially, for f = 0, we have ef (i) = b(i) ≥ 0 for all i ∈ V , and f(i, j) ≤
u(i, j) for all (i, j) ∈ A. In each iteration, we compute canonical labels µ and a flow
f ′ such that f ′(i, j) ≤ uµf (i, j) for all (i, j) ∈ A, and by the choice of the capacities
u′(s′, i), we have that the net flow f ′ leaving i is at most eµf (i) for each i 6= t; that
is,
∑

k:(i,k)∈A f
′(i, k) ≤ eµf (i). We set the new flow to be fµ + f ′. Then the relabeled

flow on arc (i, j) is at most fµ(i, j) + uµf (i, j) = uµ(i, j). The relabeled excess at
node i 6= t is

bµ(i)−
∑

k:(i,k)∈A

(fµ(i, k) + f ′(i, k)) = eµf (i)−
∑

k:(i,k)∈A

f ′(i, k) ≥ 0.

Thus the new flow is feasible.

In order to be able to compute canonical labels in each iteration, we need to ensure
that the new flow fµ created at the end of each iteration maintains the property that
the residual graph is lossy.

Lemma 6.29: At the start of each iteration of the main loop of Algorithm 6.6, the
residual graph Gf is lossy.

Proof We prove the statement by induction on the algorithm. This initial graph
is lossy, so that at the beginning of the first iteration, after we compute canonical
labels, we have that γµ(i, j) ≤ 1 for every (i, j) ∈ Af . In each iteration, we only
modify flow on arcs (i, j) such that γµ(i, j) = 1. Thus we only introduce new residual

6.4 Lossy Graphs, Truemper’s Algorithm, and Gain Scaling 179

arcs on arcs (j, i) such that γµ(j, i) = 1/γµ(i, j) = 1. Thus it continues to be the
case at the end of the iteration that γµ(i, j) ≤ 1 for every (i, j) ∈ Af .

We can bound the number of iterations of the main loop in terms of the number
of different possible gains of paths. While this bound does not give a polynomial-
time algorithm, it prepares us for a polynomial-time algorithm that we will present
shortly.

Lemma 6.30: The number of iterations of the main loop of Algorithm 6.6 is no
more than the number of different possible gains of simple paths to the sink; that is,
the number of iterations is at most |{γ(P) : P an i-t path for any i}|.

Proof At the end of each iteration, there is no path P in Af from a node with
positive excess to the sink such that γµ(P) = 1, since otherwise we would have
pushed some of the excess to the sink along this path. Thus for any such path
P ⊆ Af , γµ(P) < 1.

Now consider the canonical labels µ̃ computed in the next iteration. For each
` ∈ V , µ̃(`) = γ(P) for some simple `-t path P ⊆ Af . We now show that µ̃(`) < µ(`).
To see this, we consider µ̃(`)/µ(`). Then

µ̃(`)

µ(`)
=

1

µ(`)
γ(P) =

µ(t)

µ(`)

∏
(i,j)∈P

γ(i, j)

=
∏

(i,j)∈P

γ(i, j)
µ(j)

µ(i)

= γµ(P) < 1.

Thus µ̃(`) < µ(`), and since µ̃(`) = γ(P) for some `-t path P , the number of
iterations cannot be more than the number of possible gains of the paths to t.

Theorem 6.31: Algorithm 6.6 computes a maximum generalized flow f .

Proof To prove the statement we consider computing canonical labels µ at the
termination of the algorithm; we can do so because by Lemma 6.29, the residual
graph is lossy at the end of the algorithm and so there are no flow-generating cycles.
Thus we know that γµ(i, j) ≤ 1 for all (i, j) ∈ Af . Furthermore, when the algorithm
terminates, there is no vertex i with positive excess such that i can reach t in Gf .
Thus we know that any vertex i with ef (i) > 0 is given a canonical label µ(i) = 0,
so that eµf (i) = 0. Then by Theorem 6.11, the flow f must be optimal for the lossy
graph returned by the ReduceToLossy subroutine. By Lemma 6.26, the returned flow
f + f̄ is maximum for the original (relabeled) input instance.

Lemma 6.30 then gives a natural idea for modifying Truemper’s algorithm to run
in polynomial time: we modify the gains so that there are only a polynomial number
of different possible gains for simple paths. For a given ε > 0, we set

d = (1 + ε)1/n.

Then for each arc (i, j) with gain γ(i, j) ≤ 1, we round down γ(i, j) to the nearest

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

180 Generalized Flow Algorithms

power of d, so that

γ̂(i, j) = dblogd γ(i,j)c

and

γ̂(j, i) = 1/γ̂(i, j).

Since the gain of any simple path is at most Bn and at least B−n, the number of
different gains for simple paths is at most

logdB
2n =

2n logB

log d
=

2n2 logB

log(1 + ε)
,

and this number is polynomial in the input size for constant ε. Thus if we run
Algorithm 6.6 with the gains γ̂, the algorithm runs in time polynomial in the input
size. The idea of modifying the gains by making them powers of d is called gain
scaling.

However, gain scaling creates another issue in that we need to relate the flow in
the network with the scaled gains to a flow in the lossy network with the gains as
given by ReduceToLossy. Suppose we use Algorithm 6.6 to find a maximum flow h
in the graph with the scaled gains γ̂. We then interpret flow h as a flow f for the
lossy network with gains γ by setting

f(i, j) =

{
h(i, j) if h(i, j) ≥ 0
−γ(j, i)h(j, i) if h(i, j) < 0

,

so that the flow f meets the skew symmetry condition. We now summarize the
modified algorithm in Algorithm 6.7.

We will show that Algorithm 6.7 finds a nearly optimal flow f for the lossy graph
returned by ReduceToLossy; Corollary 6.27 implies that the algorithm returns a
nearly optimal flow for the original input instance. We first need the modification of
the decomposition lemma (Lemma 6.12) for the case that f is a flow (rather than a
proper flow) and the graph is lossy. We leave its proof as another exercise (Exercise
6.3).

Lemma 6.32: Any flow f in a lossy network can be decomposed into generalized
pseudoflows f1, f2, . . . , f`, ` ≤ m, such that f =

∑`
i=1 fi, |f | =

∑`
i=1 |fi|, and for

each i, the arcs of fi of positive flow are a simple path from some j to the sink t,
a unit-gain cycle, or a path connected to a flow-absorbing cycle; only for the simple
paths to t is |fi| > 0.

Theorem 6.33: Algorithm 6.7 finds an ε-optimal generalized flow in the original
(relabeled) input graph in the time for O(n2 logB/ log(1 + ε)) maximum s-t flow
computations, plus time O(m2n3 log(nB)) for reducing to the lossy graph.

Proof We initially reduce to a lossy graph. By construction of the gains γ, we have
that gains γ̂(i, j) ≤ γ(i, j) ≤ 1 for all arcs (i, j) with positive capacity in the lossy
graph. Then the residual graph Gh must be lossy throughout the rest of the algorithm
by Lemma 6.29.

First we argue that the interpretation f of h computed by the algorithm is a flow

6.4 Lossy Graphs, Truemper’s Algorithm, and Gain Scaling 181

Algorithm: GainScalingTruemper(Ḡ, ū, γ̄, b̄, ε)

(G, u, γ, b, f̄)← ReduceToLossy(Ḡ, ū, γ̄, b̄)
h← 0

d← (1 + ε)1/n

foreach (i, j) ∈ A do
if γ(i, j) ≤ 1 then

γ̂(i, j)← dblogd γ(i,j)c

else
γ̂(i, j)← d−blogd γ(j,i)c

while there is i with eh(i) > 0 and i can reach t in Gh do
Compute canonical labels µ for gains γ̂
Add vertex s′

A′ ← {(i, j) ∈ Ah : γ̂µ(i, j) = 1}
u′(i, j)← uµh(i, j)
A′ ← A′ ∪ {(s′, i) : eh(i) > 0}
Compute s′-t max flow h′ in (V ∪ {s′}, A′) with capacities u′

hµ ← hµ + h′

foreach (i, j) ∈ A do
if h(i, j) ≥ 0 then

f(i, j)← h(i, j)
else

f(i, j)← −γ(i, j)h(j, i)
return f + f̄

Algorithm 6.7 Truemper’s algorithm with gain scaling.

in the lossy graph: namely, that ef (i) ≥ 0 for all i ∈ V . In the lossy graph, all arcs
with positive flow in h must be on arcs with gain γ(i, j) ≤ 1, since only these arcs
have positive capacity. Thus if h(i, j) < 0, then h(j, i) > 0 by skew-symmetry, so
that γ̂(j, i) ≤ γ(j, i) ≤ 1. Then

ef (i) = b(i)−
∑

j:(i,j)∈A

f(i, j)

= b(i)−
∑

j:(i,j)∈A,h(i,j)>0

h(i, j) +
∑

j:(i,j)∈A:h(i,j)<0

γ(j, i)h(j, i)

≥ b(i)−
∑

j:(i,j)∈A,h(i,j)>0

h(i, j) +
∑

j:(i,j)∈A:h(i,j)<0

γ̂(j, i)h(j, i)

= b(i)−
∑

j:(i,j)∈A

h(i, j)

= eh(i),

so that ef (i) ≥ 0 for all i ∈ V since eh(i) ≥ 0 for all i ∈ V . Note that this also
implies that the value of the interpretation f in the lossy graph is at least the value
of flow h since |f | = ef (t) ≥ eh(t) = |h|.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

182 Generalized Flow Algorithms

Next, we argue that f is an ε-optimal flow in the lossy graph given by Reduce-

ToLossy. Let f∗ be a maximum generalized flow in the lossy graph. We use f∗ to
argue that there exists a generalized flow in the graph of scaled gains of value at
least (1 − ε)|f∗|, so that maximum generalized flow value in the graph with scaled
gains is at least this amount. By Lemma 6.32, we can decompose f∗ into pseud-
oflows f∗i . Since |f∗i | > 0 only for simple paths to t, we do not consider the other
pseudoflows into which f∗ is decomposed. Let Pi be the path ending at t given
by f∗i , and let δi be the amount of flow initially pushed along path Pi by f∗i , so
that |f∗| =

∑
i |f∗i | =

∑
i δiγ(Pi). Note that for paths Pi starting at j, the sum

of the δi is at most the supply at j, b(j). Since the graph is lossy, we have that
γ̂(i, j) ≤ γ(i, j) ≤ 1 for all arcs (i, j) in the lossy graph of positive capacity. Thus
if we push the same amount of flow along the same paths with gains γ̂ as in f∗,
the resulting flow must obey the capacity constraints because the amount of flow
that results on each arc with positive capacity can only be less. The excess at each
node j 6= t will be nonnegative, since the total flow on paths Pi starting at j is
at most b(j), and the flow on intermediate nodes on each path will be conserved.
Furthermore, we have that the value of the flow is∑

i

δiγ̂(Pi) ≥
∑
i

δiγ(Pi)/d
|Pi|

≥
∑
i

δiγ(Pi)/(1 + ε)

≥ (1− ε)
∑
i

δiγ(Pi)

= (1− ε)|f∗|.

Since this generalized flow has value at least (1 − ε)|f∗|, the maximum generalized
flow in the graph with scaled gains must have value at least the same amount. Thus
ef (t) ≥ eh(t) ≥ (1 − ε)|f∗|, as desired. Finally, by Corollary 6.27, computing an
ε-optimal flow f in the lossy graph implies that f + f̄ is an ε-optimal flow in the
original (relabeled) input graph.

For the running time of the algorithm, the reduction to a lossy graph takes
O(m2n3 log(nB)) time to cancel all the flow-generating cycles, as shown in Exercise
6.4. As argued in Lemma 6.30, the number of maximum s-t flow computations is at
most the number of different possible gains of simple paths, and we argued previously
that there are at most 2n2 logB/ log(1 + ε) different possible scaled gains γ̂. This
gives the running time claimed in the theorem statement.

In Exercise 6.5, we have the reader show that we can replace Truemper’s algorithm
in the gain-scaling Algorithm 6.7 with a push-relabel style algorithm, resulting in a
faster overall running time.

6.5 Error Scaling

From Theorem 6.10 for Algorithm 6.7, we know that if we compute an ε-optimal flow
for ε < 1/(m! ·B2m), then we can in O(m2n) time compute a generalized maximum

6.5 Error Scaling 183

f ← 0
for i← 1 to dlog2(1/ε)e do

f ′ ← ApproximateGeneralizedFlow(Gf , uf , γ, ef)
f ← f ′ + f

return f

Algorithm 6.8 Error scaling using a subroutine
ApproximateGeneralizedFlow(G, u, γ, b) that returns a 1

2
-optimal flow on graph G

with capacities u, gains γ, and supplies b.

flow. Unfortunately, for this value of ε, the number of maximum flow computations
of Algorithm 6.7 is 2n2 logB/ log(1 + ε) = Ω(1/ε) = Ω(m! · B2m), so that the
algorithm is not polynomial-time for ε in this range.

However, we can do the following, given any polynomial-time algorithm to compute
an 1

2
-approximate generalized maximum flow, such as Algorithm 6.7. We set f to

0, then repeat the following log2(1/ε) times: we find a 1
2
-optimal generalized flow

f ′ in Gf using the algorithm, and update f to be f + f ′; each time we pass the
current excess ef (i) as the supply b(i) (observe that in the first iteration, when
f = 0, ef (i) = b(i)). We prove below that after i iterations the resulting flow
is 2−i-optimal, so that after dlog2(1/ε)e iterations the flow is ε-optimal. By setting
ε < 1/(m! ·B2m) we can get an ε-optimal flow in O(log(m! ·B2m)) = O(m log(mB))
calls to the algorithm and thus we can find a generalized maximum flow in polynomial
time. We call this process error scaling: each iteration finds a flow of at least half
the remaining value in the residual graph, so that the error converges quickly. We
summarize the algorithm in Algorithm 6.8.

Lemma 6.34: Let f∗ be a maximum generalized flow for G with supplies b. Then
for any flow f with supplies b, the flow f∗− f is a maximum generalized flow in the
residual graph Gf with capacities uf and supplies ef .

Proof Let g = f∗ − f . We observe that g obeys skew symmetry because both f∗

and f do, and g(i, j) = f∗(i, j) − f(i, j) ≤ u(i, j) − f(i, j) = uf (i, j), so capacity
constraints are obeyed. Since the supply at i is ef (i), we have that

eg(i) = ef (i)−
∑

k:(i,k)∈A

g(i, k)

= ef (i)−
∑

k:(i,k)∈A

(f∗(i, k)− f(i, k))

= ef (i) +

b(i)− ∑
k:(i,k)∈A

f∗(i, k)

−
b(i)− ∑

k:(i,k)∈A

f(i, k)

= ef (i) + ef∗(i)− ef (i)

= ef∗(i) ≥ 0.

Thus g is a feasible flow for residual graph Gf with capacities uf and supplies ef . To

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

184 Generalized Flow Algorithms

prove that it is maximum, let µ be the labels that prove that f∗ is maximum in G
via Theorem 6.11. By the optimality theorem, we know that γµ(i, j) ≤ 1 whenever
f∗(i, j) < u(i, j) and µ(i) = 0 whenever ef∗(i) > 0. Then g(i, j) = f∗(i, j) −
f(i, j) = uf (i, j) if and only if f∗(i, j) = u(i, j), so that when g(i, j) < uf (i, j),
then γµ(i, j) ≤ 1. Similarly eg(i) > 0 if and only if ef∗(i) > 0 so that eµg (i) = 0 for
all i 6= t. Thus by Theorem 6.11, f∗ − f is a maximum generalized flow in Gf .

Theorem 6.35: Algorithm 6.8 returns an ε-optimal flow in the time for O(log 1
ε
)

calls to an algorithm that produces a 1
2
-optimal generalized maximum flow.

Proof We first argue that f is always a flow with supplies b. Clearly this is true
for f = 0. Let f ′ be a flow in Gf with capacities uf and supplies ef , and g =
f + f ′. Clearly g obeys skew-symmetry since f and f ′ do. Also, f ′(i, j) ≤ uf (i, j) =
u(i, j) − f(i, j), so that g(i, j) ≤ u(i, j). Furthermore, for all i 6= t, ef ′(i) ≥ 0, so
that ef (i)−

∑
k:(i,k)∈Af

f ′(i, k) ≥ 0, or

0 ≤ b(i)−
∑

k:(i,k)∈A

f(i, k)−
∑

k:(i,k)∈Af

f ′(i, k)

= b(i)−
∑

k:(i,k)∈A

(f(i, k) + f ′(i, k))

= b(i)−
∑

k:(i,k)∈A

g(i, k) = eg(i),

so that eg(i) ≥ 0 for all i ∈ V and the new flow g is a flow with supplies b.
We now argue by induction that at the end of i iterations, the algorithm returns

a 2−i-optimal flow. Let f∗ be a maximum generalized flow. After the first iteration
f is a 1/2-optimal flow. Suppose that at the end of the (i − 1)st iteration, f is a
2−(i−1)-optimal flow, so that |f | ≥

(
1− 1

2i−1

)
|f∗|. Then in the next iteration, f ′ is a

1/2-optimal flow in Gf , so that by Lemma 6.34, |f ′| ≥ 1
2
(|f∗| − |f |). Then the new

flow at the end of the iteration has value at least

|f |+ 1

2
(|f∗| − |f |) =

1

2
(|f∗|+ |f |)

≥ 1

2
|f∗|+ 1

2

(
1− 1

2i−1

)
|f∗|

= |f∗| − 1

2i
|f∗| =

(
1− 1

2i

)
|f∗|.

We make O(log 1
ε
) calls to the algorithm ApproximateGeneralizedFlow.

Corollary 6.36: Algorithm 6.8 finds an optimal generalized flow in O(m3n3 log2(mB))
time plus the time for O(mn2 log(mB) logB) maximum flow computations.

Proof As we argued previously, for ε < 1/(m! ·B2m) we can get an ε-optimal flow
with O(m log(mB)) calls to Algorithm 6.7, and then use O(m2n) time to compute
a generalized maximum flow via Theorem 6.10.

Exercises 185

Still faster algorithms are known for generalized maximum flow, as are strongly
polynomial-time algorithms; see the chapter notes for more information.

Exercises

6.1 Prove that if f is a proper flow, and f ′ is the result of canceling a GAP as given in

Equation (6.3), then f ′ is also a proper flow.

6.2 Prove Lemma 6.12.

6.3 Prove Lemma 6.32.

6.4 For the minimum-cost circulation problem we showed in Theorem 5.23 of Section 5.3

that we can cancel all negative-cost cycles in O(m2n2 log(nC)) time. When considering

the generalized maximum flow problem, we can also cancel all flow generating cycles

by using this algorithm. We do this by considering costs c(i, j) = − log γ(i, j) and

canceling negative-cost cycles. However, the costs c(i, j) are no longer integer, which

was an assumption needed to prove the running time above. Assume that the gains

γ(i, j) are ratios of integers that are bounded in absolute value by B. Show that in

this case, the running time of the cycle canceling algorithm is O(m2n3 log(nB)).

6.5 In this problem, we will consider a push/relabel style of algorithm for the generalized

maximum flow problem. We say that an arc (i, j) is admissible if it has relabeled

gain γµ(i, j) > 1 and positive residual capacity. We say that a node i is active if it can

reach the sink and it has positive excess (that is, eµf (i) > 0). Consider Algorithm 6.9.

(a) Prove that the algorithm maintains a flow h and labels µ such that γ̂µ(i, j) ≤ d1/n

for all residual arcs (i, j) ∈ Ah.

(b) Prove that during the course of the algorithm, the graph of admissible arcs is

acyclic.

(c) Prove that during the course of the algorithm Gh has no flow-generating cycles.

(d) Prove that on termination the algorithm outputs an ε-optimal flow.

(e) Prove that there are at most O(1
εn

3 logB) relabels per node.

(f) Prove that there are at most O(1
εmn

3 logB) saturating pushes.

(g) Prove that there are at most O(1
εmn

4 logB) nonsaturating pushes.

Assuming that we can implement both the push and relabel operations in O(logn)

time, we can thus find an ε-optimal flow in O(1
εmn

4 logB logn) time plus the time for

the ReduceToLossy subroutine.

(h) Using the above algorithm as a subroutine, and assuming that the reduction to a

lossy graph takes O(mn3 log(nB)) time, obtain an O(m2n4 log2B logn) time algo-

rithm for the maximum generalized flow problem.

6.6 In the generalized minimum-cost circulation problem, we are given costs c(i, j) in

addition to gains γ(i, j) and capacities u(i, j). The goal is to find a generalized circula-

tion f that minimizes
∑

(i,j)∈A c(i, j)f(i, j). A generalized circulation is a generalized

pseudoflow that has ef (i) = 0 for all i ∈ V .

Prove that a minimum-cost generalized circulation f is optimal if and only if there are

no negative-cost unit gain cycles and no negative-cost bicycles in the residual graph

Gf .

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

186 Generalized Flow Algorithms

Algorithm: GainScalingPushRelabel(Ḡ, ū, γ̄, b̄, ε)

(G, u, γ, b, f̄)← ReduceToLossy(Ḡ, ū, γ̄, b̄)
h← 0

d← (1 + ε)1/n

foreach (i, j) ∈ A do
if γ(i, j) ≤ 1 then

γ̂(i, j)← dblogd γ(i,j)c

else
γ̂(i, j)← d−blogd γ(j,i)c

Compute canonical labels µ for gains γ̂
while there is an active node i do

if there is an admissible arc (i, j) then
Push: Send min(eµh(i), uµh(i, j)) units of flow on (i, j), update hµ

else
Relabel: µ(i)← µ(i)/d1/n

foreach (i, j) ∈ A do
if h(i, j) ≥ 0 then

f(i, j)← h(i, j)
else

f(i, j)← −γ(i, j)h(j, i)
return f + f̄

Algorithm 6.9 A push/relabel generalized maximum flow algorithm with gain scaling.

Chapter Notes

Generalized flow problems were introduced by Jewell [116] (see also Dantzig [48,
Chapter 21]). Onaga [156] shows that a generalized flow is optimal if and only if its
residual graph has no generalized augmenting paths. Goldberg, Plotkin, and Tardos
state the optimal criterion in terms of rescaled gains (see [89, Lemma 4.4]), though
this also follows directly from linear programming duality. They attribute the idea
of relabeling to Glover and Klingman [80]. Goldberg, Plotkin, and Tardos [89] give
the first combinatorial polynomial-time algorithms for the problem. Many other such
results were obtain subsequently; see, for example, Cohen and Megiddo [41], Radzik
[169, 170], Goldfarb and Jin [98], Goldfarb, Jin, and Orlin [100], and Goldfarb, Jin,
and Lin [99]. It was unknown until recently whether there were strongly polynomial-
time algorithms for computing generalized flows; in 2016, Vegh [200] gave the first
strongly polynomial-time algorithm. Olver and Vegh [155] give a simpler strongly
polynomial-time algorithm running in O((m+ n log n)mn log(n2/m)) time. Radzik
[170] gives the fastest combinatorial weakly polynomial-time algorithm, running in
O((m + n log n)mn logB) time. Daitch and Spielman [46] provide algorithms us-
ing electrical flows that compute near-optimal solutions for some generalized flow
problems in lossy graphs.

Exercises 187

The proofs of Theorem 6.10 and Lemma 6.20 can be found as the proofs of Lemma
3.9 and Lemma 3.6 respectively in Restrepo and Williamson [173].

The algorithm we give in Section 6.2 is due to Restrepo and Williamson [173]. The
negative-cost GAP detection algorithm of Section 6.3 is an adaptation of an algorithm
in the thesis of Aspvall [11]. It has the downside of needing Ω(n2) space. Restrepo
and Williamson [173] give a linear-space negative-cost GAP detection algorithm.
Truemper’s algorithm in Section 6.4 is due to Truemper [197]. The ideas of gain
scaling and error scaling for generalized flow are due to Tardos and Wayne [190] (see
also Wayne’s thesis [202]).

We are only aware of two implementation studies of combinatorial algorithms
for generalized flow, one by Radzik and Yang [171] and the other by Restrepo and
Williamson [173]. Both studies report that network simplex algorithms for general-
ized flow outperform the other combinatorial algorithms tested. For a combinatorial
description of a network simplex algorithm for generalized flow problems, see Ahuja,
Magnanti, and Orlin [4, Chapter 15]

Exercise 6.5 is due to Tardos and Wayne [190].

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

7

Multicommodity Flow Algorithms

A man said to the universe:

“Sir, I exist!”

“However,” replied the universe,

“The fact has not created in me

A sense of obligation.”

– Stephen Crane

We turn to a final set of problems and algorithms that generalize the maximum
flow problem, the multicommodity flow problem. In the maximum flow problem, we
are trying to ship as much of a single good as possible from the source s to the sink
t. In the multicommodity flow problem, we now have multiple goods (or multiple
commodities) that need to be sent between distinct sources and sinks, one source
and sink per commodity. The commodities are not interchangeable, so a commodity
entering the system via the source for its commodity may not exit the system at
a sink designated for another commodity. The problem captures sending multiple
different types of goods through the same network with capacity constraints on the
distribution of all goods or sending different information streams through the network
with different messages being sent between the various source-sink pairs.

We formalize the problem as follows. We are given as input a directed graph
G = (V,A) with capacities u(i, j) ≥ 0 for all arcs (i, j). Additionally, we are given
K source-sink pairs of vertices, s1-t1, s2-t2, . . ., sK-tK ; these nodes need not be
distinct, so that, for example, the source s3 may be the same as the sink t5. For
some variants of the problem, we are also given demands dk for each k = 1, . . . ,K.
A feasible solution gives an sk-tk flow fk for each k (according to Definition 2.1,
without skew symmetry), such that a joint capacity constraint is satisfied on each
arc; that is, we want it to be the case that the total flow over all commodities is at
most the capacity, or that

∑K
k=1 fk(i, j) ≤ u(i, j) for all (i, j) ∈ A.

Let |fk| denote the value of the flow fk. There are a number of different possible
goals for the problem. In the maximum multicommodity flow problem, we want to
maximize the total amount of flow sent between all the source-sink pairs; that is,
we want to maximize

∑K
k=1 |fk|. In such a problem, however, we might well send a

lot of one type of commodity and very little of another. If we have the demands dk
as input, we might also consider trying to maximize the proportion of each demand
sent. In the maximum concurrent flow problem, we maximize a parameter λ so that

188

7.1 Optimality Conditions 189

s1, t2

s2t1

1 1

1

Figure 7.1 An example in which the cut condition does not hold. The
demands are d1 = d2 = 1.

|fk| ≥ λdk; that is, for each commodity k, we send at least a λ fraction of the demand
dk that we wanted to send.

7.1 Optimality Conditions

For our previous network flow problems, we have been able to give nice, combina-
torial statements about how to tell when the flow is optimal; these statements have
motivated our algorithms. Unfortunately, there are not similar theorems here for
the multicommodity flow problem. Except in some restricted cases, we also do not
have an integrality property, or an analog of a maximum flow/minimum cut theo-
rem. As in the Stephen Crane quote at the beginning of the chapter, the existence
and usefulness of the multicommodity flow problem has not created in the universe
an obligation to have an elegant theory along the same lines as the previous flow
problems we have studied.

To explore this deficiency somewhat further, consider the case of the multicom-
modity flow problem in which we are given demands dk for each sk-tk pair. We will
say that a graph obeys the cut condition if for all S ⊆ V ,∑

k:sk∈S,tk /∈S

dk ≤ u(δ+(S)); (7.1)

that is, there is sufficient capacity in each cut S to support a flow of at least the sum
of the demands dk such that S is an sk-tk cut. Clearly this is a necessary condition
in order to be able to send dk units of flow from sk to tk for each k. We know in the
single commodity case (K = 1) by Theorem 2.7 that we can find a flow of value d1

if and only if the cut condition holds. However, the cut condition is not a sufficient
condition in general. Consider the example shown in Figure 7.1. It is easy to check
that the cut condition holds for the two commodities with d1 = d2 = 1 and all three
arcs with a single unit of capacity, but we cannot send both units of flow. To see
this, notice that to send a unit of flow from s1 to t1, the unit must traverse two arcs,
and the same is true for sending a unit of flow from from s2 to t2. Thus we need at
least four units of capacity to send both units of flow, but there are only three units
of capacity in the network.

There are some limited cases in which the cut condition is sufficient; we consider

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

190 Multicommodity Flow Algorithms

one such case in the following section. In general, we can write multicommodity
flow problems as linear programs, and we inherit some optimality conditions from
the optimality conditions of linear programs. Consider, for example, the following
linear program for the maximum multicommodity flow problem. We let the variable
fk(i, j) indicate how much flow of commodity k is on the arc (i, j), and we can then
write a linear program maximizing the total net flow out of each source subject to
the conditions of a multicommodity flow, each of which can be written as a linear
inequality in the fk(i, j) variables:

Maximize

K∑
k=1

 ∑
j:(sk,j)∈A

fk(sk, j)−
∑

j:(j,sk)∈A

fk(j, sk)

subject to

∑
j:(j,i)∈A

fk(j, i)−
∑

j:(i,j)∈A

fk(i, j) = 0, k = 1, . . . ,K; i 6= sk, tk,

fk(i, j) ≥ 0, k = 1, . . . ,K; (i, j) ∈ A,
K∑
k=1

fk(i, j) ≤ u(i, j), (i, j) ∈ A.

It will be more useful to us, however, to write this linear program in a somewhat
different form. Let Pk be the set of all sk-tk paths in the graph, and let P =

⋃
k Pk

be the union of these sets over k = 1, . . . ,K. By a simple generalization of the flow
decomposition lemma (Lemma 2.20), we can decompose each of the flows fk into
flows along sk-tk paths. So we introduce a variable x(P) to indicate how much flow
is sent along the path P . Then we can express the maximum multicommodity flow
problem as the following linear program:

Maximize
∑
P∈P

x(P)

subject to
∑

P∈P:(i,j)∈P

x(P) ≤ u(i, j), (i, j) ∈ A, (7.2)

x(P) ≥ 0, P ∈ P.

It will be useful to consider the dual of this linear program, which is

Minimize
∑

(i,j)∈A

u(i, j)`(i, j)

subject to
∑

(i,j)∈P

`(i, j) ≥ 1, P ∈ P, (7.3)

`(i, j) ≥ 0, (i, j) ∈ A.

We can interpret the dual variable `(i, j) as the length of the arc (i, j). Then the
constraints of the dual say that the total length of each path P ∈ P should be at
least one, or that for each k, then length of the shortest sk-tk path should be at least
one.

7.2 The Two-Commodity Case 191

7.2 The Two-Commodity Case

In this section, we give one case in which the cut condition is sufficient for K = 2
commodities. The example of the prior section shows that even in the case K = 2,
the cut condition is not sufficient, so we must need some extra conditions for the cut
condition to be sufficient. So far, we have been thinking of each commodity’s flow fk
as a flow in the sense of Definition 2.1: the flow is nonnegative, but for this section it
will be useful to think of each commodity’s flow as a flow in the sense of Definition 2.3,
so that we have skew-symmetry and fk(i, j) = −fk(j, i). The additional condition
we need is that u(i, j) = u(j, i) > 0 for all (i, j) ∈ A (and recall in this case, we
have (j, i) ∈ A for each (i, j) ∈ A). With this particular definition of flows, we
need to make sure that we don’t allow one commodity’s flow in the direction (i, j)
cancel out the flow of another commodity in the direction (j, i), so the joint capacity

constraint that we require is
∑K

k=1 |fk(i, j)| ≤ u(i, j); given skew-symmetry and
u(j, i) = u(i, j), this inequality poses the same requirement on both (i, j) and (j, i).
Note that this different requirement on the flow capacity changes the cut condition,
since the total capacity u(δ+(S)) limits flows both from sk ∈ S to tk /∈ S, and also
those of a different commodity ` from s` /∈ S to t` ∈ S. Thus the cut condition in
this case becomes

u(δ+(S)) ≥
∑

k:|S∩{sk,tk}|=1

dk, (7.4)

Given this setting, we can prove the following theorem. We say that a flow f is
half-integral if 2f is integral.

Theorem 7.1: Suppose that K = 2 and u(i, j) = u(j, i) for all (i, j) ∈ A. Then
the cut condition (7.4) is sufficient to guarantee that multicommodity flow fk exists
satisying demands dk. Furthermore, if the capacities u(i, j) are integer and demands
d1 and d2 are integer, then f1 and f2 are half-integral.

Proof We first construct two different flows in G = (V,A). For the first flow, con-
sider an new graph G1 in which we have added a source vertex s and a sink vertex
t to G, and arcs (s, s1) and (t1, t) of capacity d1, and arcs (s, s2) and (t2, t) of ca-
pacity d2 (the capacity of the reverse arcs are all 0). For each (i, j), (j, i) ∈ A, we
add (i, j) and (j, i) to G1, both of capacity u(i, j). See Figure 7.2 for an illustration
of obtaining G1 from G. We compute a maximum s-t flow g1 in this graph G1 (of
the kind given in Definition 2.3). We observe that for any s-t cut S that contains s1

but not s2, u(δ+(S)) ≥ d1 +d2 (because of the cut condition and the capacity of arc
(s, s2)), while if S contains s2 but not s1, u(δ+(S)) ≥ d1 + d2 (because of the cut
condition and the capacity of arc (s, s1)), while if S contains both s1 and s2, then
u(δ+(S)) ≥ d1 + d2 (because of the cut condition and the capacity of the arcs to t).
Thus the value of the s-t flow g1 in graph G1 will be d1 + d2 and the newly added
arcs (s, s1), (s, s2), (t1, t), and (t2, t) will all be saturated. Furthermore we will have

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

192 Multicommodity Flow Algorithms

G1 s t

s1

s2

t1

t2

G

d1

d2

d1

d2

G2 s t

s1

s2

t1

t2

G

d1

d2

d1

d2

Figure 7.2 The graphs G1 and G2 used in Theorem 7.1.

that for the original arcs A

∑
k:(i,k)∈A

g1(i, k) =

0 i 6= s1, t1, s2, t2
d1 i = s1

−d1 i = t1
d2 i = s2

−d2 i = t2.

For the second flow, consider a new graph G2 in which we have added a source
vertex s and a sink vertex t to G, and arcs (s, s1) and (t1, t) of capacity d1, and arcs
(s, t2) and (s2, t) of capacity d2 (the capacity of the reverse arcs are all 0). For each
(i, j) ∈ A, we add (i, j) and (j, i) to G2, both of capacity u(i, j). See Figure 7.2 for
an illustration of obtaining G2 from G. We compute a maximum s-t flow g2 in this
graph G2 (of the kind given in Definition 2.3). We observe that for any s-t cut S
that contains s1 but not t2, u(δ+(S)) ≥ d1 + d2 (because of the cut condition and
the capacity of arc (s, t2)), while if S contains t2 but not s1, u(δ+(S)) ≥ d1 + d2

(because of the cut condition and the capacity of arc (s, s1)), while if S contains both
s1 and t2, then u(δ+(S)) ≥ d1 +d2 (because of the cut condition and the capacity of
the arcs to t). Thus the value of the s-t flow g2 in graph G2 will be d1 + d2 and the
newly added arcs (s, s1), (s, t2), (t1, t) and (s2, t) will all be saturated. Furthermore,
we will have for the original arcs A

∑
k:(i,k)∈A

g2(i, k) =

0 i 6= s1, t1, s2, t2
d1 i = s1

−d1 i = t1
−d2 i = s2

d2 i = t2.

From these two flows, g1 and g2, we now construct a multicommodity flow on the
original graph G. We let f1(i, j) = 1

2
(g1(i, j) + g2(i, j)) for all (i, j) ∈ A, and we

7.3 Intermezzo: the Multiplicative Weights Algorithm 193

let f2(i, j) = 1
2
(g1(i, j) − g2(i, j)) for all (i, j) ∈ A. The capacity constraints are

satisfied, since

2∑
k=1

|fk(i, j)| =
1

2
|g1(i, j) + g2(i, j)|+ 1

2
|g1(i, j)− g2(i, j)|

= max(|g1(i, j)|, |g2(i, j)|)
≤ max(u(i, j), u(j, i)) = u(i, j),

by the skew-symmetry of g1 and g2. Additionally, we have that

∑
k:(i,k)∈A

f1(i, k) =
1

2

∑
k:(i,k)∈A

g1(i, k) +
1

2

∑
k:(i,k)∈A

g2(i, k) =

0 i 6= s1, t1
d1 i = s1

−d1 i = t1,

and ∑
k:(i,k)∈A

f2(i, k) =
1

2

∑
k:(i,k)∈A

g1(i, k)− 1

2

∑
k:(i,k)∈A

g2(i, k) =

0 i 6= s2, t2
d2 i = s2

−d2 i = t2,

as desired.
Finally, we observe that if the capacities u(i, j) and the demands d1, d2 are integers,

then the capacities of arcs in the graphs G1 and G2 will be integer, so that the flows
g1 and g2 can be assumed to be integer by the Integrality Property (Property 2.8).
Hence by the definition of f1 and f2 above, both f1 and f2 are half-integral.

There are other special cases in which the cut condition is sufficient for the exis-
tence of a multicommodity flow. We discuss some of these in the notes at the end of
the chapter.

7.3 Intermezzo: the Multiplicative Weights Algorithm

At this point, we take what would appear to be a detour from our topic of multi-
commodity flows to discuss an algorithm that has had many applications in various
fields: the multiplicative weights algorithm. In this section, we will discuss a partic-
ular form of it that will be of most use to us in our flow applications. The form is
stated as that of making decisions over time so as to do almost as well as the best
possible decision in hindsight. In particular, suppose that we must make a sequence
of decisions over time. At each time step t, for t = 1, . . . , T , we must choose one
of N possible options. If we make decision i at time t, we get some unknown value
vt(i) ∈ [0, 1]. We do not know the value of the vt(i) before we make the decision,
but after we have selected decision i at time t, we learn all the values of the vt(j)
for all j = 1, . . . , N before we must make the next decision at time t + 1. We wish
to maximize the total value resulting from the decisions that we have made. Quite
surprisingly, we can give a very simple randomized algorithm that achieves, in expec-
tation, a total value that is nearly as large as what could be obtained by choosing the
best possible single decision j and making that decision over all time steps (which
would result in total value maxj

∑T
t=1 vt(j)).

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

194 Multicommodity Flow Algorithms

w1(i)← 1 for i = 1, . . . , N
for t← 1 to T do

Make decision i with probability proportional to wt(i), get value vt(i)
wt+1(i)← wt(i)(1 + εvt(i)) for i = 1, . . . , N

Algorithm 7.1 The multiplicative weights algorithm.

The central idea of the algorithm is that we will maintain a set of weights w(i)
for i = 1, . . . , N , and we will make the decision i with probability proportional to
weight w(i). After each time step, we will update the weights to be proportionally
larger for larger observed values vt(i). Thus decisions i that have had a prior history
of having a good value vt(i) become more likely over time. Initially the weights w(i)
are 1 for all i, and after making each decision in time step t, we increase w(i) by a
multiplicative factor of (1 + εvt(i)) for all i (for some fixed choice of 0 < ε ≤ 1/2),
hence the name of the algorithm. We will index the weights by t so that we can refer
to the weight given to decision i at time t by wt(i). We make decisions over a time
horizon t = 1, . . . , T , although nothing in the algorithm uses any knowledge of T .
We summarize the multiplicative weight algorithm in Algorithm 7.1.

Let Wt =
∑N

i=1wt(i) be the total weight over all decisions at time step t, so that
the probability we choose decision i at time t is wt(i)/Wt; we denote this probability

by pt(i). Thus the total expected value gained by the algorithm is
∑T

t=1

∑N
i=1 vt(i)pt(i).

We now prove that the expected value gained by the algorithm is nearly as large as
the maximum value given by any fixed decision j.

Theorem 7.2: Assume ε ≤ 1/2. Then for any j = 1, . . . , N ,

T∑
t=1

N∑
i=1

vt(i)pt(i) ≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnN.

Proof The structure of the proof is quite simple. We derive both an upper bound
and a lower bound on WT+1, and then compare these two bounds in order to arrive
at the desired result.

To obtain the upper bound, we observe that

Wt+1 =
N∑
i=1

wt+1(i) =
N∑
i=1

wt(i)(1 + εvt(i))

= Wt + εWt

N∑
i=1

vt(i)pt(i)

= Wt

(
1 + ε

N∑
i=1

vt(i)pt(i)

)

≤Wt exp

(
ε
N∑
i=1

vt(i)pt(i)

)
,

7.3 Intermezzo: the Multiplicative Weights Algorithm 195

where for the last inequality we use that 1 + x ≤ ex. Thus we get that

WT+1 ≤WT exp

(
ε
N∑
i=1

vT (i)pT (i)

)

≤WT−1 exp

(
ε
N∑
i=1

vT−1(i)pT−1(i)

)
exp

(
ε
N∑
i=1

vT (i)pT (i)

)
≤ . . .

≤W1

T∏
t=1

exp

(
ε
N∑
i=1

vt(i)pt(i)

)

= N exp

(
ε

T∑
t=1

N∑
i=1

vt(i)pt(i)

)
.

For the lower bound, we note that

WT+1 ≥ wT+1(j) =
T∏
t=1

(1 + εvt(j))

≥ (1 + ε)
∑T

t=1 vt(j),

using that (1 + εx) ≥ (1 + ε)x for x ∈ [0, 1].
Now we can observe that the lower bound is no more than the upper bound, so

that

(1 + ε)
∑T

t=1 vt(j) ≤ N exp

(
ε

T∑
t=1

N∑
i=1

vt(i)pt(i)

)
.

Taking the natural logarithm of both sides, we get that

ln(1 + ε)
T∑
t=1

vt(j) ≤ lnN + ε
T∑
t=1

N∑
i=1

vt(i)pt(i).

Rearranging terms, we have

T∑
t=1

N∑
i=1

vt(i)pt(i) ≥
1

ε
ln(1 + ε)

T∑
t=1

vt(j)−
1

ε
lnN.

We can now use that ln(1 + ε) ≥ ε− ε2 for ε ∈ [0, 1/2] to obtain

T∑
t=1

N∑
i=1

vt(i)pt(i) ≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnN.

Observe that we are not using any assumptions about the values of the vt(j); we
are not assuming that they are drawn from any probability distribution. Indeed, they
could well be determined adversarially, and the bound still holds.

One of the great strengths of the algorithm is its flexibility; the basic algorithm and

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

196 Multicommodity Flow Algorithms

analysis can be adapted in many different ways. For example, suppose that instead
of values vt(j) ∈ [0, 1] for decisions j we have costs ct(i) ∈ [−1, 1] and we wish
to minimize the overall cost of our decisions. In Exercise 7.1, we ask the reader to
show that a simple modification of the algorithm leads to a bound similar to that of
Theorem 7.2.

As another example of the flexibility of the multiplicative weights algorithm, we
show an example from optimization of finding a feasible solution to certain types of
systems of inequalities. The most interesting case for our purposes is that of finding
a near-feasible solution to a packing problem. We consider finding a feasible x ∈ <n
such that

Mx ≤ e and x ∈ Q,

for Q a convex set, M ∈ <m×n, and e the vector of all 1s. We assume that Mx ≥ 0
for all x ∈ Q. We could equally well have considered the inequalities Mx ≤ b
instead of Mx ≤ e, but we claim this is without loss of generality for b > 0, since
we could easily divide the ith row of M by bi > 0. The idea of this system is that
Q represents constraints that are easy to optimize over, but the additional set of
inequalities Mx ≤ e represents complicating side constraints.

In order for us to be able to apply the multiplicative weights algorithm to this
problem, we assume that it is easy to optimize over Q in the sense that given a
nonnegative vector p ∈ <m≥0, we have a subroutine that can find x ∈ Q such that
pTMx ≤ pT e if such a vector x exists. We call the subroutine that either returns
such an x or declares that there is no such x the oracle for Q. We observe that if
there is no x ∈ Q such that pTMx ≤ pT e for p ≥ 0, then the system Mx ≤ e and
x ∈ Q has no feasible solution. If we can optimize linear functions over Q, then it
is easy to produce such an oracle, since pTMx is a linear function in x, and all we
need to do is minimize pTMx over x ∈ Q; if a minimum x ∈ Q has pTMx ≤ pT e,
then we have found such an x, and otherwise the system is infeasible.

To give our algorithm, we first need the concept of the width of the oracle for the
system.

Definition 7.3: Let Mi be the ith row of the matrix M . The width ρ of the oracle
to be an upper bound on the maximum value of Mix over all rows i and all x ∈ Q
returned by the oracle; that is,

ρ ≥ max
i

max
x∈Q

returned by oracle

Mix. (7.5)

Given that we want a solution x such that Mix ≤ 1, the width ρ is an upper
bound on the multiplicative factor by which Mix can exceed its desired bound for
any row i and any x ∈ Q returned by the oracle.

In Algorithm 7.2, we give an algorithm that will find an x ∈ Q that approximately
satisfies the additional constraints; in particular, given 0 < ε < 1/2, it finds x ∈ Q
such that Mx ≤ (1+4ε)e. It is essentially the multiplicative weights algorithm given
in Algorithm 7.1 in which each row of the matrix M corresponds to a decision. In
each time step t, we run the oracle on the probability vector pt to find xt ∈ Q such

7.3 Intermezzo: the Multiplicative Weights Algorithm 197

w1(i)← 1 for i = 1, . . . ,m
T ← ρ

ε2
lnm

for t← 1 to T do
Wt ←

∑m
i=1wt(i), pt(i)← wt(i)/Wt

Run oracle to find xt ∈ Q such that pTt Mxt ≤ pTt e
vt(i)← 1

ρ
Mixt for i = 1, . . . ,m

wt+1(i)← wt(i)(1 + εvt(i)) for i = 1, . . . ,m

return x̄← 1
T

∑T
t=1 xt

Algorithm 7.2 Multiplicative weights for packing problems.

that pTt Mxt ≤ pTt e. We then let the value vt(i) for the ith row be the quantity
1
ρ
Mixt. Note that since Mx ≥ 0 for all x ∈ Q, by the definition of width given in

(7.5), vt(i) ∈ [0, 1] for all i = 1, . . . ,m. Then for each row i, we increase its weight
(and hence its probability) proportional to the value of Mix, so that rows that
exceed Mix ≤ 1 are given more weight and more probability mass, and hence future
solutions xt must be closer to satisfying these inequalities. We let the algorithm run
for T = ρ

ε2
lnm time steps, and at the end we return x̄ = 1

T

∑T
t=1 xt. We observe

that because Q is convex and xt ∈ Q for each t, then x̄ ∈ Q.

Deriving the following theorem from Theorem 7.2 is now surprisingly simple.

Theorem 7.4: If ε ≤ 1/2 and the oracle returns an xt in each time step t, Algo-
rithm 7.2 returns a solution x̄ ∈ Q such that Mx̄ ≤ (1 + 4ε)e in O(mρ

ε2
lnm) time

plus the time for O(ρ
ε2

lnm) computations of the matrix-vector product Mx and for
O(ρ

ε2
lnm) oracle calls.

Proof We run the main loop for T = ρ
ε2

lnm iterations and make one oracle call and
compute Mxt once per iteration. We also spend O(m) time per iteration updating
vt and wt+1. Thus the running time bound is clear. We have also argued above that
x̄ ∈ Q.

To show that Mx̄ ≤ (1 + 4ε)e, we first observe that

m∑
i=1

pt(i)vt(i) =
1

ρ
pTt Mxt ≤

1

ρ
pTt e =

1

ρ
,

since pt is a probability distribution for any t and
∑m

i=1 pt(i) = 1. Then we have that

T∑
t=1

m∑
i=1

pt(i)vt(i) ≤
T

ρ
.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

198 Multicommodity Flow Algorithms

Also, by applying Theorem 7.2, we have that for any j ∈ {1, . . . ,m},
T∑
t=1

m∑
i=1

pt(i)vt(i) ≥ (1− ε)
T∑
t=1

vt(j)−
1

ε
lnm,

= (1− ε)
T∑
t=1

1

ρ
Mjxt −

1

ε
lnm,

= (1− ε)T
ρ
Mjx̄−

1

ε
lnm.

Then from the two inequalities we have that

(1− ε)T
ρ
Mjx̄−

1

ε
lnm ≤ T

ρ
,

or, by rearranging terms, that

Mjx̄ ≤
1

1− ε

(
1 +

ρ lnm

εT

)
.

By the choice of T = ρ
ε2

lnm, we have that

Mjx̄ ≤
1

1− ε
(1 + ε) ≤ 1 + 4ε,

where the last inequality holds for ε ≤ 1/2. Since the inequality holds for any j ∈
{1, . . . ,m}, then we have that

Mx̄ ≤ (1 + 4ε)e,

as desired.

Once again, even this adaptation of the multiplicative weights algorithm is very
flexible. Suppose, for instance, we wish to find an x ∈ Q, Q convex, such that
|Mx| ≤ e. Suppose that we have an oracle that for a vector p ∈ <m≥0 can find x ∈ Q
such that

∑m
i=1 p(i)|Mix| ≤ pT e, or declare that no such x exists. Define the width

ρ of the oracle to be an upper bound on the maximum of |Mix| over all rows i over
all x ∈ Q returned by the oracle. Then we ask the reader to show the following in
Exercise 7.2.

Theorem 7.5: If ε ≤ 1/2 and the oracle returns an xt in each time step t, a
modification of Algorithm 7.2 in which vt(i) is set to 1

ρ
|Mixt| returns a solution

x̄ ∈ Q such that |Mx̄| ≤ (1 + 4ε)e in O(mρ
ε2

lnm) time plus the time for O(ρ
ε2

lnm)
computations of the matrix-vector product Mx and for O(ρ

ε2
lnm) oracle calls.

We will see an application of this algorithm to the maximum flow problem in
Section 8.2.

7.4 The Garg-Könemann Algorithm

In this section, we see how the multiplicative weights algorithm of the last section
can be used to analyze an algorithm for the maximum multicommodity flow prob-

7.4 The Garg-Könemann Algorithm 199

x(P)← 0 ∀P ∈ P
f(i, j)← 0, w(i, j)← 1 ∀(i, j) ∈ A
while f(i, j)/u(i, j) < (lnm)/ε2 ∀(i, j) ∈ A do

Let P be a shortest path in P using lengths w(i, j)/u(i, j)
u← min(i,j)∈P u(i, j)
x(P)← x(P) + u
f(i, j)← f(i, j) + u ∀(i, j) ∈ P
w(i, j)← (1 + ε u

u(i,j)
)w(i, j) ∀(i, j) ∈ P

C ← max(i,j)∈A f(i, j)/u(i, j)
return x/C;

Algorithm 7.3 The Garg-Könemann algorithm for the maximum multicommodity flow
problem.

lem that we give here. We give the algorithm in Algorithm 7.3; it is due to Garg
and Könemann [79], and thus is usually called the Garg-Könemann algorithm. The
algorithm produces a nearly feasible, nearly optimal solution to the linear program
(7.2) for the maximum multicommodity flow problem given in the initial section of
the chapter.

The algorithm works as follows. Recall that P is the set of all sk-tk paths for all
commodities k. The algorithm repeatedly finds the shortest path in P using lengths
`(i, j) = w(i, j)/u(i, j), where w(i, j) is a weight for arc (i, j) maintained by the
algorithm. Initially this weight is one; however, as we increase the flow on this arc,
we increase the weight on the arc. This effectively increases the length of the arc and
makes it less likely that the arc is part of a shortest path in future iterations. Each
time we select path P , we let u be the capacity of the minimum capacity arc on
path P (notice that this is the original capacity, not a residual capacity). We then
increase the LP variable x(P) by u. In order to keep track of the amount of flow
on arc (i, j), we also increase a flow variable f(i, j) for each arc (i, j) ∈ P by u.
We then perform an update to the weights of the arcs (i, j) ∈ P inspired by the
multiplicative weight algorithm, and increase the weight of each arc (i, j) in P by a
factor of (1 + ε u

u(i,j)
); note that 0 ≤ u/u(i, j) ≤ 1 by the choice of u. The algorithm

continues until the flow f(i, j) on some arc (i, j) is at least (lnm)/ε2 times the arc’s
capacity u(i, j). We then compute C, the maximum congestion of any arc, which is
the ratio f(i, j)/u(i, j) of the flow routed across the arc to the arc’s capacity. By the
termination condition of the algorithm, C ≥ (lnm)/ε2. We return x̂ = x/C; thus
the flow across each arc in x̂ is at most its capacity.

Notice that this algorithm is quite different from those we have previously seen for
flow problems. There is no notion of a residual graph. The LP solution x constructed
by the algorithm isn’t even feasible; to produce a feasible solution, we scale x down
by the maximum congestion so that the capacity constraints are obeyed.

To analyze the algorithm, let us first introduce some notation. Following our anal-
ysis of the multiplicative weights algorithm, let us index variables by t, denoting
the value of the variable in the tth iteration of the algorithm. Thus in iteration t,

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

200 Multicommodity Flow Algorithms

wt(i, j) is the weight of arc (i, j), ft(i, j) is the flow across the arc (i, j), Pt is the
path selected by the algorithm, and ut is the amount of flow sent on path Pt. Let
Wt =

∑
(i,j)∈Awt(i, j) be the total weight of all the arcs in A in iteration t. Let Lt be

the length of the shortest path Pt found in iteration t, so that Lt =
∑

(i,j)∈Pt

wt(i,j)

u(i,j)
.

Let T be the number of iterations that the algorithm runs. Notice that the total value
of the flow sent is X ≡

∑T
t=1 ut =

∑
P∈P x(P), though the value of the feasible flow

x̂ is the amount scaled down by C, or X/C. Let X∗ be the value of a maximum
multicommodity flow (that is, the value of an optimal solution to the LP (7.2)).

To analyze the performance of the algorithm, we will use feasible solutions to
the dual linear program (7.3) to obtain a bound on X∗. In particular, if we scale
down the lengths of the arcs by Lt, the length of the shortest path in the tth iter-
ation, then we will have a feasible solution for the dual; that is, consider `t(i, j) =
1
Lt

(wt(i, j)/u(i, j)). Then for any path P ∈ P , since Lt is the length of a shortest

path in P in the tth iteration, Lt ≤
∑

(i,j)∈P
wt(i,j)

u(i,j)
, so that∑

(i,j)∈P

`t(i, j) =
1

Lt

∑
(i,j)∈P

wt(i, j)

u(i, j)
≥ 1,

showing that `t is a feasible solution for (7.3). By weak duality, the optimal multi-
commodity flow value X∗ is at most the objective function value of the dual for any
t, so that

X∗ ≤
∑

(i,j)∈A

u(i, j)`t(i, j) =
1

Lt

∑
(i,j)∈A

wt(i, j) =
Wt

Lt
.

Given these preliminaries, we can now prove the following theorem.

Theorem 7.6: The Garg-Könemann algorithm (Algorithm 7.3) computes a multi-
commodity flow of value at least (1 − 2ε)X∗; that is, its value is within a factor of
(1− 2ε) of the value of a maximum multicommodity flow, when 0 < ε ≤ 1/2.

Proof We begin by considering the ratio of X to X∗. Observe that

X

X∗
=

1

X∗

T∑
t=1

ut ≥
T∑
t=1

utLt
Wt

=
T∑
t=1

ut
Wt

∑
(i,j)∈Pt

wt(i, j)

u(i, j)

=
T∑
t=1

∑
(i,j)∈Pt

ut
u(i, j)

· wt(i, j)
Wt

. (7.6)

We now take advantage of the similarity of our algorithm with the multiplicative
weights algorithm. The weight update of the Garg-Könemann algorithm is exactly the
same the weight update in Algorithm 7.1 with vt(i, j) = ut

u(i,j)
∈ [0, 1] for (i, j) ∈ Pt

(and vt(i, j) = 0 for (i, j) /∈ Pt) and pt(i, j) = wt(i,j)

Wt
, and in which each decision

i from the multiplicative weights algorithm corresponds to an arc (i, j) ∈ A; thus

7.4 The Garg-Könemann Algorithm 201

the number of possible decisions is m. Theorem 7.2 tells us that for any decision
(h, k) ∈ A,

T∑
t=1

∑
(i,j)∈A

vt(i, j)pt(i, j) ≥ (1− ε)
T∑
t=1

vt(h, k)− 1

ε
lnm.

Plugging in the corresponding values for vt(i, j) and pt(i, j), the theorem implies
that

T∑
t=1

∑
(i,j)∈Pt

ut
u(i, j)

· wt(i, j)
Wt

≥ (1− ε)
T∑
t=1

ut
u(h, k)

· 1((h, k) ∈ Pt)−
1

ε
lnm,

where 1((h, k) ∈ Pt) is 1 if (h, k) ∈ Pt and 0 otherwise. Since
∑T

t=1 ut · 1((h, k) ∈
Pt) = f(h, k), the inequality above is equivalent to

T∑
t=1

∑
(i,j)∈Pt

ut
u(i, j)

· wt(i, j)
Wt

≥ (1− ε)f(h, k)

u(h, k)
− 1

ε
lnm.

Notice that from (7.6) the left-hand side is bounded above by X/X∗, so we have
that

X

X∗
≥ (1− ε)f(h, k)

u(h, k)
− 1

ε
lnm.

Recall that we set C = max(i,j)∈A f(i, j)/u(i, j), and that by the termination
condition of the algorithm C ≥ (lnm)/ε2. Since the inequality above holds for any
(h, k) ∈ A, it also holds for the arc achieving the maximum congestion C, so that

X

X∗
≥ (1− ε)C − 1

ε
lnm ≥ (1− ε)C − εC = (1− 2ε)C.

Since the value of the solution x̂ returned by the algorithm is X/C, we then have
that the value of the returned solution is

X

C
≥ (1− 2ε)X∗,

proving the theorem.

We can bound the running time of the algorithm as follows.

Theorem 7.7: The Garg-Könemann algorithm (Algorithm 7.3) takes O((Km lnm)/ε2)
shortest path computations and thus takes O (Km(m+ n log n)(lnm)/ε2) time.

Proof To prove the theorem, pick an arc (i, j). We note that a given arc (i, j)
can be the minimum capacity arc on the selected shortest path at most (lnm)/ε2

times before the algorithm terminates: Each time (i, j) is the minimum capacity
arc and u = u(i, j), the flow f(i, j) increases by u(i, j). Thus after (lnm)/ε2 times
in which (i, j) is the minimum capacity arc, f(i, j)/u(i, j) ≥ (lnm)/ε2, and the
algorithm ends. Since there arem arcs altogether, and some arc must be the minimum
capacity arc in each iteration, we can have at most (m lnm)/ε2 iterations before the
algorithm terminates. In each iteration, we must compute a shortest path for each of

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

202 Multicommodity Flow Algorithms

the K commodities to find the shortest overall path in P , and so we must compute
(Km lnm)/ε2 shortest paths over the course of the algorithm. The running time
of the algorithm follows since we can compute a shortest path by using Dijkstra’s
algorithm in O(m+ n log n) time.

In Exercise 7.3, we have the reader show that it is possible to reduce the running
time to O((m lnm)/ε2) shortest path computations, which removes the dependence
of the running time on the number of commodities K.

7.5 The Awerbuch-Leighton Algorithm

In this section, we look at another multicommodity flow algorithm for the maximum
multicommodity flow problem which is again quite different from the previous flow
algorithms we have seen. This algorithm repeatedly iterates through all the edges
and optimizes the amount of each commodity sent through each edge. If there exists
a flow that sends dk units of commodity k, then after a certain number of rounds, the
algorithm can construct an overall multicommodity flow that sends at least (1−ε)dk
of commodity k. The algorithm was given in the theoretical computer science liter-
ature by Awerbuch and Leighton [12], and hence we call it the Awerbuch-Leighton
algorithm.

To simplify the presentation, we make a number of assumptions. We assume that
dk = 1 for commodities k = 1, . . . ,K. We assume that for each source sk there
is exactly one edge (sk, j) leaving sk; note that we can easily modify the graph to
add such an edge if it does not exist. We assume there is a multicommodity flow f∗

that sends 1 unit of commodity k between sk and tk for each commodity k; we let
f∗k (i, j) be the flow of commodity k on arc (i, j). For the purposes of analysis we
assume there exists a path decomposition of the flow f∗k : we index the paths for each
commodity k by r so that we have x∗(Pk,r) ≥ 0 units of flow sent on path Pk,r, with∑

r x
∗(Pk,r) = dk = 1 for all commodities k. Then

∑
r:(i,j)∈Pk,r

x∗(Pk,r) = f∗k (i, j)

for all commodities k and arcs (i, j) ∈ A. We finally (and crucially) assume that
there is a path from any node in the graph to any sink tk such that every arc on the
path has capacity at least 1. These assumptions can all be removed; see the chapter
notes for further discussion.

In the algorithm, we treat the flow being sent as a fluid which can accumulate at
nodes in the network. For each commodity k and each arc (i, j) such that u(i, j) > 0,
we maintain two queues, one at i and one at j, which hold some amount of flow of
commodity k. We let qk(i, (i, j)) and qk(j, (i, j)) denote the amount of flow being
held in these two queues respectively. These amounts are always nonnegative. We will
let qk denote the amount of flow in the queue at the source sk; recall that since there
is a single edge leaving the source, this queue is well-defined. The algorithm then
repeatedly goes through the following four step process, which is also summarized in
Algorithm 7.4:

1 (Add Flow) Add 1− ε units of flow to the queue qk at sk for each commodity k;

2 (Push Flow) For each arc (i, j) ∈ A, find f1(i, j), . . . , fK(i, j) that maximize the

7.5 The Awerbuch-Leighton Algorithm 203

for t← 1 to T do
qk ← qk + (1− ε) for all commodities k
foreach (i, j) ∈ A do

∆k(i, j)← qk(i, (i, j))− qk(j, (i, j))
Compute f1(i, j), . . . , fK(i, j) ≥ 0 that maximize∑K

k=1 fk(i, j)[∆k(i, j)− fk(i, j)] subject to
∑

k fk(i, j) ≤ u(i, j)
qk(i, (i, j))← qk(i, (i, j))− fk(i, j) for all k
qk(j, (i, j))← qk(j, (i, j)) + fk(i, j) for all k

qk(tk, (j, tk))← 0 for all (j, tk) ∈ A, for all commodities k
foreach i ∈ V do

ni ← |δ+(i)|+ |δ−(i)|
ak ← 1

ni

(∑
(j,i)∈δ−(i) qk(i, (j, i)) +

∑
(i,j)∈δ+(i) qk(i, (i, j))

)
for all

commodities k
qk(i, (i, j))← ak for all (i, j) ∈ δ+(i) for all commodities k
qk(i, (j, i))← ak for all (i, j) ∈ δ−(i) for all commodities k

Algorithm 7.4 The Awerbuch-Leighton algorithm.

function
K∑
k=1

fk(i, j)[∆k(i, j)− fk(i, j)],

where ∆k(i, j) = qk(i, (i, j)) − qk(j, (i, j)) is the difference in the queue heights
for commodity k at the tail and head of arc (i, j), subject to the constraints that

fk(i, j) ≥ 0 and
∑K

k=1 fk(i, j) ≤ u(i, j). Move fk(i, j) units of commodity k from
qk(i, (i, j)) to qk(j, (i, j)).

3 (Empty Flow) Empty the commodity k queue at the sink tk for all commodities
k.

4 (Balance Flow) Balance the commodity k queues at each node i ∈ V for all
commodities k; that is, for each commodity k and each node i, sum the queues
qk(i, (j, i)) for arcs (j, i) entering i and qk(i, (i, h)) for arcs (i, h) leaving i, then
assign these queues the average taken over all of these arcs. The total amount
of commodity k at node i in the queues will remain the same, and each queue
qk(i, (j, i)) and qk(i, (i, h)) will have the same amount of commodity k.

The analysis of the algorithm uses a potential function to argue that there can’t
be too much flow in the queues, which implies that over time the flow of commodity
k entering the network at source sk must leave the system at the sink tk. We then
run the algorithm for a certain number of iterations, and track the flow that both
enters and leaves the graph. If the total amount of the flow in the queues is bounded,
then after a certain number of iterations, the portion in the queues will be a small
fraction of that which has been added to the source nodes, and so the remainder
must have left at the sinks. We compute a multicommodity flow by averaging the

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

204 Multicommodity Flow Algorithms

flow that has left the graph. We give more details in the proof of our final theorem
(Theorem 7.16).

Before we continue, we explain how we compute the flows in the Push Step of the
algorithm. Recall that for each arc (i, j), we want to find find f1(i, j), . . . , fK(i, j) ≥
0 that maximize the function

K∑
k=1

fk(i, j)[∆k(i, j)− fk(i, j)],

subject to
∑K

k=1 fk(i, j) ≤ u(i, j). For a given arc (i, j) and λ ≥ 0, we let

G(i, j) =
K∑
k=1

fk(i, j)[∆k(i, j)− fk(i, j)] + λ

(
u(i, j)−

K∑
k=1

fk(i, j)

)
.

For the optimal flows f1(i, j), f2(i, j), . . . , fK(i, j), we know that either fk(i, j) = 0
or ∂G

∂fk
= 0, where the latter implies that

∆k(i, j)− 2fk(i, j)− λ = 0.

Thus we have that

fk(i, j) = max

(
0,

1

2
(∆k(i, j)− λ)

)
,

and we want to choose λ so that

K∑
k=1

max

(
0,

1

2
(∆k(i, j)− λ)

)
≤ u(i, j). (7.7)

Notice that for all k with ∆k(i, j) > λ, fk(i, j) > 0, so we can compute λ by sorting
the ∆k(i, j) in descending order, and performing bisection search on the prefixes of
commodities in the sorted order. If S is the set of commodities in a given prefix, then
we have that

∑
k∈S fk(i, j) = u(i, j) implies that

1

2

∑
k∈S

(∆k(i, j)− λ) = u(i, j).

Since λ ≥ 0, we have then that

λ = max

(
0,

1

|S|

(∑
k∈S

∆k(i, j)− 2u(i, j)

))
.

Given this value of λ, we check if Inequality (7.7) holds. If it does we can try a larger
prefix S; if it doesn’t, we try a smaller prefix S.

As we stated earlier, the analysis of the algorithm uses a potential function to
argue that there can’t be too much flow in the queues, which implies that over time
the flow of commodity k entering the network at source sk must leave the system at
the sink tk. To show that the total amount of flow in the queues must be bounded,

7.5 The Awerbuch-Leighton Algorithm 205

we will use the potential function

Φ =
∑

(i,j)∈A

K∑
k=1

(
qk(i, (i, j))

2 + qk(j, (i, j))
2
)
.

To analyze the algorithm, we analyze the change in this potential function for each
of the four steps of the algorithm.

Lemma 7.8: The Add Step of the algorithm increases the potential function Φ by

2(1− ε)
K∑
k=1

qk + (1− ε)2K.

Proof In the Add Step, the queues at the sources sk each increase by 1− ε, so that
the increase in Φ due to the Add Step is

K∑
k=1

(
[qk + (1− ε)]2 − q2

k

)
=

K∑
k=1

(
2(1− ε)qk + (1− ε)2

)
= 2(1− ε)

K∑
k=1

qk + (1− ε)2K.

Observation 7.9: The potential function Φ cannot increase during the Empty Step.

For the Balance Step, we need the following well-known inequality.

Fact 7.10 (Cauchy-Schwarz Inequality): For any two vectors of numbers x =
(x1, . . . , xp) and y = (y1, . . . , yp), we have that(

p∑
i=1

xiyi

)2

≤
p∑
i=1

x2
i

p∑
i=1

y2
i .

Lemma 7.11: The potential function Φ cannot increase during the Balance Step.

Proof If there are p arcs incident to node i, and zj is the amount of flow in the
queue for the jth arc incident to i for commodity k, and we set the queues to be
aj = 1

p

∑p
j=1 zj , then the change in the potential for commodity k across all arcs

incident to i is
p∑
j=1

(
a2
j − z2

j

)
= p

(
1

p

p∑
j=1

zj

)2

−
p∑
j=1

z2
j ≤ 0,

where the final inequality follows by applying the Cauchy-Schwarz Inequality in Fact
7.10 to the vectors x = (z1, . . . , zp) and y = (1

p
, . . . , 1

p
).

We now need to show that the decrease in the potential function from the Push
Step can be used to balance out the increase from the Add Step.

Lemma 7.12: The potential function Φ decreases during the Push Step by at least

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

206 Multicommodity Flow Algorithms

2
∑K

k=1 qk + 2(1− ε)K− 2Km, where qk is the amount of commodity k in the queue
at sk at the start of the iteration.

Proof We first show that the Push Step is designed to maximize the decrease in the
potential function. Recall that we assume there is a multicommodity flow f∗ that
sends 1 unit of commodity k between sk and tk for each commodity k. We then use
the existence of f∗ to show that the potential function must decrease by at least the
amount given in the statement of the lemma.

Suppose we move f units of flow from a queue of height x to a queue of height
y, whose difference in height is ∆ = x− y. Then the total decrease in the potential
function Φ due to this change is

x2 + y2 − (x− f)2 − (y + f)2 = 2xf − 2yf − 2f2

= 2f [(x− y)− f]

= 2f [∆− f].

Recall that for each edge (i, j) the Push Step maximizes
∑K

k=1 fk(i, j)[∆k(i, j) −
fk(i, j)] subject to

∑
k fk(i, j) ≤ u(i, j). So the Push Step computes a flow on (i, j)

that maximizes the potential decrease in Φ over all multicommodity flows. Thus the
potential decrease realized by the flow f we compute must be at least the potential
decrease of the multicommodity flow f∗. Hence we have that the drop in potential is

2
∑

(i,j)∈A

K∑
k=1

fk(i, j)[∆k(i, j)− fk(i, j)] ≥ 2
∑

(i,j)∈A

K∑
k=1

f∗k (i, j)[∆k(i, j)− f∗k (i, j)]

= 2
∑

(i,j)∈A

K∑
k=1

f∗k (i, j)∆k(i, j)− 2
∑

(i,j)∈A

K∑
k=1

f∗k (i, j)2

≥ 2
∑

(i,j)∈A

K∑
k=1

f∗k (i, j)∆k(i, j)− 2Km,

where for the last step we use the fact that the demand dk = 1 for each commodity
k, so f∗k (i, j)2 ≤ 1 for all (i, j) ∈ A. We now use the decomposition of the mul-
ticommodity flow f∗ into paths; recall that

∑
r:(i,j)∈Pk,r

x∗(Pk,r) = f∗k (i, j) for all

commodities k and arcs (i, j) ∈ A, and
∑

r x
∗(Pk,r) = 1. Thus∑

(i,j)∈A

K∑
k=1

f∗k (i, j)∆k(i, j) =
K∑
k=1

∑
r

x∗(Pk,r)
∑

(i,j)∈Pk,r

∆k(i, j).

We now observe that because of the Balance Step, for a given commodity k the
queue heights of each node i for the edge coming into i and the edge leaving i must
be the same during the Push Step: that is, for two consecutive edges in a path, say
(i, j), and (j, `), we know that qk(j, (i, j)) = qk(j, (j, `). Thus summing ∆k(i, j) and
∆k(j, `) gives the differences of the queues at i and `:

∆k(i, j) + ∆k(j, `) = [qk(i, (i, j))− qk(j, (i, j))] + [qk(j, (j, `))− qk(`, (j, `))]
= qk(i, (i, j))− qk(`, (j, `))

7.5 The Awerbuch-Leighton Algorithm 207

Extending the logic above, the sum of ∆k along a path Pk,r,
∑

(i,j)∈Pk,r
∆k(i, j), will

leave only the queues at the start of the path (at sk) and the end of the path (at tk).
At the start of the Push Step, we know that the queue for commodity k at sk has
qk + (1 − ε) units of commodity k in it (where qk is the content of the queue at sk
at the start of the iteration), and the queue for commodity k at tk has 0 units in it.
Recalling that

∑
r x
∗(Pk,r) = 1, the decrease in the potential function Φ is at least

2
K∑
k=1

∑
r

x∗(Pk,r)
∑

(i,j)∈Pk,r

∆k(i, j)− 2Km ≥ 2
K∑
k=1

(qk + 1− ε)− 2Km

= 2
K∑
k=1

qk + 2(1− ε)K − 2Km,

as desired.

The following observation is now easy to see from previous lemmas.

Lemma 7.13: If at the start of an iteration,
∑K

k=1 qk ≥ 1
ε
Km, then the potential

function Φ will not increase during the iteration.

Proof By Observation 7.9 and Lemma 7.11, the Empty and Balance Steps do not
cause the potential function to increase. By Lemma 7.8, the Add Step causes the
potential function Φ to increase by at most 2(1− ε)

∑K
k=1 qk + (1− ε)2K, while by

Lemma 7.12, the Push Step causes the potential function Φ to decrease by at least
2
∑K

k=1 qk + 2(1− ε)K − 2Km. The decrease is at least as much as the increase if

2
K∑
k=1

qk + 2(1− ε)K − 2Km ≥ 2(1− ε)
K∑
k=1

qk + (1− ε)2K.

Rearranging, we get that the decrease is at least as much as the increase if

K∑
k=1

qk ≥
1

2ε
[2Km+ (1− ε)2K − 2(1− ε)K],

which is implied by
∑K

k=1 qk ≥ 1
ε
Km, as desired.

Recall that our overall goal is to show that there cannot be too much flow in the
network, so that most flow entering the network will eventually have to leave it. Our
next lemma shows that if the condition of Lemma 7.13 is not met, and there is a large
queue of flow somewhere in the network, the potential function will still decrease.

Lemma 7.14: If at the start of an iteration,
∑K

k=1 qk <
1
ε
Km, but there exists a

queue of height q∗ > 1
ε
Km+n+ 1

2
K, then the potential function Φ will not increase

during the iteration.

Proof By Lemma 7.8 and the hypothesis of the lemma, we know that the Add Step
increases the potential function by at most

2(1− ε)
K∑
k=1

qk + (1− ε)2K <
2

ε
Km+K.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

208 Multicommodity Flow Algorithms

We assumed that from any node in the graph, there is a path to any sink tk for any
k of arcs of capacity at least one. Suppose the queue of height q∗ is at node i∗ and is
of commodity `; let P be a path in the graph from i∗ to t`. Consider a flow g` that
sends one unit of flow from i∗ to t`. By Lemma 7.12, we know that the potential
function decreases by

2
∑

(i,j)∈A

K∑
k=1

fk(i, j)[∆k(i, j)− fk(i, j)] ≥ 2
∑

(i,j)∈P

g`(i, j)[∆`(i, j)− g`(i, j)]

= 2
∑

(i,j)∈P

[∆`(i, j)− 1]

≥ 2q∗ − 2n,

using the reasoning as in the proof of Lemma 7.12 that the sum of the ∆` telescopes
to the first queue in the path (at i∗ of height q∗) and the last (at t` of height 0). So
the potential function will decrease if

2q∗ − 2n ≥ 2

ε
Km+K,

or

q∗ ≥ 1

ε
Km+ n+

1

2
K,

as desired.

From these results, we can give an upper bound on the potential Φ, and hence on
the total amount of flow of any commodity k in the network.

Lemma 7.15: For any commodity k, the total amount of flow of commodity k in
the queues in the network is at most 9

ε
K3/2m2.

Proof Since there are 2mK queues in total, and by Lemma 7.14, each queue has
height at most 1

ε
Km + n + 1

2
K ≤ 4

ε
Km before the potential function decreases

(using m ≥ n and ε ≤ 1), and the queues at the sources have height at most 2
ε
Km

before the potential function decreases, the potential function can never be larger
than

2mK

[
4

ε
Km

]2

+
2

ε
Km ≤ 34

ε2
K3m3.

Let Mk be the total amount of flow of commodity k in the queues of the network
and assume that all flow in the queues is of commodity k. We get the worst-case
upper bound on Mk by assuming that commodity k is the only contributor to the
potential function, and that each queue has Mk/2m units of commodity k. Then we
have that

2m

(
Mk

2m

)2

≤ 34

ε2
K3m3,

which implies

Mk ≤
9

ε
K3/2m2.

Exercises 209

Now we can finally bound the number of iterations of the algorithm, as shown in
the following theorem.

Theorem 7.16: If we run Algorithm 7.4 for 9
ε2
K3/2m2 iterations, then we can com-

pute a multicommodity flow that sends at least 1−2ε units of flow of each commodity
k.

Proof Let T = 9
ε2
K3/2m2. As suggested earlier in this section, we let the algorithm

run for T iterations and keep track of all the flow of each commodity that eventually
exits the graph at its sink tk. Let Fk(i, j) be the amount of the commodity k that
traverses edge (i, j) and is removed from the queue at tk by the final iteration T .
Let gk(i, j) = Fk(i, j)/T . We claim that gk is a multicommodity flow that sends at
least 1− 2ε units of demand from sk to tk. For each commodity k, the Add Step of
the algorithm adds 1− ε units of flow in each iteration of the algorithm, so (1− ε)T
units of commodity k get added over the T time steps. By Lemma 7.15, at most
εT = 9

ε
K3/2m2 units of commodity k can be in the queues of the graph at time T ,

so it must be the case that at least (1 − ε)T − εT units of commodity k have been
removed from the sink tk. Thus gk sends at least 1 − 2ε units of flow from sk to
tk. Since in any iteration, the total amount of flow sent over edge (i, j) is at most

the capacity u(i, j), it must be the case that
∑K

k=1 gk(i, j) ≤ u(i, j). Finally, at any
node i 6= sk, tk, the total flow that exits at the sink tk entering i must be equal to
the total flow exiting the sink leaving i, so flow conservation is maintained by gk.

As with the push-relabel algorithm for the maximum flow problem, one strength
of this algorithm is that all of its operations are very local. Rather than looking for
augmenting paths in the graph and modifying flow along a path, we only modify
flow on individual edges.

Exercises

7.1 Suppose ε ≤ 1/2, and ct(i) ∈ [−1, 1] for all t and i. Show that if we modify the

multiplicative weight update step in Algorithm 7.1 to be wt+1(i) ← (1− εct(i))wt(i),
then after T rounds, for any decision j, the expected cost of our solution is

T∑
t=1

N∑
i=1

ct(i)pt(i) ≤
T∑
t=1

ct(j) + ε

T∑
t=1

|ct(j)|+
1

ε
lnN.

7.2 Prove Theorem 7.5.

7.3 Consider Algorithm 7.5, which is a modification of the Garg-Könemann algorithm

given in Algorithm 7.3.

Algorithm 7.3 always computes the shortest path over all commodities, which requires

K shortest path computations in each iteration of the main loop. We showed that the

algorithm always terminates after augmenting flow on at most m lnm
ε2

paths. Thus for

Algorithm 7.3, we need Km lnm
ε2

shortest path computations.

(a) Prove that if in each iteration of Algorithm 7.3 we increase flow on a path whose

length is at most (1 + ε) times the length of the shortest path in P, the algorithm

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

210 Multicommodity Flow Algorithms

x(P)← 0 ∀P ∈ P
f(i, j)← 0, w(i, j)← 1 ∀(i, j) ∈ A
Let L be the length of the shortest path in P using lengths
`(i, j) = w(i, j)/u(i, j)

while f(i, j)/u(i, j) < (lnm)/ε2 ∀(i, j) ∈ A do
L← L(1 + ε)
for k ← 1 to K do

while ∃P ∈ Pk with
∑

(i,j)∈P
w(i,j)

u(i,j)
≤ L and

f(i, j)/u(i, j) < (lnm)/ε2 ∀(i, j) ∈ A do
u← min(i,j)∈P u(i, j)
x(P)← x(P) + u
f(i, j)← f(i, j) + u ∀(i, j) ∈ P
w(i, j)← (1 + ε u

u(i,j)
)w(i, j) ∀(i, j) ∈ P

C ← max(i,j)∈A f(i, j)/u(i, j)
return x/C;

Algorithm 7.5 Modification of Algorithm 7.3.

computes a multicommodity flow of value at least (1− 2ε)/(1 + ε) of the maximum

multicommodity flow.

(b) Prove that in Algorithm 7.5, L is always at most (1 + ε) times the length of the

shortest path in P.

(c) Prove that in the course of Algorithm 7.5, the length of any edge can become at

most m2/ε times its original length.

(d) Prove that in Algorithm 7.5 there can be at most O(lnm/ε2) iterations of the outer

while loop before the algorithm terminates.

(e) Prove that Algorithm 7.5 computes a multicommodity flow of value at least (1 −
2ε)/(1+ε) of the maximum multicommodity flow with O((K+m)(lnm)/ε2) shortest

path computations.

(f) Recall that Dijkstra’s algorithm for computing a shortest path computes the length

of the shortest path from a given source node to all other nodes. Use this to prove

that a simple modification of Algorithm 7.5 gives a multicommodity flow of value

at least (1− 2ε)/(1 + ε) of the maximum multicommodity flow with O((m lnm)/ε2)

shortest path computations.

Chapter Notes

Ford and Fulkerson [65] give an early reference for the maximum multicommodity
flow problem. Early algorithms for the multicommodity flow problem focused on
efficient implementations of the simplex method for solving the associated linear
program; for instance, Ford and Fulkerson [65] give a column-generation based version
of the simplex method.

Theorem 7.1 on two-commodity flows in Section 7.2 is due to Hu [113]; the proof we
give is due to Seymour [179]. Schrijver [177, Section 70.11] surveys a number of cases

Exercises 211

in which the cut condition as given in Section 7.2 is sufficient for a multicommodity
flow to exist; for example, a theorem of Okamura and Seymour [154] says that for
planar graphs, if the graph can be drawn such that all sk and tk are on the exterior
face, then the cut condition is sufficient.

Polynomial-time algorithms for multicommodity flow problems have so far been
specializations of polynomial-time algorithms for linear programming. Vaidya [199]
gives an O(K2.5n2m1.5 log(mDU)) time algorithm, where D = maxk dk, by adapt-
ing an interior-point algorithm and using fast matrix multiplication. Kamath and
Palmon [120] give several different algorithms based on interior-point methods. Tar-
dos [189] gives a strongly polynomial-time algorithm for linear programs in which
the coefficients of the constraints are bounded in the dimension of the problem; mul-
ticommodity flow problems have this structure, and consequently Tardos’s algorithm
gives a strongly polynomial-time algorithm for multicommodity flow.

Work on polynomial-time algorithms to find ε-optimal solutions to multicommod-
ity flow problems began with a paper of Leighton, Makedon, Plotkin, Stein, Tardos,
and Tragoudas [142]. Building on ideas of Shahrokhi and Matula [180] and Klein,
Plotkin, Stein, and Tardos [133], they give a deterministic algorithm running in time
O(1

ε2
K2mn log k log3 n) for the maximum concurrent flow problem; their algorithm

repeatedly computes minimum-cost flows in which the cost of the edge is an expo-
nential in its congestion (that is, the current ratio of the total amount of flow on the
edge to its capacity). Radzik [168] shows how to improve the running time of this
algorithm to O(1

ε2
Kmn log k log3 n).

Subsequent generalizations of this exponential penalty method were made by
Grigoriadis and Khachiyan [102] and Plotkin, Shmoys, and Tardos [164]. The multi-
plicative weights algorithm, introduced in Section 7.3, is from an excellent survey of
Arora, Hazan, and Kale [10] on the multiplicative weights algorithm and its applica-
tions. The algorithm is introduced in the survey as an attempt to synthesize a number
of different algorithms, including these algorithms using exponential penalties.

The Garg-Könemann algorithm of Section 7.4 is due to Garg and Könemann [79].
The perspective on the Garg-Könemann algorithm we give is from Arora, Hazan,
and Kale [10].

The Awerbuch-Leighton algorithm is due to Awerbuch and Leighton [12]. Awer-
buch and Leighton [13] also wrote a follow-up paper with better time bounds and a
different potential function and balancing step than that given here; they achieve a
running time of O(1

ε3
KL2m ln3(m/ε)), where L is the length of the longest simple

path from a source to a sink in the graph (so that L = O(n)). Both papers handle ar-
bitrary demands and capacities. The first paper has an extension to general directed
graphs, and the second considers networks that change arbitrarily over time.

Some amount of experimental work with the exponential penalty algorithms of
Leighton et al. [142] and Plotkin, Shmoys, and Tardos [164] has been performed.
Leong, Shor, and Stein [143] find that the Leighton et al. algorithm for concurrent
multicommodity flow outperforms a network simplex algorithm due to Kennington
and an interior point algorithm due to Karmarkar and Ramakrishnan, though com-
parison tests were limited. Goldberg, Oldham, Plotkin, and Stein [88] performed
computational testing for the minimum-cost multicommodity flow problem using

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

212 Multicommodity Flow Algorithms

an algorithm of Karger and Plotkin [121], as well as ideas drawn from Leighton
et al. [142], Leong, Shor, and Stein [143], Plotkin, Shmoys, and Tardos [164], and
Radzik [168]. They found their algorithm substantially outperformed simplex-based
algorithms which solve the problem exactly, including the commercial code CPLEX
[114]. They state that a modification of their algorithm is substantially faster than
the implementation of Leong, Shor, and Stein for the concurrent flow problem. Bien-
stock [24] performs substantial experiments with algorithms based on the exponential
penalty method; he applies his implementation to multicommodity flow problems as
well as linear programs from network design problems. He found that his imple-
mentation substantially outperformed the CPLEX interior-point algorithm and dual
simplex algorithm on concurrent flow problems, even when accounting for the mo-
ment when the algorithms had found an ε-optimal solution.

Exercise 7.3 is due to Fleischer [61].

8

Electrical Flow Algorithms

To carry the historical sketch another (and our last) step back in time might

lead one to the Maxwell-Kirchoff theory of current distribution in an electrical

network. Although this topic is closely related to the subject of the book, we

have chosen not to include it. The reason for this is that we have limited the

flow problems discussed to purely linear ones, and within this category, to those

for which the assumption of integral data in the problem implies the existence

of an integral solution. This sub-class of linear flow problems has, we feel, a

simple elegance not shared by those outside the class. The first restriction, that

of linearity, eliminates the Maxwell-Kirchoff electrical network problem, which,

viewed as a programming problem, becomes one of minimizing a quadratic func-

tion subject to linear constraints. The second restriction eliminates, for example,

linear problems that involve the simultaneous flow of several commodities, im-

portant as these may be in practical applications of linear programming.

– L. R. Ford, Jr., and D. R. Fulkerson, Flows in Networks

One type of flow in a network that we have not yet considered is the well-studied
topic of electrical flows in a network of resistors. Such flows are known to have many
interesting connections to well-studied topics in graph theory. Recently they have
been shown to have applications to the types of flows discussed in this book. In
this chapter, we review concepts of electrical flows, and then show how they can be
applied to computing maximum flows in undirected graphs (in Section 8.2) and to
sparsifying graphs (in Section 8.3). We present an algorithm for computing such a
flow in Section 8.4; the algorithm is surprisingly reminiscent of the network simplex
algorithm given in Section 5.6.

8.1 Optimality Conditions

Electrical Networks. We give an example of an electrical network in Figure 8.1.
We can model it as an undirected graph G = (V,E) in which each edge (i, j) ∈ E
has a resistance r(i, j) > 0. It will sometimes be useful to think of the inverse of
the resistance, known as the conductance c(i, j) = 1/r(i, j). We can determine a
current flow f in the network via two physical laws. The first is one we know well,
that of flow conservation, known in this context as Kirchoff’s Current Law: at any
node, the total current entering the node equals the total current leaving it. The
second law, Ohm’s Law, assumes that there is a potential p(i) for each node i, and

213

214 Electrical Flow Algorithms

s t

3Ω

5Ω

1Ω

3Ω

4Ω

Figure 8.1 Example of an electrical network.

says that the flow across any edge is equal to the potential difference divided by the
resistance of the edge (or multiplied by the conductance); thus

f(i, j) =
p(i)− p(j)
r(i, j)

= (p(i)− p(j))c(i, j).

Notice that we are treating f(i, j) as the flow from i to j, and so we have a natural
skew-symmetry property even though the graph is undirected: f(j, i) = −f(i, j) =
(p(j) − p(i))/r(i, j) = (p(j) − p(i))c(i, j). Because of the possibility for confusion
in working with a flow that is directed in an undirected graph, where necessary we
use the notation {i, j} ∈ E for an undirected edge, so that there is no ordering on

the elements of the edge. We also let ~E denote an arbitrary orientation of the edges
of the undirected graph E, so that we have directed edges (i, j) ∈ ~E.

For a given node i, we let b(i) be the external current being supplied to node i, so
that b(i) > 0 represents a supply of current to i, and b(i) < 0 represents a demand.
Then by flow conservation we have that b(i) must equal the net flow leaving i.
Recalling that by skew-symmetry the net flow leaving i is

∑
j:{i,j}∈E f(i, j), we have

that ∑
j:{i,j}∈E

f(i, j) = b(i);

note that we are treating the sum over the undirected edges in E as a sum over
unordered pairs {i, j}. Then

b(i) =
∑

j:{i,j}∈E

f(i, j) =
∑

j:{i,j}∈E

c(i, j)(p(i)− p(j))

=
∑

j:{i,j}∈E

c(i, j)p(i)−
∑

j:{i,j}∈E

c(i, j)p(j). (8.1)

In our example network, suppose we put one unit of current in at node s and take a
unit of current out at node t. Then we can calculate the flow f(i, j) and potentials
p(i) for the arcs and nodes respectively. We show the result in Figure 8.2.

We will see later that a flow satisfying both the Kirchoff Current Law and Ohm’s

8.1 Optimality Conditions 215

20
13

V s

12
13

V

16
13

V

t 0V

4
13

A, 2Ω

5
13

A, 4Ω

4
13

A, 1Ω

4
13

A, 3Ω

4
13

A, 4Ω

1A

Figure 8.2 Example of a flow in an electrical network. We put in one unit
of current (in amps) at s and remove one at t. The nodes show the
potentials (in volts), and each edge has the current passing through it,
followed by its resistance.

Law uniquely minimizes a certain function called the energy of the flow. For this rea-
son, we will sometimes call such a flow an optimal electrical flow, and the associated
potentials the optimal potentials.

Another physical law, Kirchoff’s Potential Law, is the equivalent of Ohm’s Law.
Kirchoff’s Potential Law states that around any directed cycle C, it is the case that∑

(i,j)∈C r(i, j)f(i, j) = 0. We prove the equivalence below.

Theorem 8.1: Kirchoff’s Potential Law is satisfied if and only if Ohm’s Law is
satisfied.

Proof First we prove that if Ohm’s Law holds, then Kirchoff’s Potential Law holds.
Assume that there exist potentials p such that f(i, j) = (p(i)− p(j))/r(i, j) for any
directed edge (i, j). Then we observe that for any directed cycle C of edges,∑

(i,j)∈C

r(i, j)f(i, j) =
∑

(i,j)∈C

(p(i)− p(j)) = 0.

Now suppose that Kirchoff’s Potential Law holds for a flow f . We show that it is
possible to define potentials p such that f(i, j) = (p(i) − p(j))/r(i, j). To do this,
pick an arbitrary spanning tree T of the undirected graph G, and pick an arbitrary
root node r. Let Pi be the directed path in the tree T from i ∈ V to r. Define
p(r) = 0 and

p(i) =
∑

(k,`)∈Pi

r(k, `)f(k, `).

We call such potentials tree-defined potentials, since they are defined with respect
to the flows in the tree T . Now pick any edge {i, j} ∈ T ; assume without loss of

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

216 Electrical Flow Algorithms

generality that j is closer to the root than i. Then

p(i)− p(j) =
∑

(k,`)∈Pi

r(k, `)f(k, `)−
∑

(k,`)∈Pj

r(k, `)f(k, `) = r(i, j)f(i, j), (8.2)

as desired. Now consider any edge {i, j} ∈ E − T . Let z ∈ V be the least common
ancestor of i and j in the tree T , let Piz be the directed path from i to z in T , let
Pjz be the directed path from j to z in T , and let Pzj be the directed path from z
to j in T . Then

p(i)− p(j) =
∑

(k,`)∈Pi

r(k, `)f(k, `)−
∑

(k,`)∈Pj

r(k, `)f(k, `)

=
∑

(k,`)∈Piz

r(k, `)f(k, `)−
∑

(k,`)∈Pjz

r(k, `)f(k, `)

=
∑

(k,`)∈Piz

r(k, `)f(k, `) +
∑

(k,`)∈Pzj

r(k, `)f(k, `),

where the second equality follows because the terms of the path from z to r cancel
in both sums, and the last equation follows by skew symmetry. If we let C be the
directed cycle that is the union of the directed path from i to z, the directed path
from z to j, and the arc (j, i), then we have that

p(i)− p(j) =
∑

(k,`)∈Piz

r(k, `)f(k, `) +
∑

(k,`)∈Pzj

r(k, `)f(k, `)

=
∑

(k,`)∈C

r(k, `)f(k, `)− r(j, i)f(j, i) (8.3)

= 0 + r(i, j)f(i, j),

where we add and subtract r(j, i)f(j, i) to obtain the second equality, and use Kir-
choff’s Potential Law and skew symmetry to obtain the last.

We will use the following corollary in Section 8.4.

Corollary 8.2: Let p be tree-defined potentials for a tree T and a flow f , let the
directed arc (i, j) be a nontree edge, and let C̄ be the directed cycle that consists of
(i, j) plus the directed j-i path in T . Then

r(i, j)f(i, j)− (p(i)− p(j)) =
∑

(k,`)∈C̄

r(k, `)f(k, `).

Proof Note that C̄ is the reverse of the cycle C in the proof above. Applying skew
symmetry, we have that

∑
(k,`)∈C̄ r(k, `)f(k, `) = −

∑
(k,`)∈C r(k, `)f(k, `) and that

r(i, j)f(i, j) = −r(j, i)f(j, i). Substituting these terms into Equation (8.3) and
rearranging gives the corollary.

Graph Laplacians. It will be useful for us to think of these equations in terms of
matrix notation, and luckily there is a well-known concept at hand. Let ei be the

8.1 Optimality Conditions 217

standard unit vector such that ei(j) = 1 if j = i and 0 if j 6= i. Then the Laplacian
LG of the undirected graph G is defined as

LG ≡
∑
{i,j}∈E

(ei − ej)(ei − ej)T .

Observe that each term (ei − ej)(ei − ej)T for i 6= j is an n × n matrix which has
−1 at the (i, j) and (j, i) entries, 1 at the diagonal entries for i and j, and zeroes
everywhere else. Thus it is typical to observe that the Laplacian can also be expressed
as the difference of two matrices, as follows. Let D be the diagonal matrix of node
degrees of G, so that the ith entry on the diagonal is the degree of node i in G. Let
A = (aij) be the adjacency matrix of the graph G, so that aij = aji = 1 if {i, j} ∈ E
and aij = 0 otherwise. Then it is easy to check that

LG = D −A.

Given weights w(i, j) on the edges, the weighted Laplacian LG is defined as

LG =
∑

(i,j)∈E

w(i, j)(ei − ej)(ei − ej)T .

As above, we can rewrite a weighted Laplacian as LG = D −W , where D is the
diagonal matrix whose ith diagonal entry is

∑
j:{i,j}∈E w(i, j) and W = (wij) with

wij = wji = w(i, j) and wii = 0. Consider the weighted Laplacian LG in which
the weights are conductances from a network of resistors. Then we can write the
expression of the vector of potentials in terms of the conductances in (8.1) in matrix
notation as LGp = b, since

LGp =
∑
{i,j}∈E

c(i, j)(ei − ej)(ei − ej)Tp =
∑
{i,j}∈E

c(i, j)(ei − ej)(p(i)− p(j)).

Thus the ith coordinate of LGp is∑
j:{i,j}∈E

c(i, j)(p(i)− p(j)) = b(i),

as given in (8.1).
We can also write the flow vector f in matrix notation as follows. If we let C ∈
<m×m be a diagonal matrix of conductances, and B ∈ <n×m be a matrix whose
column corresponding to edge (i, j) is (ei − ej), then by (8.1)

f = CBTp

and the weighted Laplacian

LG =
∑
{i,j}∈E

c(i, j)(ei − ej)(ei − ej)T = BCBT .

Then

b = LGp = BCBTp = Bf,

which expresses the flow conservation constraints for f .

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

218 Electrical Flow Algorithms

Given the matrix notation, it becomes easy to make certain observations. For
instance, suppose we have a supply vector b, potentials p, and a flow f such that
LGp = b, and f = CBTp. Then if we have any scaling α of b, it follows that αp and
αf are corresponding potentials and flow, since LGp = b implies LG(αp) = αb, and
f = CBTp implies αf = CBT (αp).

One of the reasons that interest in electrical flows has increased recently is that
it has been shown that we can compute the potentials quickly, and these quick
computations can be used to speed up certain applications. Recall that Õ(f(n)) =
O(f(n) logc n) for some constant c; that is, the Õ notation hides polylogarithmic
factors. Let e be the vector of all ones.

Theorem 8.3: The solution p to LGp = b can be approximately computed in Õ(m)
time when G is connected and bT e =

∑
i∈V b(i) = 0.

Given the potentials p, we can compute the associated electrical flow f in O(m)
time, so that we get the following corollary.

Corollary 8.4: The electrical flow f for a supply vector b can be approximately
computed in Õ(m) time when G is connected and bT e = 0.

We will give such an algorithm in Section 8.4. We will ignore the fact that the
computation is only approximate in what follows. Note that the condition that bT e =
0 makes sense as a physical condition on the system, since it enforces that the total
of the current supplies/demands is zero. In this case, the total amount of current
supplied to the network is equal to the total amount demanded, so that current is
conserved in the supply vector b.

Effective Resistance. One extremely useful concept from electrical flows is that
of the effective resistance between two nodes i and j. The effective resistance is the
potential drop between i and j if we put one unit of current in at i and take one out
at j. Another perspective is that the effective resistance reduces the behavior of the
resistance of the network to a single number, as if there were just a single resistor
between i and j. See Figure 8.3 for an example. We denote the effective resistance
between i and j by reff(i, j). Thus reff(i, j) = p(i) − p(j) for the potentials p that
are a solution to LGp = ei − ej.

We will often be interested in the potentials p and flow f of an s-t electrical flow,
which are the potentials p and flow f resulting from a unit of current put in at s and
removed at t; the potentials are the solution to LGp = es − et.

An incredibly useful alternate perspective on effective resistance relates electrical
flows to spanning trees in the graph G. We assume G is connected. Let T be the
set of all possible spanning trees of G. Let r(T) be the product of all the resistances
in a spanning tree T , so that r(T) =

∏
(i,j)∈T r(i, j). Let Z =

∑
T∈T

1
r(T)

; we will

be using Z as a normalizing factor in what follows. For each tree T ∈ T , let fT be
the result of sending one unit of current from s to t on the unique directed s-t path
in T , so that fT (i, j) = 1 if (i, j) is on the s-t path, fT (i, j) = −1 if (j, i) is on
the directed s-t path, and fT (i, j) = 0 otherwise. Then the following theorem shows
that we can define the s-t electrical flow as a weighted sum of these flows fT .

8.1 Optimality Conditions 219

20
13

V s

12
13

V

16
13

V

t 0V

4
13

A, 2Ω

5
13

A, 4Ω

4
13

A, 1Ω

4
13

A, 3Ω

4
13

A, 4Ω

1A

20
13

V s t 0V

1A, 20
13

Ω

1A

Figure 8.3 Example of effective resistance. We put in one unit of current
(in amps) at s and remove one at t. The potential drop is 20

13 volts from s to

t, which is equivalent to having a single resistor between s and t of 20
13Ω.

Theorem 8.5: Consider the flow

f =
∑
T∈T

1

Z · r(T)
fT .

Then f is an s-t electrical flow.

Proof Since each flow fT sends a unit of current from s to t, and
∑

T∈T
1

Z·r(T)
= 1

by the definition of Z, f also sends a unit of flow from s to t. Since each flow fT
obeys flow conservation, the flow f will also obey flow conservation so that Kir-
choff’s Current Law is obeyed. We then only need to show that Kirchoff’s Poten-
tial Law is obeyed. In particular, we wish to show that for any directed cycle C,∑

(i,j)∈C r(i, j)f(i, j) = 0.
Let S be the set of all s-t cuts S such that the two graphs induced by S and V −S

are both connected. Let T [S] be the set of trees spanning S in the graph induced by
S and similarly let T [V −S] be the set of trees spanning V −S in the graph induced
by V −S. Pick an arbitrary directed edge (i, j) and consider a tree T such that (i, j)
is on the path directed from s to t. The removal of (i, j) from T partitions T into an

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

220 Electrical Flow Algorithms

s-t cut S and a set V − S, such that there is a tree T1 ∈ T [S] and T2 ∈ T [V − S]
with T = T1∪T2∪{(i, j)}; if (j, i) is on the path directed from s to t, then removing
(j, i) partitions T similarly. In the first case, δ+(S)∩T = {(i, j)}, and in the second,
δ−(S) ∩ T = {(i, j)} Hence we can write

f(i, j) =
∑
T∈T

1

Z · r(T)
fT (i, j)

=
1

Z

∑
S∈S

∑

T=T1∪T2∪{(i,j)}
T1∈T [S],T2∈T [V−S],

i∈S,j /∈S

1

r(T)
−

∑
T=T1∪T2∪{(i,j)}

T1∈T [S],T2∈T [V−S],
i/∈S,j∈S

1

r(T)

=
1

Z

∑
S∈S

∑

T1∈T [S],
T2∈T [V−S],
i∈S,j /∈S

1

r(T1)r(T2)r(i, j)
−

∑
T1∈T [S],

T2∈T [V−S],
i/∈S,j∈S

1

r(T1)r(T2)r(i, j)

 .
Pick any directed cycle C. We wish to show that

∑
(i,j)∈C r(i, j)f(i, j) = 0. Then∑

(i,j)∈C r(i, j)f(i, j) is equal to

1

Z

∑
(i,j)∈C

r(i, j)
∑
S∈S

∑

T1∈T [S],
T2∈T [V−S],
i∈S,j /∈S

1

r(T1)r(T2)r(i, j)
−

∑
T1∈T [S],

T2∈T [V−S],
i/∈S,j∈S

1

r(T1)r(T2)r(i, j)

=
1

Z

∑
S∈S

∑
(i,j)∈C

r(i, j)

∑

T1∈T [S],
T2∈T [V−S],
i∈S,j /∈S

1

r(T1)r(T2)r(i, j)
−

∑
T1∈T [S],

T2∈T [V−S],
i/∈S,j∈S

1

r(T1)r(T2)r(i, j)

=

1

Z

∑
S∈S

∑
T1∈T [S],
T2∈T [V−S]

1

r(T1)r(T2)

[
|δ+(S) ∩ C| − |δ−(S) ∩ C|

]
= 0,

since for any set S ⊂ V and any directed cycle C, |δ+(S) ∩ C| = |δ−(S) ∩ C|; that
is, the number of arcs on a cycle leaving any set S equals the number entering the
set.

Another perspective on our definition of an s-t electrical flow above is that we
sample tree T ∈ T with probability proportional to 1/r(T) (and equal to 1/(Z ·
r(T))), and the flow f is then the expected value of flow fT sampled according
to this distribution. Note that this probability distribution does not depend on the
choice of s and t (although the flows fT do depend on s and t). From this perspective,

8.1 Optimality Conditions 221

we get the following lemma relating effective resistance to the probability that a given
edge is in the sampled tree.

Lemma 8.6: For any edge {i, j} ∈ E, and T ∈ T sampled with probability 1/(Z ·
r(T)),

reff(i, j)

r(i, j)
= Pr[{i, j} ∈ T].

Proof We let f be an i-j electrical flow, with associated potentials p. Then reff(i, j) =
p(i) − p(j). We note that for any tree T ∈ T , if {i, j} ∈ T , then the edge (i, j) is
the directed path from i to j in T , so that fT (i, j) = 1, whereas if {i, j} /∈ T , then
fT (i, j) = 0. Then

reff(i, j)

r(i, j)
=
p(i)− p(j)
r(i, j)

= f(i, j)

=
∑
T∈T

1

Z · r(T)
fT (i, j)

=
∑

T∈T :{i,j}∈T

1

Z · r(T)

= Pr[{i, j} ∈ T]

by the definition of the probability distribution.

We can also now easily show the following result, which is sometimes known as
Foster’s Theorem.

Theorem 8.7 (Foster’s Theorem [67]):∑
{i,j}∈E

reff(i, j)

r(i, j)
= n− 1.

Proof Using the definition of the probability distribution and Lemma 8.6, we have
the following, where 1[{i, j} ∈ T] is 1 if {i, j} ∈ T and 0 otherwise:∑

{i,j}∈E

reff(i, j)

r(i, j)
=

∑
{i,j}∈E

Pr[{i, j} ∈ T]

=
∑
{i,j}∈E

∑
T∈T

1

Z · r(T)
1[{i, j} ∈ T]

=
∑
T∈T

1

Z · r(T)

∑
{i,j}∈E

1[{i, j} ∈ T]

=
∑
T∈T

1

Z · r(T)
(n− 1) = n− 1,

using the fact that there are n− 1 edges in any spanning tree T .

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

222 Electrical Flow Algorithms

Energy. One last concept we will need is that of the energy of the network for a
particular current flow. For a single resistor of resistance r with current f flowing
across it, the energy dissipated is f2r. The energy of the graph G with current flow
f(i, j) is the sum of the energy dissipated in the network, and is denoted E(f), so
that

E(f) =
∑
{i,j}∈E

f2(i, j)r(i, j).

If p are the potentials defining flow f , then

E(f) =
∑
{i,j}∈E

f2(i, j)r(i, j)

=
∑
{i,j}∈E

1

r(i, j)
(p(i)− p(j))2

=
∑
{i,j}∈E

c(i, j) (p(i)− p(j))2

=
∑
{i,j}∈E

c(i, j)pT (ei − ej)(ei − ej)Tp

= pT

 ∑
{i,j}∈E

c(i, j)(ei − ej)(ei − ej)T
 p

= pTLGp.

Then if the current flow f and potentials p are given by the s-t electrical flow, so
that LGp = es − et, we have that the energy is

E(f) = pTLGp = pT (es − et) = p(s)− p(t) = reff(s, t);

that is, the energy dissipated is the effective resistance between s and t. This is what
we should expect, since the effective resistance treats the resistance of the entire
network as a single number. Thus sending a single unit of current between s and t
on a single resistor of resistance reff(s, t) dissipates energy reff(s, t).

It will be useful to show that the potentials p and current flows f minimize the
overall energy in certain senses for the analysis of algorithms in subsequent sections.
The first lemma states that an electrical flow f uniquely minimizes E(f) among
all flows g such that Bg = b (that is, all flows that obey flow conservation for a
given supply vector b). The second lemma shows that the potentials p that define an
electrical flow f for a supply vector b maximize the function 2bTx−xTLGx among all
vectors x. In these senses, both the electrical flow and the corresponding potentials
are optimal flows/potentials for these particular objective functions.

Lemma 8.8: Consider any b such that bT e = 0. The electrical flow f minimizes
E(f) among all flows g such that Bg = b.

Proof Pick any flow g such that Bg = b, and let h = g − f . Then for any node

8.1 Optimality Conditions 223

i ∈ V , we have that∑
j:{i,j}∈E

h(i, j) =
∑

j:{i,j}∈E

g(i, j)−
∑

j:{i,j}∈E

f(i, j) = b(i)− b(i) = 0, (8.4)

where we sum over all edges incident on i in an undirected sense. Now consider the
energy of g:

E(g) =
∑
{i,j}∈E

g2(i, j)r(i, j)

=
∑
{i,j}∈E

(f(i, j) + h(i, j))
2
r(i, j)

=
∑
{i,j}∈E

f2(i, j)r(i, j) + 2
∑
{i,j}∈E

f(i, j)h(i, j)r(i, j) +
∑
{i,j}∈E

h2(i, j)r(i, j)

= E(f) + 2
∑
{i,j}∈E

(p(i)− p(j))h(i, j) +
∑
{i,j}∈E

h2(i, j)r(i, j)

= E(f) + 2
∑
i∈V

p(i)
∑

j:{i,j}∈E

h(i, j) +
∑
{i,j}∈E

h2(i, j)r(i, j)

= E(f) +
∑
{i,j}∈E

h2(i, j)r(i, j),

where the penultimate equality follows by the skew symmetry of h (since it is the
difference of f and g, which both obey skew symmetry), and the final equality follows
from (8.4). Finally, observe that unless f = g (and h = 0), then the equations above
show the E(g) > E(f), as desired.

Lemma 8.9: For a given supply vector b with bT e = 0, the potentials p of the
corresponding electrical flow f maximize 2bTx− xTLGx over all vectors x.

Proof Let z(x) = 2bTx− xTLGx. Then at its maximum, we must have

∂z

∂x(i)
= 0

for all i, which implies that

2b(i)− 2x(i)
∑

j:{i,j}∈E

c(i, j) + 2
∑

j:{i,j}∈E

c(i, j)x(j) = 0,

which implies that

b(i) =
∑

j:{i,j}∈E

c(i, j)(x(i)− x(j)),

which is exactly the equation (8.1) that defines the potentials p for the corresponding
electrical flow.

Corollary 8.10: For a given supply vector b with bT e = 0, the maximum value of
2bTx− xTLGx attained is E(f) for the corresponding electrical flow f .

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

224 Electrical Flow Algorithms

Proof Since the corresponding potentials p maximize the function and LGp = b, we
have that the maximum value of the function is

2bTp− pTLGp = 2pTLGp− pTLGp = pTLGp = E(f).

8.2 Maximum Flow in Undirected Graphs

Danny Ocean: Saul makes ten. Ten oughta do it, don’t you think?

Rusty Ryan: [Silent, staring at TV, not looking at Danny]

Danny: You think we need one more?

Rusty: [Silent]

Danny: You think we need one more.

Rusty: [Silent]

Danny: All right, we’ll get one more.

– Ocean’s Eleven (2001)

In this section, we give one more algorithm for computing a maximum flow. In
particular, we show how computing an s-t electrical flow can be used in computing
an approximate maximum s-t flow in an undirected graph. First, we must define
what we mean by an s-t flow in an undirected graph G = (V,E) with capacities
u(i, j) ≥ 0 for all {i, j} ∈ E. We choose an arbitrary orientation of the edges

and denote the resulting set of directed edges by ~E. Once again, we assume skew
symmetry so that for any (i, j) ∈ ~E, we have that f(j, i) = −f(i, j). In order to
satisfy the capacity constraints, we require that −u(i, j) ≤ f(i, j) ≤ u(i, j) for all

(i, j) ∈ ~E; thus the positive flow can either be going from i to j or j to i, but in
either case the amount of positive flow cannot exceed u(i, j). Observe then that the
flow conservation constraints are that∑

j:(i,j)∈~E

f(i, j)−
∑

j:(j,i)∈~E

f(j, i) = 0

for all i ∈ V , i 6= s, t.
To obtain our algorithm, we use the multiplicative weights algorithm for packing

problems given in Section 7.3 and Algorithm 7.2, in particular Theorem 7.5. Recall
that in the algorithm, we were able to provide an approximately feasible solution x to
a system |Mx| ≤ e, for e the all ones vector, and x ∈ Q for Q a convex set. The algo-
rithm assumes we have a subroutine, called an oracle. This oracle takes a nonnegative
vector p and either finds an x ∈ Q that satisfies the inequality

∑
i p(i)|Mix| ≤ pT e,

or correctly states that no such x ∈ Q exists. The algorithm produces x̄ ∈ Q such
that |Mx̄| ≤ (1 + 4ε)e.

The central idea of this section is that we will use the computation of an s-t
electrical flow as the oracle. Electrical flows obey flow conservation constraints, but

8.2 Maximum Flow in Undirected Graphs 225

do not respect capacity constraints. Thus we will let the convex set Q encode the
flow conservation constraints, and let the matrix M encode the capacity constraints.

For the sake of simplicity, we will assume that the capacity u(i, j) = 1 for all arcs

(i, j) ∈ ~E. In what follows, we will give an algorithm that either computes a flow
of value nearly k assuming that a flow of value k exists, or correctly states that no
flow of value k exists. Given such an algorithm, we can use bisection search to find
a near maximum flow. Since the edge capacities are 1, we know that the value of
the maximum flow is at least 0 and at most m, and since the capacities are integer,
we know by the Integrality Property that the value of the maximum flow is also an
integer. Hence with O(logm) calls to our algorithm, we will find a near-maximum
flow.

We now give our algorithm in more detail. We put the capacity constraints into
the matrix M , so that

−1 ≤ f(i, j) ≤ 1 for all (i, j) ∈ ~E,

or

|f(i, j)| ≤ 1 for all (i, j) ∈ ~E.

We let Q encode the flow conservation constraints plus a constraint that the flow
value is k, so that

Q = {f ∈ <m :
∑

j:(i,j)∈~E

f(i, j)−
∑

j:(j,i)∈~E

f(j, i) = 0 for all i 6= s, t

and
∑

j:(s,j)∈~E

f(s, j)−
∑

j:(j,s)∈~E

f(j, s) = k}.

We give the algorithm in Algorithm 8.1; it is the algorithm for the packing problem
(Algorithm 7.2) as given in Theorem 7.5 specialized to this particular case, with

weights wt, probabilities pt, and values vt for each edge (i, j) ∈ ~E, since there is one
constraint in the matrix M per edge (the capacity constraint). Recall from Definition
7.3 that ρ denotes the width of the oracle; in this context, the width is the relative
amount by which the electrical flow can exceed the capacity constraint. We will show
in Lemma 8.13 that for the s-t electrical flow oracle, ρ ≤

√
2m/ε; that is, an s-t

electrical flow with the resistances rt can send flow at most
√

2m/ε along each edge
of unit capacity. Then for T = 1

ε2
ρ lnm iterations, we compute an s-t electrical flow

ft of value k using resistances rt(i, j) equal to the weight wt(i, j) for the edge plus
ε
m
Wt. We update the values vt and the weights wt as given by Algorithm 7.2. Note

that the weight of an edge increases the most for edges whose flow value is close to
the width ρ, and consequently the resistance of an edge increases the most for edges
whose flow value is close to the width ρ. Since the resistance is higher, in future
iterations, that the flow value on this edge will be lower. At the end of the algorithm,
we return a flow that is the average of the flows ft over all T iterations.

We now argue that computing an s-t electrical flow can be used as an oracle in
the multiplicative weights algorithm for packing problems. Recall that we need the
oracle to find an x ∈ Q such that

∑
i p(i)|Mix| ≤ pT e for probabilities p, or state

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

226 Electrical Flow Algorithms

w1(i, j)← 1 for all (i, j) ∈ ~E
T ← 1

ε2
ρ lnm

for t← 1 to T do
Wt ←

∑
(i,j)∈~E wt(i, j)

pt(i, j)← wt(i, j)/Wt for all (i, j) ∈ ~E

rt(i, j)← wt(i, j) + ε
m
Wt for all (i, j) ∈ ~E

Compute s-t electrical flow ft of value k using resistances rt

vt(i, j)← 1
ρ
|ft(i, j)| for all (i, j) ∈ ~E

wt+1(i, j)← wt(i, j)(1 + εvt(i, j)) for all (i, j) ∈ ~E

return f̄ ← 1
T

∑T
t=1 ft

Algorithm 8.1 Multiplicative weights algorithm for computing an approximate s-t flow
via electrical s-t flows.

that no such x exists; given that M captures the capacity constraints, we need that

∑
(i,j)∈~E

pt(i, j)|ft(i, j)| ≤
∑

(i,j)∈~E

pt(i, j) = 1.

Multiplying by Wt, we get that the oracle should find a flow ft ∈ Q such that

∑
(i,j)∈~E

wt(i, j)|ft(i, j)| ≤Wt. (8.5)

Instead we prove a slightly weaker statement given in the statement of Lemma 8.12
below. We first recall the Cauchy-Schwartz Inequality from Fact 7.10, restated for
vectors of edges.

Fact 8.11 (Cauchy-Schwarz Inequality): For values a(k, `), b(k, `) on edges

(k, `) ∈ ~E,

 ∑
(k,`)∈~E

a(k, `)b(k, `)

2

≤

 ∑
(k,`)∈~E

a(k, `)2

 ∑
(k,`)∈~E

b(k, `)2

 .

Lemma 8.12: For the electrical flow ft computed in iteration t of Algorithm 8.1,

∑
(i,j)∈~E

wt(i, j)|ft(i, j)| ≤
√

1 + ε ·Wt.

Proof Let f∗ be a maximum s-t flow. Recall from Lemma 8.8 that the electrical
flow ft minimizes the total energy among all flows obeying flow conservation, so that

8.2 Maximum Flow in Undirected Graphs 227

E(ft) ≤ E(f∗). Thus

E(ft) =
∑

(i,j)∈~E

f2
t (i, j)rt(i, j) ≤

∑
(i,j)∈~E

(f∗(i, j))
2
rt(i, j)

≤
∑

(i,j)∈~E

rt(i, j)

=
∑

(i,j)∈~E

(
wt(i, j) +

εWt

m

)
= (1 + ε)Wt, (8.6)

where the second inequality follows since |f∗(i, j)| ≤ 1 because f∗ obeys the capacity
constraints.

Using the Cauchy-Schwarz inequality from Fact 8.11 with a(k, `) = |ft(k, `)|
√
wt(k, `)

and b(k, `) =
√
wt(k, `), we can show that ∑

(i,j)∈~E

wt(i, j)|ft(i, j)|

2

≤

 ∑
(i,j)∈~E

f2
t (i, j)wt(i, j)

 ∑
(i,j)∈~E

wt(i, j)

≤

 ∑
(i,j)∈~E

f2
t (i, j)rt(i, j)

Wt

≤ (1 + ε)W 2
t ,

where the final inequality follows from Inequality (8.6). Thus it follows that∑
(i,j)∈~E

wt(i, j)|ft(i, j)| ≤
√

1 + ε ·Wt,

as desired.

Although the lemma above proves a weaker statement than what we need (as given
in Inequality (8.5)), we can scale down the flow value by the factor of

√
1 + ε to fix

this problem, resulting in a loss of another small factor in the value of the final flow
f̄ that nearly satisfies the capacity constraints.

To finish the analysis of the algorithm, we need to determine the width of the
oracle given by computing electrical flows.

Lemma 8.13: The width ρ of the oracle computing electrical flows in Algorithm 8.1
is at most

√
2m/ε for ε ≤ 1.

Proof By Definition 7.3, the width ρ is at upper bound the maximum value of
|ft(i, j)| over all iterations t and all edges (i, j) ∈ ~E for the computed electrical
flows ft. To bound this quantity, we observe that the energy on a single edge (i, j)
is at most the total energy, which is at most (1 + ε)Wt from Inequality (8.6), so that

f2
t (i, j)rt(i, j) ≤ (1 + ε)Wt.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

228 Electrical Flow Algorithms

Also, since we set the resistances rt = wt(i, j) + ε
m
Wt, it follows that

f2
t (i, j)rt(i, j) ≥ f2

t (i, j)
εWt

m
.

Thus

f2
t (i, j) ≤ (1 + ε)m

ε
,

which implies the statement of the lemma.

Then by plugging in Lemma 8.13 to Theorem 7.5, and using Corollary 8.4 (that
states we can compute electrical flows in Õ(m) time), we get the following theorem
immediately.

Theorem 8.14: Algorithm 8.1 computes an s-t flow f̄ of value k/
√

1 + ε (if a flow

of value k exists) with |f̄(i, j)| ≤ (1 + 4ε) for all (i, j) ∈ ~E in O((
√
m lnm)/ε2.5)

electrical flow computations, or Õ(m1.5/ε2.5) time.

Using bisection search on the value of the flow as suggested at the start of this
section yields that we can compute a flow f̄ of value at least |f∗|/

√
1 + ε that almost

satisfies the capacity constraints in Õ(m1.5/ε2.5) time.
We note that this algorithm is not an improvement over what we already know

how to do for graphs with unit capacity: we showed in Section 4.2 that we could
find the optimal flow in O(m3/2) time. In Exercise 8.6 we show that it is possible to
modify the algorithm to do better, and obtain an algorithm finding an approximately
maximum flow in Õ(m4/3/ε3) time. Still faster algorithms for finding approximate
maximum flows in undirected graphs have been devised; see the chapter notes for
details.

8.3 Graph Sparsification

It is sometimes useful to get fast, nearly accurate solutions to network flow problems.
One way we can do this is to work with sparse representations of the original input to
the problem. In this section, we consider the case that we are interested in computing
a cut in an undirected graphG (a minimum s-t cut, for example, or a global minimum
cut). We will assume for simplicity that u(i, j) = 1 for all edges (i, j) ∈ E; while
the results we present extend to general capacities, it will be easier for us to consider
unit-capacity graphs. We will revert to our notation using (i, j) for an undirected
edge since we do not need to differentiate between edge directions in this section.
Given an ε > 0, we will say that an undirected graph G′ = (V,E′) with capacities
u′(i, j) for all (i, j) ∈ E′ is a cut sparsifier of G if for all cuts S, the capacity of the
cut S in G′ is close to that of G: namely, we want that for all S ⊂ V , S 6= ∅,

|u′(δ(S))− u(δ(S))| ≤ ε · u(δ(S)). (8.7)

Furthermore, we require that G′ does not have many edges: in particular, we require
that |E′| = O((n log n)/ε2). Given such a cut sparsifier G′, we can run any algorithm
for finding a cut on G′ instead of G, and then the value of m in the running time

8.3 Graph Sparsification 229

u v

Figure 8.4 Example of a graph showing that uniform sampling of edges is
unlikely to work well. Cuts containing many edges of the two cliques are
likely to have an accurate estimate of the number of edges, but the cut
containing just the edge (u, v) is unlikely to be accurate unless the sampling
probability is close to 1.

in the algorithm becomes O((n log n)/ε2) instead. Furthermore, if we are finding a
minimum cut of some sort, the cut we find in G′ will have capacity within a factor
of 1 + ε of the minimum capacity cut in G.

The very high-level idea of creating a cut sparsifier is that we draw a random
sample of the edges for our sparse representation G′. We then prove that the capacity
of each cut in G′ is close to its capacity in G. To do so, we use well-known results
showing that values for certain types of random samples are close to their expected
values with high probability. These types of results are known as concentration of
measure results, and include (for example) the well-known Chernoff bounds; a full
discussion of them is outside the scope of this book, but the chapter notes point to
some resources on such results.

However, we need to be somewhat careful with this idea of drawing a random
sample. Figure 8.4 shows that it is a bad idea to sample all edges uniformly with
the same probability. If we do so, then we will get a good estimate of cuts which
contain many edges, but a bad estimate of the cut containing a single edge. So the
successful modification of the random sampling idea is to sample an edge (i, j) with a
probability proportional to 1/λ(i, j), where λ(i, j) is a lower bound on the capacity
of the minimum i-j cut in G. Of course, we also need to be able to compute the
values of λ(i, j) quickly relative to actually computing the capacity of a minimum
i-j cut for all (i, j) ∈ E, since otherwise computing the sparse representation G′ will
be slower than solving the cut problem of interest in the original graph G.

There are many different values of λ(i, j) that lead to good cut sparsifiers. In
this section, we show that by setting the resistance of each edge to 1 and using the
effective resistance (with λ(i, j) = 1/reff(i, j)) gives not only a good cut sparsifier,
but something even stronger called a spectral sparsifier. We introduce the following
notation. We say that for n × n symmetric square matrices A and B, A � B (or
B � A) if and only if xTAx ≤ xTBx for all x ∈ <n. Thus for symmetric A, A � 0 if

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

230 Electrical Flow Algorithms

and only if A is a positive semidefinite matrix. A spectral sparsifier G′ of G is then
one such that

(1− ε)LG � LG′ � (1 + ε)LG, (8.8)

where LG′ is a weighted Laplacian with weights u′ (recall that we are assuming the
edges in G have unit capacity), and such that |E′| = O((n log n)/ε2).

We now show that any spectral sparsifier G′ of a graph G is also a cut sparsifier
of G. Recall that

LG =
∑

(i,j)∈E

(ei − ej)(ei − ej)T ,

so that

xTLGx =
∑

(i,j)∈E

xT (ei − ej)(ei − ej)Tx =
∑

(i,j)∈E

(x(i)− x(j))2.

Similarly, for a weighted Laplacian for G′,

LG′ =
∑

(i,j)∈E

u′(i, j)(ei − ej)(ei − ej)T ,

so that

xTLG′x =
∑

(i,j)∈E

u′(i, j)(x(i)− x(j))2.

Then for any S ⊆ V , let the vector χS ∈ {0, 1}n be such that χS(i) = 1 if i ∈ S
and 0 otherwise. Then since (χS(i)− χS(j))2 = 1 if and only if (i, j) ∈ δ(S),

χTSLGχS =
∑

(i,j)∈E

(χS(i)− χS(j))
2

= u(δ(S)),

and

χTSLG′χS =
∑

(i,j)∈E

u′(i, j) (χS(i)− χS(j))
2

= u′(δ(S)).

Then, since we assumed G′ is a spectral sparsifier, by Equation (8.8) and the defini-
tion of � we have that for any S ⊆ V ,

(1− ε)u(δ(S)) ≤ u′(δ(S)) ≤ (1 + ε)u(δ(S)),

which implies that G′ is a cut sparsifier by the definition in Equation (8.7).
We give our algorithm for computing a spectral sparsifier in Algorithm 8.2. The al-

gorithm is quite simple: it computes the effective resistances of all edges in the graph,
and then K = (8n lnn)/ε2 = O((n lnn)/ε2) times it samples (with replacement) an
edge (i, j) ∈ E with probability reff(i, j)/(n−1); we earlier proved Foster’s Theorem
(Theorem 8.7) which shows that

∑
(i,j)∈E reff(i, j) = n− 1, so that reff(i, j)/(n− 1)

is a probability distribution over edges in the graph. We update the capacity u′(i, j)
of the selected edge (i, j) by adding (n − 1)/K · reff(i, j) (that is, by adding the
reciprocal of K times the probability of sampling (i, j)). Since we sample an edge
(i, j) ∈ E a total of O((n log n)/ε2) times, it is clear that |E′| = O((n log n)/ε2).

8.3 Graph Sparsification 231

E′ ← ∅
u′(i, j)← 0 for all (i, j) ∈ E
K ← (8n lnn)/ε2

Compute reff(i, j) for all (i, j) ∈ E
for k ← 1 to K do

Sample one edge (i, j) ∈ E with probability reff(i, j)/(n− 1)
u′(i, j)← u′(i, j) + (n− 1)/(K · reff(i, j))
E′ ← E′ ∪ {(i, j)}

return G′ = (V,E′) with capacities u′

Algorithm 8.2 Sampling algorithm for computing a spectral sparsifier.

We now prove that Equation (8.8) holds for the resulting G′; following the proof,
we discuss the running time of the algorithm. Let Zk be a random matrix giving an
additive update of the weights of u′ in the kth iteration of the algorithm, so that for
the selected edge (i, j),

Zk =
n− 1

K · reff(i, j)
(ei − ej)(ei − ej)T .

Thus since we select (i, j) with probability reff(i, j)/(n− 1),

E[Zk] =
∑

(i,j)∈E

reff(i, j)

n− 1
· n− 1

K · reff(i, j)
(ei − ej)(ei − ej)T

=
1

K

∑
(i,j)∈E

(ei − ej)(ei − ej)T =
1

K
LG.

Then since LG′ =
∑K

k=1 Zk, it follows that

E[LG′] = E

[
K∑
k=1

Zk

]
= LG,

so that in expectation, the resulting graph G′ has a Laplacian exactly the same as
G. To prove that G′ is a spectral sparsifier, then, we need to invoke a result that
states that with high probability, the resulting Laplacian LG′ will be close to its
expectation. To do this, we use the following concentration of measure result.

Theorem 8.15: Let Z be a random n × n matrix that is symmetric and positive
semidefinite (Z � 0). Let X = E[Z]. Suppose that there is a scalar α such that for
any realization of Z, αX −Z � 0. Let Z1, . . . , ZK be drawn independently from the
distribution of Z. Then for any ε ∈ (0, 1),

Pr

[
(1− ε)X � 1

K

K∑
k=1

Zk � (1 + ε)X

]
≥ 1− 2n exp(−ε2K/4α).

In order to apply the theorem, we will need to prove the following lemma.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

232 Electrical Flow Algorithms

Lemma 8.16:
n− 1

K
LG − Z � 0

for any matrix Z = n−1
K·reff (i,j)

(ei − ej)(ei − ej)T for edge (i, j) ∈ E.

We defer the proof of this lemma for a minute, and show that we can now derive
the following.

Theorem 8.17: The graph G′ computed by Algorithm 8.2 is a spectral sparsifier
with probability at least 1− 2/n.

Proof We apply Theorem 8.15 with K = (8n lnn)/ε2 and α = n− 1; we use for Z
in the theorem Z = n−1

K·reff (i,j)
(ei−ej)(ei−ej)T , for some edge (i, j) ∈ E selected with

probability reff(i, j)/(n− 1). Then we have already shown that X = E[Z] = LG/K
and for the K independent draws Z1, . . . , ZK from the distribution of Z, we have
that 1

K

∑K
k=1 Zk = LG′/K. Lemma 8.16 shows that αX − Z = n−1

K
LG − Z � 0 for

any realization of Z. Thus we have that

(1− ε)LG/K � LG′/K � (1 + ε)LG/K (8.9)

holds with probability at least

1− 2n exp(−ε2 · 8n lnn/(4(n− 1)ε2)) ≥ 1− 2n

n2
= 1− 2/n.

Multiplying Inequality (8.9) through by K gives the desired Equation (8.8).

We now turn to the proof of Lemma 8.16.

Proof of Lemma 8.16. We want to show that

n− 1

K
LG − Z � 0.

We know that for some edge (i, j) ∈ E, Z = n−1
K·reff (i,j)

(ei − ej)(ei − ej)T , so that we
want to show that

n− 1

K
LG −

n− 1

K · reff(i, j)
(ei − ej)(ei − ej)T � 0,

which is true if and only if

LG −
1

reff(i, j)
(ei − ej)(ei − ej)T � 0.

By the definition of positive semidefinite matrices, this holds if and only if for all
x ∈ <n,

xTLGx− xT
[

1

reff(i, j)
(ei − ej)(ei − ej)T

]
x ≥ 0,

which is true if and only if

(x(i)− x(j))2 ≤ reff(i, j) · xTLGx.

If x(i) = x(j), then the inequality holds trivially since reff(i, j) and xTLGx =

8.4 A Simple Laplacian Solver 233∑
{i,j}∈E(x(i)−x(j))2 are nonnegative. Otherwise, since this inequality holds under

any scaling of x, it is true if we restrict ourselves to x ∈ <n such that x(i)− x(j) =
reff(i, j), and thus the lemma is true if and only if for all such vectors x,

(reff(i, j))
2 ≤ reff(i, j) · xTLGx,

which holds if and only if

reff(i, j) ≤ xTLGx.

We recall that reff(i, j) = E(f) = pTLGp for potentials p and i-j electrical flow f
with p(i) − p(j) = reff(i, j). By Lemma 8.9 and Corollary 8.10 we know that for
b = ei − ej ,

2bTx− xTLGx ≤ pTLGp = reff(i, j).

Since bTx = (x(i)− x(j)) = reff(i, j), we get

2reff(i, j)− xTLGx ≤ reff(i, j),

or

reff(i, j) ≤ xTLGx,

as desired.

We now discuss the running time of Algorithm 8.2. We can sample an edge in
each iteration as follows. Because

∑
(i,j)∈E reff(i, j)/(n − 1) = 1, we can partition

the interval [0, 1] into intervals, one per edge in E. Each time we wish to sample
an edge, we draw a number uniformly at random from the interval [0, 1] and choose
the edge corresponding to the interval in which the number falls. Using bisection
search, we can find the appropriate interval in O(logm) time. We assume such a
random number can be drawn in unit time, so that the main loop of the algorithm
can be executed in O((n log2 n)/ε2) time. We can compute all effective resistances by
computing an i-j electrical flow for each edge (i, j) ∈ E in Õ(m) time by Corollary
8.4, for a total of Õ(m2) time. By being a bit more clever, we can compute all effective
resistances by computing an i-j electrical flow for each edge (i, j) in a spanning tree T
of G, and using these flows to infer the effective resistances of all the non-tree edges;
we give this as an exercise in Exercise 8.5. In this case, the total time is Õ(mn).
It is also possible to compute values for the effective resistances within a factor of
(1+ ε) of the actual effective resistance for all edges in O((m log n)/ε2) time; see the
chapter notes for a discussion. Having approximate values of the effective resistances
is sufficient for the purposes of the algorithm. This leads to the following theorem.

Theorem 8.18: Algorithm 8.2 can be implemented in Õ(m/ε2) time.

8.4 A Simple Laplacian Solver

In this section, we describe a simple randomized algorithm that runs in Õ(m) time
and finds a vector p that approximately satisfies the linear system LGp = b for an
undirected graph G with resistances r(i, j) for all {i, j} ∈ E; since directions are

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

234 Electrical Flow Algorithms

` h
Γ(h, `)

Figure 8.5 A basic cycle Γ(h, `). The thick edges belong to the tree T .

important in this section, we revert to our notation from previous sections in which
~E denotes an arbitrary orientation of the undirected edges of E. The algorithm has
some similarity to the network simplex algorithm for the minimum-cost flow problem
introduced in Section 5.6, although there are significant differences as well.

As with the network simplex algorithm, the algorithm starts with a spanning tree
T of G. The tree is chosen to approximately minimize a parameter τ that we will
discuss in a moment. We start with a flow f (0) that satisfies the demand vector b using
only the edges in the tree T ; to do this, for tree edge (i, j), let S be the cut induced
by removing (i, j) from the tree, such that i ∈ S. Then f (0)(i, j) =

∑
k∈S b(k). In

Exercise 8.4, we ask the reader to prove that f (0) is the unique flow satisfying the
demand vector b using only the edges in T . We let p(0) be corresponding tree-defined
potentials for f (0) and tree T as defined in the proof of Lemma 8.1. Since the flow
satisfies flow conservation, we need only have it satisfy Kirchoff’s Potential Law in
order to find the potentials p that define the electrical flow, so that LGp = b. To do
this we repeatedly choose a non-tree edge (h, `) ∈ ~E − T , and consider the directed
basic cycle Γ(h, `) created by adding (h, `) to T ; this is the cycle formed by (h, `)
plus the directed `-h path in T (see Figure 8.5). We then modify the flow f (k) on
the cycle Γ(h, `) so that the Kirchoff potential law is satisfied on this cycle; that is,
so that for resulting flow f (k+1),

∑
(i,j)∈Γ(h,`) r(i, j)f

(k+1)(i, j) = 0. By analogy with
cycle-canceling for the minimum-cost circulation problem, we will say that we have
corrected the cycle Γ(h, `). After a certain number of iterations, we can show that
the resulting flow must be close to the optimal electrical flow, and thus the resulting
tree-defined potentials are also close to potentials p satisfying LGp = b, and the
algorithm terminates. We summarize the algorithm in Algorithm 8.3.

We now define a parameter τ , which is used in Algorithm 8.3 to define K, the
number of iterations of the main loop. Let

R(Γ) =
∑
{i,j}∈Γ

r(i, j)

denote the total resistance of the edges in cycle Γ.

Definition 8.19: The tree condition number τ of tree T with resistances r is defined
to be the sum over all non-tree arcs (i, j) of the ratio of the resistance of the cycle

8.4 A Simple Laplacian Solver 235

Find tree T with low value of parameter τ

Find flow f (0) in T satisfying supplies b

Let p(0) be tree-defined potentials for f (0) with respect to tree T
K ← τ ln((τ + 2n)/ε)
for k ← 1 to K do

Pick an (h, `) ∈ ~E − T with probability proportional to R(Γ(h, `))/r(h, `)

Update f (k−1) to correct basic cycle Γ(h, `)

Let f (k) be resulting flow

Let p(k) be tree-defined potentials for f (k)

return f (K), p(K)

Algorithm 8.3 Simple combinatorial algorithm for approximately solving the linear
system LGp = b.

Γ(i, j) to the resistance of the edge r(i, j). Thus

τ ≡
∑

(i,j)∈~E−T

R(Γ(i, j))

r(i, j)
.

To measure the progress of the algorithm, we will show that the energy of the flow
f (k), E(f (k)), is converging to the energy of the optimal electrical flow f∗ for the
supply vector b. Let p∗ be the potentials corresponding to the electrical flow f∗. For
a given flow f satisfying flow conservation (so that Bf = b), and potentials p, we
define

gap(f, p) ≡ E(f)− [2bTp− pTLGp].

By Lemma 8.8, for any flow f obeying flow conservation, E(f) is an upper bound
on E(f∗), while by Corollary 8.10, for any potentials p, 2bTp − pTLGp is a lower
bound on E(f∗), so that gap(f, p) is always nonnegative. It also follows that that
the difference between the energy of f and that of f∗ is at most gap(f, p), or

E(f)− E(f∗) ≤ gap(f, p),

and we will use this inequality to measure how close the current flow f is to the
electrical flow f∗. For our parameter τ , we will show that E(f (0)) ≤ (τ + 2n)E(f∗),
and that each iteration of the algorithm reduces gap(f, p) by a factor of 1− 1

τ
. Thus

after τ ln((τ + 2n)/ε) iterations for some given ε > 0, we will have that

E(f)− E(f∗) ≤
(

1− 1

τ

)τ ln((τ+2n)/ε)

(τ + 2n)E(f∗)

≤ e− ln((τ+2n/ε)(τ + 2n)E(f∗)

= εE(f∗),

using 1 − x ≤ e−x; the inequality implies that E(f) ≤ (1 + ε)E(f∗). We will later
show that this bound is good enough to prove that the resulting potentials are close
to the potentials p∗.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

236 Electrical Flow Algorithms

We now show why correcting a cycle is useful: it reduces the energy of the flow.
To see this, pick any directed cycle Γ in the graph. For a given flow f , we let

∆(Γ, f) ≡
∑

(i,j)∈Γ

f(i, j)r(i, j)

denote its distance from satisfying the Kirchoff Potential Law. If the cycle does not
already satisfy the Kirchoff Potential Law, and ∆(Γ, f) 6= 0, then we let f ′ be a
flow in which we decrease the flow by some amount δ (possibly negative) on the arcs
around Γ, so that

f ′(i, j) =

f(i, j)− δ ∀(i, j) ∈ Γ
f(i, j) + δ ∀(j, i) ∈ Γ
f(i, j) ∀(i, j) : (i, j), (j, i) /∈ Γ

Observe that if f obeys flow conservation, then so does f (as we argued for circula-
tions in Section 5.1). Since we want ∆(Γ, f ′) = 0, or

∑
(i,j)∈Γ r(i, j)(f(i, j)−δ) = 0,

solving for δ we get

δ = ∆(Γ, f)/R(Γ).

We can now show that if the cycle Γ does not obey the Kirchoff Potential Law, then
the energy of f ′ is lower than that of f , so that correcting cycle Γ reduces the energy
of the flow.

Lemma 8.20:

E(f ′)− E(f) = −∆(Γ, f)2/R(Γ).

Proof We see that

E(f ′)− E(f) =
∑

(i,j)∈Γ

[
r(i, j)(f(i, j)− δ)2 − r(i, j)f(i, j)2

]
=

∑
(i,j)∈Γ

r(i, j)[−2δf(i, j) + δ2]

= −2δ∆(Γ, f) + δ2R(Γ).

Then by our choice of δ = ∆(Γ, f)/R(Γ), we have that

E(f ′)− E(f) = −2
∆(Γ, f)2

R(Γ)
+

∆(Γ, f)2

R(Γ)
= −∆(Γ, f)2

R(Γ)
.

It is now possible to relate the amount by which the energy is reduced by correcting
cycles Γ to the value of gap(f, p).

Lemma 8.21: For a given flow f and the corresponding tree-defined potentials p in
tree T ,

gap(f, p) =
∑

(i,j)∈~E−T

∆(Γ(i, j), f)2

r(i, j)
.

8.4 A Simple Laplacian Solver 237

Proof By definition, we know that

gap(f, p) = E(f)− (2bTp− pTLGp)

=
∑

(i,j)∈~E

f(i, j)2r(i, j)− 2
∑
i∈V

b(i)p(i) +
∑

(i,j)∈~E

(p(i)− p(j))2

r(i, j)
.

Now by flow conservation, we know that b(i) =
∑

j:{i,j}∈E f(i, j), so that by skew
symmetry,∑

i∈V

b(i)p(i) =
∑
i∈V

p(i)
∑

j:{i,j}∈E

f(i, j) =
∑

(i,j)∈~E

f(i, j)(p(i)− p(j)).

Thus

gap(f, p)

=
∑

(i,j)∈~E

f(i, j)2r(i, j)− 2
∑

(i,j)∈~E

f(i, j)(p(i)− p(j)) +
∑

(i,j)∈~E

(p(i)− p(j))2

r(i, j)

=
∑

(i,j)∈~E

(r(i, j)f(i, j)− (p(i)− p(j)))2
/r(i, j).

As we showed in Equation (8.2) in the proof of Theorem 8.1, for any (i, j) ∈ T ,
since p(i) and p(j) are tree-defined potentials, p(i) − p(j) = r(i, j)f(i, j), and the
contribution of this edge to the sum is zero. As shown in Corollary 8.2, for any
(i, j) ∈ ~E − T ,

r(i, j)f(i, j)− (p(i)− p(j)) =
∑

(k,`)∈Γ(i,j)

r(k, `)f(k, `) = ∆(Γ(i, j), f).

Thus we have that

gap(f, p) =
∑

(i,j)∈~E−T

∆(Γ(i, j), f)2

r(i, j)
.

We can now state the main idea of the algorithm. In each iteration of the algorithm,
we will pick an edge (i, j) ∈ ~E − T with probability

p(i, j) =
1

τ

R(Γ(i, j))

r(i, j)
.

Note that ∑
(i,j)∈~E−T

p(i, j) =
1

τ

∑
(i,j)∈~E−T

R(Γ(i, j))

r(i, j)
= 1,

by the definition of τ , so that the p(i, j) give a probability distribution. By Lemma
8.20, we know that if we pick (i, j), then the decrease in energy is ∆(Γ(i, j), f)2/R(Γ(i, j)).

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

238 Electrical Flow Algorithms

Thus the overall expected decrease in energy in an iteration if we pick edges according
to the given probability distribution is∑

(i,j)∈~E−T

p(i, j) · ∆(Γ(i, j), f)2

R(Γ(i, j))
=

1

τ

∑
(i,j)∈~E−T

R(Γ(i, j))

r(i, j)
· ∆(Γ(i, j), f)2

R(Γ(i, j))

=
1

τ

∑
(i,j)∈~E−T

∆(Γ(i, j), f)2

r(i, j)

=
1

τ
gap(f, p), (8.10)

by Lemma 8.21.

Thus if f ′ is the flow resulting from a single iteration of the algorithm starting
with flow f

E(f)− E[E(f ′)] =
1

τ
gap(f, p) ≥ 1

τ
[E(f)− E(f∗)] . (8.11)

Adding the energy of the electrical flow f∗ to both sides, and rearranging, we obtain
that

E[E(f ′)]− E(f∗) ≤
(

1− 1

τ

)
[E(f)− E(f∗)] .

If f (k) is the flow resulting from k iterations of the algorithm, then it is possible to
prove that

E[E(f (k))]− E(f∗) ≤
(

1− 1

τ

)k
[E(f)− E(f∗)] ;

we omit the details of the proof. Thus after sufficiently many iterations, the energy
of f (k) is (in expectation) close to the energy of the optimal flow f∗ if the initial flow
f has energy that is not too large.

We now need to show that the energy of the initial flow f (0) is not too far away
from the energy of the electrical flow f∗.

Lemma 8.22:

E(f (0))− E(f∗) ≤ (τ + 2n)E(f∗).

Proof Let P (k, `) be the directed path from k to ` in the tree T . Then consider

the flow that results by sending f∗(k, `) units of flow on P (k, `) for each (k, `) ∈ ~E.
Then the total flow on an edge (i, j) ∈ T is∑

(k,`)∈~E:(i,j)∈P (k,`)

f∗(k, `).

We recall (from Exericse 8.4) that the flow satisfying the demands b using only the
edges in T must be unique, so the flow given above must be the same as the flow

8.4 A Simple Laplacian Solver 239

f (0). Thus we have that

E(f (0)) =
∑

(i,j)∈T

r(i, j)

 ∑
(k,`)∈~E:(i,j)∈P (k,`)

f∗(k, `)

2

.

For each edge (i, j) ∈ T , we use the Cauchy-Schwarz Inequality (8.11) with a(k, `) =√
r(i, j)/r(k, `) and b(k, `) =

√
r(k, `)f∗(k, `) and derive

r(i, j)

 ∑
(k,`)∈~E:(i,j)∈P (k,`)

f∗(k, `)

2

≤

 ∑
(k,`)∈~E:(i,j)∈P (k,`)

r(i, j)

r(k, `)

 ∑
(k,`)∈~E:(i,j)∈P (k,`)

r(k, `)f∗(k, `)2

≤

 ∑
(k,`)∈~E:(i,j)∈P (k,`)

r(i, j)

r(k, `)

 E(f∗).

Thus we have that

E(f (0)) ≤
∑

(k,`)∈~E

∑
(i,j)∈P (k,`)

r(i, j)

r(k, `)
E(f∗)

= E(f∗)

 ∑
(k,`)∈T

r(k, `)

r(k, `)
+

∑
(k,`)∈~E−T

R(Γ(k, `))− r(k, `)
r(k, `)

= E(f∗)

(
|T |+ τ − | ~E − T |

)
≤ E(f∗)(τ + 2|T |) ≤ E(f∗)(τ + 2n).

Thus, as we have argued earlier, after k = τ ln(τ(τ + 2n)/ε) iterations,

E[E(f (k))]− E(f∗) ≤
(

1− 1

τ

)k
E(f (0))

≤ e− ln(τ(τ+2n)/ε)(τ + 2n)E(f∗)

≤ ε

τ
E(f∗), (8.12)

using 1− x ≤ e−x.

While this proves that the expected energy of the resulting flow is close to the op-
timal energy, what we would like to show is that the resulting tree-defined potentials
are in some sense close to the optimal potentials. We measure closeness with respect
to a particular distance measure. Let ‖x‖L =

√
xTLGx be the matrix norm with

respect to the Laplacian LG. Then we will prove the following lemma.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

240 Electrical Flow Algorithms

Lemma 8.23: Let p∗ be the potentials for the electrical flow f∗, and let p̂ be the
tree-defined potentials for a flow f̂ such that

E(f̂)− E(f∗) ≤ ε

τ
E(f∗).

Then

‖p̂− p∗‖2L ≤ ε‖p∗‖2L.

Proof Using that (p∗)TLGp
∗ = E(f∗), b = LGp

∗, and bT = (p∗)TLG, we see that

‖p̂− p∗‖2L = (p̂− p∗)TLG(p̂− p∗)
= p̂TLGp̂− (p∗)TLGp̂− p̂TLGp∗ + (p∗)TLGp

∗

= p̂TLGp̂− 2bT p̂+ E(f∗)

= gap(f∗, p̂).

By Equation (8.11), we know that if f̂ ′ is the result of one more iteration of the

algorithm starting with flow f̂ , then

E(f̂)− E[E(f̂ ′)] =
1

τ
gap(f̂ , p̂).

Thus it follows that

E(f̂)− E(f∗) ≥ 1

τ
gap(f̂ , p̂),

so that

gap(f̂ , p̂) ≤ τ
(
E(f̂)− E(f∗)

)
.

Then

‖p̂− p∗‖2L = gap(f∗, p̂)

= gap(f̂ , p̂)−
(
E(f̂)− E(f∗)

)
≤ (τ − 1)

(
E(f̂)− E(f∗)

)
(8.13)

≤ εE(f∗)

= ε(p∗)TLGp
∗

= ε‖p∗‖2L,

where we use the hypothesis of the theorem in the final inequality.

Corollary 8.24: At the termination of Algorithm 8.3,

E
[
‖p̂− p∗‖2L

]
≤ ε‖p∗‖2L.

Proof Taking expectations of both sides of Inequality (8.13) and plugging in In-
equality (8.12), we get the Corollary.

Putting everything together, we get the following theorem.

Exercises 241

Theorem 8.25: Algorithm 8.3 finds a vector p̂ of potentials such that E [‖p̂− p∗‖2L] ≤
ε‖p∗‖2L in Õ(m ln(m/ε))) time.

Proof There is an Õ(m) algorithm to find a tree T with τ = Õ(m), and an O(m)
time algorithm to compute the probabilities r(i, j)/R(Γ(i, j)) for each edge; we give
further details in the notes at the end of the chapter. There are k = τ ln(τ(τ +
2n)/ε) = Õ(m ln(m/ε)) total iterations until the difference of the expected energy
of flow f (k) and the energy of the optimal flow f∗ is at most ε

τ
E(f∗). By Corollary

8.24, in expectation the potentials p(k) are then close to optimal potentials p∗ as
required by the theorem. We claim without proof that it takes O(log n) time to
update the flow and potentials in each iteration; updating the flow in O(log n) time
can be done via the dynamic tree data structure described in Exercise 4.3. Thus the
overall time taken is Õ(m ln(m/ε)).

Exercises

8.1 Prove Rayleigh’s Monotonicity Principle: Given a graph G, let E(f, r) be the energy

of a flow f for supply vector b under resistances r(i, j) for all (i, j) ∈ ~E. Let f be the

electrical flow for supply vector b under resistances r(i, j), and let f ′ be the electrical

flow for the same supply vector b under resistances r′(i, j), where r′(i, j) ≥ r(i, j) for

all (i, j) ∈ ~E. Then Rayleigh’s Monotonicity Principle states that

E(f ′, r′) ≥ E(f, r).

8.2 Let G be an electrical network with resistances r. Prove that effective resistances obey

the triangle inequality; that is, for any i, j, k,

reff(i, k) ≤ reff(i, j) + reff(j, k).

8.3 Let e = (i, j) and Le = (ei − ej)(ei − ej)T . Assume that G is an unweighted graph.

Prove that

Le � reff(i, j)LG.

8.4 Prove that given a spanning tree T and demand vector b, the flow f (0) defined at

the beginning of Section 8.4 is unique among all flows obeying flow conservation that

have nonzero flow only on the edges of T .

8.5 Let T be a spanning tree of an undirected graph G. Suppose we compute the potentials

p for an i-j flow for each edge (i, j) ∈ T ; call the associated vector p(i, j). Prove that

the p(i, j) for (i, j) ∈ T can be used to find the effective resistance reff(k, `) for any

edge (k, `) ∈ E.

8.6 In this exercise, we show how it is possible to improve on the approximate maximum

flow algorithm of Section 8.2, Algorithm 8.1. There is an immediate obstacle to im-

provement: it is possible to have a flow in a unit capacity graph in an iteration t such

that ft(i, j) = Θ(
√
m). This implies that the algorithm will require at least Ω(

√
m)

oracle calls: we’ll need Ω(
√
m) iterations in which the flow on the edge (i, j) is small

so that its average over the total number iterations is at most 1 + 4ε.

To improve the algorithm, we use the following idea. Whenever the oracle finds an

edge with electrical flow strictly greater than ρ̂, for some parameter ρ̂, we will delete

the edge and recompute the electrical flow, until the flow on each edge is at most ρ̂.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

242 Electrical Flow Algorithms

w1(i, j)← 1 for all (i, j) ∈ ~E

ρ̂← 4
ε
(m lnm)1/3

H ← ∅
T ← 1

ε2
ρ̂ lnm

t← 1
while t ≤ T do

Wt ←
∑

(i,j)∈~E−H wt(i, j)

pt(i, j)← wt(i, j)/Wt for all (i, j) ∈ ~E

rt(i, j)←
{
wt(i, j) + ε

m
Wt if (i, j) /∈ H

∞ if (i, j) ∈ H
Compute s-t electrical flow ft of value k using resistances rt
if ft(i, j) > ρ̂ for some (i, j) /∈ H then

H ← H ∪ {(i, j)}
else

vt(i, j)← 1
ρ̂
|ft(i, j)| for all (i, j) ∈ ~E −H

wt+1(i, j)← wt(i, j)(1 + εvt(i, j)) for all (i, j) ∈ ~E −H
t← t+ 1

return f̄ ← 1
T

∑T
t=1 ft

Algorithm 8.4 Multiplicative weights algorithm for computing an approximate s-t flow
via electrical s-t flows.

If this is the case, then the width of the oracle will be ρ̂. If we do not delete too many

edges, then the capacity of the minimum s-t cut will not be reduced too much and

we will not have called the subroutine to compute the electrical flow too many times.

To make this intuition more precise, we let H be the set of deleted edges. We will use

ρ̂ = 4
ε (m lnm)1/3, and show that for k the current value of the flow, and for ε ≤ 1/3,

|H| ≤ min[(m lnm)1/3, 1
8 εk]. Thus we ensure that by removing at most |H| edges, the

value of the flow can decrease by a factor of at most (1− 1
8 ε). Furthermore, since we

recompute the electrical flow each time we remove an edge, there are at most |H|
additional electrical flow computations. We now restate the algorithm in Algorithm

8.4. Rather than deleting an edge if its electrical flow is too large, we set its resistance

to infinity, which ensures that the electrical flow on it is zero in future iterations.

To prove the bound on the number of edges, we need to show that the energy of

the electrical flow never decreases, and, for each edge removed, goes up by a certain

factor. We also need to give a lower bound on the initial energy, and an upper bound

on the final energy. A combination of all of these statements allows us to prove a

bound on |H|.

(a) Show that the energy E(ft) does not decrease throughout the execution of Algo-

rithm 8.4 (Hint: use Exercise 8.1).

(b) Show that the initial energy E(f1) is at least 1/m2.

(c) Show that the final energy E(fT+1) is at most (1 + ε)m exp
(

1
ε lnm

)
.

(d) Show that the energy increases by at least a factor of 1+ ερ̂2

2m for each edge removed

from the graph (Hint: consider the potentials p for the flow f before removing the

Exercises 243

edge, and use the lower bound from Lemma 8.9 to bound the energy of the graph

with the edge removed).

(e) Show that for ρ̂ = 4
ε (m lnm)1/3 and ε ≤ 1/3, it must be that |H| ≤ 6

16 (m lnm)1/3.

You may wish to use that ln(1 + x) ≥ x/(1 + x).

(f) Argue that if the total flow value k ≤ ρ̂, then we will never remove any edges and

H = ∅. Then assume that k > ρ̂, and use this to infer that |H| ≤ 1
8 εk.

(g) Prove that Algorithm 8.4 computes an s-t flow f̄ of value at least (1− ε
8)k/
√

1 + ε (if

a flow of value k exists) with |f̄(i, j)| ≤ (1+4ε) for all (i, j) ∈ E in O((m1/3 ln4/3m)/ε3)

electrical flow computations, or Õ(m4/3/ε3) time.

Chapter Notes

Connections of electrical flow to topics in graph theory have been known for some
time; for example, the classic textbook of Doyle and Snell [55] shows the connection of
electrical flow to random walks (the Rayleigh Monotonicity Principle of Exercise 8.1
is described there). Other connections to topics in combinatorics and graph theory
appear in Bollobás [26, Chapter II]; the connection between electrical flow and ran-
domly sampled spanning trees given in Section 8.1 is derived from the presentation
of Bollobás.

However, the connections between electrical flow and the types of network flow in
this book began with the Õ(m) algorithm of Spielman and Teng [186] for finding
an approximate solution p to LGp = b described in Theorem 8.3. This paper set off
a flurry of work, both in improving the algorithm to solve LGp = b and using the
algorithm as a subroutine for various other kinds of algorithms, as in Sections 8.2
and 8.3. The theoretically fastest algorithm known for the approximate solution of
LGp = b as of this writing is due to Cohen, Kyng, Miller, Pachocki, Peng, Rao, and
Xu [42] and runs in time O(m log1/2 n(log log n)3+δ log 1

ε
) for any constant δ > 0.

The maximum flow algorithm of Section 8.2, which uses electrical flows as the ora-
cle within the multiplicative update algorithm, is due to Christiano, Kelner, M ↪adry,
Spielman, and Teng [40], as is the improved algorithm of Exercise 8.6. The fastest
known algorithm for finding a flow of value of at least (1− ε) times the maximum is
due to Peng [162], who gives an algorithm running inO(m log32 n(log log n)2 max(log9 n, 1/ε3))

time. Lee and Sidford [140] use interior-point methods to give an Õ(m
√
n logO(1) U)

time algorithm for the maximum flow problem, while M ↪adry [146] gives a maxi-
mum flow algorithm running in Õ(m10/7U1/7) time using electrical flow computa-
tion as a black box; this running time is polynomial for interesting special cases
(such as U = 1). Some of these ideas have been applied to minimum-cost flow prob-
lems as well. As mentioned in the notes for the minimum-cost circulation chapter,
Cohen, M ↪adry, Sankowski, and Vladu [43] have used electrical flows to obtain an
Õ(m10/7 logC)-time algorithm for the minimum-cost flow problem in which U = 1.
It does not seem like these algorithms are currently contenders for practical algo-
rithms, but they may contain the ideas for such algorithms.

The idea of graph sparsification was introduced by Karger [122] for unweighted
undirected graphs. Benczúr and Karger [20] extended these ideas to weighted graphs
to obtain cut sparsifiers with O((n log n)/ε2) edges. Spielman and Teng [185] ex-

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

244 Electrical Flow Algorithms

tended the idea of a cut sparsifier to a spectral sparsifier. Spielman and Srivastava
[184] introduce the idea of sampling by effective resistances that we give in Section 8.3
to produce a spectral sparsifier with O((n log n)/ε2) edges. Spielman and Srivastava
also explain how to approximate the effective resistances of all the edges of the graph
in O((m log n)/ε2) time. The presentation we give is due to Harvey [105], including
his version of Theorem 8.15, which was originally shown by Ahlswede and Winter
[2]. Batson, Spielman, and Srivastava [16, 17] show how to deterministically obtain
a spectral sparsifier with O(n/ε2) edges; all previous algorithms involved random
sampling. However, their algorithm needs time O(n3m/ε2), which makes it slower
than many algorithms running on the original non-sparsified graph. Lee and Sun
[141] have shown how to find a sparsifier with O(n/ε2) edges in Õ(m/ε2) time.

Section 8.3 mentions concentration of measure results and uses the Ahlswede-
Winter inequality of Theorem 8.15 as an example. Chernoff bounds are a typical case
of concentration of measure inequalities used in computer science, and discussions of
these bounds can be found in the text of Dubhashi and Panconesi [56] and books on
uses of probability in computing, such as Mitzenmacher and Upfal [148] and Motwani
and Raghavan [150]. The Ahlswede-Winter inequality is an example of the extension
of Chernoff bounds for scalar random variables to matrix random variables. Many
well-known results for scalar variables are extended to matrix variables in a paper of
Tropp [195], and a book of Tropp [196] surveys these results.

The simple Laplacian solver of Section 8.4 is due to Kelner, Orecchia, Sidford, and
Zhu [131]. There are some pieces of the result we did not show. In particular, we
did not show how to find a tree with tree condition number τ = Õ(m). The tree
condition number is an additive factor of m − (n − 1) away from the stretch of a
spanning tree; the concept of the stretch of a spanning tree was introduced by Alon,
Karp, Peleg, and West [8]. As of this writing, a spanning tree of stretch Õ(m) can be
found in Õ(m) time due to a result of Abraham and Neiman [1]. Papp [161] provides a
survey of algorithms to find low-stretch trees and includes some experimental work.
Additionally, in order for the Laplacian solver to run in Õ(m) time, we need to
be able to update the flow on the tree T and the potentials in O(log n) time per
iteration. As we mentioned in the proof of Theorem 8.25, we can update the flow
using the dynamic tree data structure of Exercise 4.3, and a modification of that data
structure allows us to update potentials as well. Kelner et al. also provide their own
data structure for updating the flow and potentials in O(log n) time per iteration.
Preliminary experimental work with the Kelner et al. solver by Boman, Deweese,
and Gilbert [27] and Hoske, Lukarski, Meyerhenke, and Wegner [112] indicate that
the solver is not competitive with traditional methods of solving linear systems, at
least not without some additional algorithmic ideas.

Permissions

Ocean’s Eleven, c© 2001 Warner Brothers Entertainment. All Rights Reserved. Used
by Permission.

9

Open Questions

“Have you guessed the riddle yet?” the Hatter said, turning to Alice again.

“No, I give it up,” Alice replied. “What’s the answer?”

“I haven’t the slightest idea,” said the Hatter.

“Nor I,” said the March Hare.

– Lewis Carroll, Alice in Wonderland

The area of network flows brings together several elements that are not always
found simultaneously in the study of algorithms. First, it has a mathematically el-
egant theory, starting with Ford and Fulkerson’s maximum flow/minimum cut the-
orem (Theorem 2.6). Second, it has beautiful algorithms with simple analyses, such
as the push/relabel algorithm of Section 2.8 and the random contraction algorithm
of Section 3.3. Third, these algorithms are often very efficient in practice, as we have
tried to describe in the chapter notes throughout the book. Fourth, network flow
problems are enormously useful in modeling a large variety of problems. The area is
intellectually rich, aesthetically satisfying, and genuinely practical.

But there is still more work to be done! To conclude the book, we list a few
significant open problems.

Problem 1: A simple O(mn) time maximum flow algorithm. As mentioned
in the notes at the end of Chapter 2, Orlin [159] gives an O(mn) time algorithm
for the maximum flow problem, which is currently the fastest strongly polynomial-
time algorithm for the problem. In doing so, he answered a long-standing question
in network flow theory about whether such an algorithm is possible. The algorithm
is somewhat complex. Is it possible to achieve the same running time with a simpler
algorithm, and without complex data structures? For instance, for the push-relabel
algorithm of Section 2.8, the running time of the algorithm without accounting for
nonsaturating pushes is O(mn); if a simple rule could be devised that allowed for
nonsaturating pushes to run in O(mn) time overall, then push-relabel would be
O(mn) time.

Problem 2: A Gomory-Hu tree without n − 1 flow computations. As we
explained in Chapter 3, initially the only known way to find a global minimum cut
in an undirected graph was to run n − 1 maximum flow computations, but then
other, non-flow-based methods were devised, such as the MA ordering algorithm of
Section 3.2 and the random contraction algorithm of Section 3.3. Is it possible to

245

246 Open Questions

find a Gomory-Hu tree without using n− 1 maximum flow computations? Bhalgat,
Hariharan, Kavitha, and Panigrahi [23] have made some progress on the problem in
the case of unit capacity graphs.

Problem 3: A strongly polynomial-time algorithm for the generalized
minimum-cost circulation problem. In Exercise 6.6, we defined the generalized
minimum-cost circulation problem, which is similar to the minimum-cost circulation
problem of Chapter 5: in addition to costs c(i, j) and capacities u(i, j), there are
gains γ(i, j) > 0 for each arc in the graph, and if f(i, j) units of flow enter arc
(i, j) at node i, then γ(i, j)f(i, j) units of flow leave arc (i, j) and enter node j.
The goal of the problem is to find a minimum-cost circulation, so that capacity con-
straints are obeyed and flow conservation is maintained at all nodes. Wayne [204]
has given a combinatorial polynomial-time algorithm, based on Wallacher’s algo-
rithm for minimum-cost circulations (Section 5.2). It was a major breakthrough in
the mid-80s when Tardos [188] gave the first strongly-polynomial time algorithm for
the minimum-cost flow problem, and also recently when Vegh [200] gave a strongly
polynomial-time algorithm for the generalized maximum flow problem. Is it possible
to obtain a strongly polynomial-time algorithm for generalized minimum-cost circu-
lation problem? Since network flow problems can be expressed as linear programs,
obtaining such an algorithm would be the next step towards a strongly polynomial-
time algorithm for linear programming.

Problem 4: A combinatorial, polynomial-time, exact algorithm for mul-
ticommodity flow. The known exact polynomial-time algorithms for the multi-
commodity flow problem are all based on polynomial-time linear programming al-
gorithms, as with the interior-point algorithm of Vaidya [199], for example. The
combinatorial algorithms, as with the Garg-Könemann algorithm (Section 7.4) and
the Awerbuch-Leighton algorithm (Section 7.5) give approximate solutions. Is it pos-
sible to devise a combinatorial, polynomial-time algorithm for the problem that finds
an optimal solution?

Problem 5: Combinatorial minimum-cost circulation algorithms as fast as
interior-point algorithms. As mentioned in the notes for Chapter 5, Lee and Sid-
ford [140] give an Õ(m

√
n logO(1)(CU))-time algorithm for finding a minimum-cost

flow; this result is a specialization of an interior-point algorithm for linear program-
ming. The minimum-cost flow algorithm uses the fast Laplacian solvers of the sort
described in Section 8.4. Is it possible to find an Õ(m

√
n log(CU)) algorithm for the

minimum-cost circulation problem that is combinatorial in nature?

References

[1] I. Abraham and O. Neiman. Using petal-decompositions to build a low stretch spanning
tree. In Proceedings of the 44th Annual ACM Symposium on the Theory of Computing,
pages 395–406, 2012. Full version available at https://www.cs.bgu.ac.il/~neimano/

spanning-full1.pdf. Accessed May 14, 2018.

[2] R. Ahlswede and A. Winter. Strong converse for identification via quantum channels.
IEEE Transactions on Information Theory, 48:569–579, 2002.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows. In G. L. Nemhauser,
A. H. G. Rinnooy Kan, and M. J. Todd, editors, Optimization, volume 1 of Handbooks in
Operations Research and Management Science, pages 211–369. North-Holland, 1989.

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs, NJ, USA, 1993.

[5] R. K. Ahuja and J. B. Orlin. A fast and simple algorithm for the maximum flow problem.
Operations Research, 37:748–759, 1989.

[6] R. K. Ahuja and J. B. Orlin. Distance-directed augmenting path algorithms for maximum
flow and parametric maximum flow problems. Naval Research Logistics, 38:413–430, 1991.

[7] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved time bounds for the maximum flow
problem. SIAM Journal on Computing, 18:939–954, 1989.

[8] N. Alon, R. M. Karp, D. Peleg, and D. West. A graph-theoretical game and its application
to the k-server problem. SIAM Journal on Computing, 24:78–100, 1995.

[9] R. J. Anderson and J. Setubal. Goldberg’s algorithm for maximum flow in perspective:
A computational study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows
and Matching, First DIMACS Implementation Challenge, number 12 in DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 1–18. American Math-
ematical Society, 1993.

[10] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A meta-
algorithm and applications. Theory of Computing, 8:121–164, 2012.

[11] B. I. Aspvall. Efficient Algorithms for Certain Satisfiability and Linear Programming
Problems. PhD thesis, Department of Computer Science, Stanford University, Aug. 1980.
Also appears as Technical Report STAN-CS-80-822.

[12] B. Awerbuch and T. Leighton. A simple local-control approximation algorithm for multi-
commodity flow. In Proceedings of the 34th Annual IEEE Symposium on Foundations of
Computer Science, pages 459–468, 1993.

[13] B. Awerbuch and T. Leighton. Improved approximation algorithms for the multi-
commodity flow problem and local competitive routing in dynamic networks. In Proceed-
ings of the 26th Annual ACM Symposium on the Theory of Computing, pages 487–496,
1994.

[14] G. Baier, E. Köhler, and M. Skutella. The k-splittable flow problem. Algorithmica, 42:231–
248, 2005.

[15] F. Barahona and É. Tardos. Note on Weintraub’s minimum-cost circulation algorithm.
SIAM Journal on Computing, 18:579–583, 1989.

247

248 References

[16] J. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. SIAM Journal
on Computing, 41:1704–1721, 2012.

[17] J. Batson, D. A. Spielman, and N. Srivastava. Twice-Ramanujan sparsifiers. SIAM Review,
56:315–334, 2014.

[18] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.

[19] A. A. Benczúr and M. X. Goemans. Deformable polygon representation and near-mincuts.
In M. Grötschel and G. O. H. Katona, editors, Building Bridges, number 19 in Boylai
Society Mathematical Studies, pages 103–135. Springer, 2008.

[20] A. A. Benczúr and D. R. Karger. Randomized approximation schemes for cuts and flows
in capacitated graphs. SIAM Journal on Computing, 44:290–319, 2015.

[21] D. P. Bertsekas and P. Tseng. Relaxation methods for minimum cost ordinary and gen-
eralized network flow problems. Operations Research, 36:93–114, 1988.

[22] D. P. Bertsekas and P. Tseng. RELAX-IV: A faster version of the RELAX code for solving
minimum cost flow problems. Technical Report LIDS-P-2276, Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Nov. 1994.

[23] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. An Õ(mn) Gomory-Hu tree
construction algorithm for unweighted graphs. In Proceedings of the 39th Annual ACM
Symposium on the Theory of Computing, pages 605–614, 2007.

[24] D. Bienstock. Potential Function Methods for Approximately Solving Linear Programming
Problems: Theory and Practice. Kluwer Academic Publishers, New York, NY, USA, 2002.

[25] R. G. Bland and D. L. Jensen. On the computational behavior of a polynomial-time
network flow algorithm. Mathematical Programming, 54:1–39, 1992.

[26] B. Bollobás. Modern Graph Theory. Springer, New York, NY, USA, 1998.

[27] E. G. Boman, K. Deweese, and J. R. Gilbert. Evaluating the potential of a dual randomized
Kaczmarz Laplacian linear solver. Informatica, 40:95–107, 2016.

[28] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algo-
rithms for energy minimization in vision. IEEE Transacations on Pattern Analysis and
Machine Intelligence, 26:1124–1137, 2004.

[29] U. Bünnagel, B. Korte, and J. Vygen. Efficient implementation of the Goldberg-Tarjan
minimum-cost flow algorithm. Optimization Methods and Software, 10:157–174, 1998.

[30] R. G. Busacker and T. L. Saaty. Finite Graphs and Networks: An Introduction with
Applications. McGraw-Hill Book Company, New York, NY, USA, 1965.

[31] B. G. Chandran and D. S. Hochbaum. A computational study of the pseudoflow and
push-relabel algorithms for the maximum flow problem. Operations Research, 57:358–376,
2009.

[32] C. S. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and C. Stein. Experimental
study of minimum cut algorithms. In Proceedings of the 8th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 324–333, 1997.

[33] C. K. Cheng and T. C. Hu. Ancestor tree for arbitrary multi-terminal cut functions.
Annals of Operations Research, 33:199–213, 1991.

[34] J. Cheriyan and S. N. Maheshwari. Analysis of preflow push algorithms for maximum
network flow. SIAM Journal on Computing, 18:1057–1086, 1989.

[35] J. Cheriyan and K. Mehlhorn. An analysis of the highest-level selection rule in the preflow-
push max-flow algorithm. Information Processing Letters, 69:239–242, 1999.

[36] B. V. Cherkasski. A fast algorithm for constructing a maximum flow through a network.
American Mathematical Society Translations, 158:23–30, 1994.

[37] B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel method for the
maximum flow problem. Algorithmica, 19:390–410, 1997.

[38] B. V. Cherkassky and A. V. Goldberg. Negative-cycle detection algorithms. Mathematical
Programming, 85:277–311, 1999.

[39] T.-Y. Cheung. Computational comparison of eight methods for the maximum flow prob-
lem. ACM Transactions on Mathematical Software, 6:1–16, 1980.

References 249

[40] P. Christiano, J. A. Kelner, A. M ↪adry, D. Spielman, and S.-H. Teng. Electrical flows,
Laplacian systems, and faster approximation of maximum flow in undirected graphs. In
Proceedings of the 43rd Annual ACM Symposium on the Theory of Computing, pages
273–282, 2011. Full version available at https://people.csail.mit.edu/madry/docs/

maxflow.pdf. Accessed May 15, 2018.

[41] E. Cohen and N. Megiddo. New algorithms for generalized network flows. Mathematical
Programming, 64:325–336, 1994.

[42] M. B. Cohen, R. Kyng, G. L. Miller, J. W. Pachocki, R. Peng, A. B. Rao, and S. C. Xu.
Solving SDD linear systems in nearly m log1/2 n time. In Proceedings of the 46th Annual
ACM Symposium on the Theory of Computing, pages 343–352, 2014.

[43] M. B. Cohen, A. M ↪adry, P. Sankowski, and A. Vladu. Negative-weight shortest paths
and unit capacity minimum cost flow in Õ(m10/7 logW) time. In Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 752–771, 2017. Full version
available at https://arxiv.org/pdf/1605.01717.pdf. Accessed June 8, 2018.

[44] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. John Wiley and Sons, New York, NY, USA, 1998.

[45] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, Cambridge, MA, USA, third edition, 2009.

[46] S. I. Daitch and D. A. Spielman. Faster approximate lossy generalized flow via interior-
point algorithms. In Proceedings of the 40th Annual ACM Symposium on the Theory of
Computing, pages 451–460, 2008. Full version at https://arxiv.org/pdf/0803.0988.pdf.
Accessed February 3, 2019.

[47] G. B. Dantzig. Application of the simplex method to a transportation problem. In T. C.
Koopmans, editor, Activity Analysis of Production and Allocation, number 13 in Cowles
Commission for Research in Economics, pages 359–373. John Wiley and Sons, 1951.

[48] G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Prince-
ton, NJ, 1963.

[49] G. B. Dantzig and D. R. Fulkerson. On the max-flow min-cut theorem of networks. In
H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related Systems, num-
ber 38 in Annals of Mathematics Studies, pages 215–222. Princeton University Press,
Princeton, NJ, USA, 1956.

[50] U. Derigs and W. Meier. Implementing Goldberg’s max-flow-algorithm – a computational
investigation. ZOR – Methods and Models of Operations Research, 33:383–403, 1989.

[51] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959.

[52] E. A. Dinic. An algorithm for the solution of the max-flow problem with power estimation.
Doklady Akademii Nauk SSSR, 194:754–757, 1970. In Russian. English version in Soviet
Mathematics Doklady 11:1277–1280, 1970.

[53] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. O strukture sistemy minimal’nykh
rebernykh razrezov grafa. In A. A. Fridman, editor, Issledovaniya po Diskretnŏı Opti-
mizatsii, pages 290–306. Nauka, Moscow, 1976. In Russian. English translation avail-
able at http://alexander-karzanov.net/ScannedOld/76_cactus_transl.pdf. Accessed
February 14, 2018.

[54] Y. Dinitz. Dinitz’ algorithm: The original version and Even’s version. In O. Goldreich,
A. L. Rosenberg, and A. L. Selman, editors, Theoretical Computer Science: Essays in
Memory of Shimon Even, number 3895 in Lecture Notes in Computer Science, pages
218–240. Springer, Berlin, Germany, 2006.

[55] P. G. Doyle and J. L. Snell. Random Walks and Electric Networks. The Mathematical
Association of America, Washington DC, USA, 1984. Online version available at https:

//arxiv.org/pdf/math/0001057.pdf. Accessed January 24, 2019.

[56] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Random-
ized Algorithms. Cambridge University Press, New York, NY, USA, 2009.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

250 References

[57] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19:248–264, 1972.

[58] P. Elias, A. Feinstein, and C. E. Shannon. A note on the maximum flow through a network.
IRE Transactions on Information Theory, 2:117–119, 1956.

[59] S. Even and R. E. Tarjan. Network flow and testing graph connectivity. SIAM Journal
on Computing, 4:507–518, 1975.

[60] L. Fleischer. Building chain and cactus representations of all minimum cuts from Hao-
Orlin in the same asymptotic run time. Journal of Algorithms, 33:51–72, 1999.

[61] L. K. Fleischer. Approximating fractional multicommodity flow independent of the number
of commodities. SIAM Journal on Discrete Mathematics, 13:505–520, 2000.

[62] L. R. Ford Jr. Network flow theory. Paper P-923, The RAND Corporation, Santa Monica,
CA, USA, 1956.

[63] L. R. Ford Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

[64] L. R. Ford Jr. and D. R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419–433, 1958.

[65] L. R. Ford Jr. and D. R. Fulkerson. A suggested computation for maximal multi-
commodity network flows. Management Science, 5:97–101, 1958.

[66] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton University Press,
Princeton, NJ, USA, 1962.

[67] R. M. Foster. The average impedance of an electrical network. In Reissner Anniversary
Volume: Contributions to Applied Mechanics, pages 333–340. J. W. Edwards, Ann Arbor,
MI, USA, 1949.

[68] A. Frank. Connectivity and network flows. In R. L. Graham, M. Grötschel, and L. Lovász,
editors, Handbook of Combinatorics, volume I, pages 111–178. Elsevier B.V., Amsterdam,
The Netherlands, 1995.

[69] A. Frank. On the edge-connectivity algorithm of Nagamochi and Ibaraki. EGRES
Quick Proof 2009-01, Department of Operations Research, Eötvös University, Budapest,
Hungary, 2009. Available at http://www.cs.elte.hu/egres/qp/egresqp-09-01.pdf. Ac-
cessed September 11, 2012.

[70] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing heap: A new
form of self-adjusting heap. Algorithmica, 1:111–129, 1986.

[71] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, 34:596–615, 1987.

[72] S. Fujishige. Another simple proof of the validity of Nagamochi and Ibaraki’s min-cut
algorithm and Queyranne’s extension to symmetric submodular function minimization.
Journal of the Operations Research Society of Japan, 41:626–628, 1998.

[73] S. Fujishige. A maximum flow algorithm using MA ordering. Operations Research Letters,
31:176–178, 2003.

[74] D. R. Fulkerson. An out-of-kilter method for minimal-cost flow problems. SIAM Journal
on Applied Mathematics, 9:18–27, 1961.

[75] D. R. Fulkerson and G. B. Dantzig. Computation of maximal flows in networks. Naval
Research Logistics Quarterly, 2:277–283, 1955.

[76] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
Journal of Computer and System Sciences, 50:259–273, 1995.

[77] H. N. Gabow. The minset-poset approach to representations of graph connectivity. ACM
Transactions on Algorithms, 12, 2016. Article 24.

[78] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm
and applications. SIAM Journal on Computing, 18:30–55, 1989.

[79] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow and
other fractional packing problems. SIAM Journal on Computing, 37:630–652, 2007.

[80] F. Glover and D. Klingman. On the equivalence of some generalized network problems to
pure network problems. Mathematical Programming, 4:269–278, 1973.

References 251

[81] F. Glover, D. Klingman, J. Mote, and D. Whitman. Comprehensive computer eval-
uation and enhancement of maximum flow algorithms. Research Report 356, Center
for Cybernetic Studies, University of Texas, Austin, Oct. 1979. Available at http:

//www.dtic.mil/dtic/tr/fulltext/u2/a081941.pdf. Accessed May 29, 2018.

[82] F. Glover, D. Klingman, J. Mote, and D. Whitman. An extended abstract of an indepth
algorithmic and computational study for maximum flow problems. Discrete Applied Math-
ematics, 2:251–254, 1980.

[83] A. V. Goldberg. Finding a maximum density subgraph. Technical Report UCB/CSD-
84-171, EECS Department, University of California, Berkeley, 1984. Available at
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-171.pdf. Accessed May
29, 2018.

[84] A. V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm.
Journal of Algorithms, 22:1–29, 1997.

[85] A. V. Goldberg. Two-level push-relabel algorithm for the maximum flow problem. In A. V.
Goldberg and Y. Zhou, editors, Algorithmic Aspects in Information and Management,
number 5564 in Lecture Notes in Computer Science, pages 212–225. Springer, Berlin,
Germany, 2009.

[86] A. V. Goldberg, S. Hed, H. Kaplan, P. Kohli, R. E. Tarjan, and R. F. Werneck. Faster
and more dynamic maximum flow by incremental breadth-first search. In N. Bansal and
I. Finocchi, editors, Algorithms – ESA 2015, number 9294 in Lecture Notes in Computer
Science, pages 619–630. Springer, Berlin, Germany, 2015.

[87] A. V. Goldberg and M. Kharitonov. On implementing scaling push-relabel algorithms for
the minimum-cost flow problem. In D. S. Johnson and C. C. McGeoch, editors, Network
Flows and Matching, First DIMACS Implementation Challenge, number 12 in DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 1–18. American
Mathematical Society, Providence, RI, USA, 1993.

[88] A. V. Goldberg, J. D. Oldham, S. Plotkin, and C. Stein. An implementation of a com-
binatorial approximation algorithm for minimum-cost multicommodity flow. In R. E.
Bixby, E. A. Boyd, and R. Z. Ŕıos-Mercado, editors, Integer Programming and Combina-
torial Optimization, 6th International IPCO Conference, volume 1412 of Lecture Notes in
Computer Science, pages 338–352. Springer, Berlin, Germany, 1998.

[89] A. V. Goldberg, S. A. Plotkin, and É. Tardos. Combinatorial algorithms for the generalized
circulation problem. Mathematics of Operations Research, 16:351–381, 1991.

[90] A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. Journal of the ACM,
45:783–797, 1998.

[91] A. V. Goldberg, É. Tardos, and R. E. Tarjan. Network flow algorithms. In B. Korte,
L. Lovaśz, H. J. Prömel, and A. Schrijver, editors, Paths, Flows, and VLSI-Layout, pages
101–164. Springer, Berlin, Germany, 1990.

[92] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem. Journal
of the ACM, 35:921–940, 1988.

[93] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling negative
cycles. Journal of the ACM, 36:873–886, 1989.

[94] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by successive ap-
proximation. Mathematics of Operations Research, 15:430–466, 1990.

[95] A. V. Goldberg and R. E. Tarjan. Efficient maximum flow algorithms. Communications
of the ACM, 57:82–89, 2014.

[96] A. V. Goldberg and K. Tsioutsiouliklis. Cut tree algorithms: An experimental study.
Journal of Algorithms, 83:51–83, 2001.

[97] D. Goldfarb and J. Hao. Polynomial-time primal simplex algorithms for the minimum
cost network flow problem. Algorithmica, 8:145–160, 1992.

[98] D. Goldfarb and Z. Jin. A faster combinatorial algorithm for the generalized circulation
problem. Mathematics of Operations Research, 21:529–539, 1996.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

252 References

[99] D. Goldfarb, Z. Jin, and Y. Lin. A polynomial dual simplex algorithm for the generalized
circulation problem. Mathematical Programming, 91:271–288, 2002.

[100] D. Goldfarb, Z. Jin, and J. B. Orlin. Polynomial-time highest-gain augmenting path
algorithms for the generalized circulation problem. Mathematics of Operations Research,
22:793–802, 1997.

[101] R. E. Gomory and T. C. Hu. Multi-terminal network flows. SIAM Journal on Applied
Mathematics, 9:551–570, 1961.

[102] M. D. Grigoriadis and L. G. Khachiyan. Fast approximation schemes for convex programs
with many blocks and coupling constraints. SIAM Journal on Optimization, 4:86–107,
1994.

[103] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing, 19:143–155, 1990.

[104] J. Hao and J. B. Orlin. A faster algorithm for finding a minimum cut in a directed graph.
Journal of Algorithms, 17:424–446, 1994.

[105] N. Harvey. Lecture Notes from CPSC 536N: Randomized Algorithms, Winter 2012, Lec-
tures 13 and 14. Available at http://www.cs.ubc.ca/~nickhar/W12/. Accessed May 14,
2018.

[106] M. Henzinger, S. Rao, and D. Wang. Local flow partitioning for faster edge connectivity.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1919–1938, 2017.

[107] D. S. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum flow
problem. Operations Research, 56:992–1009, 2008.

[108] A. J. Hoffman. Some recent applications of the theory of linear inequalities to extremal
combinatorial analysis. In R. Bellman and M. Hall, Jr., editors, Combinatorial Analysis,
volume X of Proceedings of Symposia in Applied Mathematics, pages 113–127, Providence,
RI, USA, 1960. American Mathematical Society.

[109] A. J. Hoffman. On greedy algorithms that succeed. In I. Anderson, editor, Surveys in
combinatorics 1985: Invited papers for the Tenth British Combinatorial Conference, num-
ber 103 in London Mathematical Society Lecture Note Series, pages 97–112. Cambridge
University Press, Cambridge, UK, 1985.

[110] A. J. Hoffman. On simple combinatorial optimization problems. Discrete Mathematics,
106/107:285–289, 1992.

[111] B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of Operations
Research, 25:36–62, 2000.

[112] D. Hoske, D. Lukarski, H. Meyerhenke, and M. Wegner. Engineering a combinatorial
Laplacian solver: Lessons learned. Algorithms, 9, 2016. Article 72.

[113] T. C. Hu. Multi-commodity network flows. Operations Research, 11:344–360, 1963.

[114] IBM ILOG. CPLEX. https://www.ibm.com/analytics/cplex-optimizer.

[115] H. Imai. On the practical efficiency of various maximum flow algorithms. Journal of the
Operations Research Society of Japan, 26:61–82, 1983.

[116] W. S. Jewell. Optimal flow through networks with gains. Operations Research, 10:476–499,
1962.

[117] D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the
ACM, 24:1–13, 1977.

[118] A. Joshi, A. S. Goldstein, and P. M. Vaidya. A fast implementation of a path-following
algorithm for maximizing a linear function over a network polytope. In D. S. Johnson
and C. C. McGeoch, editors, Network Flows and Matching, First DIMACS Implementa-
tion Challenge, number 12 in DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 267–298. American Mathematical Society, Providence, RI, USA,
1993.

[119] M. Jünger, G. Rinaldi, and S. Thienel. Practical performance of efficient minimum cut
algorithms. Algorithmica, 26:172–195, 2000.

References 253

[120] A. Kamath and O. Palmon. Improved interior point algorithms for exact and approx-
imation solution of multicommodity flow problems. In Proceedings of the 6th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 502–511, 1995.

[121] D. Karger and S. Plotkin. Adding multiple cost constraints to combinatorial optimization
problems, with applications to multicommodity flows. In Proceedings of the 27th Annual
ACM Symposium on the Theory of Computing, pages 18–25, 1995.

[122] D. R. Karger. Random sampling in cut, flow, and network design problems. Mathematics
of Operations Research, 24:383–413, 1999.

[123] D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47:46–76, 2000.
[124] D. R. Karger and D. Panigrahi. A near-linear time algorithm for constructing a cactus rep-

resentation of minimum cuts. In Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 246–255, 2009.

[125] D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the
ACM, 43:601–640, 1996.

[126] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete
Mathematics, 23:309–311, 1978.

[127] A. V. Karzanov. O nakhozhdenii maksimal’nogo potoka v setyakh spetsial’nogo vida i
nekotorykh prilozheniyakh. In L. A. Lyusternik, editor, Matematicheskie Voprosy Up-
ravleniya Proizvodstvom, volume 5, pages 81–94. Moscow State University Press, Moscow,
Russia, 1973. In Russian. English translation available at http://alexander-karzanov.

net/ScannedOld/73_spec-net-flow_transl.pdf. Accessed February 3, 2019.
[128] A. V. Karzanov. Determining the maximal flow in a network by the method of preflows.

Soviet Mathematical Dokladi, 15:434–437, 1974.
[129] A. V. Karzanov and E. A. Timofeev. Efficient algorithm for finding all minimal edge cuts

of a nonoriented graph. Cybernetics, 22:156–162, 1986.
[130] K. Kawarabayashi and M. Thorup. Deterministic global minimum cut of a simple graph

in near-linear time. In Proceedings of the 47th Annual ACM Symposium on the Theory of
Computing, pages 665–674, 2015.

[131] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu. A simple combinatorial algorithm
for solving SDD systems in nearly-linear time. In Proceedings of the 45th Annual ACM
Symposium on the Theory of Computing, pages 911–920, 2013. Full version available at
https://arxiv.org/pdf/1301.6628.pdf. Accessed May 14, 2018.

[132] M. Klein. A primal method for minimal cost flows with applications to the assignment
and transportation problems. Management Science, 14:205–220, 1967.

[133] P. Klein, S. Plotkin, C. Stein, and É. Tardos. Faster approximation algorithms for the
unit capacity concurrent flow problems with applications to routing and finding sparse
cuts. SIAM Journal on Computing, 23:466–487, 1994.

[134] J. Kleinberg and É. Tardos. Algorithm Design. Addison Wesley, Boston, MA, USA, 2006.
[135] B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer,

Berlin, Germany, Fifth edition, 2012.
[136] P. Kovács. Minimum-cost flow algorithms: an experimental evaluation. Optimization

Methods and Software, 30:94–127, 2015.
[137] M. A. Langston. Fixed-parameter tractability, a prehistory. In H. L. Bodlaender,

R. Downey, F. V. Formin, and D. Marx, editors, The Multivariate Algorithmic Revolution
and Beyond – Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birth-
day, number 7370 in Lecture Notes in Computer Science, pages 3–16. Springer, Berlin,
Germany, 2012.

[138] D. H. Larkin, S. Sen, and R. E. Tarjan. A back-to-basics empirical study of priority
queues. In Proceedings of the 16th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 61–72, 2014.

[139] E. L. Lawler. Optimal cycles in doubly weighted directed linear graphs. In P. Rosenstiehl,
editor, Theory of Graphs, International Symposium, pages 209–213. Gordon and Breach,
1967.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

254 References

[140] Y. T. Lee and A. Sidford. Path-finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In Proceedings

of the 55th Annual IEEE Symposium on Foundations of Computer Science, pages 424–
433, 2014. Full versions available at https://arxiv.org/pdf/1312.6677.pdf and https:

//arxiv.org/pdf/1312.6713.pdf. Accessed June 8, 2018.

[141] Y. T. Lee and H. Sun. An SDP-based algorithm for linear-sized spectral sparsification. In
Proceedings of the 49th Annual ACM Symposium on the Theory of Computing, pages 678–
687, 2017. Full version available at https://arxiv.org/pdf/1702.08415.pdf. Accessed
May 14, 2018.

[142] T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas. Fast approx-
imation algorithms for multicommodity flow problems. Journal of Computer and System
Sciences, 50:228–243, 1995.

[143] T. Leong, P. Shor, and C. Stein. Implementation of a combinatorial multicommodity flow
algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Match-
ing, First DIMACS Implementation Challenge, number 12 in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 387–405. American Mathematical
Society, Providence, RI, USA, 1993.

[144] M. S. Levine. Experimental study of minimum cut algorithms. Master’s thesis, Mas-
sachusetts Institute of Technology, May 1997. Available as MIT LCS Technical Report TR-
719, from http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-719.pdf.
Accessed February 12, 2018.

[145] A. Löbel. Solving large-scale real-world minimum-cost flow problems by a network simplex
method. Technical Report SC 96-7, ZIB, 1996. Available at https://opus4.kobv.de/

opus4-zib/frontdoor/index/index/docId/218. Accessed June 5, 2018.

[146] A. M ↪adry. Computing maximum flow with augmenting electrical flows. In Proceedings of
the 57th Annual IEEE Symposium on Foundations of Computer Science, pages 593–602,
2016. Full version available at https://people.csail.mit.edu/madry/docs/aug_flow.

pdf. Accessed June 8, 2018.

[147] K. Mehlhorn. Blocking flow algorithms for maximum network flow, Course notes, Sum-
mer 99. Available at www.mpi-inf.mpg.de/∼mehlhorn/ftp/Goldberg-Rao.ps. Accessed
September 27, 2012.

[148] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge University Press,
Cambridge, UK, second edition, 2017.

[149] E. F. Moore. The shortest path through a maze. In Proceedings of the International Sym-
posium on the Theory of Switching, pages 285–292, Cambridge, MA, USA, 1959. Harvard
University Press.

[150] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[151] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in multigraphs and capaci-
tated graphs. SIAM Journal on Discrete Mathematics, 5:54–66, 1992.

[152] H. Nagamochi, T. Ono, and T. Ibaraki. Implementing an efficient minimum capacity cut
algorithm. Mathematical Programming, 67:325–341, 1994.

[153] Q. C. Nguyen and V. Venkateswaran. Implementations of the Goldberg-Tarjan maximum
flow algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Match-
ing, First DIMACS Implementation Challenge, number 12 in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, pages 1–18. American Mathematical So-
ciety, Providence, RI, USA, 1993.

[154] H. Okamura and P. D. Seymour. Multicommodity flows in planar graphs. Journal of
Combinatorial Theory B, 31:75–81, 1981.

[155] N. Olver and L. A. Végh. A simpler and faster strongly polynomial algorithm for
generalized flow maximization. In Proceedings of the 49th Annual ACM Symposium
on the Theory of Computing, pages 100–111, 2017. Full version available at https:

//arxiv.org/pdf/1611.01778.pdf. Accessed July 30, 2018.

References 255

[156] K. Onaga. Optimum flows in general communications networks. Journal of the Franklin
Institute, 283:308–327, 1967.

[157] J. B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
Research, 41:338–350, 1993.

[158] J. B. Orlin. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78:109–129, 1997.

[159] J. B. Orlin. Max flows in O(mn) time, or better. In Proceedings of the 45th Annual
ACM Symposium on the Theory of Computing, pages 765–774, 2013. Full version available
at https://dspace.mit.edu/openaccess-disseminate/1721.1/88020. Accessed May 25,
2018.

[160] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum cut problem. Math-
ematical Programming, 47:19–36, 1990.

[161] P. A. Papp. Low-stretch spanning trees. BSc thesis, Eötvös Lorand University, 5
2014. Available at http://web.cs.elte.hu/blobs/diplomamunkak/bsc_alkmat/2014/

papp_pal_andras.pdf. Accessed May 14, 2018.

[162] R. Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In Proceedings
of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1862–1867,
2016. Full version available at https://arxiv.org/pdf/1411.7631.pdf. Accessed May
15, 2018.

[163] J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network and
applications. Mathematical Programming Study, 13:8–16, 1980.

[164] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Mathematics of Operations Research, 20:257–301, 1995.

[165] B. D. Podderyugin. Algorithm for determining the edge connectivity of a graph. In Voprosy
Kibernetiki – Trudy Seminara po Kombinatornŏı Mathematike, pages 136–141. Akademiya
Nauk SSSR Nauchny̆ı Sovet po Kompleksnŏı Probleme “Kibernetikia”, Moscow, USSR,
1973. In Russian.

[166] L. F. Portugal, M. G. C. Resende, G. Veiga, and J. J. Júdice. A truncated primal-infeasible
dual-feasible network interior point method. Networks, 35:91–108, 2000.

[167] M. Queyranne. Minimizing symmetric submodular functions. Mathematical Programming,
82:3–12, 1998.

[168] T. Radzik. Fast deterministic approximation for the multicommodity flow problem. Math-
ematical Programming, 78:43–58, 1997.

[169] T. Radzik. Faster algorithms for the generalized network flow problem. Mathematics of
Operations Research, 23:69–100, 1998.

[170] T. Radzik. Improving time bounds on maximum generalised flow computations by con-
tracting the network. Theoretical Computer Science, 312:75–97, 2004.

[171] T. Radzik and S. Yang. Experimental evaluation of algorithmic solutions for the maximum
generalised flow problem. Technical Report TR-01-09, Department of Computer Science,
King’s College London, 2001.

[172] M. G. Resende and G. Veiga. An efficient implementation of a network interior point
method. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching, First
DIMACS Implementation Challenge, number 12 in DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science, pages 299–348. American Mathematical Society,
Providence, RI, USA, 1993.

[173] M. Restrepo and D. P. Williamson. A simple GAP-canceling algorithm for the generalized
maximum flow problem. Mathematical Programming, Series A, 118:47–74, 2009.

[174] J. Robinson. A note on the Hitchcock-Koopmans problem. Research Memorandum RM-
407, RAND Corporation, June 1950.

[175] H. Röck. Scaling techniques for minimal cost network flows. In U. Pape, editor, Discrete
Structures and Algorithms, Proceedings of the Workshop WG 79, pages 181–192. Carl
Hanser Verlag, München, Germany, 1980.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

256 References

[176] A. Schrijver. On the history of the transportation and maximum flow problems. Mathe-
matical Programming, Series B, 91:437–445, 2002.

[177] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin,
Germany, 2003.

[178] B. L. Schwartz. Possible winners in partially completed tournaments. SIAM Review,
8:302–308, 1966.

[179] P. D. Seymour. A short proof of the two-commodity flow theorem. Journal of Combina-
torial Theory B, 26:370–371, 1979.

[180] F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. Journal of the
ACM, 37:318–334, 1990.

[181] M. Skutella. An introduction to network flows over time. In W. J. Cook, L. Lovász,
and J. Vygen, editors, Research Trends in Combinatorial Optimization. Springer, Berlin,
Germany, 2009.

[182] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26:362–391, 1983.

[183] P. T. Sokkalingam, R. K. Ahuja, and J. B. Orlin. New polynomial-time cycle-canceling
algorithms for minimum-cost flows. Networks, 36:53–63, 2000.

[184] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40:1913–1926, 2011.

[185] D. A. Spielman and S.-H. Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40:981–1025, 2011.

[186] D. A. Spielman and S.-H. Teng. Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix Analysis
and Applications, 35:835–885, 2014.

[187] M. Stoer and F. Wagner. A simple min-cut algorithm. Journal of the ACM, 44:585–591,
1997.

[188] É. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinatorica,
5:247–255, 1985.

[189] É. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Op-
erations Research, 34:250–256, 1986.

[190] É. Tardos and K. D. Wayne. Simple generalized maximum flow algorithms. In R. E. Bixby,
E. A. Boyd, and R. Z. Ŕıos-Mercado, editors, Integer Programming and Combinatorial
Optimization, number 1412 in Lecture Notes in Computer Science, pages 310–324, Berlin,
Germany, 1998. Springer.

[191] R. E. Tarjan. Shortest paths. Technical report, AT&T Bell Laboratories, Murray Hill,
NJ, USA, 1981.

[192] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1983.

[193] R. E. Tarjan. Efficiency of the primal network simplex algorithm for the minimum-cost
circulation problem. Mathematics of Operations Research, 14:272–291, 1991.

[194] N. Tomizawa. On some techniques useful for solution of transportation network problems.
Networks, 1:173–194, 1971.

[195] J. A. Tropp. User-friendly tail bounds for sums of random matrics. Foundations of
Computational Mathematics, 12:389–434, 2012.

[196] J. A. Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1–2):1–230, 2015. Also available at https://arxiv.org/

pdf/1501.01571.pdf. Accessed May 15, 2018.
[197] K. Truemper. An efficient scaling procedure for gain networks. Networks, 6:151–159, 1976.
[198] K. Truemper. On max flows with gains and pure min-cost flows. SIAM Journal on Applied

Mathematics, 32:450–456, 1977.
[199] P. M. Vaidya. Speeding-up linear programming using fast matrix multiplication. In

Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science,
pages 332–337, 1989.

References 257

[200] L. A. Végh. A strongly polynomial algorithm for generalized flow maximization. Mathe-
matics of Operations Research, 42:117–211, 2017.

[201] C. Wallacher. A generalization of the minimum-mean cycle selection rule in cycle can-
celing algorithms. Technical report, Abteilung für Optimierung, Institut für Angewandte
Mathematik, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany, 1991.

[202] K. D. Wayne. Generalized Maximum Flow Algorithms. PhD thesis, Cornell University,
Jan. 1999.

[203] K. D. Wayne. A new property and a faster algorithm for baseball elimination. SIAM
Journal on Discrete Mathematics, 14:223–229, 2001.

[204] K. D. Wayne. A polynomial combinatorial algorithm for generalized minimum cost flow.
Mathematics of Operations Research, 27:445–459, 2002.

[205] A. Weintraub. A primal algorithm to solve network flow problems with convex costs.
Management Science, 21:87–97, 1974.

[206] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, New York, NY, USA, 2011.

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

Author index

Of making many books there is no end, and much study wearies the body. Now

all has been heard; here is the conclusion of the matter: Fear God and keep his

commandments, for this is the duty of all mankind.

– Ecclesiastes 12:12b-13

Abraham, I. 244
Ahlswede, R. 244
Ahuja, R. K. iii, v, 65, 66, 154–156, 187
Alon, N. 244
Anderson, R. J. 66
Arora, S. 211
Aspvall, B. I. 187
Awerbuch, B. 202, 211

Baier, G. 66
Barahona, F. 156
Batson, J. 244
Bellman, R. 6, 18
Benczúr, A. A. 95, 243
Berra, Y. 18
Bertsekas, D. P. 155
Bhalgat, A. 95, 246
Bienstock, D. 212
Bland, R. G. 155
Bollobás, B. 243
Boman, E. G. 244
Boykov, Y. 66
Bünnagel, U. 155
Busacker, R. G. 154

Carroll, L. 1, 157, 245
Chandran, B. G. 66
Chekuri, C. S. 95
Cheng, C. K. 95
Cheriyan, J. 65

Cherkassky, B. V. 18, 66
Cheung, T.-Y. 66
Christiano, P. 243
Cohen, E. 187
Cohen, M. B. 156, 243
Cook, W. J. v
Cormen, T. H. v, 18
Crane, S. 188
Cunningham, W. H. v

Daitch, S. I. 187
Dantzig, G. B. 65, 155, 186
Derigs, U. 66
Deweese, K. 244
Dijkstra, E. W. 2, 18
Dinitz, E. A. 65, 95, 108
Doyle, P. G. 243
Dubhashi, D. P. 244

Edmonds, J. 45, 65, 109, 155, 156
Elias, P. 65
Even, S. 109

Feinstein, A. 65
Fleischer, L. K. 95, 212
Ford Jr., L. R. v, 6, 18, 25, 65, 145, 154,

155, 210
Foster, R. M. 221
Frank, A. 65, 94
Fredman, M. L. 18
Fujishige, S. 94, 95

258

Author index 259

Fulkerson, D. R. v, 19, 25, 65, 84, 110,
145, 154, 155, 210, 213

Gabow, H. N. 94, 95
Gail, A. B. 258
Gallo, G. 66
Garg, N. 199, 211
Gilbert, J. R. 244
Glover, F. 66, 187
Goemans, M. X. 95
Goldberg, A. V. iv, 18, 57, 65, 66, 95,

97, 109, 154–156, 186, 187, 211
Goldfarb, D. 155, 187
Goldstein, A. S. 155
Gomory, R. E. 84, 95
Grigoriadis, M. D. 66, 211
Gusfield, D. 84, 95

Hao, J. 69, 71, 94, 155
Hariharan, R. 95, 246
Harvey, N. 244
Hazan, E. 211
Hed, S. 66
Henzinger, M. 94
Hochbaum, D. S. 66
Hoffman, A. J. 66, 109
Hoppe, B. 155
Hoske, D. 244
Hu, T. C. 84, 95, 210

Ibaraki, T. 94, 95
IBM ILOG 212
Imai, H. 66

Jensen, D. L. 155
Jewell, W. S. 186
Jin, Z. 187
Johnson, D. B. 18
Joshi, A. 155
Júdice, J. J. 155
Jünger, M. 95

Kale, S. 211
Kamath, A. 211
Kaplan, H. 66
Karger, D. R. 94, 95, 212, 243
Karp, R. M. 18, 45, 65, 109, 155, 156,

244
Karzanov, A. V. 65, 94, 95, 109

Kavitha, T. 95, 246

Kawarabayashi, K. 94

Kelner, J. A. 243, 244

Khachiyan, L. G. 211

Kharitonov, M. 155

Klein, M. 115, 116, 154

Klein, P. 211

Kleinberg, J. v, 18

Klingman, D. 66, 187

Köhler, E. 66

Kohli, P. 66

Kolmogorov, V. 66

Könemann, J. 199, 211

Korte, B. v, 155

Kovács, P. 155, 156

Kronecker, L. 157

Kyng, R. 243

Langston, M. A. 17

Larkin, D. H. 18

Lawler, E. L. 18

Lee, Y. T. 156, 243, 244, 246

Leighton, T. 202, 211, 212

Leiserson, C. E. v, 18

Leong, T. 211, 212

Levine, M. S. 95

Lin, Y. 187

L. R. Ford, J. 19, 84, 110, 213

Löbel, A. 155

Lomonosov, M. V. 95

Lukarski, D. 244

M ↪adry, A. 243

Magnanti, T. L. iii, v, 65, 154–156, 187

Maheshwari, S. N. 65

Makedon, F. 211, 212

Matula, D. W. 211

Megiddo, N. 187

Mehlhorn, K. 65, 109

Meier, W. 66

Meyerhenke, H. 244

Miller, G. L. 243

Mitzenmacher, M. 244

M ↪adry, A. 156, 243

Montaigne iii

Moore, E. F. 18
This material will be published by Cam-

bridge University Press as Network Flow Algo-

rithms by David P. Williamson; see https://

www.cambridge.org/9781316636831. This pre-

publication version is free to view and down-

load for personal use only. Not for re-

distribution, re-sale or use in derivative works.

c© David P. Williamson 2019.

260 Author index

Mote, J. 66
Motwani, R. 244

Nagamochi, H. 94, 95
Neiman, O. 244
Nguyen, Q. C. 66
Niel, D. A. 258

Okamura, H. 211
Oldham, J. D. 211
Olver, N. 187
Onaga, K. 186
Ono, T. 95
Orecchia, L. 244
Orlin, J. B. iii, v, 65, 66, 69, 71, 94,

154–156, 187, 245

Pachocki, J. W. 243
Padberg, M. 95
Palmon, O. 211
Panconesi, A. 244
Panigrahi, D. 95, 246
Papp, P. A. 244
Peleg, D. 244
Peng, R. 243
Picard, J.-C. 95
Plotkin, S. A. 186, 187, 211, 212
Podderyugin, B. D. 94
Portugal, L. F. 155
Pulleyblank, W. R. v

Qoholeth 258
Queyranne, M. 95

Radzik, T. 187, 211, 212
Raghavan, P. 244
Rao, A. B. 243
Rao, S. iv, 65, 94, 97, 109
Resende, M. G. C. 155
Restrepo, M. iv, 187
Rinaldi, G. 95
Rivest, R. L. v, 18
Robinson, J. 153, 154
Röck, H. 155

Saaty, T. L. 154
Sankowski, P. 156, 243
Schrijver, A. v, 18, 64, 153, 154, 210
Schwartz, B. L. 66

Sedgewick, R. 18
Sen, S. 18
Setubal, J. 66
Seymour, P. D. 210, 211
Shahrokhi, F. 211
Shakespeare, W. v
Shannon, C. E. 65
Shmoys, D. B. iii, 211, 212
Shor, P. 211, 212
Sidford, A. 156, 243, 244, 246
Skutella, M. 66, 155
Sleator, D. D. 18, 109
Snell, J. L. 243
Sokkalingam, P. T. 156
Spielman, D. A. 187, 243, 244
Srivastava, N. 244
Stein, C. v, 18, 94, 95, 211, 212
Stoer, M. 94
Sun, H. 244

Tardos, É. v, 18, 65, 154–156, 186, 187,
211, 212, 246

Tarjan, R. E. v, 18, 57, 65, 66, 109,
154–156

Teng, S.-H. 243
Thienel, S. 95
Thorup, M. 94
Timofeev, E. A. 94
Tomizawa, N. 156
Tragoudas, S. 211, 212
Tropp, J. A. 244
Truemper, K. 178, 187
Tseng, P. 155
Tsioutsiouliklis, K. 95
Twain, M. 17

Upfal, E. 244
Uth, R. 258

Vaidya, P. M. 155, 211, 246
Végh, L. A. 187, 246
Veiga, G. 155
Venkateswaran, V. 66
Vladu, A. 156, 243
Vygen, J. v, 155

Wagner, F. 94
Wallacher, C. iv, 117, 154

Author index 261

Wang, D. 94

Wayne, K. D. 66, 187, 246

Wegner, M. 244

Weintraub, A. 154

Werneck, R. F. 66

West, D. 244

Whitman, D. 66
Williamson, D. P. iii, iv, 187
Winter, A. 244

Xu, S. C. 243

Yang, S. 187

Zhu, Z. A. 244

This material will be published by Cambridge University Press as Network Flow Algorithms

by David P. Williamson; see https://www.cambridge.org/9781316636831. This pre-publication

version is free to view and download for personal use only. Not for re-distribution, re-sale or

use in derivative works. c© David P. Williamson 2019.

Index

Λ, 100
ε-fixed arc, 126
ε-optimal, 123, 164

active node, 50, 57, 136
admissible arc, 50, 136, 152, 185
Ahlswede-Winter theorem, 231
amortized running time, 18
ancestor tree, 95
arc
ε-fixed, 126
admissible, 50, 136, 152, 185
fixed, 126
holdover, 143
nontree, 140
saturated, 25
special, 102
tree, 140

assignment problem, 150
augmenting path, 25, 165

generalized, 159
most improving, 43, 61

augmenting path algorithm, 27
most improving, 40–43
shortest, 45–47

Awerbuch-Leighton algorithm, 202–209

B (matrix), 217
B (scalar), 157
baseball elimination problem, 30–35, 57, 59
basic cycle, 141
Bellman-Ford algorithm, 5–9, 171
bicycle, 166
binary search, 38
bisection search, 38
blocking flow, 97

algorithm, 99–100, 108
and dynamic trees, 108
definition, 97
in series-parallel graphs, 107–108
in unit capacity graph, 107

bucket data structure, 55

C (matrix), 217
C (scalar), 116
cactus tree, 95
cancel-and-tighten, 152

canceling
cycle, 113, 185
GAP, 160

canonical labeling, 161–162
capacity constraint, 20, 110, 158
capacity scaling algorithm

for maximum flow problem, 43–45
for minimum-cost circulation problem,

129–134
Cauchy-Schwarz inequality, 205, 226
characteristic flow, 160
Chernoff bounds, 244
circulation, 111–112

definition, 110
concentration of measure, 229, 244
concurrent flow problem, see maximum

concurrent flow problem
condition number

tree, 234
conductance, 213
congestion, 199, 211
contraction, 76
cost scaling, 155
cut

global minimum, 67
s-t, capacity, 23
s-t, definition, 21–23
sparsifier, 228–230
X-t, 69

cut condition, 189
two commodities, 191–193

cut level, 70
cut-equivalent tree, 84
cycle, 1

basic, 141
canceling, 113, 185
correction, 234
flow-absorbing, 159
flow-generating, 159
minimum-mean, 122
negative-cost, 5, 113
simple, 1
unit-gain, 159

DAG, 16
data structure

262

Index 263

bucket, 55
dynamic trees, 57, 108, 241
Fibonacci heap, 5, 18
heap, 4–5
pairing heap, 18
queue, 7–8

deficit, 129
demand, 111, 214
density of a graph, 36
Dijkstra’s algorithm, 2–5, 133
Dilworth’s theorem, 65
Dinitz’s algorithm, 97–100
directed acyclic graph, 16
discharge, 55
distance labels, 2, 45
X-valid, 70
valid, 48

distance level, 70, 100
empty, 70

dynamic trees, 57, 108, 241

effective resistance, 218–222
electrical flow

definition, 213–214
energy, 214
optimality conditions, 213–215

electrical network, 213–216
energy, 214, 222–224
error scaling, 183
excess, 48, 129, 159
excess scaling push-relabel algorithm, 61–62

Fibonacci heap, 5, 18, 75, 92
FIFO push-relabel algorithm, 61
fixed arc, 126
Fleischer’s algorithm, 209–210
flow

characteristic, 160
generalized, 159
interpretation, 180
over time, 142
proper, 159
s-t, definition, 19–21
temporally repeated, 143
value, 20, 159

flow conservation constraint, 20, 110, 158
flow decomposition, 40, 118, 166
flow-absorbing cycle, 159
flow-equivalent tree, 84, 93

algorithm, 93
flow-generating cycle, 159
Foster’s theorem, 221
Fujishige’s algorithm, 92

gain, 157
gain scaling, 179–180
GAP, see generalized augmenting path
GAP canceling, 160
gap relabeling, 58–59, 64
Garg-Könemann algorithm, 198–202, 209–210

generalized
circulation, 186, 246
flow, 159
proper flow, 159
pseudoflow, 158

generalized augmenting path, 159
generalized maximum flow problem

definition, 157–159
GAP canceling algorithm, 163–164
optimality condition, 159–165

generalized minimum-cost circulation
problem, 186, 246

global minimum cut, 67
α-approximate, 93
in directed graphs, 67
in undirected graphs, 67
number, 93

global relabeling, 59
Goldberg-Rao algorithm, 102–107
Golden Snitch, 60
Gomory-Hu tree, 245–246

algorithm, 87–91
definition, 84–85
for symmetric submodular functions, 91

Gusfield’s algorithm, 90

Hall’s theorem, 65
Hao-Orlin algorithm, 69–74
heap, 4–5

Fibonacci, 5, 18
pairing, 18

highest label push-relabel algorithm, 55
Hoffman circulation theorem, 60, 111, 116
holdover arc, 143

image segmentation problem, 60
integrality property

maximum flow problem, 27
minimum-cost circulation problem, 116

interpreting flow, 180

König-Egerváry theorem, 65
Kirchoff Current Law, 213
Kirchoff Potential Law, 215

labeling, 160–161
canonical, 161–162

Laplacian, 216–218
solver, 233–241

lossy graph, 175
low-stretch spanning tree, 244

m, 1
MA ordering, 75, 92

for global minimum cut, 75–78
for maximum flow problem, 92
for symmetric submodular functions, 92–93

maximum adjacency ordering, see MA
ordering

maximum concurrent flow problem, 188–189
maximum density subgraph problem, 35–40

This material will be published by Cam-

bridge University Press as Network Flow Algo-

rithms by David P. Williamson; see https://

www.cambridge.org/9781316636831. This pre-

publication version is free to view and down-

load for personal use only. Not for re-

distribution, re-sale or use in derivative works.

c© David P. Williamson 2019.

264 Index

weighted, 60
maximum flow problem

augmenting path algorithm, 27
definition, 19–20
integrality property, 27
optimality conditions, 26
over time, 142–147
parametric, 64

maximum flow-minimum cut theorem, 25
maximum multicommodity flow problem,

188–189
minimum s-t cut problem, 24
minimum s-cut problem, 67–68
minimum X-t cut problem, 69
minimum cost-to-time ratio cycle problem, 17
minimum-cost circulation problem, 246

cycle canceling algorithm, 115
definition, 110–111
generalized, 186, 246
integrality property, 116
optimality conditions, 114

minimum-cost flow problem, 111, 147
quickest, 147

minimum-cost perfect matching problem,
148–150

minimum-mean cycle, 122
algorithm, 17

minimum-mean cycle canceling algorithm,
122–129

most improving
augmenting path, 40, 43, 61
negative-cost cycle, 117, 148

multicommodity flow problem, 246
cut condition, 189
definition, 188–189
optimality condition, 189–190
two commodities, 191–193

multiplicative weights algorithm, 193–198
for maximum flow, 224–228
for multicommodity flow, 199–202
for packing problems, 196–198
with costs, 209

n, 1
negative-cost cycle, 5, 113

detection, 9–16
most improving, 148

negative-cost GAP, 168
detection, 171–175

network reliability problem, 68
network simplex algorithm, 140–142
node

active, 50, 57, 136
contraction, 76
demand, 111
labeling, 160–161
potential, 114, 213
price, 114

relabeling, 160–161
sink, 19, 157
source, 19
supply, 111

nonsaturating push, 138
nontree arc, 140

Õ, 94, 218
Ocean’s Eleven, 224
Ohm’s Law, 213
oracle for convex set, 196

width, 196

packing problem, 196
pairing heap, 18
parallel composition, 107
parametric maximum flow, 64
parent

graph, 10
pointer, 2

path, 1
augmenting, 25
simple, 1

perfect matching, 148
polynomial time, 27

pseudo-, 27
strongly, 28

potential, 114, 213
tree-defined, 215, 234

potential function, 53–54
preflow, 48
X-preflow, 69
convert to flow, 57, 64

price, 114
price refinement, 152
proper flow, 159
pseudoflow, 66, 129

definition, 129
generalized, 158

pseudopolynomial time, 27
push, 50

nonsaturating, 53, 138
saturating, 53, 138
stack, 62

push-relabel algorithm, 48–59, 245
excess scaling, 61–62
FIFO, 61
highest label, 55
wave scaling, 62–64

queue, 7–8
quickest minimum-cost flow problem, 147
quickest transshipment problem, 147
quidditch elimination problem, 60

random contraction algorithm, 78–83
Rayleigh monotonicity principle, 241
recursive random contraction algorithm,

81–83
reduced cost, 114
relabel, 50

Index 265

set, 152
relabeling, 160–161
RELAX, 155
residual graph, 25, 112, 159
resistance, 213

effective, 218–222

s-t cut
capacity, 23
definition, 21–23

s-t flow
definition, 19–21

saturated arc, 25
saturating push, 138
scaling

capacity, 43–45, 129–134
cost, 155
error, 183
gain, 179–180

scaling parameter, 43
scan, 7
series composition, 107
series-parallel graphs, 107–108
set relabeling, 152
shortest augmenting path algorithm, 45–47
simple

cycle, 1
path, 1

sink, 19, 157
skew symmetry, 20, 111, 157–158
source, 1, 19
sparsifier

cut, 228–230
spectral, 229–233

special arc, 102
spectral sparsifier, 229–233
stack push, 62
strongly polynomial time, 28, 246
submodular function, 86, 92–93

symmetric, 86, 92
Gomory-Hu tree, 91
minimization algorithm, 92–93

successive approximation, 134–140
supply, 111, 214
symmetric submodular function, see

submodular function, symmetric

temporally repeated flow, 143
time-expanded network, 143
transit time, 142
transportation problem, 153
tree

ancestor, 95
arc, 140
cactus, 95
condition number, 234
cut-equivalent, 84
flow-equivalent, 84, 93
low-stretch, 244

tree-defined potential, 215, 234
Truemper’s algorithm, 175–179

U (scalar), 27, 42, 116
unit capacity graph, 94, 100

blocking flow, 107
unit-gain cycle, 159

value, 20, 159

Wallacher’s algorithm, 117–122
wave scaling push-relabel algorithm, 62–64
width, 196

This material will be published by Cam-

bridge University Press as Network Flow Algo-

rithms by David P. Williamson; see https://

www.cambridge.org/9781316636831. This pre-

publication version is free to view and down-

load for personal use only. Not for re-

distribution, re-sale or use in derivative works.

c© David P. Williamson 2019.

